
1

DSMIX: A Dynamic Self-organizing Mix
Anonymous System

Renpeng Zou∗, Xixiang Lv∗,
∗School of Cyber Engineering, Xidian University, Xian 710071, China

Abstract—Increasing awareness of privacy-preserving has led
to a strong focus on anonymous systems protecting anonymity.
By studying early schemes, we summarize some intractable
problems of anonymous systems. Centralization setting is a
universal problem since most anonymous system rely on central
proxies or presetting nodes to forward and mix messages, which
compromises users’ privacy in some way. Besides, availability
becomes another important factor limiting the development of
anonymous system due to the large requirement of additional ad-
ditional resources (i.e. bandwidth and storage) and high latency.
Moreover, existing anonymous systems may suffer from different
attacks including abominable Man-in-the-Middle (MitM) attacks,
Distributed Denial-of-service (DDoS) attacks and so on. In this
context, we first come up with a BlockChain-based Mix-Net
(BCMN) protocol and theoretically demonstrate its security and
anonymity. Then we construct a concrete dynamic self-organizing
BlockChain-based MIX anonymous system (BCMIX). In the
system, users and mix nodes utilize the blockchain transactions
and their addresses to negotiate keys with each other, which
can resist the MitM attacks. In addition, we design an IP
sharding algorithm to mitigate Sybil attacks. To evaluate the
BCMIX system, we leverage the distribution of mining pools
in the real world to test the system’s performance and ability
to resistant attacks. Compared with other systems, BCMIX
provides better resilience to known attacks, while achieving low
latency anonymous communication without significant bandwidth
or storage resources.

Index Terms—Anonymous systems, blockchain, anonymity,
self-organizing, mix network attacks.

I. INTRODUCTION

KEEPING communication private has become increasing
important in an era of mass surveillance and carriers-

sponsored attacks. Recently, many events about private data
leakage in Online Social Networks (OSNs) [1], mobile net-
work service (Uber, Didi Chuxing) [2] and telephone commu-
nications [3] have occurred frequently. Thus it is often the case
that two parties want to communicate anonymously, which
means to exchange messages while hiding the fact that they
are in conversation.

In this context, the anonymous communication technology
emerges as a critical topic. Aiming to preserve communica-
tion privacy within the shared public network environment,
anonymous communication mainly focus on how to hide the
identities or address information of one side or both sides
in communications. Since the seminal work by Chaum [4]
for anonymous communication, more than seventy anonymous
systems have been proposed, based on different anonymous
mechanism [5]. Generally, anonymous systems can be di-
vided into the following sub-types, mix re-encryption, mul-
ticast/broadcast, mix multi-layer encryption and peer-to-peer.

There are, however, concerns about the lack of efficiency
and security in anonymous systems [6], [7], as explained
below:

• Centralization. Most of anonymous systems, i.e.
Anonymizer [8], LPWA [9] and cMix [10], rely on central
proxies or preset nodes to hide the address information,
then still use these proxies to blind and forward messages.
The centralized anonymous systems bring privacy leakage
risks to users since the service providers can control
all proxies and mix node to infer the users’ identities.
What’s worse, the public proxies or preset nodes are
easily exposed to attackers. For instance, an attacker can
launch distributed denial-of-service attacks to block one
or more proxies and thus crash the system.

• Availability. Efficiency and additional resources are
the main factors affecting the availability of anony-
mous systems. High-latency anonymous systems such
as OneSwarm [11] and A3 [12], though provide high
anonymity, are not well suited for practical utilization
because of the poor efficiency in terms of intolerable la-
tency [11]. In order to hide the identities of the recipients,
multicast/broadcast and peer-to-peer based anonymous
systems consume more bandwidth resources to cover the
normal traffics [13]. In spite of effectiveness, users may
not be willing to contribute a lot of bandwidth, which
hinders the development of such anonymous systems. In
addition, some anonymous systems, such as cMix, adopt
additional inspection schemes to identify the malicious
nodes, which would place an additional burden on users
and decrease message utilization.

• Security. Along the research line about security, anony-
mous systems based on different mechanism may suffer
from different security issues. Some anonymous systems
based on MIX technologies rely on fixed cascade nodes to
mix and forward messages. Such systems are vulnerable
to collusion-tagging attacks which is hard to detect. Re-
routing or proxy forwarding based anonymous systems,
such as Tor [14] and Tarzan [15], deliver messages
through nodes or proxies randomly selected from clusters,
hence an eavesdropper can perform traffic analysis attacks
and destroy the anonymity. As for multicast/broadcast
based anonymous system, an attacker can masquerade
as the benign recipients to intercept the messages. With
respect to the P2P based anonymous systems, an attacker
can create multiple identities to launch a Sybil attack,
which allows the attacker to analyze the forwarding

ar
X

iv
:2

00
9.

11
54

6v
1

 [
cs

.C
R

]
 2

4
Se

p
20

20

2

path and impersonate the recipient to receive the mes-
sages. Moreover, in anonymous systems applying key
exchange schemes, an attacker can employ Man-in-the-
Middle (MitM) attacks [16] to undermine the security of
these systems.

A. Solutions and Contributions

Motivated by these identified limitations, we combine
blockchain technology with mix network, and design a dy-
namic self-organizing blockchain-based mix anonymous sys-
tem. We expect to dispose of the following challenges.

Challenge 1. Designing a decentralized self-organizing
anonymous system. The first challenge we seek to address
is the centralization issues. As we mention above, the central
proxies or preset nodes might pry into users’ private data and
reveal the true identities. Therefore, we intend to construct a
decentralized anonymous system in which the mix nodes are
dynamic and self-organizing.

Solution 1. When it comes to decentralization, the most
popular technology is blockchain, an emerging decentralized
architecture and distributed computing paradigm underlying
Bitcoin [17] and other cryptocurrencies. Leveraging the dy-
namic and decentralized properties of blockchain miners, we
devise voting algorithms to elect mix nodes from blockchain
miners. This trustless and distributed design not only prevents
privacy leakage from service provides, but also mitigates
single point failure and DDos attacks.

Challenge 2. Designing a user friendly anonymous
system. Another challenge is to construct an anonymous
system with high availability. In fact, users are often reluctant
to consume more additional resources (i.e. bandwidth and
computing resources) and wait for a long time. Thus we are
drove to build a high available anonymous system with less
additional resources.

Solution 2. Our proposed solution is inspired by cMix.
Similar to cMix, we also split the time-consuming, compli-
cated public key operations with the real time phase. The
difference is that cMix adopts fixed mix nodes with a stable
joint public key while our approach leverages the dynamic
blockchain miners to compete for mix nodes, which brings a
problem that the elected mix nodes (miners) have to negotiate
a joint public key in each round. To avoid interacting with
other mix nodes in each round, we firstly propose a revised
additive homomorphism mix-net protocol. Then we combine
the protocol with Bitcoin account schemes, such that the
elected mix nodes can calculate the system public key in a
non-interactive manner. It is worth noting that no additional
resources are required in BCMIX other than the miners’
computing power for solving Bitcoin puzzles.

Challenge 3. Designing a secure anonymous system. The
most intractable challenge is building a secure anonymous
system. Based on different principles, anonymous systems
are assailable to disparate attacks including internal attacks
and external attacks. The internal attacks , i.e. traffic analysis
attacks, DDos attacks and so on, are caused by the design
principles of systems while the external attacks, such as
MitM attacks and Sybil attacks, arise from the cryptographic

protocols or other schemes utilized in anonymous systems. In
the case, we intend to construct an anonymous system which
can resist the attacks mentioned above.

Solution 3. Through the former schemes we found mix
technology can defend against most kind of attacks on anony-
mous systems except bring the centralization problem and
tagging attacks. To mitigate the weakness, our first con-
sideration is combining blockchain and mix technology, as
mentioned in Solution 1. Unfortunately, the introduction of
blockchain raises the Sybil attacks into the anonymous system.
By researching the properties of Sybil attacks we structure
PoW voting and IP sharding algorithms to mitigate the impact
of Sybil attacks. For MitM attacks, we design a transaction-
based key exchange scheme which makes use of the Bitcoin’s
transaction propagation mechanism to break the single-channel
control of attackers. The detailed illustration is provided in
Section V and Section VI.

To summarize, the contributions of this paper are as follows.
• We propose a blockchain-based mix-net protocol

(BCMN) whose security and anonymity are demonstrated
theoretically. Especially, we elect miners as mix nodes via
special algorithms to avoid the centralized settings.

• We construct a dynamic self-organizing blockchain-based
mix anonymous system (upon the proposed BCMN proto-
col) and discuss how the proposal can satisfy the security
requirements.

• We demonstrate the feasibility and effectiveness of the
proposed BCMIX by developing the system in an analog
network with the miner distribution data in the real world.
Compared with existing systems, our system performs
well and provides stronger security.

