
Improving the Biclique Cryptanalysis of AES

Biaoshuai Tao(B) and Hongjun Wu(B)

Nanyang Technological University, Singapore, Republic of Singapore
taob0001@e.ntu.edu.sg, wuhj@ntu.edu.sg

Abstract. Biclique attack is currently the only key-recovery attack on
the full AES with a single key. Bogdanov et al. applied it to all the three
versions of AES by constructing bicliques with size 28 × 28 and reducing
the number of S-boxes computed in the matching phase. Their results
were improved later by better selections of differential characteristics in
the biclique construction. In this paper, we improve the biclique attack
by increasing the biclique size to 216×28 and 216×216. We have a biclique
attack on each of the following AES versions:

– AES-128 with time complexity 2126.13 and data complexity 256,
– AES-128 with time complexity 2126.01 and data complexity 272,
– AES-192 with time complexity 2189.91 and data complexity 248, and
– AES-256 with time complexity 2254.27 and data complexity 240.

Our results have the best time complexities among all the existing key-
recovery attacks with data less than the entire code book.

Keywords: AES · Biclique attack · Large biclique

1 Introduction

Rijndael was selected as the Advanced Encryption Standard (AES) in 2001 [13].
AES is widely used today since it is strong in security and efficient in both soft-
ware and hardware. AES was designed to resist differential, linear cryptanalysis
and square attacks. The best impossible differential attack (first introduced in
[2]) can break 7-round AES-128 [22], and the best square attack can break 8-
round AES-192 [14]. The recent meet-in-the-middle (MITM) attack can break
9-round AES-192 and AES-256 [20]. The related-key attacks are powerful against
AES [3–6,15,17], but the related-key attacks have limited impact on the security
of AES when the secret keys in AES are generated securely.

The first key-recovery attack on the full AES with single key is the biclique
attack [9]. Biclique attack on AES is faster than brute force by a factor of three
to four. Biclique attack can be considered as an enhanced version of the meet-
in-the-middle (MITM) attack. It was first introduced in the preimage attacks
against hash functions Skein and SHA-2 [19]. After being applied to AES, the
biclique attack was applied to attack other block ciphers, such as ARIA [1,11],
Hight [16], IDEA [18], Piccolo [23], SQUARE [21], Twine [12].

Although the idea in [9] is revolutionary, both the time complexities and the
data complexities of the attacks in [9] have room for improvement by better
c© Springer International Publishing Switzerland 2015
E. Foo and D. Stebila (Eds.): ACISP 2015, LNCS 9144, pp. 39–56, 2015.
DOI: 10.1007/978-3-319-19962-7 3



40 B. Tao and H. Wu

selections of differential characteristics in the biclique construction. This has
been illustrated in [1,7,8].

The independent-biclique paradigm can be further improved in time com-
plexity by the sieve-in-the-middle (SIM) technique [10], a clever way to further
speed up the matching computation by precomputing and storing the possible
transitions for the middle superbox in a table of size 232, but with the extra cost
of accessing large lookup tables is introduced.

In this paper, we improve the independent-biclique paradigm in [9] by using
larger bicliques. We improve the time complexities for all the three AES versions.
We also obtain improvements in data complexity for AES-128. Our results are
summarized in Table 1 with comparison to the previous results. Among all the
existing attacks which have data complexities that are less than 2128, our results
have minimum time complexities. Notice that our results can be naturally com-
bined with sieve-in-the-middle (SIM) technique as shown in Table 1, which is
further discussed in Sect. 7.

Table 1. Summary of our results

algorithm data computation memory computation memory reference
without SIM in bytes with SIM in bytes

288 2126.21 214.32 - - [9]
24 2126.89 214.32 - - [8]

AES-128 272 2126.72 214.32 - - [1]
previous results - - - 2126.01 (2125.69)1 264 [10]

2 2126.67 214.32 2126.59 264 [7]2

264 2126.16 214.32 2126.01 264 [7]

AES-128 256 2126.13 222.07 2125.99 264 Sect. 4
our results 272 2126.01 226.14 2125.87 264 Appendix A

280 2190.16(2189.74)3 214.39 - - [9]
AES-192 248 2190.28 214.39 - - [1]

previous results - - - 2190.04 264 [10]
2 2190.9 214.39 2190.83 264 [7]

248 2190.16 214.39 2190.05 264 [7]

AES-192
our results 248 2189.91 222.27 2189.76 264 Appendix B

240 2254.58(2254.42)4 214.54 - - [9]
AES-256 264 2254.53 214.54 - - [1]

previous results - - - 2254.51 264 [10]
3 2255 214.54 2254.94 264 [7]

240 2254.31 214.54 2254.24 264 [7]

AES-256
our results 240 2254.27 222.61 2254.18 264 Appendix B

1 Our analysis shows that the time complexity to be 2126.01 instead of 2125.69 claimed in [10],
based on the same criteria used in Sect. 4.5.

2 The results with data complexity 2128 in [7] are not shown here, as we do not discuss the attack
with entire code book in this paper.

3 The accurate result is 2190.16 instead of 2189.74 originally claimed, as already corrected in [1].
4 The accurate result is 2254.58 instead of 2254.42 originally claimed, as already corrected in [7].



Improving the Biclique Cryptanalysis of AES 41

This paper is organized as follows. The biclique attack on AES is introduced
in Sect. 2. Section 3 gives an overview of our biclique attack on AES. Our detailed
biclique attack on AES-128 is given in Sect. 4. Section 5 gives comparisons with
our results to the previous ones. We verify our results in Sect. 6, and combine
our results to the sieve-in-the-middle technique in Sect. 7. Section 8 concludes
the paper.

2 The Biclique Attack

In this section, we give the general description of the biclique attack against
block ciphers.

