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Abstract—A promising steganographic method—Yet Another
Steganography Scheme (YASS)—was designed to resist blind
steganalysis via embedding data in randomized locations. In
addition to a concrete realization which is named the YASS
algorithm in this paper, a few strategies were proposed to work
with the YASS algorithm in order to enhance the data embedding
rate and security. In this work, the YASS algorithm and these
strategies, together referred to as YASS, have been analyzed
from a warden’s perspective. It is observed that the embedding
locations chosen by YASS are not randomized enough and the
YASS embedding scheme causes detectable artifacts. We present
a steganalytic method to attack the YASS algorithm, which is
facilitated by a specifically selected steganalytic observation
domain (SO-domain), a term to define the domain from which
steganalytic features are extracted. The proposed SO-domain is
not exactly, but partially accesses, the domain where the YASS
algorithm embeds data. Statistical features generated from the
SO-domain have demonstrated high effectiveness in detecting the
YASS algorithm and identifying some embedding parameters. In
addition, we discuss how to defeat the above-mentioned strategies
of YASS and demonstrate a countermeasure to a new case in
which the randomness of the embedding locations is enhanced.
The success of detecting YASS by the proposed method indicates
a properly selected SO-domain is beneficial for steganalysis and
confirms that the embedding locations are of great importance in
designing a secure steganographic scheme.

Index Terms—JPEG, steganalysis, steganography, YASS.

I. INTRODUCTION

TEGANOGRAPHY is the technique of hiding secret data
S into an innocuous-looking cover medium to achieve the
goal of covert communication [1]. A secure steganographic al-
gorithm should guarantee that no one except data senders and
data receivers is aware of the existence of the secret data in a
stego medium [2].
Steganalysis, on a warden’s behalf, is the art of revealing the
presence of the secret data [3]. Once a rate better than random
guessing can be achieved to decide whether secret data have
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been embedded into the media by a particular steganographic
algorithm, such a steganographic algorithm is considered to
be broken. The success of steganalysis relies on the fact that
steganography alters some inherent statistics of cover media
and the deviated statistics fall outside the normal scope where
the statistics of cover media belong.

There are at least three reasons why the research on steganal-
ysis has recently received intensive attention. First, detecting the
presence of secret data can be used to deter covert communi-
cations launched by terrorists or illegal groups. Second, as the
relation between cryptology and cryptanalysis, steganography
and steganalysis are in a cat-and-mouse game [4]. The devel-
opment of steganalysis helps improve the security of informa-
tion hiding. Third, the research of steganalysis stimulates the at-
tempts to build up better statistical models for multimedia con-
tents, which can lead to successful applications in other related
research fields, such as digital forensics [5]-[8].

Steganalytic methods fall into two categories, namely, blind
steganalysis (also called universal steganalysis) and specific ste-
ganalysis, according to their application fields. Blind steganal-
ysis can be used to detect various types of steganographic algo-
rithms and it can even be adapted to attack new steganographic
schemes. It often models the intrinsic nature of cover media via
mapping the high dimensional medium space to a relatively low
dimensional feature space. Specific steganalysis is targeted to
break a particular steganographic algorithm by exploring how a
given steganographic algorithm works and how it changes nat-
ural statistics of cover media. Some advanced specific stegana-
lytic methods is able to get some more useful information from
stego media, such as the rough size of embedded data, the em-
bedding locations, and/or some embedding parameters of the
steganography.

The data embedding rate is an important index for comparing
the performance of different steganographic algorithms as well
as different steganalytic methods. It is commonly measured by
the ratio of the total number of embedded information data bits
over the total number of possible embedding locations of a cover
medium. It is intuitive that the higher the data embedding rate,
the more artifacts are introduced into a cover medium, and the
more probable such a steganographic scheme will be detectable.

Due to the prevalent usage of joint photographic experts
group (JPEG) [9] images, the competition between JPEG
steganography and JPEG steganalysis has escalated over the
past few years. Several steganographic schemes [10], [11]
have been proposed to embed data through replacing the least
significant bits of the JPEG quantized alternating current (ac)
discrete cosine transform (DCT) coefficients by secret data
bits. Learning lessons from steganalysis, some data embedding
methods have evolved with adding some advanced techniques
[12]-[17]. In order to defeat steganography, some specific
JPEG steganalytic schemes [18]-[20] as well as blind JPEG
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steganalytic methods [21]-[25] have been proposed. One of the
most powerful strategies is to estimate the statistics of a cover
image by cropping a few pixel rows and columns of a JPEG
decompressed stego image and then recompressing the cropped
image with the same compression parameters as the cover
image. This strategy is often referred to as self-calibration and
is used in [18], [19], [21], and [23]. Another powerful method
is to model the inherent correlation between the coefficients by
the Markov process [22]-[25]. These two kinds of methodology
are not exclusive and can be jointly made up of a powerful blind
steganalyzer [23]. Steganalysis has progressed to such an extent
that many current steganographic methods have to reduce the
data embedding rate in order to avoid causing a warden’s sus-
picion. Fridrich et al. [26] concluded from their experimental
results that the highest undetectable data embedding rate for a
JPEG image with quality factor 70 is around 0.05 bpac (bits
per nonzero quantized ac DCT coefficient of the cover image)
under the blind JPEG steganalyzer in [23].

Yet Another Steganography Scheme (YASS) [27] intends to
resist the existing blind steganalytic algorithms, especially the
self-calibration-based methods. A concrete realization (which
is named the YASS algorithm) has been described in [27] and a
few strategies [27]-[29] also have been proposed to work with
the YASS algorithm in order to enhance the data embedding rate
and security. In this work, the YASS algorithm and these strate-
gies are together referred to as YASS. The philosophy in YASS
is quiet simple yet effective. Since the self-calibration-based
method relies on estimating the macroscopic characteristics of
a cover image from its stego version, YASS tries to distort the
estimation by hiding data in randomized locations. More specif-
ically, in the YASS algorithm, an image is first divided into
blocks of size larger than 8 x 8. Then within each block, a ran-
domly selected 8 x 8 sub-block, referred to as embedding host
block (or H-block), is performed for DCT, data hiding, and in-
verse DCT. JPEG compression is applied to the whole image
afterward.

According to the embedding manner of YASS and the format
of its stego images, YASS can be regarded as either a spatial
image steganography, or a JPEG steganography. Specifically,
since YASS does not directly manipulate the JPEG quantized
DCT coefficients, it can be classified as a steganography hiding
data in the spatial domain in a robust manner [30]. However, as
reported in [27] and [28], steganalytic methods [31], [32] which
work well in detecting spatial domain steganography are not ef-
fective in detecting YASS. On the other hand, since YASS dis-
tributes stego images in JPEG format, it can also be considered
as a JPEG steganography, as claimed by its authors. But the ex-
isting JPEG steganalytic schemes do not achieve good perfor-
mance consistently, judging from the results obtained in [27],
[28], and [30].

