
NTRU: A Ring-Based Public Key CryptosystemJe�rey Ho�stein, Jill Pipher, Joseph H. SilvermanAbstract. We describe NTRU, a new public key cryptosystem. NTRU featuresreasonably short, easily created keys, high speed, and low memory requirements.NTRU encryption and decryption use a mixing system suggested by polynomialalgebra combined with a clustering principle based on elementary probabilitytheory. The security of the NTRU cryptosystem comes from the interaction ofthe polynomial mixing system with the independence of reduction modulo tworelatively prime integers p and q. Contents0. Introduction1. Description of the NTRU algorithm1.1. Notation1.2. Key Creation1.3. Encryption1.4. Decryption1.5. Why Decryption Works2. Parameter Selection2.1. Notation and a norm estimate2.2. Sample spaces2.3. A Decryption Criterion3. Security Analysis3.1. Brute force attacks3.2. Meet-in-the-middle attacks3.3. Multiple transmission attacks3.4. Lattice based attacks4. Practical Implementations of NTRU4.1. Speci�c Parameter Choices4.2. Lattice Attacks | Experimental Evidence5. Additional Topics5.1. Improving Message Expansion5.2. Theoretical Operating Speci�cations5.3. Other Implementation Considerations5.4. Comparison With Other PKCS's6. Appendix

x0. IntroductionThere has been considerable interest in the creation of e�cient and compu-tationally inexpensive public key cryptosystems since Di�e and Hellman [3] ex-plained how such systems could be created using one-way functions. Currently,the most widely used public key system is RSA, which was created by Rivest,Shamir and Adelman in 1978 [9] and is based on the di�culty of factoring largenumbers. Other systems include the McEliece system [8] which relies on errorcorrecting codes, and a recent system of Goldreich, Goldwasser, and Halevi [4]which is based on the di�culty of lattice reduction problems.In this paper we describe a new public key cryptosystem, which we call theNTRU system. The encryption procedure uses a mixing system based on poly-nomial algebra and reduction modulo two numbers p and q, while the decryptionprocedure uses an unmixing system whose validity depends on elementary prob-ability theory. The security of the NTRU public key cryptosystem comes fromthe interaction of the polynomial mixing system with the independence of re-duction modulo p and q. Security also relies on the (experimentally observed)fact that for most lattices, it is very di�cult to �nd extremely short (as opposedto moderately short) vectors.We mention that the presentation in this paper di�ers from an earlier, widelycirculated but unpublished, preprint [6] in that the analysis of lattice-based at-tacks has been expanded and clari�ed, based largely on the numerous commentsreceived from Don Coppersmith, Johan H�astad, and Adi Shamir in person, viaemail, and in the recent article [2]. We would like to take this opportunity tothank them for their interest and their help.NTRU �ts into the general framework of a probabilistic cryptosystem as de-scribed in [1] and [5]. This means that encryption includes a random element,so each message has many possible encryptions. Encryption and decryptionwith NTRU are extremely fast, and key creation is fast and easy. See Section 5for speci�cs, but we note here that NTRU takes O(N2) operations to encryptor decrypt a message block of length N , making it considerably faster thanthe O(N3) operations required by RSA. Further, NTRU key lengths are O(N),which compares well with the O(N2) key lengths required by other \fast" publickeys systems such as [8, 4].x1. Description of the NTRU algorithmx1.1. Notation. An NTRU cryptosystem depends on three integer parameters(N; p; q) and four sets Lf , Lg , L�, Lm of polynomials of degree N � 1 withinteger coe�cients. Note that p and q need not be prime, but we will assumethat gcd(p; q) = 1, and q will always be considerably larger than p. We work inthe ring R = Z[X]=(XN � 1). An element F 2 R will be written as a polynomialor a vector, F = N�1Xi=0 Fixi = [F0; F1; : : : ; FN�1]:We write ~ to denote multiplication in R. This star multiplication is given

explicitly as a cyclic convolution product,F ~G = H with Hk = kXi=0 FiGk�i + N�1Xi=k+1FiGN+k�i = Xi+j�k (mod N)FiGj :When we do a multiplication modulo (say) q, we mean to reduce the coe�cientsmodulo q.Remark. In principle, computation of a product F ~G requires N2 multiplica-tions. However, for a typical product used by NTRU, one of F or G has smallcoe�cients, so the computation of F ~G is very fast. On the other hand, if Nis taken to be large, then it might be faster to use Fast Fourier Transforms tocompute products F ~G in O(N logN) operations.x1.2. Key Creation. To create an NTRU key, Dan randomly chooses 2 poly-nomials f; g 2 Lg . The polynomial f must satisfy the additional requirementthat it have inverses modulo q and modulo p. For suitable parameter choices,this will be true for most choices of f , and the actual computation of these in-verses is easy using a modi�cation of the Euclidean algorithm. We will denotethese inverses by Fq and Fp, that is,Fq ~ f � 1 (mod q) and Fp ~ f � 1 (mod p): (1)Dan next computes the quantityh � Fq ~ g (mod q): (2)Dan's public key is the polynomial h. Dan's private key is the polynomial f ,although in practice he will also want to store Fp.x1.3. Encryption. Suppose that Cathy (the encrypter) wants to send a mes-sage to Dan (the decrypter). She begins by selecting a message m from the setof plaintexts Lm. Next she randomly chooses a polynomial � 2 L� and usesDan's public key h to computee � p�~ h+m (mod q):This is the encrypted message which Cathy transmits to Dan.x1.4. Decryption. Suppose that Dan has received the message e from Cathyand wants to decrypt it using his private key f . To do this e�ciently, Dan shouldhave precomputed the polynomial Fp described in Section 1.1.In order to decrypt e, Dan �rst computesa � f ~ e (mod q);where he chooses the coe�cients of a in the interval from �q=2 to q=2. Nowtreating a as a polynomial with integer coe�cients, Dan recovers the messageby computing Fp ~ a (mod p):