2.1 The Biclique

Consider a block cipher e which maps plaintext P to ciphertext C. Assume that
the cipher can be decomposed as e = g2 ◦ f ◦ g1:

e : P −−→
g1

S −−→
f

T −−→
g2

C.

Consider 2d1 intermediate states {Si : i = 0, 1, . . . , 2d1 − 1}, 2d2 interme-
diate states {Tj : j = 0, 1, . . . , 2d2 − 1} and 2d1+d2 keys {K[i, j]}. The 3-

tuple ({Si}, {Tj}, {K[i, j]}) is called a biclique, if Si
K[i,j]−−−−→

f
Tj for all i ∈

{0, 1, . . . , 2d1 − 1} and all j ∈ {0, 1, . . . , 2d2 − 1}. Here K[i, j] maps the state
Si to the state Tj by the subcipher f .

In most of the attacks against AES as well as ours, bicliques are constructed
“at the end”, in which case g2 is the identity map and {Tj} becomes ciphertexts
set {Cj}. Correspondingly, the biclique takes the form ({Si}, {Cj}, {K[i, j]}).
Bicliques “in the middle” are also considered in [7]. However, attacks based on
such bicliques usually require extremely high data complexities, as the differences
in {Tj} will propagate to ciphertexts (refer to [7] for examples in AES).

Define the length of a biclique be the number of rounds covered by f , and
the size be 2d1 × 2d2 . In the original attack [9] and most of the subsequent
improvements, bicliques of size 28 × 28 are constructed in all the three versions
of AES. In [7], bicliques of size 216 ×1, i.e. stars, are also considered. The attack
with stars only requires minimal data, but the time complexity becomes higher
(refer to Table 1, the rows with data complexities 2 or 3). In our attack, the size
of bicliques is enlarged to 216 × 28, and even to 216 × 216 for AES-128.

2.2 Outline of the Biclique Attack

As mentioned in the last section, we focus on the attack with g2 being the identity
map in which the biclique is “at the end”. In this case, the biclique attack can
be sketched as follows:

1. Partition: Partition 2n keys into 2n−(d1+d2) sets of size 2d1+d2 .



42 B. Tao and H. Wu

2. Biclique Construction: For each partition {K[i, j]}, construct biclique
({Si}, {Cj}, {K[i, j]}).

3. Oracle Decryption: Decrypt 2d2 ciphertexts {Cj} by the oracle with the
secret key to obtain the corresponding 2d2 plaintexts {Pj}.

4. Matching: for each pair (Pj , Si), if Pj
K[i,j]−−−−→

g1
Si, K[i, j] is a candidate.

In the following sections, we introduce in details how the bicliques can be
constructed, and how we can reduce the time complexity for the matching step
(Step 4) by using a technique called matching with precomputation in [9].

2.3 Constructing Bicliques from Independent Related-Key
Differentials

Two biclique attack paradigms are shown in [9], long biclique and indepen-
dent biclique. We will only focus on independent biclique, as long-biclique-based
attack currently cannot work for full AES.

Fix a tuple (S0, C0,K[0, 0]) where K[0, 0] maps S0 to C0, and we aim to fill
in the other 2d1 − 1 intermediate states, 2d2 − 1 ciphertexts and 2d1+d2 − 1 keys
to get a biclique. Consider the following two sets of related-key differentials with

respect to the base computation S0
K[0,0]−−−−→

f
C0:

– Δj-differential: It maps a zero input difference to an output difference Δj

under a key difference ΔK
j :

0
ΔK

j−−→
f

Δj with ΔK
0 = 0 and Δ0 = 0, where j = 0, 1, . . . , 2d2 − 1;

– ∇i-differential: It maps an input difference ∇i to a zero output difference
under a key difference ∇K

i :

∇i
∇K

i−−→
f

0 with ∇K
0 = 0 and ∇0 = 0, where i = 0, 1, . . . , 2d1 − 1.

According to [9], if the characteristics of Δj-differentials do not share active
nonlinear components (which are S-boxes in our case of AES) with the charac-
teristics of ∇i-differentials, then the tuple (S0, C0,K[0, 0]) will conform to all
the 2d1+d2 combined (Δj ,∇i)-differentials:

∇i

ΔK
j ⊕∇K

i−−−−−−→
f

Δj for i ∈ {0, 1, . . . , 2d1 − 1} and j ∈ {0, 1, . . . , 2d2 − 1},

which means

S0 ⊕ ∇i

K[0,0]⊕ΔK
j ⊕∇K

i−−−−−−−−−−−→
f

C0 ⊕ Δj .

Finally, we obtain the biclique by putting

Si = S0 ⊕ ∇i, Cj = C0 ⊕ Δj and K[i, j] = K[0, 0] ⊕ ΔK
j ⊕ ∇K

i ,

where we require ΔK
j �= ∇K

i whenever i + j > 0, as we want all the 2d1+d2 keys
in {K[i, j]} to be distinct.



Improving the Biclique Cryptanalysis of AES 43

In the attack, an attacker first finds the key group {K[i, j]} satisfying the
above independent differentials property, then computes all the Cj from S0 by
Δj-differentials, and all the Si from C0 by ∇i-differentials. This requires at most
2d1 + 2d2 computations of f .

In the case of the independent-biclique attack against AES, the cost of con-
structing a biclique turns out to be low, compared to the matching part (Step
4) which requires almost 2d1+d2 computations of g1. Naturally, we aim to con-
struct bicliques as long as possible in order to reduce the number of rounds of
g1. In [9], the biclique of length 3 is constructed for AES-128, and of length 4 for
AES-192 and AES-256. Unfortunately, we cannot enlarge these lengths due to
the extremely fast diffusion of AES, otherwise this will yield a decent improve-
ment in time complexity. Instead, we increase the biclique size as mentioned.
This reduces the time complexity in the matching part, as will be shown later.