Motivated by the challenge of YASS and based on our pre-
vious work [33], we propose a specific steganalytic method in
this paper. In doing so, we introduce a term—steganalytic ob-
servation domain (SO-domain)—as the domain for extracting
steganalytic features. Following the success made in [21]-[25]
by using the JPEG domain, where JPEG steganography takes
place, as an SO-domain, we analyze the domain where YASS
embeds data. Unlike the case that the data embedding do-

mains of many steganographic methods are clearly known by
a warden, the data embedding domain of YASS is carefully
designed so that it cannot be fully accessed unless having a
secret key. However, we have found out that the locations of the
H-blocks in YASS may not be randomized enough. A specially
designed SO-domain has been proposed to partially access the
data embedding domain of the YASS algorithm. Some sets of
the proposed SO-domain access the possible embedding loca-
tions with a certain probability, while other sets of the proposed
SO-domain access the impossible embedding locations. The
statistics of these two kinds of sets may show slight, or even
no, difference in a cover image but great difference in a stego
image. Consequently, we extract some statistical features in
the SO-domain and detect the presence of the YASS algorithm
by using supervised learning classifiers. Simulations are per-
formed and the experimental results indicate that the proposed
method is robust to some embedding parameters which make
the data embedding rate of the YASS algorithm still appealing.
The strategies in [27]-[29] that were proposed to enhance
the capability of the YASS algorithm also suffer a similar
security problem as the YASS algorithm, namely, the locations
of H-blocks may not be randomized enough. Hence the idea
of the proposed steganalytic method can also be adapted to
defeat these further strategies. A possible way to increase the
randomness of the H-blocks’ location has been discussed and
its countermeasure also has been demonstrated. This work
confirms that the embedding locations are very important to a
secure steganographic scheme.

This paper is organized as follows. To make this paper self-
contained, Section II briefly covers the basic operations of the
YASS algorithm as well as provides an analysis on its data em-
bedding rate. Section III focuses on the essential idea of the pro-
posed SO-domain against the YASS algorithm and describes the
process of steganalytic feature extraction. We verify the effec-
tiveness of the proposed method under different practical sce-
narios with experimental results in Section IV. Section V dis-
cusses possible ways to defeat some further strategies of YASS
and a countermeasure to a new strategy in which the random-
ness of the embedding locations is enhanced. It also addresses
the limitation of the proposed method. Contributions that have
been made in this paper are summarized in Section VI.

II. OVERVIEW OF THE YASS ALGORITHM

A. Fundamental Operations of the YASS Algorithm

Given an image I of size M x N, the data embedding proce-
dure of the YASS algorithm [27] may be described as follows.
1) Encode the secret information data with error correction
codes. YASS uses the repeat-accumulate (RA) codes. Here
we refer to the encoded data as RA-coded data.
2) Divide I into consecutive disjoint blocks of size B x B
(B > 8), which are referred to as big blocks (or B-blocks).
3) For each B-block, an 8 x 8 sub-block is randomly selected
using a secret key only shared by data senders and re-
ceivers. The sub-block is named embedding host block (or
H-block).
4) Perform 2-D DCT on each H-block. The resultant DCT
coefficients, denoted by D, ,(u,v € {0,1,...,7}), are
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respectively divided by the corresponding quantization
steps, which are denoted by g,, , and specified by a design
quality factor QF,. The coefficients after division are
called un-rounded coefficients, denoted by @, ,,. That is,

Du,v

Qu,v

Qu,v = (D
5) The un-rounded coefficients whose rounding values are
nonzero from some predetermined sub-bands (called
candidate embedding sub-bands) are modified for hosting
RA-coded data. All un-rounded coefficients that are not in
candidate embedding sub-bands or their rounding values
are zeros will not be touched to avoid introducing unneces-
sary artifacts. Quantization index modulation (QIM) [34],
a commonly used data embedding technique, is employed
to hide data in order to enhance the robustness. YASS
uses a scalar QIM scheme [35] in which the RA-coded
data are embedded by choosing uniform quantizers. Two
quantizers with a step size of 2A are used, denoted by Qg
and Q, respectively. If a to-be-embedded bit is “0”, an
even quantizer Qg is employed to quantize the un-rounded
coefficient to the nearest even reconstruction point, whose
value is an even multiple of A. Similarly, an odd quantizer
Q; will be used to quantize the coefficient to the nearest
odd reconstruction point if the to-be-embedded bit is
“1”. In other words, if we denote the set of the candidate
embedding sub-bands as Q, the coefficients after the data
hiding as @, ,, and a to-be-embedded bit as m, we will
have (2) and (3), shown at the bottom of the page, where
|-] is the floor operation. The quantization parameter A
controls the trade-off between the robustness of embedded
data and the distortions introduced by quantization. Typ-
ically, A = 1.

6) After hiding data, multiply the coefficients in H-blocks
with the quantization steps associated with QF, and
perform 2-D inverse DCT. The resultant pixel values are
rounded to integers.

7) The entire image is compressed to JPEG with an advertised
quality factor QF .

In data extraction, the image is first JPEG decompressed.
Then retrieve all H-blocks with the secret key and perform 2-D
DCT on them. Next, the achieved DCT coefficients are quan-
tized by the quantization steps associated with QF,. The resul-
tant quantized coefficients from the candidate embedding sub-
bands are further processed to recover the embedded data.

In the final step of data embedding, JPEG compression will
inevitably introduce disturbance to the embedded data. In addi-
tion, the extracted zero quantized coefficients may be from two

sources. Some of them may be generated from the un-rounded
coefficients whose rounding values were zeros (e.g., Q) , =
Qu,» = 0.3). Others are from the un-rounded coefficients that
have been changed to zeros after QIM hiding (e.g., A = 1, m =
0,Qu» = 0.9, Qﬁw = 0). Therefore, YASS regards all ex-
tracted zero quantized coefficients on the data extraction’s side
as erasure symbols, no matter whether they have been processed
by a QIM quantizer or not. The positions of the erasure sym-
bols are known on the data extraction side. The communication
channel used by YASS thus can be considered as a binary era-
sure channel. With the help of the technique of erasure and error
correction codes, correct data extraction can be ensured. There-
fore, in the first step of YASS embedding, the secret information
data are encoded by RA codes with a redundancy factor ¢, which
involves g-fold repetition, interleaving, and accumulation [27],
[29]. A sum-product algorithm [36] is used to decode the en-
coded data.

Some further strategies of YASS, such as using more than one
H-block per B-block (when B > 16) [27], using variable design
quality factors [28], applying iterative embedding process [28],
or correctly estimating the redundant factor on the data extrac-
tion’s side [29], can further enhance the data embedding rate
and the security of YASS. To avoid obscuring the main idea,
we focus on detecting the YASS algorithm in this part. The dis-
cussions on how to adapt the proposed method to counter the
further strategies are presented in Section V-A.

B. Analysis of Data Embedding Rate

As mentioned in Section I, the data embedding rate is crucial
to evaluate the performance of a steganography. Here we give
a simple analysis on the factors that may influence the data em-
bedding rate of the YASS algorithm. We follow [30] to measure
the data embedding rate in terms of bpac. The data embedded
to the un-rounded coefficients are actually RA-coded data. The
maximum capacity for the RA-coded data and that for the secret
information data are M’ x N’ x |Q| and | M’ x N’ x |Q|/q],
respectively, where M’ = |[M/B|, N’ = | N/B], and || is the
cardinality of a set.