B. Related Works
Generally, anonymous communication systems can be di-

vided into the following sub-types, mix re-encryption, mul-
ticast/broadcast, mix multi-layer encryption and peer-to-peer.
Mix re-encryption based anonymous systems [18], [19] lever-
age cryptography technologies to dispose messages and hide
the users’ identities, which can resist traffic analysis attacks.
But with the utilizing of public key cryptography, mix re-
encryption based anonymous systems is expensive and easy
to waste resources. To settle the problem, Chaum et.al [10]
proposed a anonymous system called cMix in 2017. Through
a precomputation, the core cMix protocol eliminates all expen-
sive real time public-key operationsat the senders, recipients
and mix nodes, thereby decreasing real time cryptographic
latency and lowering computational costs for clients. The
core real time phase performs only a few fast modular
multiplications. The authors claim that cMix can detect the
malicious nodes by utilizing Random Partial Checking (RPC)
and commitment scheme.

Multicast/broadcast based anonymous communication sys-
tems [20], [21] achieve anonymity through one-to-many com-
munications among hosts. This method is expensive and inef-
ficient for non-broadcast networks. In the case of large scale
networks, an attacker can easily masquerade as the recipient to
intercept the message, which further increases the computation
and communication overhead required for authentication.

3

As for mix multi-layer encryption based anonymous sys-
tems [22] [14] [23], one or more proxies are selected from
the cluster, and forward the messages from the former nodes
and then the messages in a confusing order. The technology
can achieve low-latency communications under the premise of
ensuring efficiency, but is vulnerable to analyzing attacks such
as traffic analysis attacks and sniper attacks [24].

The rapid development of peer-to-peer (P2P) networks
drives the research of anonymous communication technology
in P2P network environment [25]. In P2P based anonymous
systems [26], [27] nodes enjoy anonymous services, and
provide anonymous services for other nodes in their spare
time. Because the P2P network itself has a high degree of
self-organization and disorder, and the number of members
is large, the P2P network can also provide a high degree
of anonymity when the attacker has a huge attack resource.
However, because of its openness and anonymity, the attacker
can control a large number of zombie nodes to launch witch
attacks, and can disguise as normal nodes for traffic analysis,
thereby destroying the system’s anonymity without being
noticed.

C. Roadmap

The rest of this paper is organized as follows. In Section
II, we review some preliminaries and propose an attacks
against cMix. In Section III, we illustrate the security model
and requirements. Nest, we detail the BCMN protocol and
the proposed BCMIX in Section IV. Then we evaluate the
performance and demonstrate security respectively in Section
V and Section VI. Finally, this paper is concluded in Section
VII.

II. PRELIMINARIES AND PROPOSED ATTACKS ON CMIX

In this section we briefly review the relevant notations and
definitions that are used in this paper. Then we describe some
attacks against cMix.

A. Elliptic Curve based Cryptographic Primitives

In this work, we adopt elliptic curves over prime finite field
Fp. The elliptic curve y2 = x3 + ax + b over Fp could be
represented as Ep(a, b).

EC-Elgamal. The analog of ElGamal crypto system based
on ECC, which is known as EC-Elgamal, was first introduced
in [28]. It consists of the following algorithms.
• Setup(1K). The algorithm takes as input the security

parameter K, and outputs the elliptic curve Ep(a, b) with
base point G.

• KeyGen. For the elliptic curve Ep(a, b) with base point
G, pick k

R←−Fp and compute K = kG. Set PK = K
and SK = k.

• Enc(m,PK, r). For the plaintext point m, pick r R←−Fp.
Compute C1 = rG, C2 = m+ rK. Set ciphertext points
C = (C1, C2).

• Dec(C, SK). For the ciphertext C, compute m′ = C2 −
kC1.

Definition 1. Suppose p is a prime and Ep(a, b) is an elliptic
curve. For the two points G and Q on the elliptic curve, they
satisfy Q = kG. It can be proved that it is easier to calculate
Q from k and G. However, it is difficult to calculate k from
Q and G [29].

The security of ECC is based on Elliptic Curve Discrete
Logarithm Problem (ECDLP) which is consider to be compu-
tationally infeasible to solve.

ECDH Key Exchange. Elliptic Curve Diffie-Hellman
(ECDH) key exchange is the elliptic cuive analogue of the
classical Diffie-Hellman key exchange operating in Z∗p. We
describe two communicating parties, usually called Alice and
Bob, establish a shared secret key in secure communication
channel as follows. We assume that Alice and Bob use the
same set of domain parameters D := (p, a, b,G, n, h) for their
computations.

• Alice generates an ephemeral key pair (kA, QA), i.e.
he/she generates a random number kA in [1, n − 1]
and then performs a scalar multiplication to get the
corresponding public key QA = kA ·G. Then Alice sends
QA to Bob.

• Bob generates an ephemeral key pair (kB , QB) with
(QB = kB ·G) in the same way and sends QB to Alice.

• After Alice receives QB , he/she performs a scalar multi-
plication to obtain the shared secret S = kA ·QB .

• After Bob receives QA from Alice, he/she obtains the
shared secret through computation of S = kB ·QA

The security of the ECDH protocol relies on the intractabil-
ity of (computational) Elliptic Curve Diffie-Hellman Problem
(ECDHP). That is, given an elliptic curve Ep(a, b), a base
point G ∈ E(FP), and two points QA = kA · G and
QB = kB ·G, find the point S = kA ·kB ·G without knowledge
of kA, kB . It is clear that an algorithm for solving a generic
ECDLP instance would allow one to solve the ECDHP as well.

B. Verifiable Random Function.

A Verifiable Random Function (VRF) [30] is the public-key
version of a keyed cryptographic hash. In this application, a
Prover holds the VRF secret key and uses the VRF hashing to
construct a hash-based data structure on the input data. Due
to the nature of the VRF, only the Prover can answer queries
about whether or not some data is stored in the data structure.
Anyone who knows the public VRF key can verify that the
Prover has answered the queries correctly. A VRF is a triplet of
algorithms VRF := (Gen,Eval,Vfy) providing the following
functionalities.

• Gen(1K). The key generation algorithm is a probabilistic
algorithm that takes as input the security parameter K
and outputs a key pair (vk, vsk). We say that vsk is the
secret key and vk is the verification key.

• Eval(vsk,X). The deterministic algorithm on input the
secret key vsk and X ∈ {0, 1}k and outputs a function
value Y ∈ Y , where Y is a finite set, and a proof π. We
write Vvsk(X) to denote the function value Y computed
by Eval on input (vsk,X).

4

• Ver(vk,X, Y, π). The verification algorithm takes as in-
put (vk,X, Y, π) and outputs a bit b ∈ {0, 1} indicating
whether or not π is a valid proof.

Blockchain Basics. We review some basic components
of a proof-of-work blockchain [31]. We define a transaction
tx := (

−−−−→
inputs,

−−−−−→
outputs, sig), where

−−−−→
inputs and

−−−−−→
outputs

are the inputs and outputs of a UTXO-based model,
sig is the signature signed by the transaction sender.
A block is a triple of the form B := (s, x, txs, ctr),
s ∈ {0, 1}K, x ∈ {0, 1}∗, ctr ∈ N, where s is the state of the
previous block, x is the data and ctr is the proof of work of
the block. A block B is valid iff

validBlockD(B) := H(ctr, T (s, x, txs)) < D.

Here, H : {0, 1}∗ → {0, 1}K and T : {0, 1}∗ → {0, 1}K
are cryptographic hash functions, and the parameter D ∈ N is
the difficulty level of the block.

A chain is simply a chain of blocks, that we call C. The
rightmost block is called the head of the chain, denoted by
Head(C). Any chain C with a head Head(C) := (s, x, ctr) can
be extended to a new longer chain C′ := C||B′ by attaching a
block B′ := (s′, x′, ctr′) such that s′ = H(ctr,G(s, x)); the
head of the new chain C′ is Head(C) := B′. We let C := ε to
express a chain C is empty. The function len(C) denotes the
length of a chain C.

For a chain C of length n and any q > 0, we denote by
Cpq the chain resulting from removing the q rightmost blocks
of C, and analogously we denote by Cqq the chain resulting
in removing the q leftmost blocks of C; note that if q ≥ n
then Cpq := ε and Cqq := ε. If C is a prefix of C′ we write
C ≺ C′. We also leverage slot which is defined in [[]]. A
slot is the continuous amount of divided time. Each slot slotl
is indexed for l ∈ {1, 2, 3, · · · }. We assume that users have a
synchronised clock that indicates the current time down to the
smallest discrete unit.

Blockchain protocol. With the illustrations of the basic
components, we describe the blockchain protocol [31] Γ =
(Γ.KeyGen,Γ.Update,Γ.Validate,Γ.Broadcast) as follows.
• {pk, sk} ← Γ.KeyGen: The algorithm generates the key

pair (pk, sk) of the blockchain nodes.
• {C′,⊥} ← Γ.Update: This algorithm returns a longer

and valid chain C in the network (if it exists), otherwise
returns ⊥.

• {0, 1} ← Γ.Validate: The validity check algorithm takes
as inputs a transaction tx, a block B or a chain C and
returns 1 iff the transaction, the block or the chain is valid
according to a public set of rules.