2.4 Matching with Precomputations

In the last step, i.e. the matching step, an attacker needs to check whether Pj is
mapped to Si by the key K[i, j] through g1. To speed up the attack, instead of
matching on a full state, an attacker considers matching variable v, which can
be a single byte in the case of AES:

Pj
K[i,j]−−−−→ v

K[i,j]←−−−− Si.

This involves 2d1+d2 computations for g1. However, for fixed j and two different

i1, i2, some parts of the states in the forward computation Pj
K[i1,j]−−−−→ v and

Pj
K[i2,j]−−−−→ v are still the same, for which we only need to compute once. It is

similar for v
K[i,j1]←−−−− Si and v

K[i,j2]←−−−− Si in the backward computation. The
matching with precomputation technique, introduced in [9], makes use of this
observation. It precomputes and stores those parts that are neutral to different i
values in forward direction, and those parts that are neutral to different j values
in backward direction. As a result, we only need to recompute those unneutral
parts in the matching step, and look up from the stored precomputation for
neutral parts.

3 Overview of Our Biclique Attacks on AES

We construct bicliques with sizes 216 × 28 and 216 × 216 to improve the biclique
attack against AES. In this section, we give an overview of our technique.

3.1 The Bicliques in Our Attacks

In our attacks, the state sets {Si} are increased by a factor of 28:

({Si1,i2}, {Cj}, {K[i1, i2, j]}) for all i1, i2, j ∈ {0, 1, . . . , 28 − 1},



44 B. Tao and H. Wu

where
Si1,i2

K[i1,i2,j]−−−−−−→
f

Cj .

Note that this biclique is now of size 216 × 28:

|{Si1,i2}| = 216, |{Cj}| = 28, and |K[i1, i2, j]| = 224.

To construct such a biclique, we first fix the base computation S0,0
K[0,0,0]−−−−−→

f

C0. We then look for

– Δj-differentials which maps input difference 0 to an output difference Δj ;
– ∇i1-differentials and ∇i2-differentials which map input differences ∇i1

and ∇i2 respectively to the output difference 0.

To make the biclique valid, we only need to make sure that there is no
common active nonlinear components, the S-boxes in the case of AES, in either
pair of differential characteristics: (Δj ,∇i1) and (Δj ,∇i2). To get the actual
biclique, we need 3 × 28 computations of f for each of the three differentials
above.

We have also designed a second attack specifically for AES-128 which con-
siders even larger biclique ({Si1,i2}, {Cj1,j2}, {K[i1, i2, j1, j2]}), in which the size
of the ciphertext sets {Cj} is further increased by a factor of 28. Correspond-
ingly, we look for Δj1 ,Δj2 ,∇i1 ,∇i2 differentials such that none of (Δj1 ,∇i1),
(Δj2 ,∇i1), (Δj1 ,∇i2) and (Δj2 ,∇i2) shares active nonlinear components. As a
result, a total of 4 × 28 computations of f is needed.

3.2 Less Parts Being Recomputed in the Matching Step

After decrypting each Cj by the oracle, we obtain 28 plaintexts {Pj}. In the
matching step, we apply subcipher g1 to each Pj with key K[i1, i2, j] to check
whether we could get exactly Si1,i2 . If so, K[i1, i2, j] is proposed as a candidate.
We again match only the matching variable v:

Pj
K[i1,i2,j]−−−−−−→ v

K[i1,i2,j]←−−−−−− Si1,i2 .

In the precomputation phase, we store the following 3 × 216 computations:

Computation 1. Pj
K[0,i2,j]−−−−−−→ v for i2, j ∈ {0, 1, . . . , 28 − 1},

Computation 2. Pj
K[i1,0,j]−−−−−−→ v for i1, j ∈ {0, 1, . . . , 28 − 1},

Computation 3. v
K[i1,i2,0]←−−−−−− Si1,i2 for i1, i2 ∈ {0, 1, . . . , 28 − 1}.

Same as in Sect. 2.4, in the recomputation phase when we match Pj to
Si1,i2 on v, we only need to recompute those unneutral parts. The advantage
of our technique is that less parts are needed to be recomputed. In the forward
computation, we only need to recompute those parts which are unneutral to both
i1 and i2. In other words, we can look up from two computations (Computation



Improving the Biclique Cryptanalysis of AES 45

1 and Computation 2 above) for the forward recomputation, instead of only one
in the original attack, which causes less parts being recomputed and thus less
time complexity in recomputation phase. Since the recomputation phase is the
computational bottleneck, this advantage will reduce the total time complexity.

In our second attack on AES-128 with the biclique of size 216×216 taking the
form ({Si1,i2}, {Cj1,j2}, {K[i1, i2, j1, j2]}), we decrypt each Cj1,j2 to get Pj1,j2 .
In this case, we need to store 4×224 computations in the precomputation phase:

Computation 1. Pj1,j2

K[0,i2,j1,j2]−−−−−−−−→ v for i2, j1, j2 ∈ {0, 1, . . . , 28 − 1},

Computation 2. Pj1,j2

K[i1,0,j1,j2]−−−−−−−−→ v for i1, j1, j2 ∈ {0, 1, . . . , 28 − 1},

Computation 3. v
K[i1,i2,0,j2]←−−−−−−−− Si1,i2 for i1, i2, j2 ∈ {0, 1, . . . , 28 − 1},

Computation 4. v
K[i1,i2,j1,0]←−−−−−−−− Si1,i2 for i1, i2, j1 ∈ {0, 1, . . . , 28 − 1}.