For a given image, it is obvious that when B or ¢ increases
and other conditions remain, the data embedding rate decreases
in the YASS algorithm (in which only one H-block is used per
B-block). The redundancy factor ¢ is dependent on the proper-
ties of the binary erasure channel, which is mainly affected by
QF, and QF . Denote the embedded symbol as m(m € {0,1})
and the extracted symbol as m (m€ {0, e, 1}, where e denotes
the erasure symbol). The 2 x 3 channel transition probability
matrix p(m |m) describes the characteristics of the channel
[29]. Due to the fact that some un-rounded coefficients will be

r_ J QIM(Qu,),
Qu,v {Qu,vv

QIM(Qu,v) =

if (u,v) € Qand|Qu» +0.5] #0
otherwise

Qo(Qu.v) =24 [%J
Q1(Qu.) =2A

(@)

ifm=20

3

|| +a, itm=1
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Fig. 1. Relation between the data embedding rate (averaged from 100 images
with B = 9, QF , = 75) and QF, (ranging from 20 to 85 with a step size
of 5).

changed to zeros (symbol e’s at the receiver’s side) by embed-
ding “0” while they will never be changed to zeros by embed-
ding “1”, such a channel is asymmetric. That is,

p(m= elm = 0) > p(m= elm = 1). “)

For a given QF ,, when QF, gets larger, the embedded data are
less robust to resist the JPEG compression. Hence the transition
probabilities p(rn= 1|m = 0) and p(m= 0|m = 1) will be
larger, and more redundancy is needed for error correction. At
the other extreme, when QF, gets smaller, more erasure sym-
bols are produced due to the larger quantization steps in (1).
Therefore, p(m= e|m = 0) and p(m= e|m = 1) will be larger,
and more redundancy is needed for erasure recovery. Usually,
the erasures are easier than the errors to deal with by erasure and
error correction codes, since the exact locations of the erasures
are known, while that of the errors are not [37]. One or more
than one QF, value should exist to maximize the data embed-
ding rate under a given QF . Take QF , = 75 and B = 9 for ex-
ample, we vary QF,, from 20 to 85 with a step of 5. The possible
largest data embedding rate for each QF', averaged from 100
images (randomly selected from the image database described
in Section IV-A) is depicted in Fig. 1. The figure indicates that
the data embedding rate is maximized around QF,; = 45, which
is close to the results reported in [28]. When QF, > QF, the
data embedding rate is much lowered than its maximum. This
is because the embedded data under a large QF;, are not ro-
bust enough to survive after a relatively severe JPEG compres-
sion. Empirically, QF, < QF, holds to ensure the robustness
of the embedded data as well as an appealing data embedding
rate. Therefore, as [27]-[30], we are interested in the case of
QF,, < QF,, in this paper.

III. STEGANALYZING THE YASS ALGORITHM

A. Effect of QIM Embedding

The artifacts introduced to a stego image by YASS are
attributed to the QIM embedding operation applied to the
H-blocks. As described in Section II-A, Step 5, QIM em-
bedding can be considered as an operation of employing two
quantizers, namely, an odd quantizer for quantizing signal to

[J The reconstruction point of an odd quantizer

O The reconstruction point of an even quantizer
%%t The quantization interval of an odd quantizer
NN 27 The quantization interval of an even quantizer

BEEE  The interval in which coefficients will not be
altered by YASS
-4A -2A 0 2A 4A

-3A -A A 3A

Fig. 2. Quantization interval of QIM used in YASS for the unrounded coeffi-
cients.

carry “1”, and an even quantizer for quantizing signal to carry
“0”. In this way, a coefficient whose value is in the interval of
[(2k — 1)A, (2k 4+ 1)A) will be quantized to 2kA if an even
quantizer is used, while a coefficient whose value is in the in-
terval of [2kA, (2k + 2)A) will be quantized to (2k + 1)A if an
odd quantizer is used, where k denotes an integer. An additional
note of the data embedding by YASS is that the un-rounded
coefficients whose values are in the interval of [—0.5,0.5) will
not be altered. Fig. 2 demonstrates the quantization interval of
QIM used in YASS for the un-rounded coefficients.

Suppose we do not apply the QIM embedding to the
un-rounded coefficients. Instead, we perform rounding on the
un-rounded coefficient. The rounding process thus can be con-
sidered as an operation with only one quantizer. A coefficient
whose value falls in [k — 0.5,k 4+ 0.5) will be quantized to
k in rounding. As a result, the coefficient values after QIM
embedding and that after rounding may be different.

B. Inspecting the Locations of H-Blocks

Judging from the performance of previous steganalytic
algorithms [21]-[25] in detecting JPEG steganography, ex-
tracting steganalytic features directly from the domain where
the steganography takes place is straightforward and effective.
As YASS does not embed data in JPEG quantized DCT coeffi-
cients, we are not going to find steganalytic features for YASS
in the JPEG domain as some previous methods did [21]-[25].
We should look for some deviated statistics in H-blocks because
the union of all H-blocks after 2-D DCT can be regarded as
the data embedding domain of YASS. But without knowing
the secret key, the locations of H-blocks cannot be accessed.
Even though QIM embedding performs differently compared
to rounding and alters some inherent statistics of images [38],
[39], it is not straightforward for a warden to detect YASS.

From the data embedding procedure described in
Section II-A, we know that each H-block should reside
entirely inside a B-block. Although we cannot tell the exact
location of each H-block because it may be controlled by a
secret key, the locations where H-blocks cannot reside can be
determined, as analyzed below.

We start our analysis with assuming the B-block size is
known. Based on this assumption, the basic idea of stegan-
alyzing the YASS algorithm is obtained. But we would like
to stress that the proposed steganalytic method does not
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Fig. 3. Possible locations of the origin (filled with color) and impossible loca-
tions of the origin (blank) of an 8 X 8 H-block in a 10 X 10 B-block (left) and
that in an 11 x 11 B-block (right).

need to know the exact B-block size beforehand. In fact,
the proposed method can identify the B-block size when the
B-block size is not too large and the data embedding rate
is not too low. Denote the pixel elements in a B-block as
bet(s,t € {0,1,...,B — 1}) and the pixel elements in an
H-block as d,. ,(x,y € {0,1,...,7}). Define the origin of a
block as the upper-left element of the block. Hence the origin
of an H-block dg o can only be coincided with b; ;, where
i, € {0,1,..., B — 8}. In other words, only a total number
of (B — 7)? elements in the region of the upper-left corner of a
B-block can be the origin of an H-block. Other B2 — (B — 7)?
elements in a B-block are definitely impossible to be the origin
of an H-block. Statistics extracted from 8 x 8 blocks with the
origins in these two kinds of regions may show difference due
to their different possibility in YASS data embedding. Fig. 3
shows the possible locations and impossible locations of the
origin of an H-block in a B-block. This observation reveals
that the embedding location of the YASS algorithm is not
randomized enough. Such a shortcoming will shed light in
detecting the YASS algorithm and its further strategies.

In our proposed method for detecting the YASS algorithm,
instead of analyzing the statistics of all 8 x 8 blocks with the
origins at b, +(s,t € {0,1,...,B — 1}), we only focus on an-
alyzing the statistics of 8 x 8 blocks with the origins at b; ;(i €
{0,1,...,B — 1}). This procedure reduces the feature extrac-
tion space from B2 to B and is yet still possible to meet the
need of having two different kinds of regions for feature extrac-
tion. In fact, the 8 x 8 blocks with the origins at by g, b1,1, - . ., Or
b(s—g),(B—g) are possible to fully coincide with some H-blocks,
with a probability of 1/(B — 7)2, whereas all 8 x 8 blocks with
the origins at b(B—?),(B—?); b(B—G),(B—6); ..., Or b(B—l),(B—l)
are definitely impossible to fully coincide with any H-block.
These two kinds of blocks bear different characteristics and thus
steganalytic features extracted from them should be different.
More details will be covered in the following subsections.

