
MULTIPARTY UNCONDITIONALLY SECURE
PROTOCOLS

(Extended Abstract)

David Chaum’ Claude Crt!peaut Ivan Damgdr&

*Cenlre for Mathenkdcs and Conrpufer Science (C. W.I.)
Kruidaan 413,1098 S.J Amsterdam. The Ndwlamis

tL.aboratory for Computer Science, M.I.T.
545 Technology Square. Cambridge, MA 02139, USA.

*Marematisk In.rlitti, Aarhus Universitel,

Ny Mwkegade, DK 8000 Aarhus C, Denmark

Abstract

Under the assumption that each pair of participants
em communieatc secretly, we show that any
reasonable multiparty protwol can be achieved if at
least Q of the Participants am honest. The secrecy

achieved is unconditional, It does not rely on any
assumption about computational intractability.

1. Introduction

In this paper, we show that essentially any
general multiparty protocol problem can be solved,
in such a way that each party’s secrets is uncondi-
tionally secure, assuming the existence of authenti-
cated secrecy channels between each pair of partici-
pants. In general, an input value Xi is uncondition-
ally secure if gaining information about Xi is impos-
sible beyond that available from z (so long as no
more than + of the participants cheat, in our model).

The problem of multiparty function computation is
as follows: n participants PI, Pz, P, agree on a
multivariable function F and wish to compute and
reveal to each participant r=F (x1, x2, . .., x,,), where
Xi is a Secret input provided by P;. The goal is to
preserve the maximum privacy of the xi’s and to
simultaneously guarantee the correctness of the com-
mon result 2. (An intrinsic property of any solution
to this problem is that for a non-trivial function F,
the value of 2 reveals some information about the
secret Xi ‘S.)

This is stronger than the notion of cryptographic
security that is often used for cryptographic proto-
cols. Under that definition, xi is cryptographically
secure if gaining information about it, other than that
available from z is thought to be computationally
hard.

As explained below, in our model no more
than i of the participants may deviate from the pro-
tocol. Since our solution will tolerate up to this
number of participants who cheat, it is therefore
optimal.

1.1. Related Work
t supported in part by an NSIXC Postgraduate Scholarship

supported in part by DARPA grant NOC@1483KO125
research conducted at the C.W.I.

* resemh canduckcl at the C.W.I.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear. and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy ofherwise, or to republish. requires a fee and/or specfic
permission.

Other work has been able to provide uncondi-
tional privacy in multiparty protocols, but only for
specific problems. One poker protocol of BArAny
and Furedi [BF] used a model similar to ours, but
was unable to tolerate active cheaters. The dining
cryptographers problem of Chaum [Ch2], was also
based on a similar model, and provided uncondi-
tional untraceability of messages even in the pres-
ence of active disruption.

The general problem of achieving secure mul-
tiparty function computation was first posed by Yao

0 1988 ACM-O-89791-264-0/88/0005/0011 $1.50
11

[Ya], in a public key cryptographic setting. In this;
paper, he suggested that a general solution exists in
his particular model. Goldreich, Micali and Wigder-
son showed in [GMW] that very general multiparty
protocols (or mental games) could be achieved in a
model where security is based on the notion of zero-
knowledge protocols. Their ~solution, based on the
existence of trapdoor one-way permutations,
involves a “compiler” that transforms any mental
game into a multiparty cryptogmphically secure pro-
tocol.

Chaum, Damgtid and Van de Graaf presented
a more direct and practical solution [CDG] based on
the existence of “unconditionally secure blobs” (see
[BCCI) and trapdoor one-way functions. This solu-
tion was the first one to raise the hope that such pro-
tocols could be implemented in an unconditionally
secure way. That paper showed how general mul-
tiparty protocols provide uncondilional privacy IC
one participant and that it is the most that can be
achieved in that model. Our result stems from that
paper.

The major limitation of these results is due tc
the model they use: a setting where only public com-
munications are possible. All these general con-
structions rely on trapdoor one-way functions, and
therefore must assume essentially that public key
cryptography is possible.