The time complexity is further reduced as we also have two different references
for the backward recomputation to looked up, namely, Computation 3 and 4.
However, this improvement in time complexity does have disadvantages. Besides
the obviously higher cost of memory, this attack may also pay extra cost on data
complexity, as the additional Δj2 -differential may corrupt the extra neutral bytes
in ciphertext.

4 The Improved Biclique Attacks Against AES

In this section, we describe our biclique attack against AES-128 by using the
216 × 28 biclique. The attack on AES-128 with 216 × 216 biclique is given in
Appendix A, while the attacks on AES-192 and AES-256 with 216 ×28 bicliques
are illustrated with figures in Appendix B. Refer to Table 1 for all the results.

In this section and the two Appendix sections, we will use $0, $1, $2, . . . to
denote the round keys. Bytes within a state and a round key are enumerated as
follow, and byte i in state Q is denoted as Qi.

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

4.1 Key Partitioning

We define the key space with respect to the round key $8 (the same as that in
[9]). This definition is valid as the AES-128 key schedule bijectively maps each
key to $8. The base keys K[0, 0, 0] are all the possible 2104 16-byte values with
three bytes, $80, $81, $86, fixed to 0, whereas the remaining 13 bytes run over
all values. The keys {K[i1, i2, j]} in a group are enumerated by all possible byte
differences i1, i2 and j with respect to the base key K[0, 0, 0]. The space of the
round key $8 (and hence the AES key space) is thus partitioned into 2104 sets
of size 224.



46 B. Tao and H. Wu

0

0

0

i1

i2

j

i1

i2

4.2 3-round Biclique of Size 216 × 28

In the next step, we construct a 3-round biclique by following the steps in Sect. 3.
Figure 1 illustrates the Δj ,∇i1 ,∇i2 differentials, from which we can easily verify
that (Δj ,∇i1) and (Δj ,∇i2) shares no common active S-box.

Round 8

Round 9

Round 10
AK
SR
SB

AK
MC
SR
SB

AK
MC
SR
SB

Δj-differentials

AK
SR
SB

AK
MC
SR
SB

AK
MC
SR
SB

∇i1 -differentials

AK
SR
SB

AK
MC
SR
SB

AK
MC
SR
SB

∇i2 -differentials

Only 9 bytes of the ciphertext

are affected by Δj differentials.

Fig. 1. All the Δj , ∇i1 , ∇i2 differentials: AES-128

4.3 Computing Round Keys

Now for each round key K[i1, i2, j] of round 8, we calculate its corresponding
round keys $0, $1, . . . , $7. At the first glance, it requires 224 operations of the
AES key schedule. However, the calculation can be speed up with the precompu-
tation technique introduced earlier. We will apply this technique only on the first
column of each round key, as the rest three columns require only xor operations
to be computed which has negligible time complexity.

In the precomputation phase, we compute all the 8 round keys for the fol-
lowing:

– K[0, i2, j] for all i2, j ∈ {0, 1, . . . , 28 − 1};
– K[i1, 0, j] for all i1, j ∈ {0, 1, . . . , 28 − 1}.

This requires at most 2 × 216 8-round computations of key schedule.



Improving the Biclique Cryptanalysis of AES 47

In the recomputation phase when we are calculating K[i1, i2, j] (for all the 8
round keys from $7 all the way down to $0), we only need cheap xor and lookup
operations (no S-box operation in particular) by storing all the bytes with ∗ and
the S-box substitution values of all the bytes with ◦ in Fig. 2.

For example, to compute the first byte of $7, we have $70 = $80 ⊕ s($713) ⊕
roundConst, where s($713) has the same value for K[0, i2, j] and K[i1, i2, j]
and we already store the one for K[0, i2, j]. For the second and the third bytes
$71, $72, we look them up directly from K[0, i2, j], and we lookup from K[i1, 0, j]
for the forth byte $73. After we obtain the first column of $7, we compute the
rest 12 bytes and get the entire $7. After we recover the full $7, we do the same
to compute $6 and so on.

∗

∗

∗

∗

∗

∗

∗

∗

∗ ∗

∗

∗ ∗

∗

∗
◦◦◦

◦

◦◦
◦

◦

◦◦

◦

◦ ◦◦ ◦ ◦ ◦

◦: byte whose S-box substitution value needed to be stored

∗: byte needed to be stored

$0 $1 $2 $3 $4 $5 $6 $7

Difference between K[i1, 0, j] and K[i1, i2, j]

$0 $1 $2 $3 $4 $5 $6 $7

Difference between K[0, i2, j] and K[i1, i2, j]

Fig. 2. Precomputation and recomputation of round keys: AES-128

4.4 Matching Over 7 Rounds

Now we check whether the secret key belongs to the key group {K[i1, i2, j]}. As
shown in Fig. 3 and Fig. 4, we match the first byte in the state after Round 2,
which is the same as [9]. So we only need to compute 4 bytes in Round 2, 1 byte
in Round 3 and 4 bytes in Round 4. Additionally, benefiting from the matching
with precomputation technique (Sect. 2.4), we only need to compute very few
bytes in Round 1 and Round 7 in the recomputation phase. Specifically, we only
need to compute 5 bytes in Round 1 (Fig. 3) and 8 bytes in Round 7 (Fig. 4).

4.5 Complexity of the Attack

Now we evaluate the time complexity, data complexity and memory complexity
of our attack.

Time Complexity. Similar to the original biclique attack [9], we count the
number of S-boxes computations to determine the time complexity. Note that
there are 200 S-boxes in one full AES-128 (160 for encryption/decryption, 40
for key schedule). We measure the time complexity in terms of the full AES-128
operations, so the overall time complexity will be given as the total number of
S-boxes in our attack divided by 200.



48 B. Tao and H. Wu

A
K

S
B

S
R

M
C

A
K

Round 1

S
B

S
R

M
C

A
K

Round 2
Pj

Byte need to be recomputed (Cells with light color are not needed as we match on only 1 byte.)