C. Steganalysis Through JPEG Requantization

From Section III-A, we know that QIM embedding and
rounding do have differences. Obtaining some statistical fea-
tures that can reflect the differences between stego images and
cover images is a crucial step for steganalysis. Note that owning
to the robust QIM embedding, the statistics of the coefficients
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in the data embedded H-blocks can be well preserved to some
extent even though there is a JPEG compression in the final
stage of YASS data embedding, especially when QF,; < QF,.
Suppose we have collected all H-blocks from a stego image and
all corresponding H-blocks from a cover counterpart. (In fact,
there is no actual H-block in a cover image. Here the H-blocks
in a cover image are the 8 X 8 sub-blocks whose locations
are the same as those in a corresponding stego image.) And
suppose we use a JPEG quantizer at QF, to requantize them,
namely, perform 2-D DCT on H-blocks, then divide the DCT
coefficients with quantization steps specified by a quantization
table at QF;,, and finally round the coefficients. We refer to
the resultant coefficients as H-block requantized coefficients.
The statistics of H-block requantized coefficients from a stego
image and that from a cover image will show differences.
This is because the H-blocks in the stego image have been
embedded data by QIM, but the corresponding H-blocks in the
cover image have never been embedded data. In this way, the
statistical abnormality of QIM embedding by YASS can be
exposed.

But these two assumptions are in ideal conditions and often
do not hold in practice. One difficulty lies in that a warden
cannot access all H-blocks without a secret key. Another is that a
warden sometimes may not know the exact value of QF',. How-
ever, we can overcome these difficulties to some extent as shown
below.

First of all, from Section III-B, we know that there are some
locations that are possible for holding H-blocks and some loca-
tions that are definitely not possible for holding H-blocks. Even
though we cannot access all H-blocks, the statistical features
extracted from possible locations of H-blocks and that from im-
possible locations of H-blocks should have differences. In fact,
the statistical features extracted from impossible locations of
H-blocks can serve as a calibration signal, whose role is similar
to the features extracted from the self-calibrated version of an
image [18], [21], [23]. Second, since QF, is known in a given
JPEG image, we can use a JPEG quantizer at QF , to replace a
JPEG quantizer at QF, for requantization. We can even identify
the QF,, in some cases with the use of the modern techniques
in double JPEG compression detection [40], [41].

D. Domain for Extracting Steganalytic Features

We call the domain from which the statistical features are
extracted for steganalysis the SO-domain. It is efficient to
use the data embedding domain as the full, or a part of, the
SO-domain, as observed from previous methods [21]-[25]. As
the evolving steganography becomes more complicated, for
example, the data embedding domain is adaptive to the image
content or hardly accessible, the need for an explicit definition
of the SO-domain may rise. The SO-domain in this work to
detect the YASS algorithm is constructed as follows.

1) Given an input JPEG image of size M x N, decompress
it to spatial representation and then separate it into dis-
joint B x B blocks. Denote the B-block as Km,n(m €
{0,1,...,|M/B| —1},n € {0,1,...,|N/B] — 1}) and
the pixel elements in K, » as b3’ (s,t € {0,1,...,B —

1}).
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2) Denote S,‘nn as an 8 x 8 sub-block with the origin that is
coincided with the b, . (i € {0, 1,..., B — 1}) of Ky, .

3) Perform 2-D DCT on S;nn The resulting block is named
the feature generation block (or F-block) and denoted by
ci’

4) Denote the set that contains all C}, , by C*. That is,

C' = {Ci, ,Im € {0,1,..., [M/B] - 1},
nef0,1,....,|N/B| —1}} (i€ {0,1,...,B —1}).

5) The union of C’, namely, U’ ' C?, forms the proposed
SO-domain for detecting YASS.

Under such definitions, blocks in the set U{’,:—OSU are pos-
sible to overlap with the data embedded H-blocks of a stego
image with a probability of 1/(B — 7)2, while blocks in the
set Uf:Bl_fCi are definitely impossible to overlap with any
H-block. Hence steganalytic features extracted from Uf;}5770"’
can be served as calibration signals, because no data is directly
embedded into them. Apparently, some sets of the proposed
SO-domain partially access the data embedding domain of the
YASS algorithm with a larger probability than some other sets.
As the B-block size B increases, the proposed SO-domain ac-
cesses the data embedding domain of the YASS algorithm with
a smaller probability. And the performance of the proposed
method will drop, as seen from the results in Section IV.

E. Steganalytic Features for Detecting YASS

After obtaining the SO-domain, we quantize the DCT coeffi-
cients in F-blocks with the quantization steps specified by QF,,.
The resulting coefficients are referred to as F-block requantized
coefficients (or requantized coefficients). In the following, we
introduce three sets of statistical features that extracted from
the requantized coefficients. They are applicable in detecting the
YASS algorithm as well as the further strategies of YASS.

1) Frequency of Zero Requantized Coefficients: Consider
using a JPEG quantizer at QF;, to obtain H-block requantized
coefficients, as described in Section III-C. The zero-valued
H-block requantized coefficients of the cover image are mainly
generated from the un-rounded coefficients in H-blocks whose
values are in the interval of [—0.5,0.5). Meanwhile, as illus-
trated in Fig. 2, we learn from the QIM embedding scheme
used in YASS that the un-rounded coefficients in H-blocks
whose values are in the interval of [—0.5,0.5) will not be
altered. If they were requantized in the requantization, they
would probably become 0’s. The un-rounded coefficients in
the interval of [-A, —0.5) U [0.5, A) will have chances to be
altered to 0’s in the QIM embedding process. For instance, the
chance is close to 50% if “0” and “1” are uniformly distributed
in the RA coded data. The larger the A, the more robust the
embedding is, and the more extra zero H-block requantized
coefficients are introduced to a stego image by QIM when
compared to a cover image. If we use a JPEG quantizer at
QF, to obtain H-block requantized coefficients, more zero
H-block requantized coefficients can still be observed in a
stego image than in a cover image. Now consider the F-block
requantized coefficients. Since some F-blocks overlap with the
data embedded H-blocks in a stego image, similarly, more zero

F-block requantized coefficients appear in a stego image than
in a cover image.

We define the frequency of zero requantized coefficients as the
ratio of the amount of zero requantized coefficients in the candi-
date embedding sub-bands over the total number of requantized
coefficients in the candidate embedding sub-bands. Denote the
frequency of the zero requantized coefficients from candidate
embedding sub-bands in C' as 2%, where i € {0,1,..., B —1}.
It is expected that the mean value of 2°, 2%, ..., 288 is larger
than the mean value of 227, 2876 . 2B~1in a stego image
whose B-block size is B. But such an abnormal phenomenon is
not expected to appear in a cover image. So we propose to use

af = (Zz’?)/(B—?) 5)
(=) e

as two steganalytic features.

2) Probabilities of the First Significant Digits of Requantized
Coefficients: The distribution of the first significant digits (also
called first digits) of quantized DCT coefficients can be uti-
lized for some forensic purposes, such as identifying the quality
factor in the primary compression of a doubly JPEG compressed
image [41], [42]. QIM embedding alters the distribution of the
quantized DCT coefficients in H-blocks, and it may also alter
the distribution of the first digits of quantized DCT coefficients
in H-blocks. Although the QIM quantizers do not quantize the
coefficients as a JPEG quantizer does, the resulting coefficient
values are also multiples of the quantization steps specified by
QF,,. If a JPEG quantizer with QF, (QF, # QF,) is applied
to the data embedded H-blocks, a double quantization phenom-
enon [40]-[42] may occur. When we use a JPEG quantizer at
QF, to quantize the F-blocks, a double quantization phenom-
enon may still exist because some F-blocks and some H-blocks
are overlapped. Thus the distribution of first digits of requan-
tized coefficients can be utilized to identify the QF, in YASS
data embedding.

