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Ahfmcf- Client puzzles have been proposed in a num- 
ber of protocols as a mechanism for mitigating the effects of 
distributed denial of service (DDoS) attacks. In order to pro- 
vide protection against simultaneous attacks across a wide 
range of applications and protocols, however, such puzzles 
must be placed at a layer common to all of them; the net- 
work layer. Placing puzzles at the IP layer fundamentally 
changes the service paradigm of the Internet, allowing any 
device within the network to push load back onto those it is 
servicing. An advantage of network layer puzzles over pre- 
vious puzzle mechanisms is that they can be applied to all 
traffic from malicious clients, making it possible to defend 
against arbitrary attacks as well as making previously vol- 
untary mechanisms mandatory. In this paper, we outline 
goab which must be met for puzzles to be deployed effec- 
tively at the network layer. We then describe the design, im- 
plementation, and evaluation of a system that meets these 
goals by supporting efficient, fine-grained control of puzzles 
at the network layer. In particular, we describe modifica- 
tions tu existing puzzle protocols that allow them to work 
at the network layer, a hint-based hash-reversal puzzle that 
allows for the generation and verification of he-grained 
puzzles at line speed in the fast path of high-speed routers, 
and an iptables implementation that supports transpar- 
ent deployment at arbitrary locations in the network. 

I .  INTRODUCTION 

The Internet currently carries an enormous amount of 
undesirable network communication. This is evidenced 
by the growing infestation of worms and viruses such as 
Nimda, Code Red, and SQL Slammer [1], [2j, [3], recon- 
naissance attacks such as port scans, targeted distributed 
denial-of-service attacks, and spam. Client puzzles [4]. 
151, [61, VI, [8l, [SI, U O I ,  1111, 1121, C131, 1141, 1151 
have been proposed as a mechanism for controlling such 
communication. With client puzzles, a server or network 
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being protected generates a cryptographic puzzle that a 
client must answer correctly before it is given service. 
Such a mechanism gives devices the ability to selectively 
push back load to the source of an attack when over- 
loaded. While the standard defense for preventing unde- 
sirable communication is to apply a binary filter to uaffic, 
such a defense is difficult to use due to the impact of false 
positives and the inability to completely differentiate good 
traffic from bad. Client puzzles provide a complementary 
weapon to filtering in that they provide an analog control 
against traffic that may potentially be deleterious. In con- 
trast to filtering, client puzzles also limit an attacker’s abil- 
ity to send bad traffic to multiple victims concurrently by 
consuming their computational resources. 

One of the limitations of current approaches for using 
client puzzles is that they can be easily thwarted if an ad- 
jacent or underlying protocol does not implement them. In 
order to provide reasonable protection across applications, 
it has been argued that such a mechanism must be placed 
at a layer common to all Internet communication: the Lp 
layer [ 151. The design of the IP layer has been driven by 
the “end-to-end principle” [16], a set of guideIines that ar- 
gues against putting special-case functions into common 
network layers. As a result, only essential functions have 
been placed in the network layer while all other functions 
have been implemented at the end-points. 

Client puzzles provide an essential function that is corn- 
mon to all applications and should be placed in the Lp layer. 
The observation that denial-of-service activity can happen 
at any layer and only needs to break one link in the end-to- 
end chain in order to be successful leads to the “weakest- 
link” argument to protocol design: 

Put in the comnion wuistline layer functions whose 
properties are otherwise destroyed iudess implemented 
universally across a higher andor l w e r  l q e r .  

In particular, functions such as congestion controI and 
DOS prevention require global deployment in order to 
be effective. For example, TCP congestion control is 
thwarted by UDP flooding and Dos-resistant authentica- 
tion protocols are thwarted by Ip flooding. Until puzzles 
are placed within IF, IP will remain the weakest link. 
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Motivated by the weakest-link argument, this paper de- 
scribes the design and implementation of network layer 
puzzles. There are two key properties of our design; a pro- 
tocol which supports the issuance of puzzles at a variety of 
resource granularities and at any time during the lifetime 
of a flow, and a novel fine-grained puzzle mechanism that 
can support fast generation in high-speed routers. 

Section I1 describes the design goals for supporting and 
deploying puzzles at the network layer. Section I11 de- 
scribes the design of the puzzle protocol. Section IV evdu- 
ates our novel puzzle mechanism with respect to a number 
of other puzzle mechanisms for use in the network. Sec- 
tion V describes and evaluates a Linux-based ip tab les  
implementation that uses IP options and ICMP. 