• Γ.Broadcast: The algorithm takes as inputs some txs and
broadcasts it to all the nodes of the blockchain system.

The security of a PoW blockchain protocol Γ is charac-
terized by three properties, namely: Chain Growth, Chain
Quality and Common Prefix [31].

Chain growth. The chain property quantifies the number
of blocks that are added to the blockchain during any given
number of slots.

Definition 2. (Chain Growth). Consider the chains C1, C2
possessed by two honest parties at the onset of two slots slot1,

Node 1 Node nNode 2 Node n Node 1 Node 2

Node 1 Node nNode 2 Node n Node 1 Node 2

(a) Precommunication Phase

(b) Real time Phase

Fig. 1. Workflow of cMix.

slot2, with slot2 at least s slots ahead of slot1. Then it holds
that len(C2)− len(C1) ≥ τ ·s, for s ∈ N and 0 < τ ≤ 1, where
τ is the speed coefficient.

Chain Quality.The chain quality property informally states
that the ratio of adversarial blocks in any segment of a chain
held by a honest party is no more than a fraction µ, where µ
is the fraction of resources controlled by the adversary.

Definition 3. (Chain Quality). Consider a portion of length
`-blocks of a chain possessed by an honest party during any
given slot intervals, for ` ∈ N. Then, the ratio of adversarial
blocks in this ` segment of the chain is at most µ, where
0 < µ ≤ 1 is the chain quality coefficient.

Common Prefix. The common prefix property informally
says that if we take the chains of two honest nodes at different
times slots, the shortest chain is a prefix of the longest chain.

Definition 4. (Common Prefix). The chains C1, C2 possessed
by two honest parties at the onset of the slots slot1 < slot2
are such that Cpk1 � C2, where Cpk1 denotes the chain obtained
by removing the last k blocks from C1, where k ∈ N is the
common prefix parameter.

C. cMix Anonymous System

The cMix protocol by Chaum et al. [10] is a new mix-net
protocol which aims to provide an anoymous communication
tool for users at large scales. In contrast with existing mix-net
systems, cMix provides significant performance and security
upgrades. Figure 1 briefly describes the workflow of cMix. The
protocol contains two participants: Users := (U1, · · · , Uβ)
and mixnodes := (N1, · · · , Nn). Each node Ni holds a
tuple of the form (πi, ri,j , si,j ,Ki,t, E(·), D(·)), where πi is
a random permutation, ri,j , si, j ∈ G(i 6= j) is the random
elements in cyclic group G, Ki,t ∈ G denotes the shared group
element between node Ni and user Ut, E(·) and D(·)) denotes

5

the encryption and decryption algorithm of Elgamal. The
detailed description of cMix protocol is provided in Appendix
A.

We now present a collision tagging attack on cMix protocol.
The attacker have to compromise the last node Nl and any mix
node Ni. To launch the attack, only small changes are needed
to the protocol:
• Precomputation Phase- Step 3: The mix node Ni

calculate the decryption share D(~C1) with the vector
(1, · · · , t−1, · · · , 1) and commit to the D(~C1).

• Real time Phase- Step 1: The mix node Ni adds tag
(1, · · · , t, · · · , 1) to ~m, and sends ~m to the next mix node.

• Real time Phase- Step 3: The last node publish the
output of the mixing step Πh(~m× ~Rh)× ~Th. Afterwards,
all mix nodes release their decryption shares Di(~C1)
and the message component of the ciphertext ~C2. The
mix node Ni waits for other mix nodes to publish their
decryption first, then Ni collude with Nl to obtain the
message package with the tagged messages. After that,
Ni publish D(~C1).

The mix node Ni and Nl get the location of the tag
message in advance, and the mixed messages are the same
from the senders’ perspective. Thus the attacker can break the
anonymity of cMix.

III. SECURITY MODEL AND REQUIREMENTS

In this section, we present our proposed system model
for BCMIX and the related security requirements. The com-
munication methods among them include transactions and
Transport Layer Security (TLS), where the former is an on-
chain communication (i.e., publishing a transaction using P2P
communications) and the latter is an off-chain communication
(i.e., establishing a secure communication channels among mix
nodes).

A. System Model

There are three entities in our proposed BCMIX, that is,
Miners, Mix nodes and Senders (see Figure 2).
• Miners: These entities validate new transactions and

record them on the global ledger. Simultaneously, the
entities compete to solve a difficult mathematical puzzle
based on a cryptographic hash algorithm. In BCMIX,
miners are eligible to become mix nodes through PoW
algorithm competition. Miners disclose their addresses in
the form of (addressM , pkM) where addressM is the
blockchain address and pkM is the blockchain public key
deriving the related address.

• Mix nodes: These entities are selected from miners
through the PoW and VRF algorithm. After being elected
as mix nodes successfully, these entities firstly negotiate
keys with senders in the set up phase. Then they execute
the precomputation and real time phase to encrypt and
mix the messages during the duty period and pass the
message down. Besides, they should commit to their
computations and send special transactions to blockchain
network for subsequent auditing.

Mix node 1

Blockchain

tx

Senders Receivers

TLSTLS

Mix node i Mix node n

MinersMiners Miners

tx tx

Node pools

Fig. 2. Architecture of blockchain-based mix anonymous system. Before
anonymity phase, we elect miners in node pools to serve as mix nodes via
designed algorithms. During anonymity phase, mix nodes mix and forward
messages from users through Transport Layer Security (TLS). Meanwhile,
mix nodes sends special transactions to blockchain for auditing.

• Senders: These entities refers to BCMIX users, who hold
the respective accounts addressU , pkU . Before accessing
to the anonymous service, senders send transactions to
mix nodes and negotiate the corresponding keys with
mix nodes. Then in the real time phase, senders blind
messages with the shared keys and send the message to
the first mix nodes.

B. Threat Model

BCMIX assumes authenticated communication channels
among all mix nodes Therefore, we consider a malicious
adversary (a.k.a Byzantine), who can delay, drop, eavesdrop,
forward, and delete messages between mix nodes, but not
modify, replay, or inject new ones, without detection. For
any communication not among mix nodes, we assume the
adversary can delay, drop, re-order, eavesdrop, modify, or
inject messages at any point of the network. BCMIX accepts
one message per user per batch, starting the pre-computation
once the batch reaches β messages.

The adversary can also create a lot of accounts and compro-
mise an arbitrary numbers of users. In addition, we assume the
adversary can control more than 50% of the system computing
powers. However, such adversary is not able to read the
contents of the messages. We assume the security of the used
cryptographic primitives, including a secure hash function and
a secure signature scheme.

C. Security Requirements

According to the existing literature [5], [32], [33], BCMIX
needs to satisfy the following fundamental security require-
ments.
• Resistance to Sybil Attacks. BCMIX should minimize

the possibility of an attacker being successfully selected
as multiple mix nodes at the same time.

• Resistance to Collision Tagging Attacks. BCMIX
should prevent collision attackers from performing tag-
ging attacks to link a message to a certain sender.

6

• Sender Anonymity. BCMIX provide sender anonymity
for users. That is, every mix node performs mixing oper-
ations on messages, destroying the associations between
senders and receivers. Thus an attacker can not associate
teh export messages with a certain sender.

• Resistance to MitM attacks. BCMIX should prevent an
attacker from replacing the shared keys between senders
and mix nodes.

• Single Point of Failure Resilience. In case of single
point of failure (e.g. a mix node is under denial of service
attacks or the mix node is crashed), BCMIX should detect
the failure and guarantee the system keep operating.

• Resistance to Other Attacks. BCMIX should resist com-
mon attacks on mix-net system such as replay attacks,
traffic-analysis attacks and so on.

IV. PROPOSED BCMIX SYSTEM

In this section, we will present our construction of BCMIX
system. We first introduce an additive homomorphism mix-net
protocol and then we propose the blockchain based mix-net
protocol. Thereafter, we describe the concrete BCMIX system.

A. Additive Homomorphism Mix-net Protocol

To solve the MitM attacks of key agreement process and the
dependency on trusted entities, we replace Elgamal in cMix
[10] with EC-Elgamal and propose an additive homomorphism
mix-net protocol ∆ to integrate the mix-net protocol with the
blockchain.

Our mix-net protocol contains two participants, Senders :=
(U1, · · · , Uβ) and mixnodes := (N1, · · · , Nn), where the
mix nodes are selected from the blockchain miners. Mix
nodes negotiate keys with senders by means of a special
transaction txKE and calculate the system public key through
their address pair (addressiN , pk

i
N), where pkiM = Qi. (We

will describe these two processes in the next part). We suppose
a authenticated communication among mix nodes and we
denote it as ∆.TLS. The proposed mix-net protocol is a tuple
of algorithms (Setup,Precom,RealTime). The notations and
the processes of the protocol ∆ are presented in Table I and
Algorithm 1.