A
K

S
B

S
R

M
C

A
K

Round 1

S
B

S
R

M
C

A
K

Round 2
Pj

Difference between the forward computations of Pj using K[i1, i2, j] and K[i1, 0, j]
A
K

S
B

S
R

M
C

A
K

Round 1

S
B

S
R

M
C

A
K

Round 2
Pj

Difference between the forward computations of Pj using K[i1, i2, j] and K[0, i2, j]

Fig. 3. Forward recomputation in matching: AES-128

A
K

M
C

S
R

S
B

Round 7

A
K

M
C

S
R

S
B

Round 6

A
K

M
C

S
R

S
B

Round 5

A
K

M
C

S
R

S
B

Round 4

A
K

M
C

S
R

S
B

Round 3
Si1,i2

Byte need to be recomputed (Cells with light color are not needed as we match on only 1 byte.)

A
K

M
C

S
R

S
B

Round 7

A
K

M
C

S
R

S
B

Round 6

A
K

M
C

S
R

S
B

Round 5

A
K

M
C

S
R

S
B

Round 4

A
K

M
C

S
R

S
B

Round 3
Si1,i2

Difference between the backward computations of Si1,i2 using K[i1, i2, j] and K[i1, i2, 0]

Fig. 4. Backward recomputation in matching: AES-128

For the search in a single key group {K[i1, i2, j]}, the time complexity consists
of the following components:

1. Cbiclique: The complexity of constructing the biclique. (Sect. 4.2)
2. Coracle: The complexity for the decryption of each Cj by the oracle.
3. Ckeys: The complexity of computing all the round keys for key K[i1, i2, j]

in the set {K[i1, i2, j]}. (Sect. 4.3)
4. Cprec: The complexity of precomputation phase. (Sect. 4.4)
5. Crec: The complexity of recomputation phase. (Sect. 4.4)
6. Cfalsep: The complexity generated from false positives.

The time complexity for biclique construction is merely the 3 × 28 compu-
tations of 3 rounds subcipher f which is 56 S-boxes (including 2 rounds key
schedule). This complexity is given as

Cbiclique = 3 × 28 × 56/200 = 27.75.

We need to decrypt all the 28 ciphertexts {Cj}:

Coracle = 28.

The time complexity of computing all the round keys includes the precompu-
tation phase and recomputation phase. As mentioned in Sect. 4.3, the recompu-
tation of round keys require only xor and lookup operations, which correspond



Improving the Biclique Cryptanalysis of AES 49

to 0 S-box operation. As for precomputation, we need to compute those 8 round
keys (equivalent to 32 S-boxes) for both groups K[0, i2, j] and K[i1, 0, j], and
each group is of size 216. The time complexity of round key computation is

Ckeys = 2 × 216 × 32/200 = 214.36.

In the precomputation phase of matching, we only need to compute one
round for Computation 1, 2 and 3 in Sect. 3.2. This is because all the 16 bytes
of each state become different except for Round 1 and 7 (refer to Fig. 3 and
Fig. 4), so the precomputation of other rounds provides no information for the
recomputation at all, which we do not need to store. Since exactly 20 S-boxes
are included in a round, we have

Cprec = 3 × 216 × 20/200 = 214.26.

In the recomputation state, as shown in Fig. 3 and 4, we need to recompute 9
S-boxes in the forward direction and 45 S-boxes in the backward direction. There
are 54 S-boxes in total, and it is needed for each of the 224 keys {K[i1, i2, j]}.

Crec = 224 × 54/200 = 222.11.

We performed 224 matchings on a single byte with 28 possible values, the
number of false positives is approximately 224−8 = 216. We eliminate the false
positives by matching them on a full 16-byte state, which require 3 rounds com-
putation (i.e. Round 2, 3 and 4), so 48 S-boxes are needed.

Cfalsep = 216 × 48/200 = 213.94.

Summing up all the above, we have the total time complexity:

2104(27.75 + 28 + 214.36 + 214.26 + 222.11 + 213.94) = 2126.13.

Note that with the above time complexity, the secret key of AES-128 is obtained
with success rate 1.

Data Complexity. According to Fig. 1, Δj-differential affect only 9 bytes of the
ciphertext, and all the ciphertexts have constant values at bytes C0,4,7,8,10,11,15.
Furthermore, the ciphertext bytes C1, C5 and C13 of those 9 bytes always
maintain the same difference. As a result, the data complexity does not exceed
2(9−3+1)×8 = 256.

Memory Complexity. We need to store the biclique, as well as the precom-
putations for both round keys and states. Note that we do not need to store all
the 224 sets of round keys, as it can be computed in runtime whenever needed.

For the biclique storage, we need to store 216 states {Si1,i2} and 28 ciphertexts
{Cj}, with size 16 bytes for each. The total memory complexity for biclique
storage is (28 + 216) × 16 bytes.



50 B. Tao and H. Wu

For the precomputations for round keys and states, we only store the bytes
that are looked up in the recomputation stage (those neutral bytes not affected
by the differential charactertistic). For the round key precomputation, as shown
in Fig. 2, we need to store a total of 216 × 32 bytes (all the ∗ and ◦) which
includes 216 × 23 bytes from K[0, i2, j] and 216 × 9 bytes from K[i1, 0, j].

Similarly, for the storage of states used in the matching, we only need to store
11 bytes in the state after the SubBytes operation in Round 1, and 8 bytes in
the state between Round 6 and Round 7, which is 216(11+8) = 216×19 (bytes).

Finally, the total memory complexity is

(28 + 216) × 16 + 216 × 32 + 216 × 19 = 222.07 (bytes).

We used the same criteria to analyze the memory complexities for all the
previous attacks as well, and obtain these data in Table 1 (the forth column).