11. GOALS 

There are several important goals that must be achieved 
in order for client puzzles to be deployed effectively at the 
network layer. These goals include: 

6 Flexible depluymenr: The protocol must be sufficiently 
flexible to support puzzle issuance at arbitrary points in the 
network, including at end-hosts, firewaHs, and routers. 
Flexible usage: The protoco1 should support the is- 

suance of puzzles at arbitrary resource granularities such 
as on a per-host, per-flow, or even per-packet basis. Specif- 
ically, i t  must allow puzzles to be issued at any point dur- 
ing the lifetime of a flow. 
Tarizper-resistarice: The protocol should limit replay at- 

tacks over time and space. Puzzle answers should not be 
valid indefinitely and should not be usable by other ciients. 
While the protocol should limit spoofing attacks, a spe- 
cific non-goal is strong authentication between the client 
and issuer since the issuer may not be the end-host. This 
work assumes that the adversary does not lie along h e  path 
from the client to the server (i.e. the adversary cannot read 
or modify packets sent between the client and the server). 
Such an assumption is reasonable since an adversary that 
lies along the path can execute a more effective DOS at- 
tack using fewer resources than manipulating puzzles; the 
attacker could drop all packets. As a result, the system 
should prevent spoofing attacks only from adversaries who 
do not lie dong h e  path from the client to the server. 

Ef lc i enq:  The protocol and implementation must be 
efficient in terms of memory and CPU overhead at the 
issuer. Specifically, puzzle generation and verification 
should add minimal overhead to network devices in the 
m”-case [17] to prevent the puzzle protocol from be- 
coming an avenue for denying service. In addition, the 
amount of headdpacket overhead should be limited to 
minimize the effect of reflector attacks [18]. 

Miiiirrial application impact: The use of the puzzle 
protocol should not break latency-sensitive applications 
such as interactive voice, streaming video, and networked 
games. Clients who are able and willing to solve puzzles 
should be able to run all of their applications seamlessly. 

111. PROTOCOL DESIGN 

Many of the above goals can be addressed via mech- 
anisms described in a variety of previous protocols. This 
section describes a basic protocol developed from previous 
puzzle work f71, [8], (91, [lo], [14], [19] and from TCP 
SYN cookies [20], followed by the modifications that are 
necessary to allow the protocol to operate at the network 
layer. In the remainder of this paper, puzzle Server refers 
to the network device that issues the puzzles, while puzzle 
client refers to the client that solves the puzzles. 

A, Basic Puzzle Protocol 

6. CheckN, 
7. Solve P lo obtain A 

2. Generats P and A 
3. Calculate hiA, y ] 

5.  Throw away P and A 

9. Generate hiA, N, ) 
and match to verify A 

Client nonce 
Server nonce 

Answer 
Cryptographic hash function 

Fig. 1, Basic puzzle protocol 

Figure 1 shows the basic protocol which supports 
constant-state operation at the server and client. The only 
state required is a set of randomly-generated, periodically- 
updated client nonces (Nc)  and server nonces (Ns) .  In or- 
der to get the client to solve a puzzle, a server must echo 
a client nonce correctly, thus preventing spoofing attacks 
from third parties that are not along the path of commu- 
nication. Client nonces also prevent a server from con- 
tinually issuing puzzles indefinitely to a client that is no 
longer requesting service. Server nonces are kept secret 
and are used to efficiently verify answers. Since attacks 
on pseudo-random number generators are possible, both 
client and server nonces should be generated using a “true” 
random number generator [21], [223, [23], [24]. 

The protocol initially starts with a packet stream. The 
client attaches a client nonce (Ar,) to each packet it for- 
wards, Upon receiving a packet that triggers the puzzle 
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mechanism, the server generates a puzzle (PI and answer 
(A) as well as a cryptographic hash of the answer and 
server nonce ( h ( A , N , ) ) .  The server returns the client 
nonce, puzzle, and hash. Generating a cryptographic hash 
(i.e. SHAl) of the answer with a sufficiently random 
nonce allows the the server to discard everything except 
the nonce, while retaining the ability to verify correct an- 
swers, Clients check the echoed client nonce against its set 
of nonces in order to verify that it is still valid before solv- 
ing the puzzle. After solving the puzzle, the client attaches 
the answer and hash to all subsequent packets to the server. 
To verify answers sent by the client, all the server must do 
is hash the answer with the server nonce and check if the 
generated hash matches the one echoed by the client. If 
it does, the correct answer has been given and the server 
accepts the packet. 

Protocol Field 
Client coohe 
Server cookie 
P 
F 
A 
NC 

TSc 
No 
TS, 
T, 
T, 
h( 1 

B. Protocol Modifcatioiils for IP 

While the basic protocol has many salient features, a 
few issues remain to be addressed before puzzles are fea- 
sible at the LP layer. These include: 

EDcient nonce verifcatioia: A ,problem with using a 
set of nonces is the memory overhead of a nonce lookup. 
Since many network devices are memory-bound and high- 
speed memory is prohibitively expensive [25],  reducing 
the number of memory accesses is critical. To support ef- 
ficient nonce lookup at both the client and server, logical 
timestamps (TSc and TS,) are used to directly index into 
the nonce table. With them, nonce verification requires 
only a single memory access. 