Remark. For appropriate parameter values, there is an extremely high proba-bility that the decryption procedure will recover the original message. How-ever, some parameter choices may cause occasional decryption failure, so oneshould probably include a few check bits in each message block. The usualcause of decryption failure will be that the message is improperly centered. Inthis case Dan will be able to recover the message by choosing the coe�cients ofa � f ~ e (mod q) in a slightly di�erent interval, for example from �q=2+ x toq=2 + x for some small (positive or negative) value of x. If no value of x works,then we say that we have gap failure and the message cannot be decrypted aseasily. For well-chosen parameter values, this will occur so rarely that it can beignored in practice.x1.5. Why Decryption Works. The polynomial a that Dan computes satis-�es a � f ~ e � f ~ p�~ h+ f ~m (mod q)= f ~ p�~ Fq ~ g + f ~m (mod q) from (2),= p�~ g + f ~m (mod q) from (1).Consider this last polynomial p� ~ g + f ~ m. For appropriate parameterchoices, we can ensure that (almost always) all of its coe�cients lie between �q=2and q=2, so that it doesn't change if its coe�cients are reduced modulo q. Thismeans that when Dan reduces the coe�cients of f~e modulo q into the intervalfrom �q=2 to q=2, he recovers exactly the polynomiala = p�~ g + f ~m in Z[X]=(XN � 1).Reducing a modulo p then gives him the polynomial f ~m (mod p), and mul-tiplication by Fp retrieves the message m (mod p).x2. Parameter Selectionx2.1. Notation and a norm estimate. We de�ne the width of an elementF 2 R to be jF j1 = max1�i�NfFig � min1�i�NfFig:As our notation suggests, this is a sort of L1 norm on R. Similarly, we de�ne acentered L2 norm on R byjF j2 = � NXi=1(Fi � �F)2�1=2; where �F = 1N NXi=1 Fi:(Equivalently, jF j2 =pN is the standard deviation of the coe�cients of F .) Thefollowing proposition was suggested to us by Don Coppersmith.

Proposition. For any " > 0 there are constants
1;
2 > 0, depending on "and N , such that for randomly chosen polynomials F;G 2 R, the probability isgreater than 1� " that they satisfy
1 jF j2 jGj2 � jF ~Gj1 �
2 jF j2 jGj2 :Of course, this proposition would be useless from a practical veiwpoint if theratio
2=
1 were very large for small "'s. However, it turns out that even formoderately large values of N and very small values of ", the constants
1;
2 arenot at all extreme. We have veri�ed this experimentally for a large number ofparameter values and have an outline of a theoretical proof.x2.2. Sample spaces. The space of messages Lm consists of all polynomialsmodulo p. Assuming p is odd, it is most convenient to takeLm = �m 2 R : m has coe�cients lying between �12(p� 1) and 12(p� 1)� :To describe the other samples spaces, we will use sets of the formL(d1; d2) = nF 2 R : F has d1 coe�cients equal 1,d2 coe�cients equal �1, the rest 0o :With this notation, we choose three positive integers df ; dg ; d and setLf = L(df ; df � 1); Lg = L(dg ; dg); and L� = L(d; d):(The reason we don't set Lf = L(df ; df) is because we want f to be invertible,and a polynomial satisfying f(1) = 0 can never be invertible.) Notice thatf 2 Lf , g 2 Lg , and � 2 L� have L2 normsjf j2 =q2df � 1�N�1; jgj2 =p2dg; j�j2 = p2d:Later we will give values for df ; dg ; d which allow decryption while maintainingvarious security levels.x2.3. A Decryption Criterion. In order for the decryption process to work,it is necessary that jf ~m+ p�~ gj1 < q:We have found that this will virtually always be true if we choose parameters sothat jf ~mj1 � q=4 and jp�~ gj1 � q=4;and in view of the above Proposition, this suggests that we takejf j2 jmj2 � q=4
2 and j�j2 jgj2 � q=4p
2 (3)for a
2 corresponding to a small value for ". For example, experimental evidencesuggests that for N = 107, N = 167, and N = 503, appropriate values for
2are 0:35, 0:27, and 0:17 respectively.