B. Basic Components of the Proposed Blockchain Protocol

We build our blockchain protocol Γ∗ by extending and
modifying the aforementioned protocol Γ. We first define the
basic components in our blockchain protocol.

Transaction. Our blockchain contains three types of trans-
action, namely normal transaction txN , key-exchange transac-
tion txKE and commitment transaction txCOM . The normal
transaction txN is the same definition of the transaction that
in protocol Γ. We define a key-exchange transaction txKE :=
(KE , pk,

−−−−→
inputs,

−−−−−→
outputs, sig) and a commitment transaction

txCOM := (COM , commitment, sig), where KE , COM
denotes the transaction type, pk is the blockchain public key of
the sender, commitment is the commitment value issued by
mix nodes and

−−−−→
inputs,

−−−−−→
outputs, sig are the same as the above

definition. A key-exchange transaction is used to negotiate

TABLE I
NOTATIONS OF THE REVISED MIX-NET PROTOCOL

Symbol Description
di the secret share for mix node Ni of the secret key d, di ∈ Fp;
Qi the public key of mix node Ni, Qi = diG;
Q the public key of the system, Q =

∑
iQi;

EQ() EQ(m) = (x ·G,m+ x ·Q), x ∈ Fp;
Ddi () the decryption share of mix node Ni, Ddi (

∑
i xi · G) =

(
∑
i xi)di ·G;

ri,a random values (freshly generated for each round) of mix node
Ni for groove a;

si,a random values (freshly generated for each round) of mix node
Ni for groove a;

πi a random permutation of the β grooves used by mix node
Ni;

Πi the permutation performed by BCMix through mix node Ni;
ki,j a group element shared between mix node Ni and the sending

user for groove j. These values are used as keys to blind
messages;

ki the vector of derived secret keys shared between mix node
Ni and all users in a batch, i.e. ki = (ki,1, · · · , ki,β);

Kj the product of all shared keys for the sending user of slot j,
i.e. Kj =

∏n
i=1 ki,j ;

Mj the message sent by user j. Like other values in the system,
these vlaues are group elements;

Ri, the product of all local random r values through mix node
Ni, Ri =

∏i
j=1 rj ;

Si the product of all local random s values through mix node

Ni, Si =

{
s1 i = 1

πi(Si−1)× si 1 < i ≤ n
.

0 1 i j n new

Main block Commit block Key exchange block

Fig. 3. Chain Structure of BCMIX

keys between senders and mix nodes, while a commitment
transaction is released to supervise the behavior of mix nodes.

Block and Chain. According to the transaction type
involved, we define three blocks respectively called main
block BM , key-exchange block BKE and commitment block
BCOM , where BM := (ske , scom , x, txN s, ctr), BKE :=
(s, x, txKEs) and BCOM := (s, x, txCOM s). Here s is the
state of the previous block, ske is the state of previous blocks,
x is the data and ctr is the proof of work of the block.

A chain C is the form of C := (CM , CKE , CCOM), where
CM , CKE and CCOM respectively represent main chain, key-
exchange chain and commitment chain in Figure 3. We define
a stable main block BiM as the origin of the key-exchange
chain CKE and commitment chain CCOM .

Definition 5. Let two chains C1, C2 are possessed by two
honest parties at the onset of the slots slot1 < slot2, if Cpw1 �

7

C1 and Cp(w+1)
1 � C1, then we call CwM is a stable main chain

and BiM where i ∈ [1, w] are stable main blocks.

Note that the BKE and the BCOM do not contain proof of
work, thus an adversary can manipulate the contents of these
blocks. To avoid the problem we specify that the latest main
block BlatestM always contains the states of BlatestKE and BlatestCOM .
We further give out the definition of valid blocks.

Definition 6. We say blocks BN , BKE and BCOM are valid
iff
• The transactions contained in BN , BKE and BCOM are

valid;
• For any two main blocks BiN :=

(spke , s
q
com , x

i, txiN s, ctr
i) and BjN :=

(smke , s
n
com , x

j , txjN s, ctr
j), where i < j. p ≥ m

and q ≥ n hold;
• H(ctr, T (ske , scom , x, txs)) < D.

Blockchain based mix-net protocol. Below we propose a
blockchain based mix-net protocol Γ∗ which combines the ba-
sic blockchain protocol Γ with the proposed mix-net protocol
∆. The protocol Γ has copies of all the basic functionalities
exposed by Γ and ∆ through the interfaces described above,
and adds additional algorithms including VRF, IP Sharding in
order to resist Sybil attacks. We describe the protocol Γ∗ :=
(Setup,Update,Vote,Mix,Verify,Broadcast) as follows.
• Setup. System parameters involved in our construction

are {Ep(a, b),G, G,K, H, T}, where Ep(a, b) is a non-
singular elliptic curve, G is a cyclic group which con-
sists of all points on Ep(a, b), as well as the point
at infinity O, G is the base point of Ep(a, b), K is
the security parameter and H : {0, 1}∗ → {0, 1}K,
T : {0, 1}∗ → {0, 1}K are cryptographic hash functions.
Entities invoke the algorithm to generate the blockchain
key pair (pk, sk) := (qG, q), the address (address, pk)
and the VRF key pair (vk, vsk). Here q ∈ Fp is selected
by entities.

• Update. This algorithm first invoke Γ.validate to validate
the new transactions, chains and blocks. Then returns
a longer valid chain C := (CM , CKE , CCOM) in the
network (if it exists), otherwise returns ⊥.

• PoWVote. The algorithm take as inputs the data x, the
state s and a difficulty level D′ < D, where D is the sys-
tem difficulty level, and then computes H(ctr′, T (s, x))
where ctr′ is a random string. Thereafter, the algorithm
estimate whether Hi(ctr

′, T (s, x)) < D′. If so the
algorithm outputs 1 and add the miner into a set M,
otherwise returns 0.

• IPSharding. This algorithm takes as input IP prefix of
miners in set M, and outputs n node pools (Miners in
each node pool have the same IP prefix IP/z where z is
a integer and z ∈ [0, 32].)

• VRF. The algorithm takes as inputs IP/z and the current
slot slotl, and outputs a value Y ∈ Y , where Y is a finite
set, and a proof π.

• Mix. The algorithm take as inputs a sender set
U := (U1, U2, · · · , Uβ), a mix node set N :=
(N1, N2, · · · , Nn) and a message vector M . Then it

revokes (∆.Setup,∆.Precom,∆.RealTime) and outputs
a permuted message vector Πn(M).

• Verify. Given a message vectorM := (m1,m2, · · · ,mβ)
and a message vector M := (m(1),m(2)), · · · ,m(β)),
this algorithm decides whether the following conditions
holds: For ∀i ∈ [1, β], mi ∈M , ∃j ∈ [1, β], mj ∈M ,
mi = mj . If so, the algorithm returns 1. Otherwise the
algorithm returns 0.

• Broadcast: The algorithm takes as inputs some txs and
address (address, pk) and broadcasts them to all the
nodes of the blockchain system.

Theorem 1. If Γ satisfies (τ, s)-chain growth, then Γ∗ satisfies
(τ, s)-chain growth.

Proof. We note that the side chain CKE and CCOM do not
contain proof of work, and the update of CKE , CCOM is
independent of the update of CM . Thus we conclude that CM
satisfies (τ, s)-chain growth as the chain C in Γ. We now prove
that CKE and CCOM satisfy (τ, s)-chain growth.

Consider the chains C1
KE , C2

KE and C1
COM , C2

COM at the
onset of two slots slot1, slot2, with slot2 at least s slots ahead
of slot1, and τKE , τCOM are the speed coefficient of CKE and
CCOM . Since a key exchange block BKE and a commitment
block BCOM are jointly generated by all mix nodes at the
expected speed τKE and τCOM respectively, we derive that
CKE and CCOM are updated at the expected speed τKE and
τCOM . Then we hold the following two equations len(C2

KE)−
len(C1

KE) = τKE ·s and len(C2
COM)− len(C1

COM) = τCOM ·s.
Thus we conclude that CKE and CCOM satisfies (τ, s)-chain
growth. In summary, Γ∗ satisfies (τ, s)-chain growth.

Theorem 2. Let H,G be two collision-resistant cryptographic
hash functions. If Γ satisfies (µ, `)-chain quality, then Γ∗

satisfies (µ, `)-chain quality.

Proof. We emphasize that proof of work is not contained in the
key exchange chain CKE and the commitment chain CCOM .
And the security of CKE , CCOM is depend on the security
of the main chain CM since CM takes the states of CKE and
CCOM as inputs of the proof of work. Suppose an adversary A
wants to manipulate contents of CKE and CCOM . According
to the formula H(ctr, T (ske, scom, x, txs)) < D (Definition
7.), A has to amend the corresponding main block BM . Note
that the capabilities of the adversary and external environment
in Γ∗ are exactly the same as that in Γ. Thus we can conclude
that the main chain CM is the only factor affecting the chain
quality property. We show below that A has only a negligible
probability of violating chain quality of Γ∗.