5 Comparing with the Previous Biclique Attacks

As mentioned in Sect. 3.2, the main advantage of our technique is reducing the
number of S-boxes being recomputed in the matching step. Table 2 compares the
number of S-boxes needed in the recomputation, and it shows that our attack
requires least S-boxes to be recomputed (with data complexity less than the full
code book).

Table 2. Comparison of the numbers of S-boxes recomputed

our results with our results with [9] [7]
216 × 28 bicliques 216 × 216 bicliques (original attack) (prev. best results)

AES-128 54 50 57 55

AES-192 52 - 61 62

AES-256 83 - 101 86

It is illuminating to compare the two results for AES-128. With larger
bicliques, the number of S-boxes computed can be further reduced from 54 to 50
which leads an improvement of time complexity from 2126.13 to 2126.01 (Table 1).
However, by applying larger biclique, the data complexity and memory complex-
ity increase significantly (Table 1).

6 Verification in Experiment

In our attack against all the three AES versions, the whole key space is parti-
tioned into 2104/2168/2232 sets with sizes 224 (or 296 sets with size 232 in the
second attack of AES-128). We wrote a program to search the key in a single
partition. The secret key is found if it was set in the searched partition. This
program proves the correctness of our attack algorithm, including the validity of



Improving the Biclique Cryptanalysis of AES 51

bicliques and the correctness of the differential characteristics. The program also
counts the number of S-boxes calculated in the search of a full partition, and
outputs the time complexities in terms of equivalent full AES computations. The
memory complexity is also verified in the experiment by checking the memory
usage of the process. We verified the attacks on all the three versions of AES,
and the experimental results are even slightly better than our theoretical results.

7 Combination with the Sieve-in-the-Middle Technique

Sieve-in-the-Middle (SIM) technique by Canteaut et al. [10] is a variant of the
Meet-in-the-Middle (MITM) technique. In its application to the biclique attack
against AES, it can save another 5 S-boxes in recomputation during the matching
step, by storing 232 lookup tables of size 232 bytes each. With a large increment
in memory complexities, all the numbers shown in Table 2 can be reduced by 5,
which results in further improvements in time complexities (see Table 1). The
reader can also refer to Sect. 8 of [7] for more details.

8 Conclusion

In this paper, we improved the independent-biclique paradigm of the biclique
attack [9] by increasing the biclique size. Our technique enhances the matching-
with-precomputation technique in [9] by reducing the number of S-boxes being
recomputed. The data complexities in the attacks against AES-128 are also
reduced. Our attacks are currently the fastest with moderate data complexities.

A Biclique Attack on AES-128 with 216 × 216 Biclique

A.1 Key Partitioning

We again define the key space with respect to the round key $8. Fix $80, $81, $87
and $88 to 0. The keys {K[i1, i2, j1, j2]} in a group are enumerated by all possible
byte differences i1, i2, j1 and j2 with respect to the base key K[0, 0, 0, 0]. The
AES key space is thus partitioned into the 296 sets of size 232.

0
0

0

0 i1
i2

j2

i1 ⊕ j1

i2

The fact that $88 is shared by the byte differences i1 and j1 does not inval-
idate the biclique, as this shared difference has not passed into any non-linear
S-box operation (refer to Fig. 5).



52 B. Tao and H. Wu

A.2 3-round Biclique of Size 216 × 216

Figure 5 illustrates the Δj1 ,Δj2 ,∇i1 ,∇i2 differentials, from which we can easily
verify that each of the two Δ differentials share no active S-boxes to each of the
two ∇ differentials.

Round 8

Round 9

Round 10
AK
SR
SB

AK
MC
SR
SB

AK
MC
SR
SB

Δj1 -differentials

AK
SR
SB

AK
MC
SR
SB

AK
MC
SR
SB

Δj2 -differentials

AK
SR
SB

AK
MC
SR
SB

AK
MC
SR
SB

∇i1 -differentials

AK
SR
SB

AK
MC
SR
SB

AK
MC
SR
SB

∇i2 -differentials

Only 11 bytes of the ciphertext

are affected by Δj1 and Δj2 differentials.

Fig. 5. All the Δj1 , Δj2 , ∇i1 , ∇i2 differentials: AES-128

A.3 Computation of Round Keys

For each round key K[i1, i2, j1, j2] of round 8, we calculate its corresponding
round keys $0, $1, . . . , $7. In the precomputation phase, we compute and store
all the 8 round keys for the following:

– K[0, i2, j1, j2] for all i2, j1, j2 ∈ {0, 1, . . . , 28 − 1};
– K[i1, 0, j1, j2] for all i1, j1, j2 ∈ {0, 1, . . . , 28 − 1}.

This requires at most 2 · 224 8-round computations of key schedule.
Since we are using exactly the same ∇i1 ,∇i2 differential characteristics, the

key differential patterns of the above two computations are the same to those in
Fig. 2. For the same reason, we only need to store those marked bytes, and the
recomputation of round keys require no S-box computation. The only difference
is that each ∗ or ◦ now corresponds to 224 bytes in memory, instead of 216 bytes.

A.4 Matching Over 7 Rounds

Due to larger size bicliques, even less bytes need to be recomputed. We need to
recompute 9 S-boxes in the forward direction and 41 S-boxes in the backward
direction, which only gives us 50 in total. Refer to Fig. 6 and Fig. 7 for details.



Improving the Biclique Cryptanalysis of AES 53

A
K

S
B

S
R

M
C

A
K

Round 1

S
B

S
R

M
C

A
K

Round 2
Pj1,j2

Bytes need to be recomputed (Cells with light color are not needed as we match on only 1 byte.)