x3. Security Analysisx3.1. Brute force attacks. An attacker can recover the private key by tryingall possible f 2 Lf and testing if f~h (mod q) has small entries, or by trying allg 2 Lg and testing if g~h�1 (mod q) has small entries. Similarly, an attacker canrecover a message by trying all possible � 2 L� and testing if e� �~ h (mod q)has small entries. In practice, Lg will be smaller than Lf , so key security isdetermined by #Lg , and individual message security is determined by #L�.However, as described in the next section, there is a meet-in-the-middle attackwhich (assuming su�cient storage) cuts the search time by the usual squareroot. Hence the security level is given by� KeySecurity� =p#Lg = 1dg !s N !(N � 2dg)!�MessageSecurity� =p#L� = 1d!s N !(N � 2d)! :x3.2. Meet-in-the-middle attacks. Recall that an encrypted message lookslike e � � ~ h +m (mod q). Andrew Odlyzko has pointed out that there is ameet-in-the-middle attack which can be used against �, and we observe that asimilar attack applies also to the private key f . Brie
y, one splits f in half, sayf = f1+ f2, and then one matches f1~ e against �f2~ e, looking for (f1; f2) sothat the corresponding coe�cients have approximately the same value. Hencein order to obtain a security level of (say) 280, one must choose f , g, and � fromsets containing around 2160 elements. (For further details, see [13].)x3.3. Multiple transmission attacks. If Cathy sends a single message mseveral times using the same public key but di�erent random �'s, then the at-tacker Betty will be able to recover a large part of the message. Brie
y, supposethat Cathy transmits ei � �i~h+m (mod q) for i = 1; 2; : : : ; r. Betty can thencompute (ei� e1)~h�1 (mod q), thereby recovering �i ��1 (mod q). However,the coe�cients of the �'s are so small that she recovers exactly �i��1, and fromthis she will recover many of the coe�cients of �1. If r is even of moderate size(say 4 or 5), Betty will recover enough of �1 to be able to test all possibilities forthe remaining coe�cients by brute force, thereby recovering m. Thus multipletransmission are not advised without some further scrambling of the underly-ing message. We do point out that even if Betty decrypts a single message inthis fashion, this information will not assist her in decrypting any subsequentmessages.x3.4. Lattice based attacks. The object of this section is to give a briefanalysis of the known lattice attacks on both the public key h and the messagem. We begin with a few words concerning lattice reduction. The goal of latticereduction is to �nd one or more \small" vectors in a given lattice. In theory,the smallest vector can be found by an exhaustive search, but in practice this isnot possible if the dimension is large. The LLL algorithm of Lenstra-Lenstra-Lov�asz [7], with various improvements due to Schnorr and others, [10, 12, 11]

will �nd relatively small vectors in polynomial time, but even LLL will take along time to �nd the smallest vector provided that the smallest vector is nottoo much smaller than the expected length of the smallest vector. We will makethese observations more precise below.x3.4.1. Lattice attack on an NTRU private key. Consider the 2N -by-2N ma-trix composed of four N -by-N blocks:0BBBBBBBBBBBB@
� 0 � � � 0 h0 h1 � � � hN�10 � � � � 0 hN�1 h0 � � � hN�2...0 0 � � � � h1 h2 � � � h00 0 � � � 0 q 0 � � � 00 0 � � � 0 0 q � � � 0...0 0 � � � 0 0 0 � � � q

1CCCCCCCCCCCCA(Here � is a parameter to be chosen shortly.) Let L be the lattice generated bythe rows of this matrix. The determinant of L is qN�N .Since the public key is h = g ~ f�1, the lattice L will contain the vector� = (�f; g), by which we mean the 2N vector consisting of the N coe�cients off multiplied by �, followed by the N coe�cients of g. By the gaussian heuristic,the expected size of the smallest vector in a random lattice of dimension n anddeterminant D lies betweenD1=nr n2�e and D1=nr n�e:In our case, n = 2N and D = qN�N , so the expected smallest length is larger(but not much larger) than s =rN�q�e :An implementation of a lattice reduction algorithm will have the best chanceof locating � , or another vector whose length is close to � , if the attacker chooses� to maximize the ratio s= j� j2. Squaring this ratio, we see that an attackershould choose � so as to maximize��2 jf j22 + jgj22 = �� jf j22 + ��1 jgj22��1 :This is done by choosing � = jgj2 = jf j2. (Note that jgj2 and jf j2 are both publicquantities.)When � is chosen in this way, we de�ne a constant ch by setting j� j2 = chs.Thus ch is the ratio of the length of the target vector to the length of the expected

shortest vector. The smaller the value of ch, the easier it will be to �nd the targetvector. Substituting in above, we obtainch =s2�e jf j2 jgj2Nq :For a given pair (f; g) used to set up the cryptosystem, ch may be viewed as ameasure of how far the associated lattice departs from a random lattice. If ch isclose to 1, then L will resemble a random lattice and lattice reduction methodswill have a hard time �nding a short vector in general, and �nding � in particular.As ch decreases, lattice reduction algorithms will have an easier time �nding � .Based on the limited evidence we have obtained, the time required appears tobe (at least) exponential in N , with a constant in the exponent proportional toch.x3.4.2. Lattice attack on an NTRU message. A lattice attack may also bedirected against an individual message m. Here the associated lattice problemis very similar to that for h, and the target vector will have the form (�m; �).As before, the attacker should balance the lattice using � = j�j2 = jmj2, whichleads to the value cm =s2�e jmj2 j�j2Nq :This constant cm gives a measure of the vulnerability of an individual messageto a lattice attack, similar to the way ch does for a lattice attack on h. Anencrypted message is most vulnerable if cm is small, and becomes less so as cmgets closer to 1.In order to make the attacks on h and m equally di�cult, we want to takecm � ch, or equivalently, jf j2 jgj2 � jmj2 j�j2. For concreteness, we will nowrestrict to the case that p = 3; other values may be analyzed similarly. For p = 3,an average messagem will consist of N=3 each of 1, 0 and �1, so jmj2 �p2N=3.Similarly, � consists of d each of 1 and �1, with the rest 0's, so j�j2 = p2d. Thuswe will want to set jf j2 jgj2 �p4Nd=3:This can be combined with the decryption criterion (3) to assist in choosingparameters.x3.4.3. Lattice attack on a spurious key. Rather than trying to �nd the pri-vate key f , an attacker might use the lattice described above (in Section 3.4.1)and try to �nd some other short vector in the lattice, say of the form � 0 =(�f 0; g0). If this vector is short enough, then f 0 will act as a decryption key.More precisely, if it turns out that with high probability,f 0 ~ e � p�~ g0 +m~ f 0 (mod q)satis�es jp�~ g0 +m~ f 0j1 < q, then decryption will succeed; and even if thiswidth is 2q or 3q, it is possible that the message could be recovered via error-correcting techniques, especially if several such � 0's could be found. This idea,