Let us denote by BiM the i-th block of the main chain
CM at some slot intervals so that CM := B1

M · · ·B
len(C)
M .

From Definition 4. we know that the number of main blocks
generated by A in chain CM are at most µ · len(C). According
to [31], A can not generate more than µ · len(C) main blocks
with the current computing hash power. Or the adversary A
could try to build an valid candidate block B?M to replace a
validate block BjM generated by honest parties in CM , where
j ∈ [1, len(C)], B?M 6= BjM and H(B?M) = H(BjM). By the
collision-resistance property of hash function we can draw a

8

Algorithm 1 The Additive Homomorphism Mix-net Protocol ∆
1: procedure SETUP PHASE
2: (Q,Ki, ki,j) ← Setup(pkiU , pk

j
M): This algorithm is invoked by senders Ui with address (addressiU , pk

i
U) and mix nodes Mj with address

(addressjN , pk
j
N), where i ∈ [1, β], j ∈ [1, n]. The algorithm takes as inputs the public key of senders and mix nodes and returns a shared key

ki,j between a send Ui and a mix node Mj . A slot key Ki =
∏n
j=1 ki,j and the system public key Q =

∑
j pk

j
M =

∑
j Qj .

3: procedure PRECOMPUTATION PHASE Precom := (Preprocess,Mix,Postprocess)

• Preprocess. The mix nodes generate the fresh r, s, π values and computes the encryption E(r−1
i). At the same time the mix nodes issues the

commitment values of the fresh values COMr, COMs, COMπ . Then they collectively compute the product of the received values by sending the
following message to the next mix node:

EQ(Ri) =

{
EQ(r1) i = 1

EQ(Ri−1)× EQ(ri) 1 < i ≤ n

Eventually, the last mix node sends the final values EQ(Rn) to the first mix node as input for the next step and issues the commitment value
COMEQ(Rn).

• Mix. The mix node together mix the values and compute the results Πn(Rn) × Sn, under encryption. The mix nodes perform this mixing by
having each mix node i send the following message to the next mix node:

EQ(Π(Rn)× Si) =

{
π1(EQ(Rn)× EQ(s1)) i = 1

πi(EQ(Πi−1(Rn)× Si−1))× EQ(si) 1 < i ≤ n

As with the first step, the last mix node sends the final encrypted values EQ(Πn(Rn)× Sn) to the first mix node.
• Postprocess. To complete the precomputation, each mix node Ni computes its decryption shares Ddi (

∑
i xi ·G), where (x, c) = EQ(Πn(Rn)×

Sn), and keep its secret. Then each mix node issues the commitment values COMDdi
of their secret shares. The message parts c are multiplied

with all the decryption shares to retrieve the plaintext values Πn(Rn)×Sn. The last mix node to be used in the real time phase stores the decrypted
precomputed values.

4: procedure REALTIME PHASE RealTime := (Preprocess,Mix,Postprocess)
5: Each user constructs its message MK−1

j (for slot j) by multiplying the message Mj and it sends it to the first mix node, which collects all messages
and combines them to get a vector M ×K−1.
• Preprocess. Each node Ni sends ki × ri to the next mix node, which uses them to compute M ×Rn = M ×K−1 ×

∏∏∏n
i=1 ki × ri and the

last node sends the result to the first node.
• Mix. Each node Ni computes πi(Πi−1(M × Rn) × Si−1) × si, where Π0 is the identity permutation and S0 = 1. The last node sends a

commitment to its message Πn(M ×Rn)× Sn to every other node.
• Postprocess. Each node Ni opens its precomputed decryption share for (x, c) = ((Πn(Rn)× Sn)−1), while the last node sends its decryption

share multiplied by the value in the previous step and the message component: Πn(M ×Rn)×Sn ×Dn(x)× c. Finally, the permuted message
can be decrypt as Πn(M) = Πn(M ×Rn)× Sn ×

∏n
i=1Di(x)× c.

6: Note: The shared key kij in Setup Phase is generated through ECDH protocol. After the mix node set (N1, N2, · · · , Nn) is selected from miners. Every sender sends
txKE s to all mix nodes. Since senders and mix nodes know the public key of each other, they can execute the ECDH protocol and obtain the shared key kij .

PoW Voting

IP Sharding

 Pool 1 Pool i Pool n

VRF Voting

Genesis

block
Stable

block

txKE

Precommunication

BKE

BCOM

Real time

 1. Miners invoke PoWVote to

complete as the candidate miners.

 2. The candidate miners invoke

IPSharding to be classified into

different pools.

 3. The candidate miners in

different pools invoke VRF to

complete as the current mix nodes.

Vote Phase

1.

2.

3.

 4. Users negotiate keys with mix nodes

through txKE and send to mix nodes.

 5.The mix nodes execute percommunication

and real time phase, and update related data to

blockchain through BKE and BCOM.

Mix Phase

4.

5.

Audit Phase

 6. After the system outputs

the permuted message, senders

invoke Verify to validate the

integrity of the message.

Senders Reservers

6.

The Main Chain

The Commitment Chain

The Key Exchange Chain

The Mix Nodes

Precommunication Phase

Real Time Phase

The Candidate Miners

The Miners

Fig. 4. The detailed orchestration of BCMIX.

9

conclusion that the adversary has only a negligible chance
of producing such a candidate block B?M where H(B?M) =
H(BjM). Hence Γ∗ satisfies (µ, `)-chain quality.

Theorem 3. Let BwM be a stable block which is the genesis
of the chain CKE and CCOM . If Γ satisfies k-common prefix,
then Γ∗ satisfies k-common prefix.

Proof. Note that the chain CKE and CCOM will not fork
since they don not contain proof-of-work and are uniquely
generated bt the mix nodes. Hence CKE and CCOM satisfy
the k-common prefix property. We recall that the behaviors
of the adversary and the honest parties in Γ∗ are exactly the
same as that in Γ. Thus according to the literature [], the main
chain satisfies k-common prefix property. This concludes the
proof.

Given the above, the tuple Γ∗ :=
(Setup,Update,Vote,Mix,Verify) is a secure blockchain
protocol which satisfies the properties of (τ, s)-chain growth,
(µ, `)-chain quality and k-common prefix.

C. System Design

With the description of the blockchain-based mix-net pro-
tocol, we propose the dynamic self-organizing blockchain-
based mix anonymous system in this part. Our BCMIX system
consists of four phases, namely: System Initialization, Vote,
Mix, Audit. The orchestration of BCMIX is detailed in Figure
4.

System Initialization. This phase initializes the sys-
tem parameters and generate accounts for participants.
The system determine the public system parameters
{Ep(a, b),G, G,K, H, T} (e.g. secp256k1 of Bitcoin). After
that the entities (i.e., users and miners) invoke Γ∗Setup to
generate their key pairs (i.e., user key pair (pkiu, sk

i
u) :=

(qiuG, q
i
u) and miner key pair (pkjm, sk

j
m) := (qjmG, q

j
m))

and addresses (i.e., user address (addressiU , pk
i
U) and miner

address (addressjN , pk
j
N) respectively). In additon, miners

also generate their VRF key pairs, which are used to complete
as mix nodes.

Vote. This phase is executed by the miners to elect the
candidate mix nodes for mixing messages.

1) Firstly, miners invokes Γ∗.PoWVote to solve the puzzle
D′. If the algorithm Γ∗.PoWVote returns 1, then the
miner Mi is added to the candidate set M. Otherwise
miners re-select inputs s, x to compute H(ctr′, T (s, x))
until H(ctr′, T (s, x)) < D′.

2) After a period of certain time, e.g. T , M stops ac-
cepting new miners. Then the candidates miners run
Γ∗.IPSharding (Algorithm 2) and join the node pool with
the same IP prefix.

3) After that the candidate miners Mi in each node pool
take the IP/z and current slot slotl as inputs, and invoke
Γ∗.VRF to generate a value Yi ∈ Y and the corresponding
proof π. Then the candidate miner who holds the smallest
value Y in each node pool is elected as the mix node
in the current slot. Finally, the elected mix nodes are
networked in the order of Y .

Algorithm 2 The IPSharding algorithm.
Input: The IP address of the candidate miners, where ipi :=

A1.A2. ∗ .∗. Here A1, A2 and ∗ denote four decimal
segments; the system parameter σ;

Output: k mix node pools;
1: coordinateipm := (Am1 , A

m
2);

2: |Num2p,2q | denotes the number of nodes distributed in
(2p, 2q);

3: for j = 0,j <= 2 do
4: for i = 0,i <= 7 do
5: if Amj < 2i or Amj > 2i+1 then
6: i+ +;
7: else break;
8: j + +;
9: Classify the coordinate into k parts such that

|Num2p,2q |j
|Num2p,2q |min

<= σ, k ∈ [1, k];
10: return k mix node pools.

Mix. In this phase, the current mix nodes N :=
(N1, N2, · · · , Nn) first negotiate shared keys with users U :=
(U1, U2, · · · , Uβ). Then the current mix nodes blind and mix
messages M := (M1,M2, · · · ,Mβ) for users.