A much weaker assumption is to assert the
existence of authenticated secrecy channels, i.e. a
way of communicating in which the identity of the
sender is known (authentic:ation) and the data
transferred is revealed only to the single person it iz
mcanl for (secrecy). Such channels arc very practical
and can be implemented easily: for example, by
writing down messages on pieces of paper and phy
sically handing them out to the other parties. They
can also be implemented using conventional cryp-
tography (secret key systems).

Our work has drawn inspiration from and
relies on a number of other earlier contributions. The
Byzantine Generals problem proposed and solved by
Lamport, Shostak and Pease @-PSI cart be thought of
as underlying our work and Iprovided a foundation
for our model. So called secret sharing schemes pro-
posed by Blakely [Bl] and !;hamir [Sh] are basic
building blocks. A very clever extension of these
schemes was proposed by .McEliece and Sarvawate
[MS] that provides some fault-tolerance to active
cheaters. The more specific notion of verifiable

secret sharing (VSS) schemes was introduced to
cryptography by Chor, Goldwasser, Micali and
Awerbuch [CGMA]. The usefulness of the
homomorphic structure of Shamir’s secret sharing
scheme was observed by Benaloh [Be], who pro-
posed techniques very similar to ours in is own ver-
sion of a VSS scheme.

Some concurrent and independent work
[BGW] has been performed on the topic of our
paper: during discussions with Shati Goldwasser
and Avi Wigderson, we learned that they were work-
ing with Michael Ben-Or on results similar to ours.
At that time, all of us had results in a very early
stage. By the time of submission to this conference,
both groups had found almost identical results by
quite different means.

1.2. Algorithm

The gcncral structure of the algorithms is simi-
lar to the ones of [CDG] & [GMWI in the sense that
it takes place in two steps: Commitment and Compu-
tation. First the participants enter a stage in which
they commit to their inputs. This commitment is per-
formed by means of a new non-cryptographic
verifiable secret sharing (VSS) scheme. Up to now,
all previous implementation of VSS schemes have
relied on public key cryptography. We introduce the
first scheme that does not rely on such assumptions.

If some participants try to commit to some-
thing improper or simply do not cooperate, this tirst
phase will identify them and the remaining partici-
pants will take the appropriate action. This is the
very best we can hope for. What else can you do
with someone who does not want to participate?
Once every one commits to his input, and that every
participant gets a share of everybody else’s secret,
they enter the second phase in which they evaluate
the function. The computation is performed locally
by each participant on the shares he receives from
the others.

Our construction satisfies the following pro-
pWt.ieS:

l Unconditional Secrecy: In both stages, it is
impossible for any subset of participants of
size less than + to gain any information about

anyone else’s inputs.

l Built-In Fault Tolerance: In the second phase,
no such subset can prevent the honest partici-
pants from correctly evaluating the function.

12

Again, our solution does not depend on res-
tricting the computing power of the participants. Ear-
lier solutions relied on cryptographic assumptions
for both secrecy of the inputs and correctness of the
computation. Even if these assumptions turned out
to be we, the secrecy and correctness would still be
dependent on the limitations in computing power of
the participants.

2. The Model

For convenience, the number of participants
will be called II, which can always be written as
n =3d+a,wherea=1,2or3.

Our assumptions about at least 2d+a of the partici-
pants are that:

l they do not leak secret information to other
participants; and

l they send the correct messages defined by the
protocol.

We call a participant satisfying the above properties
reliable. At the start of the protocol, it is of course
not generally agreed which participants are reliable.
Let PI, Pa, -. . , P, be the participants. Our basic
assumptions about the communication between reli-
able participants PA and Pe are that:

l when PA sends a message to Ps, nobody else
can leam anything about its content;

l when PB receives a message from PA, PB can
be certain that nobody but PA could have sent
the message; and

l messages sent will be received in a timely
manner.

Finally, we complete our model by assuming the fol-
lowing:

l all participants agree on the protocols to be
followed; and

l participants can determine whether messages
sent to them were sent before deadlines set in
the protocol.