which is due to Coppersmith and Shamir, is described in [2]. However exper-imental evidence suggests that the existence of spurious keys does not pose asecurity threat. See Section 4.2 for a further discussion of this point.x4. Practical Implementations of NTRUx4.1. Speci�c Parameter Choices. We will now present three distinct setsof parameters which yield three di�erent levels of security. The norms of f andg have been chosen so that decryption failure occurs with probability less than5 � 10�5(based on extensive computer experimentation).Case A: Moderate SecurityThe Moderate Security parameters are suitable for situations in which the intrin-sic value of any individual message is small, and in which keys will be changedwith reasonable frequency. Examples might include encrypting of television,pager, and cellular telephone transmissions.(N; p; q) = (107; 3; 64)Lf = L(15; 14); Lg = L(12; 12); L� = L(5; 5) (i.e., d = 5).(In other words, f is chosen with 15 1's and 14 �1's, g is chosen with 12 1's and12 �1's, and � is chosen with 5 1's and 5 �1's.) These give key sizesPrivate Key = 340 bits and Public Key = 642 bits;and (meet-in-the-middle) security levelsKey Security = 250 and Message Security = 226:5:(We note again that meet-in-the-middle attacks require large amounts of com-puter storage; for straight search brute force attacks, these security levels shouldbe squared.) Substituting the above values into the appropriate formulas yieldslattice values ch = 0:257; cm = 0:258; and s = 0:422q:Case B: High Security (N; p; q) = (167; 3; 128)Lf = L(61; 60); Lg = L(20; 20); L� = L(18; 18) (i.e., d = 18)Private Key = 530 bits and Public Key = 1169 bitsKey Security = 282:9 and Message Security = 277:5ch = 0:236; cm = 0:225; and s = 0:296q:

Case C: Highest Security(N; p; q) = (503; 3; 256)Lf = L(216; 215); Lg = L(72; 72); L� = L(55; 55) (i.e., d = 55)Private Key = 1595 bits and Public Key = 4024 bitsKey Security = 2285 and Message Security = 2170ch = 0:182; cm = 0:160; and s = 0:0:365q:x4.2. Lattice Attacks | Experimental Evidence. In this section we de-scribe our preliminary analysis of the security of the NTRU Public Key Cryp-tosystem from attacks using lattice reduction methods. It is based on experi-ments which were performed using version 1.7 of Victor Shoup's implementationof the Schnorr,Euchner and Hoerner improvements of the LLL algorithm, dis-tributed in his NTL package at http://www.cs.wisc.edu/eshoup/ntl/. TheNTL package was run on a 200 M Hz Pentium Pro with a Linux operatingsystem.This algorithm has several parameters that can be adjusted to give varyingtypes of results. In general the LLL algorithm can be tuned to either �nd asomewhat short point in a small amount of time or a very short point in alonger time. The key quantity is the constant ch (or cm) described above. Itis somewhat easier to decrypt messages if these constants are small, somewhatharder if they are close to 1. The idea is to choose a compromise value whichmakes decryption easy, while still making it di�cult for LLL to work e�ectively.The following tables give the time required for LLL to �nd either the target(�f; g) or a closely related vector in the lattice L of 3.4.1 for various choices ofq; ch and dimension N . As will be elaborated on further in the Appendix, thealgorithm seems to �nd either a vector of the correct length, or one considerablytoo long to be useful for decryption. Even if it were to �nd a spurious keyof length somewhat longer than the target, as discussed by Coppersmith andShamir in [2], it appears that the time required to �nd such a key would not besigni�cantly less than that required to �nd the true target.We have chosen parameters so that cm � ch. (So the time required to breakan individual message should be on the same order as the time required to breakthe public key). In all cases we found that when N gets su�ciently large thealgorithm fails to terminate, probably because of accumulated round o� errors.The tables end roughly at this point.In this version of LLL there are three parameters that can be �ne tuned tooptimize an attack. The tables give typical running times to break a key pair forthe most optimal choices of parameters we have found to date. The two columnsgive results for two di�erent
oating point versions of the program, QP1 o�eringhigher precision. We then use this information to extrapolate running times forlarger values of N , assuming the algorithm were to terminate.

FP QP1Case Aq=64c=0.26 N time (secs)75 56180 149385 283290 443592 744094 1290896 2853498 129938
N time (secs)75 160480 340685 516888 1129890 1610295 6232196 8004598 374034100 183307Case Bq=128c=0.23 N time (secs)75 60080 95385 112790 381695 13588
N time (secs)75 302680 545285 817190 2019595 57087100 109706Case Cq=256c=0.18 N time (secs)75 54780 76585 165190 241495 2934100 7471102 8648
N time (secs)75 229378 351381 345384 506187 668590 975393 1694696 1985499 30014102 51207105 75860108 145834We will write t(N) for the time in seconds necessary to break a public key cor-responding to a parameter N . When we graph log t(N) against N , the exampleswe have done seem to indicate that the graph has a positive slope with a smallpositive concavity. This would indicate that t(N) grows at least exponentiallywith N , and possibly even with N logN . To extrapolate out to higher valuesof N , we have taken the information we have and approximated a lower boundfor the slope of log t(N) against N . This gives the following rough estimates for