To negotiate keys with each other through ECDH protocol,
the mix nodes and the users do as follows.

1) After the current mix nodes are selected, they run
Γ∗.Broadcast to disseminate their addresses and the VRF
parameters, i.e. (address, pk)||(vk, Y, π), to the partici-
pants in the blockchain network.

2) Upon receiving the addresses and parameters of all
mix nodes, a user Ui first invoke VRF.Ver to ver-
ify the received. If the algorithm returns 1, then
the user Ui sends transactions txiKE to every mix
nodes. Then the mix nodes parse txiKE as txKE :=

(KE , pk,
−−−−→
inputs,

−−−−−→
outputs, sig) and obtain the public key

of each user.
3) Finally the mix nodes Nj and the user Ui multiply their

secret key with the public key of each other, and obtain
the shared key kij = qiU · q

j
N ·G.

After negotiating keys with users, the mix nodes network
blind and mix messages as follows.

1) The mix nodes invoke ∆.Precom to compute the parame-
ters EQ(Πn(Rn)×Sn) utilized in the real time phase and
update the corresponding commitment values COMr,
COMs, COMπ , COMDdi

to the commitment chain
CCOM through the commitment transaction txCOM .

2) After receiving the blind messages M ×K−1 from the
users, the mix nodes invoke the algorithm ∆.RealTime
to mix the received messages and obtain the permuted
message Πn(M).

Audit. In this phase, the users invoke Γ∗.Verify to check the
integrity of the permuted messages. If the algorithm Γ∗.Verify
returns 1 to all the users, then the permuted messages are
considered integrated. If Γ∗.Verify returns 0 to some users,
then the users ask the current mix nodes to check their cal-
culation through the corresponding commitment block BCOM

10

Fig. 5. The probability of the expected number of candidate miners

and identify the malicious mix nodes. The malicious mix node
will be removed out of BCMIX.

V. PERFORMANCE EVALUATION

This section presents the performance evaluation of
BCMIX. We firstly theoretically analyze the number of candi-
date miners. Then we describe the implementation of BCMIX
and evaluate its performance.

A. The Number of candidate miners

In Bitcoin, the difficulty value D, the target target and the
network hash rate satisfy the following formula:

D =
DMax

targetcurrent
, Hashratemin =

D · 232

T
,

where DMax is a large constant, targetcurrent denotes the
current target and Hashratemin represents the minimum hash
rate required to calculate a block of difficulty D within time T .
According to literature [], the process of generating n blocks
within the average time t will be a Poission distribution with
the expected value λ,

P (X ≥M) =

∞∑
k=M

λk

k!
e−λ.

Since the Bitcoin network with Hashratemin mining
power generates one block within average time T , we can
conclude that

λ =
Hashratereal
Hashratemin

=
Hashratereal · T

D · 232
.

Here Hashratereal denotes the mining power of the Bitcoin
network in the real world. To better simulate BCMIX in the
real world scenario, we leverage the mining power distribution
from 1. In Appendix B, Table IV details the IP address and
mining power of different mining pools. With D = 1× 1011,
we estimate the probability of simultaneous block generation
under different T and report our results in Figure 5. We can

1https://btc.com/stats/pool?pool mode=year

Fig. 6. The results of IPSharding algorithm when σ = 5 (four node poos,
i.e. four mix nodes). We denote an IP address as four segments, the x axis is
the first segment and the y axis denotes the second segment. We can change
the division strategy to control the number of mix nodes. We respectively
simulate the attackers which hold 53.84% (the red circle), 63.43% (the red
circles and the green circle) and 74.80% (the red circles, the green circle and
the purple circles) of total computing powers.

see that when fixing the difficulty, the longer the average time
to generate a block, the higher the probability of generating
multiple blocks simultaneously.

B. Implementation

In order to show the feasibility of BCMIX, we build a Bit-
coin network in a desktop computer (equipped with a Ubuntu
16.04 LTS, Intel (R) Core (TM) i5-8500 CPU of 3.00GHz and
16GB RAM). We make use of two Github programs, Bitcoin-
Simulator 2 and cMix 3, to evaluate the proposed BCMIX. We
set up the public parameters by utilizing the publicly available
library for cryptography on the secp256k1 curve 4.

We apply the Algorithm 2 to Table IV and obtain the
distribution of mining pools in the real world. The results are
shown in Figure 6. Combining Figure 5 and Figure 6, we
can find that when fixing difficulty D to 1.0 × 1011, setting
the average block generation time to 20s or 30s can obtain a
reasonable number of mix nodes, which is more conducive to
the implementation of BCMIX. To measure the approximate
time cost, we test the functionality of PoWVote, IPSharding,
Key Exchange, Precomputation and RealTime under different
number of mix nodes and users for 100 times. The test results
are shown in Table II. We can see that PoWVote spends more
time than other algorithms. In order to improve the operating
efficiency of BCMIX, we elect mix nodes at regular intervals.

VI. SECURITY ANALYSIS

According to the proposed additive homomorphism mix-net
protocol and basic components of proof-of-work blockchains,

2https://github.com/arthurgervais/Bitcoin-Simulator
3https://github.com/byronknoll/cmix
4https://github.com/bitcoin-core/secp256k1

11

TABLE II
TIME COST (IN RM S) FOR DIFFERENT NUMBER OF MIX NODES AND USERS TO EXECUTE THE ALGORITHMS

Alg
Time Number Mix Node 3 5 7 9

User 10 50 100 10 50 100 10 50 100 10 50 100

PoWVote 29.62 28.90 30.12 29.77 31.23 29.35 29.00 30.27 32.14 31.36 30.80 29.79

IPSharding 0.65 0.65 0.65 0.93 0.93 0.93 1.46 1.46 1.46 1.88 1.88 1.88

Key Exchange 0.60 0.83 1.07 0.69 1.03 1.47 0.77 1.26 1.86 0.86 1.48 2.26

Precomputation 0.33 0.33 0.33 0.47 0.47 0.47 0.62 0.62 0.62 0.81 0.81 0.81

RealTime 0.03 0.11 0.26 0.06 0.19 0.37 0.12 0.23 0.43 0.16 0.29 0.49

We fix the difficulty D = 1× 1011 and stipulate the block generation time T = 30s. We can change the division strategy in Figure 6 to control the
number of mix nodes.

TABLE III
SUMMARY COMPARISON OF ATTACK RESILIENCE AND PERFORMANCE

Technology Attacks Performance
Traffic analysis DDos Tagging MitM Sybil Bandwidth Latency

BCMIX Blockchain Re-encryption ! ! ! ! ! ! !

cMix Mix Re-encryption ! % % % \ ! !

Tor Mix Mutilayer Encryption % % \ % \ ! !

BAR Multicast/Broadcast ! % % % \ ! %

AnonPubSub Probabilistic Forwarding ! % ! % \ \ \
Tarzan Peer-to-peer ! ! ! % % ! !

DiceMix CoinJoin % % ! % % ! !

!- The system is secure against this attack or the system performs well.
%- The system is vulnerable to this attack or the system is not performing well.
\ - The system does not involve this attack of the authors did not mention the related performance.

Fig. 7. The relationship between difficulty and probability to launch the Sybil
attacks.

BCMIX system can satisfy all the security requirements de-
scribed in Section III-C. Table III summarizes a comparison
among different anonymous systems.

• Resistance to Sybil Attacks. We indicate that an attacker
implement Sybil attacks successfully means the attacker
take control of all mix nodes. To simulate a process of
Sybil attacks, we assume that an IP address of mining
pools in Table IV represents an identity, and all identities
created by a mining pool share the mining pool’s com-
puting power equally. Figure 7 shows the requirements
in terms of difficulty (computing power), in order for an
attacker with different computing power to successfully
launch Sybil attacks. Figure 7 indicates that, when the
difficulty D is fixed, an attacker with higher computing
power have a higher probability of successfully launching

Fig. 8. The relationship between difficulty and probability to launch the
collision tagging attacks.

Sybil attacks than attackers with lower computing power.
And if we set the difficulty D to be very small, the
probability that an attacker successfully launching Sybil
attacks is almost zero.

• Resistance to Collision Tagging Attacks. As we men-
tion in Section II C, an attacker compromise the last mix
node Nl and any mix node Ni to launch collision tagging
attacks. In this case, we can treat a collision tagging attack
as a special form of a Sybil attack. We illustrates the
relationship between the difficulty D and the probability
of launching collision tagging attacks in Figure 8. Similar
to Sybil attacks, we can set the difficulty D to be very
small to resist the collision tagging attacks.

• Sender Anonymity. Suppose that an adversary A can
compromise β − 2 users and n − 1 nodes. Let Ux and

12

Uy denote any two honest users and let Ni be the
only honest mix node. The sender anonymity property
guarantees that the adversary cannot distinguish the
messages from the two honest users. We design the
following experiments for a PPT adversary A.