A
K

S
B

S
R

M
C

A
K

Round 1

S
B

S
R

M
C

A
K

Round 2
Pj1,j2

Difference between the forward computations of Pj1,j2 using K[i1, i2, j1, j2] and K[i1, 0, j1, j2]

A
K

S
B

S
R

M
C

A
K

Round 1

S
B

S
R

M
C

A
K

Round 2
Pj1,j2

Difference between the forward computations of Pj1,j2 using K[i1, i2, j1, j2] and K[0, i2, j1, j2]

Fig. 6. Forward recomputation in matching: AES-128

A
K

M
C

S
R

S
B

Round 7

A
K

M
C

S
R

S
B

Round 6

A
K

M
C

S
R

S
B

Round 5

A
K

M
C

S
R

S
B

Round 4
A
K

M
C

S
R

S
B

Round 3
Si1,i2

Bytes need to be recomputed (Cells with light color are not needed as we match on only 1 byte.)

A
K

M
C

S
R

S
B

Round 7

A
K

M
C

S
R

S
B

Round 6

A
K

M
C

S
R

S
B

Round 5
A
K

M
C

S
R

S
B

Round 4

A
K

M
C

S
R

S
B

Round 3
Si1,i2

Difference between the backward computations of Si1,i2 using K[i1, i2, j1, j2] and K[i1, i2, j1, 0]

A
K

M
C

S
R

S
B

Round 7

A
K

M
C

S
R

S
B

Round 6

A
K

M
C

S
R

S
B

Round 5

A
K

M
C

S
R

S
B

Round 4

A
K

M
C

S
R

S
B

Round 3
Si1,i2

Difference between the backward computations of Si1,i2 using K[i1, i2, j1, j2] and K[i1, i2, 0, j2]

Fig. 7. Backward recomputation in matching: AES-128

A.5 Complexity of the Attack

The evaluation of time and data complexities is similar to those in Sect. 4.5, and
thus are omitted here. Refer to Table 1 for the results.

Memory Complexity. Fig. 8 illustrates the bytes need to be stored in the
matching phase, which suggests a total of 23 × 224 bytes needs to be stored.
Coupled with a total of 32×224 bytes in the round key (those ∗ and ◦ in Fig. 2),
it seems the total memory complexity is more than 23 × 224 + 32 × 224 = 229.78

bytes. This complexity can be reduced if we fixed the value of j1 first, and do
the precomputation and recomputation with each fixed j1.

To be specific, for each fixed j1, we need to stores 7 bytes for each different
value i2, j2 (the first row in Fig. 8), 4 bytes for each different value i1, j2 (the
second row in Fig. 8) and 8 bytes for each different value i1, i2 (the last row in
Fig. 8); when j1 varies to the next value, we store the values of all those bytes
again for the updated j1 value. Thus, the memory complexity used for storing
state bytes is

Mstates = 7 × 216 + 4 × 216 + 4 × 224 + 8 × 216 = 226.03 (bytes).

We can do the same for key bytes storage. According to Fig. 2, for each
fixed j1, we need to stores 23 bytes for each different value i2, j2 and 9 bytes for



54 B. Tao and H. Wu

∗
∗ ∗∗

∗∗∗

∗
∗ ∗ ∗

A
K

S
B

S
R

M
C

A
K

S
B

S
R

M
C

A
K

Pj1,j2

The forward computations of Pj1,j2 using K[i1, 0, j1, j2]

A
K

S
B

S
R

M
C

A
K

S
B

S
R

M
C

A
K

Pj1,j2

The forward computations of Pj1,j2 using K[0, i2, j1, j2]

∗

∗∗

∗

∗∗

∗

∗∗

∗

∗
∗

A
K

M
C

S
R

S
B

A
K

M
C

S
R

S
B

A
K

M
C

S
R

S
B

A
K

M
C

S
R

S
B

A
K

M
C

S
R

S
B

Si1,i2

The backward computations of Si1,i2 using K[i1, i2, j1, 0]

A
K

M
C

S
R

S
B

A
K

M
C

S
R

S
B

A
K

M
C

S
R

S
B

A
K

M
C

S
R

S
B

A
K

M
C

S
R

S
B

Si1,i2

The backward computations of Si1,i2 using K[i1, i2, 0, j2]

Fig. 8. Bytes to be stored in states: AES-128

Round 8 Round 7 Round 6 Round 5 Round 4

Si1,i2

Backward recomputation: 45 bytes

AK Round 1 Round 2 Round 3
Pj

Bytes need to be recomputed:

AK Round 1 Round 2 Round 3
Pj

Difference between the computations of Pj by K[i1, i2, j] and K[i1, 0, j]

AK Round 1 Round 2 Round 3
Pj

Difference between the computations of Pj by K[i1, i2, j] and K[0, i2, j]

Forward recomputation: 7 bytes

Key enumeration K6 = ($9||$10L)

i1 i1

j

i2 i2

The 4-round biclique

Data complexity: 248
∗ bytes having the same difference

AK

MC

SR

SB

AK

MC

SR

SB

AK

MC

SR

SB

AK

SR

SB

AK

MC

SR

SB

AK

MC

SR

SB

AK

MC

SR

SB

AK

SR

SB

AK

MC

SR

SB

AK

MC

SR

SB

AK

MC

SR

SB

AK

SR

SB

Round 12

Round 11

Round 10

Round 9

Δj-differential ∇i1 -differential ∇i2 -differential

Fig. 9. Illustration for AES-192

each different value i1, j2, which has total memory complexity 32 × 216. Adding
2 × 216 × 16 bytes memory needed to store a biclique, we have total memory
complexity to be

2 × 216 × 16 + 226.03 + 32 × 216 = 226.11 (bytes).