t(N) in seconds using FP:t(N) > 12908 exp[(0:396)(N � 94)] (Moderate Security)t(N) > 13588 exp[(0:291)(N � 95)] (High Security)t(N) > 2414 exp[(0:10)(N � 92)] (Highest Security)The running times for QP1 are longer for small N, but yield a better exponentialconstant, so for QP1 we obtain:t(N) > 80045 exp[(0:207)(N � 96)] (Moderate Security)t(N) > 8171 exp[(0:17315)(N � 85)] (High Security)t(N) > 30014 exp[(0:17564)(N � 99)] (Highest Security)These lower bounds yield the following estimates for the time necessary to breakthe di�erent levels of NTRU security using QP1 running on one 200 MHz Pen-tium Pro:Type Level q c N Time (seconds)QP1 Moderate 64 0:26 107 780; 230 (9 days)QP1 High 128 0:23 167 1:198 � 1010 (380 years)QP1 Highest 256 0:18 503 1:969 � 1035 (6:2 � 1027 years)A more detailed analysis and description of the lattice experiments is givenin the Appendix. x5. Additional Topicsx5.1. Improving Message Expansion. The NTRU PKCS's for the sampleparameters presented in Section 4.1 have moderate message expansions. How-ever, as the principal use for PKCS's is the exchange of a private key in a singlemessage block this is not a signi�cant problem. It may be worth mentioning,though, that there is a simple way that the NTRU technique can be used toconvey a very long message, with an expansion of only 1-1 after the �rst mesageblock.With this approach, the �rst encrypted message e1 that Cathy sends is de-crypted as a sequence of 1's, 0's and �1's (taking p = 3) and interpreted as a �1for the next message block. The next encrypted message block is �1 ~ e1 +m1,where m1 is the �rst block of the actual message. As Dan knows �1, he canrecover m1 mod q exactly. The next encrypted message block Cathy sends ise2 = �2~e1+m2, where Cathy derived �2 fromm1 by squaringm1 and reducingit mod 3. Dan can now recover �2 as he knows m1, and hence can derive m2mod q from e2. This can continue for a message of arbitrary length.x5.2. Theoretical Operating Speci�cations. In this section we considerthe theoretical operating characteristics of the NTRU PKCS. There are three

integer parameters (N; p; q), four sets Lf ;Lg;L�;Lm determined respectively byintegers df ; dg; d; p as described in Sections 1.1 and 2.2. The following tablesummarizes the NTRU PKCS operating characteristics in terms of these param-eters. Plain Text Block N log2 p bitsEncrypted Text Block N log2 q bitsEncryption Speed� O(N2) operationsDecryption Speed O(N2) operationsMessage Expansion logp q-to-1Private Key Length 2N log2 p bitsPublic Key Length N log2 q bits� Precisely, 4N2 additions and N divisions by q with remainderx5.3. Other Implementation Considerations. We brie
y mention someadditional factors which should be considered when implementing NTRU.(1) It is important that gcd(q; p) = 1. Although in principle NTRU will workwithout this requirement, in practice having gcd(q; p) > 1 will decreasesecurity. At the extreme range, if pjq, then the encrypted message esatis�es e � m (mod p), so it is completely insecure.(2) We want most f 's to have inverses modulo p and modulo q, since other-wise it will be hard to create keys. A �rst necessary requirement is thatgcd(f(1); pq) = 1, but if this fails for some chosen f , the code creatorcan instead use, say, f(X)+ 1 or f(X)� 1. Assuming gcd(f(1); pq) = 1,virtually all f 's will have the required inverses if we take N to be a primeand require that for each prime P dividing p and q, the order of P in(Z=NZ)� is large, say either N � 1 or (N � 1)=2. For example, this willcertainly be true if (N � 1)=2 is itself prime (i.e., N is a Sophie Germainprime). Examples of such primes include 107, 167 and 503.x5.4. Comparison With Other PKCS's. There are currently a numberof public key cryptosystems in the literature, including the system of Rivest,Shamir, and Adelman (RSA [9]) based on the di�culty of factoring, the system ofMcEliece [8] based on error correcting codes, and the recent system of Goldreich,Goldwasser, and Halevi (GGH [4]) based on the di�culty of �nding short almost-orthogonalized bases in a lattice.The NTRU system has some features in common with McEliece's system,in that ~-multiplication in the ring R can be formulated as multiplication ofmatrices (of a special kind), and then encryption in both systems can be writtenas a matrix multiplication E = AX + Y , where A is the public key. A minordi�erence between the two systems is that for an NTRU encryption, Y is themessage and X is a random vector, while the McEliece system reverses theseassignments. But the real di�erence is the underlying trap-door which allowsdecryption. For the McEliece system, the matrix A is associated to an errorcorrecting (Goppa) code, and decryption works because the random contributionis small enough to be \corrected" by the Goppa code. For NTRU, the matrix A