Strict control of answer replay between and wzthinflows; 
Solving a single puzzle should not give clients unlimited 
access. For example, in the case of port scanning tools 
(such as scanrand, nmap, and nessus), solving a sin- 
gle puzzle should not allow connections to all other ports 
on a host to occur without additional puzzles being solved. 
To address this, a flow identifier (Fj can be included in 
the hash to bind puzzles and answers to particular pack- 
ets and flows. Upon receiving an answer, the server uses 
the packet's flow information when verifying the answer. 
For example, if the server 'wishes to implement per-flow 
puzzles, F can include the connection identifier 5-tuple 
(source E', destination IF, source port, destination port, 
protocol), thus forcing the client to solve a new puzzle for 
each new connection. To allow the client to know which 
flow tu bind puzzle answers to, the flow identifier must be 
attached to the puzzle. 

Strict control of anwer replay over rime: Network puz- 
zles can potentially provide routers with a mechanism for 
performing mandatory congestion control. In order to 
finely control resource usage over short periods of time, 

Drscnprion 
Nc,  TS, 
TS,, T,, T,, h(A, N B ,  TS,,T,. Te, F )  
Puzzle and parameters (hints. difficuhy) 
Flow identifier 
Answer 
Client nonce 
Client timestamp 
Server nonce 
Server timestamp 
Puzzle maturity time 
Puzzle expiry time 
Cryptogaphic hash function 

however, the server may require puzzles to expire at a 
much h e r  frequency Lhan its nonce is changed. To support 
this, a puzzle expiration time (Te) similar to those used in 
client authentication protocols [SI, [19]. [261, [271 can be 
added to the protocol. The puzzle expiration time enables 
the server to force clients to continually solve new puz- 
zles without forcing the server to change its nonce at the 
same rate. The server nonce needs only be updated at a 
frequency that would thwart brute-force attacks on it. 

Siipporlirzg latency sensitive applications: Forcing a 
client to stop and solve a puzzle before continuing ser- 
vice can adversely impact the usability of interactive and 
streaming applications. It should be possible to issue puz- 
zles ahead of time, allowing clients to solve them before- 
hand so that they can smoothly transition between two puz- 
zle answers and continue service uninterrupted. In order 
to support this mode of operation, a puzzle maturity time 
(T,) is included in the protocol. In steady state, the client 
uses a pre-calculated answer to a puzzle that has matured 
while calculating the solution to the next, maturing puzzle. 

C. Full Puzzle Protocol 

Client cmkie 

Figure 2 shows the final protocol with all of the proto- 
col components. The client attaches a cookie consisting 
of its nonce and a timestamp. A server requiring puz- 
zles generates a puzzle and answer along with a hash of 
the answer, server nonce. puzzle expiration time, puzzle 
maturity time, and flow identifier. The server then sends 
back to the client: the client cookie, puzzle and its param- 
eters, flow identifier, and a server cookie consisting of the 
above hash, server timestamp, puzzle maturity and expi- 
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ration times. The client, upon receiving the puzzle, cal- 
culates the solution and sends back the answer along with 
the server coolue. Upon receipt of this message, the server 
uses the server timestamp to index into the server nonce 
table to obtain the server nonce, checks that the nonce has 
not expired, and verifies the answer by regenerating the 
hash and comparing it against what the client sent. 

IV. PUZZLE MECHANISM SELECTION 

While the puzzle protocol facilitates the efficient .de- 
ployment of puzzles at the network layer, the puzzles 
themselves must be appropriately designed for use with 
our protocol. in th~s section, we examine the trade-offs 
when selecting a puzzle mechanism for use in the network 
layer. In particular, we focus on two properties: efficienq 
and resolution. In terms of efficiency, it must be possible 
to generate puzzles and verify answers on the order of mi- 
croseconds to support large streams of packets from a vast 
number of clients (i.e. high-speed routers must be able 
to perform puzzle generation and verification in the fast 
path). In terms of resolution, it must be possible to finely 
control the amount of work given to a client to maintain 
high utilization. Puzzles that are too coarse lead to re- 
source underutilization similar to that seen with TCP at 
low levels of multiplexing. 

In this section, we analyze three existing puzzle mecha- 
nisms: time-lock puzzles, hash-reversal puzzles, and mul- 
tiple hash-reversal puzzles. We introduce hinr-based hash- 
reversal puzzles as an alternative that is best suited for the 
network layer and can be implemented directly in network 
devices. Finally, we compare the four mechanisms. 

A. Time-Lock Puules 

Time-lock puzzles are based on the notion that a client 
must spend a particular amount of computation time per- 
forming repeited squaring; a sequential process that forces 
the client to compute in a tight loop for a controllable 
amount of time 1281. With time-lock puzzles, the server 
estimates the number of squaring operations a client can 
perform per second (S) ,  and the amount of time it wants 
a client to spend solving the puzzle (2"). It calculates the 
number of squarings that must be performed to solve the 
puzzle, t = T x S, and forces the client to calculate 
b =  mod l a ) .  Time-lock puzzles are an attractive puz- 
zle type since they provide an exact, fixed amount of work. 