EXP b
an(∆,A, λ) :

ASetup:
(Q,Kx,Ky,K

A
m,m 6=x,m 6=y)← Setup(1λ),

APrecomputation:
(EQ(RA) · EQ(rNi

))← Preprocess(r),
EQ(Πn(Rn) · Sn)← Mix(s, π),
(Πn(Rn) · Sn)← Postprocess(Ddi),

ARealTime:
(mb ·rNi ,m1−b ·rNi)← Preprocess(Kx ·mb,Ky ·m1−b),

πNi(mb · rNi · sNi ,m1−b · rNi · sNi)← Mix,
(m
′

b,m
′

1−b)← Postprocess

The adversary’s advantage in the experiments is:

|Pr[EXP 0
an(∆,A, λ) = 1]−Pr[EXP 1

an(∆,A, λ) = 1]|.

Definition 7. (Anonymity). An additive homomorphism
mix-net protocol ∆ := (Setup,Precom,RealTime) main-
tains anonymity if the advantage of the adversary in the
anonymity game is negligible.
Theorem 4. If E is a ECDLP-secure additive homo-
morphism encryption scheme, ECDH is a ECDHP-secure
key exchange protocol and a non-interactive commitment
scheme COM is perfectly-hiding, then BCMIX satisfies
anonymity defined in Definition 7.

Proof. (Sketch). We prove the security of BCMIX by
reduction from the security of the encryption system E .
Without loss of generality, we assume that the adversary
A can compromise β − 2 users and n− 1 nodes. Let Ux
and Uy denote any two honest users and let Ni be the
only honest mix node.
In the setup phase, A can control all the shared keys
except Kx, Ky . In the precomputation phase, A gets
command of random values RA,SA and random per-
mutations ΠA except rNi

, sNi
, πNi

, the corresponding
ciphertext E(rNi) and the decrypt share DNi . In the real
time phase, users send blind messages to mix networks in
the form of M×K. The adversary A can parse the blind
messages as (Kx · mb,Ky · m1−b). During the mixing
process of real time phase, A decrypt the mixed messages
and obtain the mixed messages (mb · rNi · sNi ,m1−b ·
rNi · sNi). Finally, A observe the plaintext messages of
the form (m

′

b,m
′

1−b).
We assume a challenger C assigns the blind messages
(Kx · m0,Ky · m1), where m0 = mb and m1 =
m1−b as determined by a random bit b. An adversary
holding (m

′

b,m
′

1−b) predicts the association between
(Kx · m0,Ky · m1) and (m

′

b,m
′

1−b). In the end, if
the anonymity game adversary A predicts the bit b
correctly, we can infer that A can calculate Kx and
Ky which break the ECDHP-secure of the underlying
key exchange system. Thus |Pr[EXP 0

an(∆,A, λ) =

1] − Pr[EXP 1
an(∆,A, λ) = 1]| ≤ neglECDHP . Sim-

ilarly, we conclude that |Pr[EXP 0
an(∆,A, λ) = 1] −

Pr[EXP 1
an(∆,A, λ) = 1]| ≤ neglECDLP . This con-

cludes the proof.

• Resistance to MitM attacks. In BCMIX we leverage the
gossip protocol to spread messages. We assume that an
attack cannot control all access networks of a blockchain
node. According to [34], this is reasonable since none
instances of eclipse attacks have arisen in reality up
to now. Besides, many blockchain communities have
fixed this vulnerability [35]. In this case, an adversary
Ã attempts to simulate an elected mix node to deceive a
user Ũ . At the same time, other nodes connected with
Ũ inform Ũ the latest elected mix node sets, thus Ũ
identities Ã as an adversary.

• Single point of failure Resilience. Nodes in BCMIX are
networking dynamically. Once an elected mix node Ni
loses the response for a period of time, the next mix node
Ni+1 would inform other nodes that i is crashed. Then
the other nodes validate the situation of node i, and begin
a new networking process if i goes down, or identify node
Ni+1 as a malicious node if i works normally.

• Resistance to Other Attacks. BCMIX can also resist the
following attacks.
a) Replay attacks. An attacker may retransmitting a

message m form a previous session. Then the at-
tacker compare the mixed message sets with the
previous message sets which contain m, thus the
attacker can associate the egress messages with
the ingress messages. Since the random values and
permutations are never reused, thus BCMIX resists
replay attacks.

b) Traffic analysis attacks. In connection-based sys-
tems such as Tor, attackers can distinguish between
two different paths in the free mix network by
counting packages and timing communication. Since
BCMIX is a message-based system which batches
and permutes messages during the transmitting pro-
cess, attackers can not distinguish and analyze the
blind messages, thus BCMIX resists traffic analysis
attacks.

c) Intersection attacks and statistical disclosure attacks.
These attacks utilize information given by observing
mix networks where the users can freely choose the
mix node for their messages. Since BCMIX adopts
a fixed cascade of mix nodes every round, thus
BCMIX is not susceptible to these attacks.

VII. CONCLUSION

In this paper, we achieved a dynamic self-organizing mix
anonymous system. With blockchain technology, we elect
mix nodes from public, dynamic blockchain miners. Before
constructing BCMIX, we proposed BCMN protocol with the
formal security models. Building on the proposed protocol,
we designed a transaction-based key exchange scheme and
proposed our BCMIX. Then we illustrated BCMIX can satisfy
the relevant security requirements. After that we demonstrated

13

experimentally that BCMIX is resistant to the attacks proposed
in this paper. Finally, we evaluated the performance of the
prototype with the real world data and compared BCMIX with
some latest anonymous systems. The results suggested that
BCMIX is practical for real world deployment.

A follow-on work is to find a solution for recipient
anonymity, which would improve the anonymity ability of our
system. We believe that building a bidirectional anonymous
system allow us to identity additional features and properties.

VIII. APPENDIX A.
The detailed description of cMix protocol is as follows.
Setup phase. The mix nodes establish their decryption share

Xi, and the public key y is computed. Each user Aj will
individually establish a symmetric key ki,j with each mix node
Ni in the network. The mix nodes draw their random values
~ri and vecti for the n slots.

Precomputation phase. The goal in this phase is to perform
the public-key operations that is needed in the real time phase.

Step 1-Preprocessing: Mixnode Ni computes E(~r−1
i), and

send their calculated vector to the network handler. The
network handler then computes E(~R−1

h) =
∏h
i=1 E(~r−1

i).
Step 2-Mixing: Ni(i = 1, · · · , h − 1) computes and sends

the following to Ni+1

E(Πi(~R
−1
h)× ~T

−1
i) =

{
π1(E(~R−1

h))× E(~t−1
1) i = 1

πi(E(Πi−1(~R−1
h)× ~T−1

i−1))× E(~t−1
i) 1 < i ≤ h

Nh finally computes: (~C1, ~C2) = E(((~Rh) × ~Th)−1) =
πh(E((~R−1

h) × ~T−1
h−1)) × E(~t−1

h). Nh sends ~C1 to the other
mix nodes and store ~C2 locally for use in the real time phase.

Step 3-Postprocessing: Mixnode Ni use their decryption
share Xi to decrypt the vector of random components they
received in the previous step; Di(~C1) = ~C−Xi

1 . They publish
a commitment to their calculated decryption share.

Real time phase. In this phase, the senders are involved. Aj
constructs a blinded message mj×K−1

j . The blnded messages
are the input to the protocol, and they are combinded by the
network handler to yield the vector ~m× ~K−1.

Step 1-Preprocessing: Every mix node Ni calculates ~ki×~ri,
and sends the resulting vector to the network handler. The
network handler then computes ~m × ~Rh = ~m × ~K−1 ×∏h
i=1

~ki × ~ri, hence the ~K−1 vector is replaced with the
random r values of each mix node.

Step 2-Mixing: Ni computes and sends the following to
Ni+1:

(Πi(~m× ~Rh)× ~Ti) =

{
π1(~m× ~Rh)× ~t1 i = 1

πi(Πi−1(~m× ~Rh)× ~Ti−1)× ~ti 1 < i < h

Mix node Nh computes Πh(~m× ~Rh)× ~Th = πh(Πh−1(~m×
~Rh)× ~TH−1)× ~th. Nh commits to this vector and sends the
commitment to the remaining mix nodes.

Step 3-Postprocessing: When mix node Ni(i = 1, · · · , h−1)
receive the commitment from Nh, they send their decryption
share Di(~C1) computed in the precomputation phase to the
network handler. The last mix node computes and send the
following to the network handler: Πh(~m× ~Rh)× ~Th × ~C2 ×∏h
i=1D(~C1) = Πh(~m × ~Rh) × ~Th × (Πh(~Rh) × ~Th)−1 =

Πh(~m)
The network handler outputs Πh(~m), that is a permutation

of the input message.

IX. APPENDIX B.

The distribution of mining pools in the real world. To
simulate a process of Sybil attacks, we assume that an IP
address of mining pools in Table IV represents an identity,
and all identities created by a mining pool share the mining
pool’s computing power equally.