is a circulant matrix, and decryption depends on the decomposition of A intoa product of two matrices having a special form, together with a lifting frommod q to mod p.As far as we can tell, the NTRU system has little in common with the RSAsystem. Similarly, although the NTRU system must be set up to prevent latticereduction attacks, its underlying decryption method is very di�erent from theGGH system, in which decryption is based on knowledge of short lattice bases.In this aspect, GGH actually resembles the McEliece system, since in both casesdecryption is performed by recognizing and eliminating a small random contri-bution. Contrasting this, NTRU eliminates a much larger random contributionvia divisibility (i.e., congruence) considerations.The following table compares some of the theoretical operating characteris-tics of the RSA, McEliece, GGH, and NTRU cryptosystems. In each case thenumber N represents a natural security/message length parameter.NTRU RSA McEliece GGHEncryption Speed(1;2) N2 N2 N2 N2Decryption Speed(3) N2 N3 N2 N2Public Key N N N2 N2Private Key N N N2 N2Message Expansion(4) varies 1{1 2{1 1{1(1) NTRU encryption requires only additions and shifts, no other multiplications(2) RSA encryption is O(N3) unless small encryption exponents are used.(3) Asymptotically, NTRU encryption and decryption are O(N logN) using FFT.(4) For NTRU, see Section 5.1.We have made some preliminary timing comparisons between NTRU andRSA, using information available from RSA's web page. The NTRU programwe used was written in C and not optimized for speed.The main uses to which PKCS's are applied are the exchange of secret keysand short messages. Also, RSA, ECC and NTRU all work in units of \messageblocks," and any message block in any of these systems is large enough to holda secret key of very high security, or a short message. Thus for comparisonpurposes, in the following we interpreted a key encryption or decryption in aPKCS to be the process of encrypting or decrypting one message block. Numbersgiven for encryption and decryption are message blocks processed per second.The information is summarized in the following tables:Security Encrypt Decrypt CreateLevel (blks/sec) (blks/sec) key (sec)Moderate 1818 505 0:1080High 649 164 0:1555Highest 103 19 0:8571NTRU: 75 MHz Pentium, running MSDOS

Security Encrypt Decrypt CreateLevel (blks/sec) (blks/sec) key (sec)Moderate 16666 2273 0:0079High 4762 724 0:0184Highest 730 79 0:1528NTRU: 200 MHz Pentium Pro, running LinuxSecurity Encrypt Decrypt CreateLevel (blks/sec) (blks/sec) key (sec)512 bit 370 42 0:45768 bit 189 15 1:51024 bit 116 7 3:8RSA: 90MHz PentiumSecurity Encrypt Decrypt CreateLevel (blks/sec) (blks/sec) key (sec)512 bit 1020 125 0:26768 bit 588 42 0:591024 bit 385 23 1:28RSA: 255 MHz Digital AlphaStationComparing NTRU and RSA on the Pentium 75 and 90 platforms, adjustingfor clock speed, and comparing the moderate NTRU security level to 512 bit RSAsecurity level, we �nd that NTRU is 5.9 times faster at encryption, 14.4 timesfaster at decryption and 5.0 times faster at key creation. Similarly comparingthe highest NTRU security level to the 1024 bit RSA security level, NTRU is thesame speed at encryption, 3.2 times faster at decryption, and 5.3 times faster atkey creation.The 200 MHz Pentium pro and the 256 MHz Digital Alpha are su�cientlydi�erent that there is no obvious way to precisely compare one to the other. Butsimply comparing the raw numbers it is interesting to note that in spite of theslower clock speed, NTRU comes out 16, 18 and 33 times faster at encryption,decryption and key creation at moderate security, and 2, 3 and 8 times faster athigh security.For related timings of ECC, we refer to Certicom's published report: \Certi-com Releases Security Builder 1.2 Performance Data" According to their report(available at http://www.certicom.com/secureb.htm), on a Pentium platformECC takes 4.57 times as long as RSA to encrypt a message block, and 0.267times as long to decrypt a message block. Thus compared to RSA, ECC wins bya factor of about 4 when decrypting, but loses by a factor of 4 when encrypting.Acknowledgments. We would like to thank Don Coppersmith, Johan H�astad,Hendrik Lenstra Jr., Bjorn Poonen, Adi Shamir, Claus Schnorr and Benne de

Weger for their help with lattice reduction methods, Philip Hirschhorn for hisassistance in implementing NTRU and doing LLL testing, Victor Shoup for hisNTL package, Martin Mohlenkamp for several enlightening conversations aboutthis package, Andrew Odlyzko for pointing out the meet-in-the-middle attackand other helpful suggestions, Mike Rosen for his help with polynomial inverses,and Dan Lieman for his assistance in all phases of this project. In particular, ouranalysis of lattice-based attacks is an amalgamation of the suggestions of DonCoppersmith, Johan H�astad, and Adi Shamir, combined with some thoughts ofour own, although we stress that any oversights or errors in this analysis areentirely of our own devising. References1. M. Blum, S. Goldwasser, An e�cient probabilistic public-key encryption scheme whichhides all partial information, Advances in Cryptology: Proceedings of CRYPTO 84, Lec-ture Notes in Computer Science, vol. 196, Springer-Verlag, 1985, pp. 289{299.2. D. Coppersmith, A. Shamir, Lattice attacks on NTRU, Preprint, April 5, 1997; presentedat Eurocrypt 97.3. W. Di�e, M.E. Hellman, New directions in cryptography, IEEE Trans. on InformationTheory 22 (1976), 644{654.4. O. Goldreich, S. Goldwasser, S. Halevi, Public-key cryptosystems from lattice reductionproblems, MIT { Laboratory for Computer Science preprint, November 1996.5. S. Goldwasser and A. Micali, Probabilistic encryption, J. Computer and Systems Science28 (1984), 270{299.6. J. Ho�stein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key cryptosystem,Preprint; presented at the rump session of Crypto 96.7. A.K. Lenstra, H.W. Lenstra, L. Lov�sz, Factoring polynomials with polynomial coe�cients,Math. Annalen 261 (1982), 515{534.8. R.J. McEliece, A public-key cryptosystem based on algebraic coding theory, JPL Pasadena,DSN Progress Reports 42{44 (1978), 114{116.9. R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and publickey cryptosystems, Communications of the ACM 21 (1978), 120{126.10. C.P. Schnorr, Block reduced lattice bases and successive minima, Combinatorics, Proba-bility and Computing 3 (1994), 507{522.11. C.P. Schnorr, M. Euchner, Lattice basis reduction: improved practical algorithms andsolving subset sum problems, Mathematical Programing 66 (1994), 181-199.12. C.P. Schnorr, H.H. Hoerner, Attacking the Chor Rivest cryptosystem by improved latticereduction, Proc. EUROCRYPT 1995, Lecture Notes in Computer Science 921, Springer-Verlag, 1995, pp. 1{12.13. J.H. Silverman, A Meet-In-The-Middle Attack on an NTRU Private Key, preprint.