Our protocols ensure that all reliable partici-
pants obtain the correct result. It is proved construc-
tively in [LPSI, under a model like ours, that a
necessary and sufficient condition for all reliable
participants to agree on a message--such as the
result of a protocol-is that at least 2d+a of the par-
ticipants am reliable. Hence, our two-thirds

assumption is optimal. A polynomial algorithm
solving this problem is presented in [DS]. Their
construction allows us to obtain an efficient “broad-
cast” channel: a means allowing any participant to
make a message known to all participants, in such a
way that all reliable participants will obtain the same
value of the message. (Assuming a broadcast chan-
nel, moreover, would not enable us to to weaken our
other requirements.)

For simplicity in the following descriptions,
we use the terminology of information theory
because we make the assumption that the channels
are unconditionally secure. Notice however that in
fact we get protocols as strong as the secrecy and
authentication of the channels used. If the channels
were not unconditionally secure, for example, the
protocol would not be unconditionally secure for all
participants but its correctness would still be
guaranteed.

3. Implementing Blobs using Secret Sharing

In [BCC], a fundamental protocol primitive is
described: the blob. The purpose of blobs is to
allow a participant PA to commit to a bit in such a
way that she cannot later change her mind about the
bit, but nobody else can discover it without her help.
The defining properties of blobs are as follows:

(i) PA can obtain blobs representing 1 and blobs
representing 0.

(ii) When presented with a blob, nobody can tell
which bit it represents.

(iii) PA can open blobs by showing the other parti-
cipants the single bit each represents; there is
no blob she is able to “open” both as 0 and as
1.

(iv) Any other participant can at will obtain blobs
representing 0 and 1. Moreover, these blobs
must look exactly like the blobs obtained by
PA.

To implement blobs in our model, we use a
variation on Shamir’s secret sharing scheme [Sh].
This variation was proposed by Blakely [BI], who
independently discovered secret sharing schemes,
and it is more efficient than Shamir’s original con-
struction.

For our purposes, the scheme may be
described as follows: a polynomial f of degree at

13

most d over GF (2’) is chosen uniformly, where k i;r
an integer such that 2k >n . The secrtzt to be shared i;r
defined for convenience as the value off at 0. The
protocol also assigns a distinct non-zero point is in
the field to each participant Ps . The secret can now
be divided among the II participants by providing
each PB with the value off (&a). It is not hard to see
that more than d shares completely determine f , and
therefore the secret, while no Shannon information
about the secret is revealed by any number of share:%
not exceeding d.

We generalize slightly by allowing blobs to
represent any value in GF (29. Blobs are now
readily achieved:

(9

(ii)

(iii)

(iv)

To obtain a blob representing the value v , par-
ticipant PA chooses uniformly a polynomial f’
with deg (f) I d, such lbat f (0) = v. She then
calculates n shares as above and distributes
one to each participant. Using the subprotocol
described below, she convinces the other parti-
cipants that she has distributed a consistent set
of shares.

Since the number of unreliable participants is
smaller than d, no collusion will gain an:/
information in the Shannon sense about th(:
value represented by a blob.

To open a blob, PA first broadcasts what its
shares should be ((is IllSB In)). Then each
participant broadcasts a message stating
whether they agree with their share that was
broadcast by PA. If a participant does net
agree, he is said to be complaining about PA.
It is required that at least 2d+a of the partici-
pants do not complain. By the remarks below,
this condition ensures that PA can only open .a
blob to reveal the single value it represents.

Any participant can choose a polynomial and
distribute shares of it, whence it is impossible
to tell from a blob who generated it.

By distributing inconsistent shares to reliabl:
participants, a coalition of unreliable participants
could allow PA to open a bllob in two or more dif-
ferent ways. The following proof, which we infor-
mally call a “cut-and-choose procedure” (and is
similar to the construction of [Be]) enables us to
remove this inconsistency. Let the original bldb
chosen by PA be p. Then the cut-and-choose works
as follows:

(a) PA establishes a new indcpcndcntly chosen
blob 6.

(b) One of the other participants Hips a coin and
asks PA tLr
-openS,orto
- open Stp, where St/3 denotes the blob
defined by the sum of corresponding shares of
Sandj3.

(c) Steps (a) and (b) are repeated until no com-
plaints have occurred in M consecutive
rounds, or until more than d participants have
comphdned about PA. In the first case the
proof is accepted, otherwise it is rejected.