Time-lock puzzle generation requires two large prime 
numbers p and q, which take significant server resources 
to generate. Unfortunately this means time-lock puzzles 
cannot be efficiently generated on the order of microsec- 
onds. 

B. Hash-Reversal Pirxles 

Another puzzle approach is to force clients to reverse 
cryptographic hashes calculated at the server given the 
original random input with 71. bits erased [7] .  In order to 
vary the difficulty level, ?a is either increased or decreased. 
The client performs a brute-force search on the erased bits 
by hashing each pattern in the space until it finds the an- 
swer. Since a single hash can be performed quickly and is 
compact, puzzle generation time and size are significantly 
less than those of time-lock puzzles. Also, many network 
devices have hardware support for cryptographic hashing 
and random number generation, making it possible to gen- 
erate these puzzles at line speed. 

Hash-reversal puzzles have a few disadvantages. The 
first is that their solution time is probabilistic in nature 
and is based on how lucky the client is in its search. A 
search could terminate after the first try or after the Zn- 
th try. When applied over a large number of puzzles (as 
would be the case for network puzzles), the average dif- 
ficulty will converge to the desired level, making this an 
insignificant disadvantage. A second disadvantage is that 
the puzzle can be parallelized by spiitting the search range 
up amongst a number of different systems. This disadvan- 
tage is also insignificant since the same systems could be 
used directly in a distributed denial-of-service attack to rhe 
same effect. The only significant disadvantage is that ad- 
jacent difficulties vary by a facmr of two. Solving an n 
bit puzzle is twice as hard as solving an (n - 1) bit puzzle. 
Due to this coarseness, it is hard to establish an appropriate 
hash-reversal puzzle difficulty that maximizes utilization. 

C. Multiple Hash-Reversal Puzzles 

Dividing the puzzle into mu1 tiple smaller hash-reversal 
puzzles as proposed by Juels [7] can mi tigate the disadvan- 
tages of hash-reversal puzzles. The chances of being lucky 
on each sub-puzzle becomes small, decreasing the vari- 
ance in total solution time. Furthermore,.using sub-puzzles 
of varying difficulty allows finer control of the overall puz- 
zle difficulty. For example, if the overall difficulty requires 
(210+28) hashes worth of work, sub-puzzles of 10-bits and 
8-bits could be sent to the client instead of sending either 
a 10-bit puzzle or an 1 1-bit puzzle. Figure 3 demonstrates 
the puzzle difficulties supported as a function of the total 
number of bits used across all sub-puzzles using one, three, 
and six sub-puzzles. The figure shows a fine resolution at 
low difficulties, with resolution exponentially worsening 
as the difficulty linearly increases. 

While multiple sub-puzzles can improve difficulty res- 
olution, it does so via a linear increase in generation time 
and puzzle size. In order to finely control the resolution 
at large difficulties, a puzzle must consist of many sub- 
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puzzles. To maintain fine-grained control across heavier ficulty level which is bounded by a brute-force search on 
workloads with faster client CPU speeds, the number of the server's secret nonce (given an 71. bit nonce, the maxi- 
sub-puzzles must increase. This prevents multiple hash- mum puzzle difficulty is O(2")). In conmast hash-reversal 
reversal puzzles from being a viable puzzle mechanism. puzzles have much coarser resolution, especially at higher 

40000 

30000 

10000 

0 
0 20 40 60 8D 100 

Number of bits in puzzle 

Fig. 3. Puzzle difficulties supported using single and multiple 
hash-reversal puzzles 

D. Hint-Bused Hash-Reversal Piizzles 

We propose a novel mechanism for delivering fine- 
grained puzzles in which a single hash-reversal puzzle is 
given to the client along with a hint that gives the client an 
idea of where the answer lies. The hint is a single value 
that is near the answer and solves the coarseness problem 
of hash-reversal puzzles. To adjust the difficulty of the 
puzzle, the accuracy of the hint is increased or decreased. 
For example, suppose a randomly generated number x is 
used as the input to the hash h(z). To generate a puzzle 
with O ( D )  difficulty, the issuer passes the client the hash 
and a hint, x -U (  0, D). Where u(0, D) is a randomly cho- 
sen number uniformly distributed between 0 and D. The 
client then starts at the hint and searches the range linearly 
for the answer. The number of hashes done by the client to 
find x varies probabilistically but the expected value is f .  
E. Puzzle Comparison 

To compare the puzzle types, Table I lists the properties 
of each puzzle type. Unit work (w) describes the basic op- 
eration the client must repeatedly perform to solve the puz- 
zle and the average amount of time the operation requires 
on our evaluation system (an unioadcd 1.8GHz Pentium 
4). Range describes the range of difficulties supported by 
the puzzle baed on n, the number of bits in the secret. 
The mean and maximum resolution describe the spacing 
between adjacent puzzle difficulties. 