x6. Appendix - Some remarks on the impementationof the Schnorr-Euchner improvements of LLLThe LLL algorithm produces, from a given basis for a lattice, a reduced basiswhose �rst vector is guaranteed to be relatively short. Part of this procedureinvolves minimizing the length of linear combinations of basis vectors, taking\blocks" of two at a time. If one minimized the length of linear combinations ofbasis vectors, taking as a block the entire basis, then an actual shortest vectorcould be found, but the time to produce it would be exponential in the dimension.One of Schnorr and Euchner's improvements (see [10, 11, 12] was to add anextra degree of
exibility. They minimize over blocks of vectors of size greaterthan two, but less than the dimension. This results in shorter vectors than aregenerally found by the original LLL algorithm, i.e with block size equal 2, butcauses an increase in running time which is exponential in the block size.In NTL 1.7 the blocksize � can be chosen, as well as a second parameter pwhich Schnorr and Hoerner introduced. This is intended to moderate the in-crease in running time as � increases. The \pruning" parameter p halts theminimization process when the probability of �nding a shorter vector than al-ready found within a given block falls below a prescribed value which depends onp. This probability is computed via the gaussian volume heuristic, the validityof which depends on the randomness of the lattice.There is a third parameter � which is allowed to vary between 0:5 and 1:0.This parameter determines how frequently a certain recursive operation is per-formed. The program recommends setting � = :99, and we have followed thisrecommendation.In our experiments we varied the choice of ch and of the blocksize � andpruning factor p. We never observed, even for larger values of �, a noticeableimprovement from the pruning procedure and �nally set p = 0, so the pruningprocedure was not called.The following tables give a more complete set of information which includesthe choice of � and the ratio of the smallest vector found to the target vector.We observed that for small values of � the algorithm would fail to �nd a vectoruseful for decryption. In fact it would most likely produce a q-vector, that is tosay a vector with a single coordinate equal to q and the rest all zero. The initialbasis for L contains N of these vectors, which are in fact not much longer thanthe length s = pN�q=�e of the shortest expected vector. As � increased, thesmallest vector found would continue to be a q-vector until a certain thresholdwas passed, which depended on N and ch. (Increasing with N , decreasing withch). After this threshold, if the algorithm terminated it would usually succeedin �nding the target vector. On some occasions it would �nd a vector slightlysmaller than a q-vector and then at the next blocksize succeed in �nding thetarget. The general pattern is that for �xed ch the blocksize would have toincrease with N in order for the algorithm to succeed in �nding the target. Atslightly smaller blocksizes the time required would be on the same order as thetime required to �nd the target but the vector found | either the q-vector orslightly smaller | would be useless for decryption purposes.

In Table 1 timings are given for a lattice corresponding to ch = 0:26 withjf j2 = jgj2. This is the equivalent to the moderate security lattice attack, butthe balancing of f and g makes it possible to work with smaller integers andthe NTL program runs, with some exceptions, more e�ciently. Notice thatthe necessary blocksize increases monotonically with N . In the Tables 2, 3and 4, timings are given for moderate, high and highest security. These areagain formed with jf j2 = jgj2, and the moderate security table is a repeat togive some idea of the variation that occurs. Finally, Table 5 is formed withjf j2 and jgj2 taking the same ratio as in the actual encryption procedure. The� = 0:9097 indicates that the lattice has been balanced to optimize the chances ofan attacker. Note that the times are roughly the same as the equivalent situationin Tables 1 and 2, but timing deteriorates very substantially at N = 98. Noticesome curiously short timings at N = 90 in Tables 2 and 5. These occurred whenthe algorithm terminated after locating a particular short vector: (f 0; f 0 ~ h),with f 0 = (1;�1; 1;�1; 1; : : :). The value of f 0 ~ h is then (k;�k; k; : : :), forsome k, with k taking the value 1 or �1 with probability 2=q. If this happens,(f 0; f 0~ h) is short, but as f 0 is highly non-invertible it is useless for decryptionpurposes.