Denote the probabilities of the first digits of requantized co-
efficients that are in the candidate embedding sub-bands of C’
as piy, (d € {1,2,...,9},i € {0,1,..., B — 1}). Then p,(i €
{0,1,..., B—8}) should be different from p,(i € {B -7, B—
6,...,B —1}) because U{”:—OsCi and U{’,:_Bl_7Ci bear different
characteristics as mentioned in Section III-D. In order to reduce
the feature dimension, we use the features

B—-8 ) B-1 )
7= (ng)/w—n— ( > p;)/7 )
1=0 1=B—-7

where d € {1,2,...,9}, with nine dimensions for a given B.
3) Joint Probabilities of Requantized Coefficients in Neigh-
boring F-Blocks: Tt is known that DCT coefficients of the same
sub-band in two neighboring DCT blocks are highly corre-
lated and their correlation can be exploited to design powerful
blind steganalytic methods [25]. In our case, two neighboring
F-blocks also have some correlation due to their spatial vicinity.
Denote a coefficient of sub-band (u, v) in the F-block C},, ,, by

and

/BB
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Chn.n(u,v). We investigate the joint probability of ¢, ,,(u,v)
and c:n,n+1(uvv)’ denoted by p(cfn,n(u7v>7c:n,n+1(u7 ?)))
Since the statistics in H-blocks are changed by QIM embedding
whereas the statistics in blocks from the impossible locations
of H-blocks almost remain unchanged, the joint probabilities in
U?Z_OSCi are expected to be different from that in Uf;‘,§77@.
In addition, the distribution of block DCT coefficients follows
a Laplacian-like distribution, which means the coefficient
values concentrate around 0. Hence, we are interested in the
joint probability of coefficients whose values are —1, 0, and
1, namely, p(ch, ,(u,v) = t1,¢k, oyi(u,v) = t2), where
t1,t2 € {—1,0,1} and (u,v) € Q. We propose to use

W, = (sz( (w0) =t
w i=0 e v
i (11, 0) = tz)) / (B-7)
B—1
- ( Z p(cfn,n(u,v) =11,

i=B—7
ci’nynﬂ(u?v) = tz)) /7 ®)

as steganalytic features with nine dimensions.

4) Feature Vector: We extract a set of features with a total
number of 20 dimensions for a given B. We denote the stegan-
alytic feature set for detecting YASS of a specific B-block size
Bby Fg = {a® 88 42, 0P, }(d € {1,2,...,9}, 11,15 €
{-=1,0,1}). In the proposed steganalytic scheme, we only con-
sider detecting B < 15 due to the low data embedding rate
when B > 15. In order to detect YASS for 9 < B < 15, we
use F = {Fg, F1g,...,F15} to generate a final feature vector
with a dimension of 140. Therefore, the proposed method does
not need the knowledge of B-block size. In addition, the feature
Fp will show abnormality for a stego image the B-block size
of which is exactly equal to B. Thus, the proposed feature set F'
can help identify the B-block size.

FE. Steganalytic Classifiers

Classifiers based on supervised learning theory are useful
tools in classifying cover objects and stego objects. Steganalytic
feature vectors extracted from training data are fed into a super-
vised learning based classifier to train a statistical model. Such
a trained model can effectively help to decide to which class the
testing objects belong.

A simple two-class Fisher’s linear discriminant (FLD) [43]
classifier is employed in the proposed scheme. Other classifiers
such as support vector machine can also be used. We consider
stego images as a positive class and cover images as a nega-
tive class. In the two-class FLD classification scheme, the fea-
ture vectors extracted from a training image set containing both
classes are used to determine a projection matrix that maximizes
the distance between the means of the two classes while mini-
mizing the variance within each class. The projection matrix is
then employed to project the feature vector of a testing image
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into a value that is compared with a threshold in order to deter-
mine whether the testing image belongs to a positive class or a
negative one.

A multiclass classifier based on “one-against-one” criterion
[43] is also used in the proposed scheme to identify some param-
eters utilized by YASS in data embedding. In this “one-against-
one” approach, we construct N (N —1) /2 two-class FLD classi-
fiers for a total number of N classes. For example, cover images
can be regarded as a class and stego images with different B
can be regarded as different classes. Each two-class classifier is
trained by two classes and it can discriminate between such two
classes after the training. A feature vector, extracted from the
testing image, is assigned to a target class using each two-class
classifier in turn, and a majority vote is taken. The class with
the maximum votes is selected as the target class for the testing
image.

The two-class classifier and the multiclass classifier are em-
ployed according to the practical scenarios, which are discussed
in Section IV.

IV. PRACTICAL CONSIDERATIONS AND PERFORMANCE
EVALUATION

A. Experimental Setup

To evaluate the performance of the proposed methods on de-
tecting the YASS algorithm, a total number of 2667 images are
used as source images. They have never been JPEG compressed.
Our group members take 1124 of them with a Panasonic DMZ-
FZ30 camera, while the other 1543 images are downloaded from
the NRCS website [44]. They are central-cropped to the size of
512 x 512 for experimental purpose. The first 19 ac sub-bands
in zigzag order of luminance channel are selected as the candi-
date embedding sub-bands in the data embedding process. The
advertised quality factor QF, is set to 75 for cover images and
stego images in all cases of our simulations. We focus on de-
tecting the stego images with the B-block size from 9 to 15. Six
types of QF,,, ranging from 50 to 75 with a step size of 5, are
used for each image and each B-block size. The QIM embed-
ding parameter is set to A = 1.

Each image is embedded by its possible maximum data em-
bedding rate.! The mean of the data embedding rate under dif-
ferent B and different QF;, are listed in Table I. It can be ob-
served that the averaged data embedding rate decreases as BB or
QF}, increases.

B. Classifying Cover Images and Stego Images if B-Block Size
and Design Quality Factor are Known

When the B-block size B and the design quality factor QF},
are assumed to be known, a two-class classification scheme can
be employed to discriminate stego images from cover images.
Previous reported results [27], [30] based on blind steganalytic
methods belong to this case.