As the table shows, time-lock puzzles can be given at 
a very fine resolution all the way up to the maximum dif- 

difficulty levels. Multiple hash-reversal puzzles can alle- 
viate the resolution problem based on I;, the number of 
n.-bit sub-puzzles. While the derivation is out of the scope 
of this paper, it can he shown that the number of distinct 
difficulty levels is a closed function of k and n., as shown 
in the table, Hint-based hash-reversal puzzles have a very 
fine resolution comparable to that of time-lock puzzles. 

Fig. 4. Puzzle generation versus solution time 

Figure 4 shows the generation time of each puzzle type 
as a function of the solution time across a large range of 
difficulty levels. Each data point represents an average of 
100 different puzzles which were generated and solved on 
our evaluation system. As the figure shows, the generation 
time for time-lock puzzles is several orders of magnitude 
greater than that of any of the hash-reversal puzzle types. 

E Amwer Verification 

The answer verification mechanism is the same across 
all puzzle types; cookies are used to support constant-state 
verification of answers. Clients must present their solu- 
tion with the server cookie which was attached to the puz- 
zle. To verify correctness, the server uses the timestamp 
to index into the nonce table and obtain the correspond- 
ing nonce, performs a hash of the client's solution with the 
nonce, and checks to see if it matches the echoed server 
cookie. These operations are simple, allowing the server 
to verify puzzles very quickly. Across 1000 puzzle veri- 
fications on our evaluation system, the average time was 
1.24 p s  (i.e. =. 800,000 per second). 

2376 



Puzzle Type 1 Unit Work ( tu)  1 Range Mean Resolution Max Resolution 

Time-Lock 
Single Hash-Reversal 
Multiple Hash-Reversal 

V. IMPLEMENTATION 

To demonstrate the feasibility of our protocol and puz- 
zle algorithm, we implemented our design in Linux using 
netf  ilter and iptables [29]. This sectiondescribes 
the details of our implementation, provides an example de- 
ployment scenario, and evaluates the implementation. 

squaring ( 0 . 7 5 ~ ~ )  O(2") W W 

hash (1.09ps) ?U * 2" 'W * 211 w * 2-l 
72 

?U * 2n-1 7/l*k*2" C",c.-.r(:)-lin hash (1.0Yps) w * k * 2" 

, k > n  wu*kt2" 

(t-r+l)"'+C:_d(,r--r)( y ) 

A. Derails 

The implementation uses the Linux kernel modules 
netf  i l t e r  and iptables to provide hooks and sup- 
port for modifying packets in the kernel. Our system im- 
plements the protocol using two modules: a puzzle issuing 
firewall and a puzzle solving proxy. We found that for 
thin clients that do not possess the computational power 
required to solve the puzzles, it is possible for an admin- 
istrative domain to set up a proxy machine to solve the 
puzzles without violating the protocol or its intentions. 

There are two possible and acceptable scenarios where 
a proxy will become a bottleneck. The first is that the 
proxy is working on behalf of clients who are behaving 
maliciously and are being issued very difficult puzzles. In 
this case it is desirable that the proxy is a bottleneck since 
each attacker using the proxy is throttled by the cumulative 
difficulty of all puzzles issued to the attackers. Adminis- 
trators can fix the bottleneck for legitimate users by dis- 
connecting and repairing the machines which are creating 
the malicious traffic. The second scenario where a proxy 
will become a bottleneck is that the proxy is attempting 
to solve puzzles for too many clients. In this case, the ad- 
ministrators simply did not allocate an adequete number of 
proxies to handle the legitimate users. 

The system uses TCMP source quench messages to de- 
liver puzzles. and IP options to transmit client cookies and 
puzzle answers. Figure 5 shows how the protocol mes- 
sages are attached to a packet stream. 

The puzzle proxy attaches the client cookie (the IP op- 

Hint-Based Hash-Reversal I hash (1.09ps) I ? U *  2" 1 W 

PuzzleRoxy 1 1 Puzzle Firewall I 

w 

Fig. 5. Protocol messages in action 

tion shown in Figure 6)  to all outgoing packets in a stream 
and caches a copy of the latest packet. Upon receiving 
packets from a source that requires a mandatory quench, 
the puzzle firewall sends a hint-based hash-reversal puz- 
zle (the 1 0  packet shown in Figure 7) back to the 
client. The lCMP puzzle is effectively a mandatory ver- 
sion of the pre-existing ICMP source quench [30], where 
a client demonstrates it has quenched itself by attaching 
correct answers to its subsequent packets. It is important 
to know that the puzzle difficulty is a 32-bit unsigned inte- 
ger (difficultby E [07 232]) and a difficulty of 0 means that 
no puzzles are required. When a puzzle is received by a 
puzzle proxy, it verifies the echoed cookie and then solves 
the puzzle. After solving the puzzle, the proxy attachs the 
answer (the IP option shown in Figure 8) to all future pack- 
ets on that flow. The proxy also resends the cached packet 
which triggered the puzzle. When the puzzle firewall re- 
ceives a packet with an answer it checks the answer before 
forwarding the packet. Any time an answer is not valid 
(most often due to the answer expiring) the firewall drops 
the packet and sends a new puzzle to the client. If the 
network drops a puzzle, the next packet on the flow will 
trigger another puzzle since it  will also be invalid. 
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Fig. 6, Client cookie XP option 