N Block Running Actual Smallest Ratio ofsize time (sec) Total Norm found toNorm Found actual75 6 1910 6:32 6:32 1:080 4 1823 6:48 64:00 9:980 6 2731 6:78 64:00 9:480 8 3285 6:48 64:00 9:980 10 3663 6:63 6:63 1:085 4 2091 6:93 64:00 9:285 6 3661 6:78 64:00 9:485 8 5012 6:93 64:00 9:285 10 5497 6:78 64:00 9:485 12 7438 6:93 64:00 9:285 14 7433 7:07 7:07 1:090 4 3382 6:93 64:00 9:290 6 3305 6:78 64:00 9:490 8 5910 6:78 64:00 9:490 10 7173 6:78 64:00 9:490 12 7367 6:78 64:00 9:490 14 12182 6:93 64:00 9:290 16 16102 6:78 6:78 1:090 18 18920 6:93 6:93 1:095 4 3019 7:21 64:00 8:995 6 4434 7:07 64:00 9:195 8 7707 7:07 64:00 9:195 10 9449 7:35 64:00 8:795 12 11308 7:21 64:00 8:995 14 14520 7:21 64:00 8:995 16 22348 7:07 64:00 9:195 18 23965 7:21 64:00 8:995 20 81028 7:07 64:00 9:195 22 62321 7:35 7:35 1:0100 4 4020 7:21 64:00 8:9100 6 6307 7:07 64:00 9:1100 8 9225 7:07 64:00 9:1100 10 11109 7:07 64:00 9:1100 12 13381 7:07 64:00 9:1100 14 19096 7:21 64:00 8:9100 16 23850 7:07 64:00 9:1100 18 40670 7:21 50:99 7:1100 20 72130 7:21 64:00 8:9100 22 444773 7:21 7:21 1:0Table 1: BKZ-QP1 with Q = 64, c = 0:26, � = 0:99, and prune = 0

N Block Running Actual Smallest Ratio ofsize time (sec) Total Norm found toNorm Found actual75 4 1797 6:16 64:00 10:475 6 1604 6:48 6:48 1:080 6 2776 6:78 64:00 9:480 8 3406 6:63 6:63 1:085 8 4614 6:93 64:00 9:285 10 5898 6:78 64:00 9:485 12 7536 6:93 64:00 9:285 14 8106 7:21 64:00 8:985 16 5168 6:78 6:78 1:088 16 11298 6:93 6:93 1:090 16 12987 6:93 64:00 9:290 18 2 6:78 13:42 2:095 18 25908 7:21 64:00 8:995 19 36754 7:21 64:00 8:995 20 59664 7:21 64:00 8:996 20 80045 7:07 7:07 1:098 20 75365 7:21 64:00 8:998 22 374034 7:07 7:07 1:0100 22 183307 7:07 7:07 1:0Table 2: BKZ-QP1 with Q = 64, c = 0:26, � = 0:99, and prune = 0N Block Running Actual Smallest Ratio ofsize time (sec) Total Norm found toNorm Found actual75 2 1067 8:00 128:00 16:075 4 2699 8:00 121:90 15:275 6 3244 8:12 121:04 14:975 8 3026 7:87 7:87 1:080 8 6022 8:37 124:54 14:980 10 5452 8:12 8:12 1:085 10 10689 8:37 124:26 14:985 12 8171 8:37 8:37 1:090 12 15304 8:60 128:00 14:990 14 17802 8:83 126:60 14:390 16 20195 8:60 8:60 1:095 16 31338 9:17 128:00 14:095 18 54490 8:94 128:00 14:395 20 57087 8:83 8:83 1:0100 20 109706 9:17 9:17 1:0Table 3: BKZ-QP1 with Q = 128, c = 0:23, � = 0:99, and prune = 0

N Block Running Actual Smallest Ratio ofsize time (sec) Total Norm found toNorm Found actual75 4 2293 8:60 8:60 1:075 20 1930 8:72 8:72 1:078 4 3513 8:94 12:25 1:481 4 3422 9:38 221:22 23:681 6 3453 9:17 9:17 1:084 6 5061 9:17 9:17 1:087 6 6685 9:38 9:38 1:090 6 7085 9:49 256:00 27:090 8 9753 9:59 9:59 1:093 8 11900 9:90 254:55 25:793 10 14671 9:80 237:58 24:293 12 16946 9:70 9:70 1:096 12 22684 9:80 231:59 23:696 14 19854 9:90 9:90 1:099 14 30014 10:00 10:00 1:0102 14 30817 10:20 239:62 23:5102 16 64718 10:39 223:64 21:5102 18 51207 10:39 10:39 1:0105 18 81336 10:58 244:38 23:1105 20 75860 10:30 10:30 1:0108 20 197697 10:30 255:87 24:9108 22 145834 10:30 10:30 1:0Table 4: BKZ-QP1 with Q = 256, c = 0:18, � = 0:99, and prune = 0

N Block Running Actual Smallest Ratio ofsize time (sec) Total Norm found toNorm Found actual75 2 808 6000:00 64000:0 10:775 4 1895 6000:00 64000:0 10:775 6 2363 6000:00 7857:87 1:380 6 3582 6164:41 6164:78 1:085 6 5412 6324:56 64000:0 10:185 8 7252 6324:56 64000:0 10:185 10 8633 6324:56 64000:0 10:185 12 10074 6324:56 64000:0 10:185 14 12371 6324:56 64000:0 10:185 16 17729 6324:56 64000:0 10:185 18 16095 6324:56 6630:40 1:090 18 4 6480:74 12820:5 2:095 18 37998 6633:25 64000:0 9:695 20 43108 6633:25 64000:0 9:695 22 200195 6633:25 6900:34 1:096 22 240563 6633:25 64000:0 9:696 24 68054 6633:25 6779:54 1:098 24 1369730 6782:33 6852:89 1:0Table 5: BKZ-QP1 with Q = 64, c = 0:26,� = 0:9097, � = 0:99, and prune = 0Je�rey Ho�stein, Mathematics Department, Box 1917, Brown University, Prov-idence, RI 02912 USA. hjho�@ntru.comi, hjho�@math.brown.eduiJill Pipher, Mathematics Department, Box 1917, Brown University, Providence,RI 02912 USA. hjpipher@ntru.comi, hjpipher@math.brown.eduiJoseph H. Silverman, Mathematics Department, Box 1917, Brown University,Providence, RI 02912 USA. hjhs@ntru.comi, hjhs@math.brown.edui