TABLE IV
NOTATIONS OF THE REVISED MIX-NET PROTOCOL

Pool Name IP Address Hashrate Proportion
124(EH/s) 100%

f2pool 203.107.32.162 21.1048 17.02%
Poolin 47.75.234.12 19.716 15.9%

BTC.com 117.24.1.243, 117.24.1.239
117.24.1.238, 117.24.1.242 16.1076 12.99%

AntPool 47.94.135.145 13.95 11.25%
ViaBTC 116.211.155.211, 123.155.158.10 7.8988 6.37%

Huobi.pool 47.93.94.105 7.626 6.15%
58COIN&1THash 39.98.72.224 6.4728 5.22%

SlushPool 104.26.5.102, 104.26.4.102
172.67.74.105 5.6792 4.58%

OKExPool 208.43.170.231 4.9724 4.01%
unknown 47.93.94.105 4.7244 3.81%
BTC.TOP 123.56.208.222 3.9804 3.21%
BytePool 58.218.215.133 2.2816 1.84%

Binance Pool 13.248.150.68, 76.223.2.151 2.0832 1.68%

BitFury 104.26.5.32, 104.26.4.32
172.67.70.128 2.0336 1.64%

Lubian.com 47.56.109.242 1.922 1.55%

NovaBlock 104.26.11.113, 104.26.10.113
172.67.70.128 1.488 1.20%

SpiderPool 47.52.126.9 0.62 0.5%
WAYI.CN 47.103.164.189 0.5459 0.44%

Bitcoin.com 104.18.26.217, 104.18.27.217 0.4092 0.33%
MiningCity 23.218.94.192, 23.32.241.177 0.124 0.1%
OKKONG 47.96.193.193 0.062 0.05%

TATMAS Pool 104.18.40.151, 172.67.148.229
104.1841.151 0.0496 0.04%

BitClub 213.173.105.14 0.0496 0.04%
Sigmapool.com 18.156.81.156 0.0372 0.03%

KanoPool 45.77.7.149 0.0124 0.01%
Solo CK 51.81.56.15 0.0124 0.01%

REFERENCES

[1] J. Sanders and D. Patterson, “Facebook data privacy scandal: A cheat
sheet,” 2019.

[2] D. R. Hayes, C. Snow, and S. Altuwayjiri, “Geolocation tracking
and privacy issues associated with the uber mobile application,” in
Proceedings of the Conference on Information Systems Applied Research
ISSN, vol. 2167, 2017, p. 1508.

[3] N. Alexopoulos, A. Kiayias, R. Talviste, and T. Zacharias, “Mcmix:
Anonymous messaging via secure multiparty computation,” in 26th
{USENIX} Security Symposium ({USENIX} Security 17), 2017, pp.
1217–1234.

[4] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–90,
1981.

[5] T. Lu, Z. Du, and Z. J. Wang, “A survey on measuring anonymity in
anonymous communication systems,” IEEE Access, vol. 7, pp. 70 584–
70 609, 2019.

[6] G. Danezis and C. Diaz, “A survey of anonymous communication
channels,” Technical Report MSR-TR-2008-35, Microsoft Research,
Tech. Rep., 2008.

[7] M. Edman and B. Yener, “On anonymity in an electronic society:
A survey of anonymous communication systems,” ACM Computing
Surveys (CSUR), vol. 42, no. 1, pp. 1–35, 2009.

[8] J. Boyan, “The anonymizer-protecting user privacy on the web,” 1997.
[9] E. Gabber, P. B. Gibbons, D. M. Kristol, Y. Matias, and A. Mayer,

“Consistent, yet anonymous, web access with lpwa,” Communications
of the ACM, vol. 42, no. 2, pp. 42–47, 1999.

14

[10] D. Chaum, D. Das, F. Javani, A. Kate, A. Krasnova, J. De Ruiter,
and A. T. Sherman, “cmix: Mixing with minimal real-time asymmet-
ric cryptographic operations,” in International Conference on Applied
Cryptography and Network Security. Springer, 2017, pp. 557–578.

[11] S. Prusty, B. N. Levine, and M. Liberatore, “Forensic investigation of the
oneswarm anonymous filesharing system,” in Proceedings of the 18th
ACM conference on Computer and communications security, 2011, pp.
201–214.

[12] M. Sherr, A. Mao, W. R. Marczak, W. Zhou, B. T. Loo, and M. A.
Blaze, “A3: An extensible platform for application-aware anonymity,”
2010.

[13] J. Kong and X. Hong, “Anodr: anonymous on demand routing with
untraceable routes for mobile ad-hoc networks,” in Proceedings of the
4th ACM international symposium on Mobile ad hoc networking &
computing, 2003, pp. 291–302.

[14] P. Syverson, R. Dingledine, and N. Mathewson, “Tor: The secondgen-
eration onion router,” in Usenix Security, 2004, pp. 303–320.

[15] M. J. Freedman and R. Morris, “Tarzan: A peer-to-peer anonymizing
network layer,” in Proceedings of the 9th ACM conference on Computer
and communications security, 2002, pp. 193–206.

[16] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle
attacks,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp.
2027–2051, 2016.

[17] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Manubot, Tech. Rep., 2019.

[18] M. Gomułkiewicz, M. Klonowski, and M. Kutyłowski, “Onions based
on universal re-encryption–anonymous communication immune against
repetitive attack,” in International Workshop on Information Security
Applications. Springer, 2004, pp. 400–410.

[19] O. Pereira and R. L. Rivest, “Marked mix-nets,” in International
Conference on Financial Cryptography and Data Security. Springer,
2017, pp. 353–369.

[20] D. Chaum, “The dining cryptographers problem: Unconditional sender
and recipient untraceability,” Journal of cryptology, vol. 1, no. 1, pp.
65–75, 1988.

[21] P. Kotzanikolaou, G. Chatzisofroniou, and M. Burmester, “Broadcast
anonymous routing (bar): scalable real-time anonymous communica-
tion,” International Journal of Information Security, vol. 16, no. 3, pp.
313–326, 2017.

[22] C. Egger, J. Schlumberger, C. Kruegel, and G. Vigna, “Practical attacks
against the i2p network,” in International workshop on recent advances
in intrusion detection. Springer, 2013, pp. 432–451.

[23] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis,
“The loopix anonymity system,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), 2017, pp. 1199–1216.

[24] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuermann, “The sniper
attack: Anonymously deanonymizing and disabling the tor network,”
Office of Naval Research Arlington VA, Tech. Rep., 2014.

[25] T. Chothia and K. Chatzikokolakis, “A survey of anonymous peer-to-peer
file-sharing,” in International Conference on Embedded and Ubiquitous
Computing. Springer, 2005, pp. 744–755.

[26] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “P2p mixing and unlinkable
bitcoin transactions.” in NDSS, 2017, pp. 1–15.

[27] J. Han and Y. Liu, “Mutual anonymity for mobile p2p systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 19, no. 8, pp.
1009–1019, 2008.

[28] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation,
vol. 48, no. 177, pp. 203–209, 1987.

[29] Y. Luo, X. Ouyang, J. Liu, and L. Cao, “An image encryption method
based on elliptic curve elgamal encryption and chaotic systems,” IEEE
Access, vol. 7, pp. 38 507–38 522, 2019.

[30] T. Jager, “Verifiable random functions from weaker assumptions,” in
Theory of Cryptography Conference. Springer, 2015, pp. 121–143.

[31] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2015,
pp. 281–310.

[32] J. Yu, D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo, “Repucoin:
Your reputation is your power,” IEEE Transactions on Computers,
vol. 68, no. 8, pp. 1225–1237, 2019.

[33] S. Hohenberger, S. Myers, R. Pass et al., “Anonize: A large-scale
anonymous survey system,” in 2014 IEEE Symposium on Security and
Privacy. IEEE, 2014, pp. 375–389.

[34] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoins peer-to-peer network,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 129–144.

[35] Y. Marcus, E. Heilman, and S. Goldberg, “Low-resource eclipse attacks
on ethereum’s peer-to-peer network.” IACR Cryptol. ePrint Arch., vol.
2018, p. 236, 2018.

PLACE
PHOTO
HERE

Michael Shell Biography text here.

John Doe Biography text here.

Jane Doe Biography text here.

	I Introduction
	I-A Solutions and Contributions
	I-B Related Works
	I-C Roadmap

	II Preliminaries and Proposed Attacks on cMix
	II-A Elliptic Curve based Cryptographic Primitives
	II-B Verifiable Random Function.
	II-C cMix Anonymous System

	III Security Model and Requirements
	III-A System Model
	III-B Threat Model
	III-C Security Requirements

	IV Proposed BCMix System
	IV-A Additive Homomorphism Mix-net Protocol
	IV-B Basic Components of the Proposed Blockchain Protocol
	IV-C System Design

	V Performance Evaluation
	V-A The Number of candidate miners
	V-B Implementation

	VI Security Analysis
	VII Conclusion
	VIII Appendix A.
	IX Appendix B.
	References
	Biographies
	Michael Shell
	John Doe
	Jane Doe