The participants take turns in executing step
(b). By assumption, this means that PA will be

2d+a unable to predict the coinflips at least n of the

time.

Note that the proof will always terminate: even
if all unreliable participants work against an honest
PA, they cannot enlarge the number of rounds by
morethanmd.

When p is later opened, the shares held by
complaining participants arc of course ignored.

If the proof is accepted, then the following
holds with probability exponentially close to 1 in m :
all reliable participants who did not complain (of
which there are at least d+a) have shares consistent
with one polynomial of degree at most d .

Thus, with very high probability, PA cannot
convincingly claim that her blob contains anything
but the secret determined by the d-t-u valid shares
guarantied by the fact above, since otherwise the
condition in step (iii) would be violated.

To see why this is satisfied, it suffices to con-
sider the behavior of reliable participants,
corresponding to the worst case assumption that all
unreliable participants will try to help PA by always
agreeing with her. For any blob y, consider a poly-
nomial consistent with a maximal number of shares
of y, and let C(y) be the number of remaining shares
held by reliable and non complaining participants.
Thus C(y) may vary over time, In other words, no
matter how PA tries to open y, at last C(y) partici-
pants will complain. The case where PA created y
correctly corresponds of course to C(y) = 0.

In any of the rounds of the subprotocol above,
it is easy to see that because the sum of S and 6e@ is

14

just j3, C (S)+C (S+p) 2 C(p) must hold. So if at any
point C (p) > 0, then I’,, cannot go through m rounds
without complaints unless she can predict roughly

+J. coinflips.

In LBCC]. it is shown how one can construct,
using only blobs, efficient minimum disclosure
proofs for membership in a very large class of
languages, including NP and BPP. Since we can
construct blobs in our model, we can also perform all
such proofs directly.

4. VSS and Fault Tolerant Blobs

When opening a blob, PA was to broadcast the
shares she distributed in creating it. If PA is trying to
prove some statement using the techniques of
[BCC], the previous section’s results imply that it is
in PA’S interest to create and broadcast the shares
properly. But in other cases, communication failures
or a change of heart, for example, might keep PA
from ultimately broadcasting the shares. Even if the
other participants were to make PA ‘s shares public in
efforts to open the blob without PA’S help, they
would be left with a computational problem: unreli-
able participants might make public false values for
their shares, and finding the value represented may
require searching the exponentially many subsets of
shares of size 2d-t~ for one consistent with one
polynomial of degree smaller than d. Even worse, if
PA was already cheating when she created the blob,
the majority of complainers could be reliable. In
such cases, unreliable participants could choose at
the time of opening between broadcasts that would
leave no unique solution for the secret or other
broadcast that would yield a particular value unarn-
biguously.

This is where the secret sharing scheme
becomes insufficient and a VSS is needed. To avoid
the problems mentioned above, and assist with things
to be presented later, we provide for the “sharing of
the shares of a blob” (as was done for similar rea-
sons in [Ch]). Thus, to create a double blob 6, PA
proceeds as follows:

(1) She creates an ordinary blob in the same way
as in the previous section. This blob is called
the top level blob, and contains the secret she
commits to.

(2) For each participant PB. the following is
done: suppose PA sent rhe share se of her

(3)

original bIob to PB. Then PB CrCalCS a .su/>-

blob, i.c. hc creates a blob 8~ containing his
share &.

By the remarks in the previous section, all par-
ticipants are now committed to their share ol
the top-level blob. A cut-and-choose pro-
cedure is now used to check that everybody
has committed to the proper share: PA creates
a number of additional double blobs
Sl,SL. * * . ,6, (for which each participant
creates his own sub-blobs), and according to
coin flips made by other participants, either all
shares of the new double blob are made public
or the sum of corresponding shares of the new
and the original double blob are broadcast.
Thus in each round, every participant opens a
sub-blob of his own (either a new one or a
sum) to confirm his agreement or disagrec-
ment with PA on what she Sent him originally.
In order for the proof to be accepted, a subset
consisting of at least 2d+a participants must
agree with PA in all rounds. If a participant
disagrees with PA at any point, then his share
and sub-blob will be ignored when the original
double blob is later opened.