I'We use the implementation code of the YASS algorithm downloaded
from the website http://vision.ece.ucsb.edu/data_hiding/resist_blind_steganal-
ysis.shtml and incorporate it with our implementation of the encoding and
decoding of RA codes. The embedding rate is computed under the condition
when a zero bit-error rate is achieved at the data extraction’s side with a 30-time
iterative RA decoding.
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TABLE I
MEAN OF THE DATA EMBEDDING RATE (IN bpac)

B 9 10 11 12 13 14 15
OF,=50, OF,=75 | 0.180 | 0.152 | 0.122 ) 0.105 | 0.089 || 0.076 || 0.068
QF,=55,0F,=75 || 0.175| 0.149 ] 0.119 | 0.103 | 0.087 || 0.074 [ 0.066
OF,=60, OF,=75 | 0.169 (| 0.143 ] 0.116 | 0.099 | 0.083 ]| 0.071 [ 0.063
QF,=65, OF,=75 || 0.148 | 0.129 ] 0.102 | 0.091 | 0.074 || 0.064 [ 0.056
OF,=70, OF,=75 | 0.117 | 0.103 ] 0.081 || 0.075 | 0.059 || 0.051 [ 0.045
OF=15, OF,=75 | 0.078 | 0.071 | 0.054 | 0.052 | 0.039 | 0.035] 0.030

TABLE II

TwO-CLASS CLASSIFICATION RESULTS (IN PERCENTAGE). TPR STANDS FOR TRUE POSITIVE RATE, TNR FOR TRUE NEGATIVE RATE,
AND ACC FOR ACCURACY RATE

B 9 10 1 2 | 1B | 4 | 15
TPR | 9998 | 9995 | 9966 | 9939 | 9831 | 97.50 | 95.14

g?'jg TNR | 100.00 | 100.00 | 10000 | 99.95 | 99.80 | 9898 | 97.55
" lacc| 9999 | 9907 | 9983 | 99.67 | 99.06 | 9824 | 9634
TPR | 99.75 | 9885 | 97.63 [ 0504 | o183 | 8665 | s0.84

orrs [ TNR| 10000 | 9996 | 9959 | 9765 | 9412 | w187 | w267
Acc| 9988 | 9940 | 9861 | 9634 | 92.97 | 87.26 | 8176

In the experiments, we test for the case of (QF,,QF,) =
(50,75) and (QF,,QF,) = (75,75). For each (QF,,,QF,)
pair and each B3, a number of 667 images (about 1/4 of the total
number of the images) from the stego image set are randomly
selected and used for training with their corresponding cover
counterparts from the cover image set. The rest of the stego im-
ages and their corresponding cover images are used for testing.
As mentioned before, stego images are considered to be in a
positive class, while cover images in a negative one. Classifi-
cation results are averaged by 20 times of randomly selecting
the training and testing images. The results are demonstrated in
Table II in terms of true positive rate, true negative rate, and ac-
curacy rate. In addition, the standard deviations of the 20-time
results are quite small. All are less than 1%, which means the
reported results are quite stable.

The performance of the proposed method is highly effective
for QF,;, = 50, even in the case of the B-block size being as large
as B = 15, if B is known. Note that when QF, = QF, = 75,
our method greatly outperforms the prior schemes reported in
[27] and [30]. The better performance of the proposed mehtod
on (QF,,QF,) = (50,75) than on (QF,,QF,) = (75,75) is
mainly attributed to the fact that the embedded data at QF, =
50 are more robust than QF; = 75 to the JPEG compression
at QF, = 75 in YASS data embedding. Hence, the statistical
abnormality caused by data embedding is preserved better for
detection. We also use QF;, = 55,60, 65, and 70 in our experi-
ments and verify that the smaller the QF,, the easier the detec-
tion.

C. Identifying B-Block Size if the Design Quality Factor is
Known

When the B-block size is unknown but the design quality
factor is known, a multiclass classification scheme can be
applied to identifying the B-block size and also differenti-
ating cover images and stego images. We test for the case

of (QF}U QFa) = (50/ 75) and (QFh'/ QFa) = (757 75)’
respectively. Cover images are considered as a class while
stego images with a particular B(9 < B < 15) are considered
as a particular class. As a result, we have a total number of
eight different classes for each kind of QF, in our experiments.
A multiclass classifier is trained by an image set containing
667 randomly selected cover images and their various kinds of
stego counterparts of different B. The testing is performed on
the remaining images. The 20-time-averaged detection results
are shown in Tables III and IV.

It is not surprising that our method does a great job of identi-
fying the B-block size, especially for the case of (QF,,, QF,) =
(50, 75). When the steganalytic method is tested for the case of
(QF,,,QF,) = (75,75), its performance drops a little for large
B-block sizes. The reason is also due to the less obvious data
embedding artifacts by a larger QF;, and more random embed-
ding locations by a larger B.

D. Identifying Design Quality Factor if B-Block Size is Known

The proposed method can be used to identify the design
quality factor QF;, when B is known. We test on six kinds
of QF,,, ranging from 50 to 75 with a step size of 5. Stego
images are embedded with the B-block size of B = 9. A
multiclass classifier is trained by an image set containing 667
randomly selected cover images and their various kinds of stego
counterparts of different QF,. The testing is conducted on the
remaining images. Table V shows the averaged classification
results.

The performance of the method for B = 9 is very encour-
aging. All cover images can be correctly identified whereas
stego images with different QF; can be discriminated with
high confidence. The outstanding accomplishment is owed to
the features v2(d € {1,2,...,9}), since they can be used
to identify double JPEG compression [41], as explained in
Section III-E.
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TABLE III

MULTICLASS CLASSIFICATION RESULTS (IN PERCENTAGE) FOR IDENTIFYING B IN THE CASE OF QF, = 50 AND QF

=7

5

redicted Cover Stego | Stego Stego Stego Stego Stego Stego
Actual (B=9) | (B=10) | (B=11) | (B=12) | (B=13) | (B=14) | (B=15)
Cover 96.43 0.00 0.00 0.00 0.05 0.17 0.92 2.43
Stego(B=9) 0.02 | 99.98 0.00 0.00 0.00 0.00 0.00 0.00
Stego(B=10) 0.02 0.00 99.95 0.00 0.00 0.00 0.00 0.03
Stego(B=11) 0.35 0.00 0.00 99.65 0.00 0.00 0.00 0.00
Stego(B=12) 0.62 0.00 0.00 0.00 99.36 0.00 0.00 0.02
Stego(B=13) 1.58 0.00 0.00 0.00 0.00 98.27 0.01 0.13
Stego(B=14) 2.44 0.00 0.00 0.00 0.00 0.02 97.32 0.23
| Stego(B=15) 4.74 0.00 0.00 0.00 0.00 0.04 0.27 94.95
TABLE 1V
MULTICLASS CLASSIFICATION RESULTS (IN PERCENTAGE) FOR IDENTIFYING B IN THE CASE OF QF, = 75 AND QF , = 75
redicted Cover Stego | Stego | Stego Stego Stego Stego Stego
Actual (B=9) | (B=10) | (B=11) | (B=12) | (B=13) | (B=14) | (B=15)
Cover 69.83 0.00 0.03 0.28 1.62 4.40 9.50 14.34
| Stego(B=9) 0.13] 99.70 0.00 0.00 0.03 0.04 0.00 0.10
Stego(B=10) 0.56 0.00 | 98.59 0.00 0.03 0.12 0.28 0.44
Stego(B=11) 1.67 0.00 0.00 96.86 0.07 0.43 0.50 0.48
Stego(B=12) 3.17 0.00 0.01 0.04 93.38 0.77 0.93 1.71
| Stego(B=13) 6.20 0.00 0.00 0.15 0.48 88.95 1.74 2.48
| Stego(B=14) 10.21 0.00 0.02 0.17 0.80 1.84 82.25 4.72
| Stego(B=15) 15.72 0.00 0.02 0.19 1.14 2.31 5.36 75.27
TABLE V

MULTICLASS CLASSIFICATION RESULTS (IN PERCENTAGE) FOR IDENTIFYING QF', IN THE CASE OF QF , =

75 AND B =9

Predicted C Stego
over

Actual QF,=50 | QF,=55 | QF,=60 | QF,=65 | OF,=70 | OF,=75
Cover 100.0 0.00 0.00 0.00 0.00 0.00 0.00
QF,=50 0.00 98.60 1.34 0.00 0.00 0.00 0.07
QF,=55 0.01 0.30 99.30 0.00 0.00 0.16 0.24
Stego QF,=60 0.02 0.00 0.00 94.97 2.01 2.32 0.68
QF;=65 0.03 0.00 0.00 0.86 93.00 5.38 0.75
QOF,=170 0.02 0.00 0.00 0.60 3.31 84.89 11.18
OF,=75 0.25 0.00 0.00 0.05 0.06 7.66 91.99

The experiments are also conducted on stego images with
B = 12 and B = 15, of which the results are reported in
Tables VI and VII. The rate of correct identification drops as
B increases. The QF, of stego images with B = 15 are seldom
correctly identified. However, stego images are unlikely to be
identified as cover images and vice versa for cover images. This
is because the feature pattern of a stego image is different from
that of a cover image, regardless of the QF;,. Hence the mul-
ticlass classifier is still reliable for differentiating stego images
from cover images only.