Fig. 7. ICMP puzzle 

3. Deploynent Scenario 

To demonstrate how the modules can be used, Figure 9 
shows a simple proxy-firewall setup and packet trace. The 
client (ak4 7) behnd the proxy initiates two connections 
to the destination network being protected by the firewall. 
The first connection is to a closed port on a protected server 
(mp5 : 2601). while the second is to a non-existent ma- 
chine (10 . 0 . 2  .I23 : 23). When not using network puz- 
zles, the client would simply receive an RST segment in 
response to the first connection and receive no response 
to the second connection. However, when using network 
puzzles, the firewall issues a puzzle for each connection at- 
tempt. The proxy, on behalf of the client, must then solve 
each puzzle before the client can find out whether or not 
the service or machine it is seeking is available. 

C. Evaluation 
To evaluate our system, we set up a small network of 

four clients (acting as their own puzzle solvers) and a sin- 
gle server protected by a puzzle firewall connected on a 
single VLAN via a Cisco Catalyst 4006 Gigabit switch. 
Each client, firewall, and server were dual 1.8GHz Intel 
Xeon processors with Gigabit Ethernet interfaces. 

As discussed in Section IV the expected number of 
difficulty hashes to solve a puzzle is 7. The number of hashes 

to generate a puzzle is a constant 2 hashes (1 to hash the 
answer and 1 to create the issuer cookie), and the number 
of hashes to verify a puzzle is a constant 1 hash (to match 

Fig. 8. Answer IP option 

ak4: 

1 0 0 0 6  

mp5 

10.0.2.6 

proxy f irewall 

Firewatl 
f i r e w a l l 1  insmd puzzlenet-rrgr.0 
firewall% insrrod 1ptquzServer .o  
firewalls l p t a b l e s  - t  nnngle - A  INPUT -1 pUzServer 
Elrewall8 l p t a b l e s  -c mangle - A  FORWAPD -1 puzserver 

Proxy 
proxy% lnsnnd puzzlenet-wr.0 
proxyt insnod i p t q u z C l 1 e e t . o  
proxy8 l pcab le r  - c  wangle -A  INPUT -p icmp -1cmp-cype 3 8  -j puzcllenc 
proxy$ lptables - c  wangle -A FORWARO -p icmp -icmp-type 3 8  -j p u z c l i e n t  
proxy* rptebles - t  mangle -h POSTROUTING -j p u z c l l e n t  

Client 
ait47'1 t e lne t  mp5 2601 
Trying  10.0 2.6 . .  
Celnet; Unable CO connect to  remce host5 Canneccion refused 
ak47r t e l n e t  10.0.2.123 
Try1r.g 10.0.2.123.. . 

tcpdump trace 
17:12:53.632512 10.0.0.6.14698 > 10.0.2.6.2601: 6 
17:12:53.632566 10.0.1.2 > 10.0.0.6: icmp: Lype-tt38 
i?:iz:56.6302i2 io.o.a.6.14698 1a.o.2.6.2601: s 
17:12:56.630287 10.0.2.6.2401 > 1 0 . 0 . 0 . 6 . 1 4 6 3 8 :  R 

17:13:05 156542 10.0.1.2 > 10.0.0.6: i c v :  CYpe-X38 

17.13.14.153935 10.0.0.6.14639 > 10.0.2.123.23; S 

i7:13:05.a55725 10.0.0.6.14699 10.0.2.123.23: 6 

17:13:oa.454862 10.0.0.6.14699 I ia.o.2.123.23: P 

Fig. 9. Proxy-firewall example 

the echoed issuer cookie). To reasonably expect a client 
to be doing at least as much work as the issuer, the issuer 
should not create puzzles of difficulty less than 6. 

Throttling effectiveness can be measured by the work 
ratio between the puzzle solver and the puzzle issuer. This 

us- 
ing a 32-bit unsigned difficulty 2 6, the minimum ratio 
is 1 while the maximum ratio is Since a hash on 
the evaluation system takes 1.09ps, we expect our h e -  
wall to verify a bad answer and generate a new puzzle in 
around 3 * 1.09ps = 3.27~s. Similarly the maximum dif- 
ficulty puzzle would be expected to take 1.09ps x 231 = 
39.01nzin to solve. 