11 is easily seen that if the proof in (3) above is
accepted, then the following holds with probability
exponentially close to 1 in the number of coin flips:

all sub-blobs accepted by the cut-and-choose
contain a uniquely defined share of the top-
level blob; and

* all these shares are consistent with one polyno-
mial.

To open a double blob, all participants broad-
cast their shares of the top level blob as well as all
shares of their sub-blobs. The result of the opening
is uniquely and easily determined, since in this case
the effect of the sub-blobs is to prevent unreliable
participants from issuing improper shares of the top
level blob: if a participant cannot confirm his share
by opening his sub-blob correctly, it will just be
ignored.

5. Multiparty Computations

This section considers general multiparty com-
putations. These may involve secret input from each
participant, and a single output which should become
known to all reliable participants.

1s

In the first step of the protocol, all participant3
commit to their secret input bits by distributing:
shares of them to all participants. The basic idea i:;
now to do the computation by having each parki.,
pant perform a corresponding computation on the
shares he received. There are two problems with thi!;
idea: first, we cannot trust all participants to do the
correct computation. Therefore participants must b:
committed to their shares, so that they can prove that
the protocol was followed. ‘llhis suggests a structure
similar to that of a double blob. Secondly, for techn-
ical reasons explained later, all reliable participants
must be able to complete the computation on chek
shares. Thus we cannot tolerate any complainti;
about the shares distributed, since there may be no
way to tell whether a complainer is reliable or not.
This leads to the following definition of a roburr
double blob:

like a double blob, a robust double blob has ;I
top-level blob and sub-blobs, where the top-
level contains the bit committed to.

all sub-blobs contain valid shares of the top-
level blob.

The double blob as described in the previous
section clearly does not always satisfy these proper-
ties. We can, htiwever, get robustness by using the
fact that a double blob, once verified by cut-and-
choose, can always be opened without the help of its
creator, and even in spite of unreliable participants.
First, notice that the content of a top-Ievel blob is
completely determined by the shares of the sub-blobs
(called sub-shares), if these are consistent. Thus, to
create a robust double blob p. PA creates a set
S=(S&, * . . J,,) of double blobs, each one is sup-
posed to contain a share of p (note that the sub-blobs
in SB are created by PB after receiving shares from
PA) Once each 6~ is verified as in the previous scc-
tion, it is opened to PB. Remember that this opera-
tion can be achieved without the help of PA. At this
point PB commits to the share hidden in the double
blob 6~ using a single blob pg. A gigantic cut-and-
choose is then used over this StruChre to prove its
correctness. Two things have to be proven about this
structure:

All double blobs in S contain shares of p con-
sistent with one polynomial.

P
_/...

Structure of a robust double blob

16

Each Pe has committed to the same share as is
contained in the double blob PA made for him
(Contents (pa) = Contents (6,)).

We leave it as an exercise to design a cut-
and-choose procedure that will establish this fact.

Note that this protocol leaves no possibility for
PA to cheat and blame the resulting disagreement on
some other participant: if less than d participants
complain about PA, then a valid commitment has
(with very high probability) been constructed, and
otherwise it is obvious that PA is unreliable.

When this first phase including creation of
commitments for all input bits and proofs of validity
is completed successfully, the protocol is fault-
tolerant: there is no way the unreliable participants
can stop any reliable participant from computing the
correct result.

The computation is specified by a boolean cir-
cuit composed of XOR and AND gates. It is then
clearly sufficient to be able to safely compute from
two robust double blobs a new one both as the XOR
of the two inputs and also as the AND.

Computing the XOR of two double blobs is
easy, based on the remarks in previous sections: ail
participants simply add their shares, both for the
toplevel blobs representing the actual bits, and for
the sub-blobs. The outcome is just a new double
blob representing the XOR of the inputs.

Basically, computing the AND is just as sim-
ple: the participants merely multiply the shares. But
this raises some technical problems, since the com-
putation involves polynomials of degree larger than
d ; polynomials of this large degree will not be robust
enough against unreliable participants.