E. Classifying Cover Images and Stego Images if B-Block Size
and Design Quality Factor are Unknown

When the B-block size B and the design quality factor QF},
are unknown at the same time, it is impractical to regard each
combination of B and QF,, as a class and use a multiclass clas-
sifier for classification. This is because the amount of the con-
structed two-classifiers for the multiclass classifier will be too
large. Since the primary goal of steganalysis is to discriminate
stego images from cover images, to this end we simply ignore

identifying the unknown QF,, just focusing on finding out the
stego images and identifying their B-block size. In this scenario,
stego images with the same B, even with different QF,,, are
considered as one class. We use cover images and stego images
with (QF,,, QF,) = (75, 75) for training a multiclass classifier.
Then the trained classifier is capable of identifying stego images
with the same B, even if the QF,; may be different.

In the experiments, a multiclass classifier is trained by 667
cover images and their seven kinds of stego images, corre-
sponding to different B (9 < B < 15). Note that they all use
(QF,,QF,) = (75,75). The testing images consist of 2000
cover images and their corresponding stego images with B
ranging from 9 to 15 and with QF, ranging from 50 to 75 (with
a step size of 5). In other words, for each B, there are 6 x 2000
stego images for testing. The averaged results are demonstrated
in Table VIIL

It can be seen that the classification results in Table VIII for
identifying B are less accurate than those in Table III but more
accurate than those in Table IV. The reason can be explained
by Fig. 4, which demonstrates the averaged difference of the
extracted steganalytic features between stego images and cover
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TABLE VI
MULTICLASS CLASSIFICATION RESULTS (IN PERCENTAGE) FOR IDENTIFYING QF', IN THE CASE OF QF , = 75 AND B = 12

Predicted Cover Stego

Actual QF,=50 | OF,=55 | OF,=60 | OF,=65 | OF,=70 | OF,=75

Cover 97.64 0.00 0.00 0.04 0.03 0.06 2.24

OF,=50 0.02 78.48 19.97 0.48 0.32 0.45 0.28

OF,=55 0.03 20.38 61.99 10.94 3.28 2.34 1.05

Stego QF,=60 0.15 0.29 13.11 60.66 18.05 5.88 1.87

QF,=65 0.51 0.21 4.07 18.36 54.41 18.02 4.44

QF,=70 1.76 0.09 1.50 5.85 18.77 47.86 24.17

QF,=75 4.99 0.06 0.40 0.96 2.86 20.48 70.26

TABLE VII
MULTICLASS CLASSIFICATION RESULTS (IN PERCENTAGE) FOR IDENTIFYING QF, IN THE CASE OF QF' , = 75 AND B = 15
Predicted C Stego
over

Actual OF,=50 | OF,=55 | OF,=60 | OF,=65 | OF,=70 | OF,=75

Cover 81.52 0.38 0.53 1.05 1.65 3.46 11.40

OF,=50 0.44 63.33 20.70 7.49 3.52 2.90 1.62

OF,=55 1.13 34.70 27.65 17.60 9.13 5.83 3.97

Stego OF,=60 2.07 12.51 20.22 30.34 18.11 9.74 7.01

QF,=65 4.33 6.40 12.13 21.35 26.69 16.74 12.36

QF,=170 9.71 3.76 6.60 11.31 19.03 24.06 25.54

QF,=15 17.96 1.95 3.08 5.67 10.44 20.05 40.86

TABLE VIII
MULTICLASS CLASSIFICATION RESULTS (IN PERCENTAGE) FOR IDENTIFYING B IN THE CASE OF UNKNOWN QF, (FROM 50 TO 75) AND QF | = 75

redicted Cover Stego Stego Stego Stego Stego Stego Stego
Actual (B=9) | (B=10) [ (B=11) | (B=12) | (B=13) | (B=14) | (B=15)
Cover 69.68 0.00 0.02 0.34 1.69 4.22 9.34 14.71
Stego(B=9) 0.04 99.93 0.00 0.00 0.00 0.01 0.00 0.02
Stego(B=10) 0.16 0.00 99.67 0.00 0.01 0.04 0.05 0.08
Stego(B=11) 0.37 0.00 0.00 99.34 0.02 0.09 0.08 0.09
Stego(B=12) 0.79 0.00 0.00 0.01 98.38 0.19 0.26 0.37
Stego(B=13) 1.65 0.00 0.00 0.07 0.26 96.74 0.60 0.69
Stego(B=14) 2.97 0.00 0.01 0.10 0.41 0.68 94.16 1.67
| Stego(B=15) 5.26 0.00 0.03 0.10 0.76 1.27 2.62 89.96

images. For demonstration purpose, we have rearranged the fea-
tures into three groups in Fig. 4. The first group contains a total
number of 63 features, that is, v¥ (d € {1,2,...,9},B €
{9,10,...,15}). The second group contains the features 7’ ,,
(t1,t2 € {-1,0,1},B € {9,10,...,15}), with the feature
sequential number from 64 to 126 in Fig. 4. The last 14 fea-
tures are o® and 2 (B € {9,10,...,15}). For a given B,
it can be observed from Fig. 4 that the shape of feature pat-
tern of the first group is determined by QF},. Specifically, the
peak location of the first feature pattern group is different under
the different QF;,. Such a phenomenon justifies that the pro-
posed features are capable of identifying QF, . It can also be
observed that the shape of the feature pattern of the second and
the third group is similar under different QF,,. But its magni-
tude increases as QF;, decreases. Therefore, when we use stego
images with QF;, = 75 for training a classifier, testing stego im-
ages with a smaller QF';, would be more recognizable using such
a classifier due to the strengthened magnitudes of the second and
third group of the features. As a result, the overall performance
reported in Table VIII will be between that in Table III and that
in Table I'V.

Note that once the B of the stego image is correctly identified,
we can use the multiclass classifier described in Section IV-D

to further identify the QF,. Due to the limited space and plenty
of combinations of B and QF),, we do not report the detailed
results here. It can be expected that the QF;, of a stego image
with a small B can be identified more reliably than that with a
large B.

V. DISCUSSION

A. Defeating Further Strategies of YASS

Some further strategies have been proposed in the literature
[27]-[29] to enhance the YASS algorithm’s capability, such as
the data embedding rate and the security level. In this part, we
investigate how the proposed features can be adapted to defeat
these further strategies.