To measure the rate at which a server can verify and 

solution time 
cm be expressed as verification time + generation time' 
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generate puzzles, the clients were configured to flood the 
server with 64-byte UDP packets with invalid answers 
as fast as they could. The firewall verified that the an- 
swers were invalid and generated a new puzzle for each 
invalid answer. The firewall's peak sustained throughput 
over a one minute inierval was 182,000 packets per sec- 
ond (or 5 . 4 9 ~ ~ ~  to verify and generate). This through- 

slightly lower than expected since there is an unavoidahle 
(yet relatively smalI) amount of OS contention for the CPU. 

This shows that the throughput of this software implemen- 
tation is unsuitable for in-network deployment of puzzle 
firewalls for all but home networks. However, we are CLX- 
rently investigating a hardware based implementation on 
the IXP2850 which has special hardware hash units. This 
device is promising since a hash takes 0.094ps and we an- 
ticipate being able to verify and generate puzzles at Gigabit 
speeds. 

To demonstrate the ability to differentiate between ma- 
licious and legitimate clients, we ran another experiment 
using the same network configuration, but made one of the 
clients non-responsive by having it refuse to answer any 
puzzles. A simple controller was implemented to control 
the amount of traff~c accepted by the firewall. The con- 
troller targeted a rate of 150,000 packets per second. If 
the number of packets accepted exceeded or fell under- 
neath the target, the controller scaled the difficulty based 
on the percentage difference. Figure 10 shows the result 
of the experiment. After a minute of idling (t = 60sec), 
the non-responsive client floods the server with a packet 
stream at a rate of around 130,000 packetslsec. As Fig- 
ure 1O(a) shows, since this is below the target forwarding 
rate, the firewall accepts the packets and does not issue 
puzzles. After another minute (t = 120sec), the three 
3y"' clients begin flooding the server, thus driving the 
packet rate well beyond 200,000 packets/sec. The firewall 
quickly enables puzzles and completely wipes out the non- 
responsive client. While the non-responsive client is still 
transmitting packets, none of its packets are forwarded by 
the firewall. As the figure shows, after a brief oscillation, 
the aggregate throughput of accepted packets for the other 
three clients remains close to the target rate. Figwe lO(b) 
shows the puzzle difficulty setting at the firewall through- 
out the experiment. As the figure shows, the difficulty re- 
mains at 0 (Le. no puzzles) while the rate of accepted pack- 
ets is below the taget. As the packet rate increases beyond 
the taget, the difficulty adapt5 in order to force the packet 
rate back to the targeted level. 

A large part of containing Internet worms is slowing 
their propogation. Many worms use adaptive port scan- 
ning to find new hosts to infect; so by slowing port scans 

182000packets 64B Ph 1Gb Put ( packet B 10737418243 = 0.087Gbl's) is 

we can slow the propogation of,worms. The deployment 
scenario in the previous section indicates that it is possible 
to use network puzzles to effectively throttle a port scan. 
To evaluate this, we compare the time it takes an efficient 
port scanning tool to scan a server not protected by puz- 
zles to the time it takes the tool to scan a server protected 
by puzzles of various difficulties. The port scanning tool 
used W Z ~  scanrand, which can scan an entire class B 
network in under 4 seconds [3 11. Figure 11 shows the re- 
sults of this experiment; that a ten-fold increase in puzzle 
difficulty results in a ten-fold increase in scanning time. 
Without using network puzzles, a scan of 1000 ports took 
39ms. At difficulty 100,000 the scan took more than 3 
minutes. Extrapolating, puzzles of the maximum difficulty 

would force the port scan to take over a month. 

T h e  to Scan Pom 
I 

Fig. 1 1. Ports scanned over time 

VI,  DISCUSSION 

A. Related Work 
There have been a large number of efforts related to con- 

trolling malicious traffic such as denial of service attacks. 
One set of approaches focuses on tracing floods back to 
their sources via targeted packet injection and intelligent 
packet marking [321, [331, [341, [351, 1363, [371. Another 
class of approaches is to use pro-active, distributed filer- 
ing of packets via direct and indirect methods [38]. [39], 
[40], [41], [42], [43]. These approaches are complemen- 
tary and can be used in conjunction with puzzle-based ap- 
proaches. 

Cryptographic puzzles themselves were first proposed 
by Merkle in public key protocols [ 5 ] .  Since then, puzzles 
have been applied in specific applications such as authen- 
tication protocols [6], [9], [191, e-mail protocols [4], [U], 
and transport layer protocols [7], [8], [14]. Network layer 
puzzles do not preclude the use of higher-layer puzzle pro- 
tocols. The IP puzzle semantic of "solve a puzzle before 
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Fig. 10. Controlling a non-responsive client 

I forward your packet” provides additional protection on compared to spoofed TCP SYN floods, 
top of alternative client puzzle protocols where end-host Congestion control: Puzzles can be used to implement 
intervention is required. More importantly, however, is the mandatory congestion control. For this to happen, a more 
fact that the implementation effectively runs at hgh-speed, sophisticated controller must be designed that can perform 
augmenting approaches that rely on some form of network robustly in a range of environments. While such con- 
layer protection to guarantee client access 1451. trollers exist in the “voluntary” domain of TCP congestion 

control and active queue management [47], [481, there are 
B. Linzitarions no such equivalents in the puzzle domain yet. 