B The Improved Attacks Against AES-192 and AES-256

The attacks against AES-192 and AES-256 with 216 ×28 bicliques are similar to
the one for AES-128 discussed in Sect. 4. Here, we give only figures illustrations
Fig. 9 and Fig. 10 showing details of key enumerations, biclique constructions



Improving the Biclique Cryptanalysis of AES 55

Round 10 Round 9
......

Round 5 Round 4

Si1,i2

Backward recomputation: 77 bytes

AK Round 1 Round 2 Round 3
Pj

Bytes need to be recomputed:

AK Round 1 Round 2 Round 3
Pj

Difference between the computations of Pj by K[i1, i2, j] and K[i1, 0, j]

AK Round 1 Round 2 Round 3
Pj

Difference between the computations of Pj by K[i1, i2, j] and K[0, i2, j]

Forward recomputation: 6 bytes

Key enumeration K6 = ($12||$13)

i1 i1

j i2 i2

The 4-round biclique

Data complexity: 240

AK

MC

SR

SB

AK

MC

SR

SB

AK

MC

SR

SB

AK

SR

SB

AK

MC

SR

SB

AK

MC

SR

SB

AK

MC

SR

SB

AK

SR

SB

AK

MC

SR

SB

AK

MC

SR

SB

AK

MC

SR

SB

AK

SR

SB

Round 14

Round 13

Round 12

Round 11

Δj-differential ∇i1 -differential ∇i2 -differential

Fig. 10. Illustration for AES-256

and recomputations in both directions. Following Sect. 4, the reader can easily
verify the results in Table 1 from these figures.

References

1. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: A framework for automated
independent-biclique cryptanalysis. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424,
pp. 561–582. Springer, Heidelberg (2014)

2. Bahrak, B., Aref, M.R.: Impossible differential attack on seven-round AES-128.
Information Security, IET 2(2), 28–32 (2008)

3. Biham, E., Dunkelman, O., Keller, N.: Related-key impossible differential attacks
on 8-round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp.
21–33. Springer, Heidelberg (2006)

4. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key recov-
ery attacks of practical complexity on AES-256 variants with up to 10 rounds. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 299–319. Springer,
Heidelberg (2010)

5. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

6. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

7. Bogdanov, A., Chang, D., Ghosh, M., Sanadhya, S.K.: Bicliques with minimal data
and time complexity for AES. In: Lee, J., Kim, J. (eds.) Information Security and
Cryptology-ICISC 2014. LNCS, pp. 160–174. Springer, Heidelberg (2015)



56 B. Tao and H. Wu

8. Bogdanov, A., Kavun, E., Paar, C., Rechberger, C., Yalcin, T.: Better than brute-
force–optimized hardware architecture for efficient biclique attacks on AES-128.
In: ECRYPT Workshop, SHARCS-Special Purpose Hardware for Attacking Cryp-
tographic Systems (2012)

9. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

10. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 222–240. Springer, Heidelberg (2013)

11. Chen, Sz, Xu, Tm: Biclique attack of the full ARIA-256. IACR Cryptology ePrint
Archive 2012, 11 (2012)

12. Çoban, M., Karakoç, F., Boztaş, Ö.: Biclique cryptanalysis of TWINE. In:
Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712,
pp. 43–55. Springer, Heidelberg (2012)

13. Daemen, J., Rijmen, V.: The design of Rijndael: AES - the advanced encryption
standard. Springer Science & Business Media (2002)

14. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010)

15. Gorski, M., Lucks, S.: New related-key boomerang attacks on AES. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 266–278.
Springer, Heidelberg (2008)

16. Hong, D., Koo, B., Kwon, D.: Biclique attack on the full HIGHT. In: Kim, H. (ed.)
ICISC 2011. LNCS, vol. 7259, pp. 365–374. Springer, Heidelberg (2012)

17. Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key
AES variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

18. Khovratovich, D., Leurent, G., Rechberger, C.: Narrow-bicliques: cryptanalysis of
full IDEA. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 392–410. Springer, Heidelberg (2012)

19. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244–263. Springer, Heidelberg (2012)

20. Li, L., Jia, K., Wang, X.: Improved single-key attacks on 9-round AES-192/256. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 127–146. Springer,
Heidelberg (2015)

21. Mala, H.: Biclique-based cryptanalysis of the block cipher SQUARE. Information
Security, IET 8(3), 207–212 (2014)

22. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impos-
sible differential cryptanalysis of 7-round AES-128. In: Progress in Cryptology-
INDOCRYPT 2010, pp. 282–291. Springer (2010)

23. Wang, Y., Wu, W., Yu, X.: Biclique cryptanalysis of reduced-round piccolo block
cipher. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 337–352. Springer, Heidelberg (2012)


	Improving the Biclique Cryptanalysis of AES
	1 Introduction
	2 The Biclique Attack
	2.1 The Biclique
	2.2 Outline of the Biclique Attack
	2.3 Constructing Bicliques from Independent Related-Key Differentials
	2.4 Matching with Precomputations

	3 Overview of Our Biclique Attacks on AES
	3.1 The Bicliques in Our Attacks
	3.2 Less Parts Being Recomputed in the Matching Step

	4 The Improved Biclique Attacks Against AES
	4.1 Key Partitioning
	4.2 3-round Biclique of Size 21628
	4.3 Computing Round Keys
	4.4 Matching Over 7 Rounds
	4.5 Complexity of the Attack

	5 Comparing with the Previous Biclique Attacks
	6 Verification in Experiment
	7 Combination with the Sieve-in-the-Middle Technique
	8 Conclusion
	A Biclique Attack on AES-128 with 216216 Biclique
	A.1 Key Partitioning
	A.2 3-round Biclique of Size 216216
	A.3 Computation of Round Keys
	A.4 Matching Over 7 Rounds
	A.5 Complexity of the Attack

	B The Improved Attacks Against AES-192 and AES-256
	References