Consequently, the AND is instead done in two
steps:

(1) Each participant multiplies his shares of the
two top-level blobs and commits to the pro-
duct using a sub-blob. He then proves by a
cut-and-choose (to be described below) that
the multiplication was done correctly.

The result of (1) is a double blob containing the
AND of the two bits, but with a large degree polyno-
mial in the top-level blob. We cannot continue the
computation with this blob, since for one thing the
degree would eventually grow too large for the
secrets to be uniquely determined. Therefore, this
degree is brought down below d as follows:

(2) Each participant chooses a pair of robust dou-
ble blobs constructed as in the beginning of
this section, and such that the top level
involves a pair of randomly chosen polynomi-
als (f.g), where deg(f) <2d, deg(g) cd.
and f(O)=g (0)~ (0,l). We leave as an
(easy) exercise construction of a cut-and-
choose for proving correctness of such a pair.
When all these pairs are added, the result will
be a pair still satisfying the conditions above,
but such that nobody knows the common value
off and g in 0. Finally, the double blob con-
structed with f is x-ored with the one com-
puted in (I), and the result is opened. If this
result is 0, then the computation continues
with the blob from g , otherwise l+g (the com-
plemented bit) is used.

We have now only to describe the cut-and-
choose mentioned in (1). In principle, this procedure
is essentially the same as the computation protocols
of [BC]: the prover has committed to sl,.sz and sg.
and claims that sts2 = ~3. He then commits to a
row-permuted version of the multiplication table for
the field used. The other participants, responsive to
their coin flips, now ask him either to open the entire
table or to prove that one of the rows contains com-
mitments to the tuple (~1, ~2, ss). This is repeated to
attain the desired level of certainty. Note that since
the size of the field need only just exceed n , only a
number of messages quadratic in n are sent.

We call attention to the possibility of a trade
off between vulnerability to disruption and efficiency
of the protocol. The initial commitment phase could
in fact be completed correctly using only ordinary
double blobs, if we require that nobody complains
about anybody during the initial phase. This require-
ment is easily seen to imply that all the double blobs
constructed are (with very high probability) robust.
With this method, however, it is not possible to find
out who has not been following the protocol in the
first phase, if complaints do occur.

6. Generalizations

The one third assumption on the number of
unreliable participants is necessary to ensure that
Byzantine agreement is possible. It is natural, how-
ever, to ask what can be done if we ensure this sim-
ply by assuming the existence of a broadcast channel
as part of the model?

17

In fact, even with this ;assumption, it is impoa-
sible to implement unconditionally secure blobs
while tolerating more than d unreliable participants.
Informally, this is so, since if PA tries to commit to
some secret, she must send a set of messages cor-
mining enough Shannon information to determine
her secret completely. She cannot use the broadcast
channel for this, since her secret would then become
public immediately. Moreover, if there are U unreli -
able participants, then no subset of this size clr
smaller must be given enough information to deter,-
mine the secret, since the set of unreliable partici-
pants is unknown. When later the participants try to
determine which secret P,, is in fact committed to,
the unreliable participants are free to fabricate some
set of messages which they will claim PA sent them
originally. Since any subset of U messages leaves
the secret completely undetermined, it is easy to corl-
struct the set of false messages such that it is car-
sistent with the messages .sent to U reliable pa&:.-
pants. We thus have a situaltion. where 2U partic-
pants seem to agree on something, while the rest, say
R, participants are complaining. But if we allow
U > n l3, then R I II, and thus there is no way of
finding out whether the situation is in fact as
described above, or the R participants am just unrel-
able ones, complaining for no good reason! More-
over, this ambiguous situation could result, even :d
PA has followed the protocol,

It is also possible to tolerate more unreliable
participants, if we change the model by restricting
their behavior. If we assume that no participant wilI
ever send an incorrect message during the protocol,
then two forms of behavior remain, that may cause
problems in the protocol:

1) Sharing secret informa&.ion with other partici-
pants; and

2) Stopping the protocol too early.

In the following, assume that at least C parti-
cipants will complete the protocol, while at most L
participants will leak secrets to others.

Clearly, information about the inputs to a com-
putation must be distributed in such a way that any
subset of C participants or more can recover ail
inputs, since otherwise there is no guaranty that the
computation can be complekd. But if the inputs are
to remain unconditionally protcctcd, this means that
we must have L 4.