There are a few known limitations with the current ap- 
proach that we are working to address. These include: 
ZP header limirutions: The current design and the 40- 

byte maximum IF’ header length allows for only a sin- 
gle puzzle answer to be attached on the forward path. 
While the IPv6 header allows for any number of headers 
to be used for this purpose [46], we are currently examin- 
ing IPv4-based mechanisms for supporting multiple puz- 
zle answers per packet in case there are multiple puzzle 
issuers on an end-to-end path. 

Eavesdropping attacks: The lack of a true authentication 
mechanism means that an eavesdropper along the network 
path can spoof a puzzle back to the client. For example, 
on a wireless network, an eavesdropper can capture pack- 
ets passively, capture the client nonces, and send puzzles 
back to the victim. While link-layer authentication and 
encryption can help, this vulnerability should be carefully 
considered before deployment. 

Reflector attacks: Since puzzles consume a non-zero 
amount of bandwidth, they can be used a part of a reflec- 
tor attack [l8]. Adversaries could spoof a particular source 
IP address and flood the victim with bogus puzzles. Due 
to the compact size of the puzzle and the ability to keep 
such attacks out in the network, however, we argue that IP 
puzzles do not significantly raise the risk of such attacks 

\ 

High-speed router iniplemenrarion: Since the protocol 
and system have been designed with high-speed routers in 
mind, we are currently implementing a version of it  on the 
fast path of Intel’s IXP 2850 network processor 1491. 

Targeted dificuly leveZs: The current implementation 
uses a single, adaptive difficulty level for all of the clients 
it services. It has been shown that such an approach has 
many disadvantages including a clear adverse impact on 
legitimate clients [45]. We are augmenting our system us- 
ing efficient, high-speed mechanisms [50], [51], [52], [53] 
for delivering differential puzzles whose difficulties vary 
based on end-to-end, application-driven information [54], 
[55 ] ,  [56]. This work is described in the next sub-section. 

C. Future Work: Repu tu tion-Based Networking 

The goaI of reputation-based networking is to quickly 
identify malicious clients and place an extremely large 
computational punishment on all of their communication 
using network layer puzzles. There is a wealth of locally 
observable behavior information that can be used to adap- 
tively deliver harder puzzles to clients exhibiting suspi- 
cious behavior. For example, intrusion detection systems 
(IDS) such as Snort [54] as well as application log files 
can clearly identify systems that are being used for unde- 
sirable purposes. In addition, there is an immense amount 
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VII. CONCLUSION 

Network puzzles are an elegant mechanism for miti- 
gating the effects of undesirable network communication. 
This paper has described the design and implementation 
of a network layer puzzle protocol and algorithm that can 
he used to effectively slow down flooding attacks and pork 
scanning activity. The system allows for high-speed im- 
plementations in the fast path of modem network devices, 
can he flexibly deployed, and is resistant against replay and 
spoofing attacks. Reputation Databapc 

’ 

Performance Evaluatirm 

Adaptation 

It 

Fig. 12. Managing reputations for network puzzles 

of external information that can be used. For example, 
the DShield service [56] exports a database of informa- 
tion on which ports are being attacked actively and which 
machines are currently being used to launch attacks. 

To perform puzzle difficulty management more intelli- 
gently, we are currently building a Puzzle Manager: an 
intelligent agent that aggregates input from a number of 
information sources in order to determine the reputation of 
clients and the difficulty of puzzles they must solve to ob- 
tain service. Such reputations are then fed into the mech- 
anisms used for punishing malicious clients. We envision 
that such mechanisms can be used as a form of emergency 
response to the onset of large-scale cyber-attacks. Specif- 
ically, clients with low global reputations will be forced 
to solve more difficult network puzzles before their pack- 
ets are routed. Figure 12 outlines the architecture of the 
reputation-based system we are constructing. As the figure 
shows, in order to keep up with the changing Internet land- 
scape, the performance of the system must be continuously 
evaluated against system utilization measurements, ma- 
chine threat rankings, and user experience reports. Adap- 
tation algorithms will be employed in order to use the feed- 
back to properly adjust the aggregation functions to max- 
imize the system performance. In particular, the system 
must continuously learn the reliability of individual infor- 
mation sources and adjust the filtering and weighting of 
information accordingly. 

The more interesting research issues focus on the sur- 
vivability of the system; intelligently thwarting the at- 
tempts of malicious clients trying to avoid the punishment 
mechanisms or subverting the sources of information to 
render the system completely inaccurate. 
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