One can now make the simplifying assumption
that the set of participants is partitioned in one subset
in which partici.,ants may show both forms of unreli-
able behavior mentioned above, and another subsct,
where there is no deviation from thr: protocol at all.
This means that C+L = n, and therefore that
L = 1 (n -1)/2] < C . Hence the best a protocol can
bope to do in this case is to tolerate the situation
where L = L (n -1)/2J and C =n-L. But this can
easily be accomplished using our basic protocol with
polynomials of degree L . Because of the inequality
on L , multiplication of polynomials will not lead to
loss of information. As usual, protection against
early stopping is effective after the initial commit-
ment phase, where double blobs are used. If a parti-
cipant stops, the remaining ones can use the
corresponding subshares as input to a separate
instance of the basic protocol which will simulate the
missing participant.

Without the assumption that C+L = n , things
seem to become more complicated. ‘It is clear that as
long as L I [(n-1)/2] , then the solution outlined
above still works, but without this condition, it is not
clear what happens. The method with multiplication
of polynomials does not work any more, because it
leads to polynomials of a degree huger than the
number of available shares. Therefore the construc-
tion of a general computation protccol under these
special assumptions remains an open problem.

7. Open Problem

Is it possible to extend our result such that
more unreliable participants can be tolerated if we
are willing to revert to a cryptographic assumption in
the case where n/3 < U < n l2. (Therefore achiev-
ing an “Obliviously cryptographic” multiparty
unconditionally secure protocol.)

8. Acknowledgements

We would like to thank Robert Ashcroft,
Gilles Brassard, Ernie Brickell, Shafi Goldwasser,
Jeroen van de Graaf, Silvio Micali, Micheal Sacks
and Avi Wigderson for the discussions and sugges-
tions about this paper and their interrest in our result.

18

References

WI Barany and Furedi: Mental Poker with
Three or More Players, Information and
Control, vol. 59, 1983, ~~84-93.

[BeI Benaloh: Secret sharing homomorphisms,
Proc. of crypt0 86.

[Bll Blakely: Security proofs for information
protection systems. Proceedings of the
1980 Symposium on Security and Privacy,
IEEE Computer Society Press, NY, 1981,
pp.79-88.

Vol. 24, no. 9, 1981, pp. 583-584.

[Shl Shamir: How to share a secret. CACM,
vol.22,no.l1, 1979, pp.612-613.

Wal Yao: Protocols for secure computations,
Proc. of FOCS 82, pp.16t.L164.

[BC] Brassard and CrQeau: ZeroKnowledge
Simulation of Boolean Circuits. Proceed
ings of Crypt0 86.

[BCC] Brassard, Chaum and Crepeau: Minimum
Disclosure Proofs of knowledge. To appear.

[BGW] Ben-Or, Goldwasser and Wigderson: Com-
pleteness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation. to
appear in Proceedings of STOC 88.

O-4 Chaum: How to keep a secret alive.
Proceedings of Crypt0 84.

[Ch21 Chaum: The Dining Cryptographers Prob-
lem, to appear.

F3DGl Chaum, Damgzlrd and van de Graaf: Mul-
tiparty Computations ensuring secrecy of
each party’s input and correctness of the
result. To appear in Proceedings of Crypt0
87.

[CGMA]
Chor, Goldwasser, Micah and Awerbuch:
Verifiable Secret Sharing and Achieving
Simultaneity in the Presence of faults.
Proceedings of FOCS 85, pp.383-395.

[DS] Dole and Strong: Polynomial Algorithms
for Multiple ProceSSOr Agreement.
Proceedings of STOC 82, pp.401407.

[GMWI Goldreich, Micah and Wigderson: How to
play any mental game. Proceedings of
STOC 87, pp.2 18-229.

[LPS 1 Lamport, Shostak and Pease: The Byzan-
tine Generals Problem. ACM trans. Prog.
Languages and Systems, ~01.4, no.3, 1982,
pp.382-401.

(MS] McEliece and Sarvawate: On Sharing
Secrets and Reed-Solomon Codes, CACM,

19