In the YASS algorithm, as the B-block size increases, the
data embedding rate decreases. One further strategy to improve
the data embedding rate is to use more than one H-block per
B-block [27]. For example, using n? H-blocks in one B-block
with the size B = (n x 8 4+ 1) is very effective [27]. As the
parameter n increases, the B-block size B increases, and the
data embedding rate will increase. The proposed method can be
adapted to work under this case. Denote the pixel elements in a
B-block as b, ; (s,t € {0,1,...,B—1}). The possible origin of
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Fig. 4. Averaged feature difference between stego images (left: B = 10, QF | = 75;right: B = 12, QF_ = 75) and cover images. The vertical axis is the
magnitude of the feature. The horizontal axis is the sequential number of the feature. The features are arranged and divided into three groups. The first group with
the sequential number from 1 to 63 contains the features of the probabilities of the first significant digits of requantized coefficients. The second group with the
feature sequential number from 64 to 126 contains the features of the joint probabilities of requantized coefficients in neighboring F-blocks. The last 14 features

correspond to the features of the frequencies of zero requantized coefficients.

an H-block is limited to coincide with by, x 8447 7 x84 » Where
m/,n’ € {0,1,...,n— 1} and v/, v’ € {0,1}. As a result, the
possible locations of H-blocks and the impossible locations of
H-blocks can be obtained to form an updated SO-domain. Then
the proposed steganalytic features can be extracted from the up-
dated SO-domain for attacking.

Another further strategy is to use different designed quality
factors for different H-blocks in data embedding [28]. A notable
advantage of our proposed feature extraction process is that it
does not rely on knowing the designed quality factor. It has been
demonstrated that the proposed steganalytic method works even
under the situation of lacking the prior knowledge of the B-block
size and the designed quality factor. Therefore, even if the de-
signed quality factors are not constant, our proposed method is
still expected to work, especially when the averaged value of
the designed quality factors is much smaller than the advertised
quality factor. We can use stego images with a constant designed
quality factor QF, = QF, for training a multiclass classifier as
described in Section IV-E. Then it can be generalized to detect
stego images with varying designed quality factors as well as
to identify the B-block size. From our preliminary experiments,
we find out that the smaller the averaged value of the designed
quality factors, the easier the stego images to be detected.

In [29], a method to estimate the redundant factor g of the
RA codes at decoder’s side has been proposed. Knowing the
correct ¢ can help maximize the data embedding rate. Since no
fundamental change has been made in the data embedding op-
eration, the output stego image is the same as the one output by
the YASS algorithm. Therefore, the proposed method which is
applicable to detect the YASS algorithm can be directly applied
in this case.

If a strategy, as suggested in [28], uses iterative hiding to
improve robustness of the embedded data and thus increasing
the data embedding rate, the proposed method is expected to
work better because embedding artifacts will be strengthened in
H-blocks due to the iterative data embedding.

B. Steganalyzing as the Origin of the B-Block Grid is
Randomized

Since the B-blocks in YASS are consecutive and nonoverlap-
ping, they form the so-called B-block grid. Define the pixel el-
ement at the upper-left corner of the B-block grid as the origin
of the B-block grid. While the locations of H-blocks within
B-blocks are randomized in order to resist blind steganalytic
methods, the origin of the B-block grid remains fixed at the
upper-left corner of the image 2-D array in YASS [27]-[29].
That is, the origin of the B-block grid coincides with the origin
of the image 2-D array. If the origin of the B-block grid is ran-
domized, the task of steganalysis is more complicated. In this
part, we examine how our proposed steganalytic method works
when the location of the origin of the B-block grid is unknown.

Clearly, under such a circumstance, the strategy of our pro-
posed method should have some change accordingly. Denote an
image by I and its pixel element at position (z,y) by I(P, ).
Assume the image has been embedded by the YASS algorithm
with B-block size B and the origin of the B-block grid is lo-
cated at I(P, ;). We crop the image by s rows and ¢ columns.
Therefore, the origin of the cropped image is at 1 (Ps,t) in the
coordinate system of the original image I. Denote the cropped
image by I ; and divide it into B x B grid from its origin. Ap-
parently, the B-block grid of I, ; will overlap the B-block grid
of I if both of the following two conditions are satisfied:

mod(s, B) = mod(a, B) )
mod (¢, B) = mod(b, B). (10)

Obviously, after at most B? times of searching, one can find
out the solution of s and ¢ in (9) and (10) for a given pair of
a and b. Accordingly, the strategy of our proposed method can
be changed to use a two-class classifier to perform classifica-
tion on the cropped image I,.(s € {0,1,...,B — 1},t €
{0,1,..., B — 1}). In this way, it can identify if each cropped
image is data-embedded by the YASS algorithm. Therefore, an
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TABLE IX
DETECTION RESULTS (IN PERCENTAGE) FOR CLASSIFYING COVER IMAGES AND
STEGO IMAGES WITH TWO-CLASS CLASSIFIER WHEN THE ORIGIN OF THE
B-BLOCK GRID, THE B-BLOCK SIZE, AND THE DESIGN QUALITY FACTOR ARE
UNKNOWN. THE SECOND ROW SECOND COLUMN REPORTS THE OVERALL
DETECTION RATE FOR ALL STEGO IMAGES. THE FOURTH ROW REPORTS THE
DETECTION RATE FOR STEGO IMAGES WITH EACH SPECIFIC B-BLOCK SIZE

Cover Stego
63.9
77.6 B=9 B=10 | B=11 | B=12 | B=13 | B=14 | B=15
86.4 71.6 76.8 63.2 60.8 48.0 37.2

image under scrutiny will be under the classification for a total
number of B2 times. Suppose we have a perfect two-class clas-
sifier (with a zero false positive rate and a zero false negative
rate), the B2-time classification results for a cover should be all
negative and that for a stego image should be positive for at least
one time. Thus a detection criterion can be set as “a stego image
should get at least one positive result from the B2-time classi-
fication.” But a practical classifier usually has a nonzero false
positive rate and a nonzero false negative rate. Therefore, for
practical considerations, one feasible approach is that we train a
classifier with a zero false positive rate by lowering the true pos-
itive rate. Hence a cover image under B2-time classification will
likely be classified in a negative class. Since we aim to detect a
stego image with 9 < B < 15, each image is under 152 = 225
times of classification. If one of the classification results is pos-
itive, the image is labeled as a stego image, otherwise a cover
image.

In the simulation, we randomly select a number of 667 cover
images and their seven types of stego images, corresponding to
seven different B-block sizes, to train a two-class classifier. Here
the stego images with different B are all considered in a positive
class. The origin of the B-block grid of each training stego image
coincides with the origin of the image 2-D array. The training
stego images use (QF;, QF,) = (75,75) and thus the trained
classifier is capable of detecting stego images with different
QF;,, due to the same reason as explained in Section IV-E. We
adjust the bias of the two-class classifier to have a zero false pos-
itive rate for the training images. The testing image set contains
2000 images with different contents. Among them, a number of
250 are cover images and others are stego images. There are a
number of 250 stego images for each kind of B(9 < B < 15).
In the experimental works, the QF,, of the testing stego images
are uniformly distributed from 50 to 75, with a step of 5. The
origin of the B-block grid of the testing image is selected to be
randomly located in the area where the first 20 rows intersect the
first 20 columns of the image. The process of steganalytic fea-
ture extraction and classification is performed for each cropped
version of a testing image. If at least one of the 152 = 225
testing results is positive, the image is considered as a stego
image.

The overall true negative rate is 77.6% and the overall true
positive rate is 63.9%, better than random guessing. We show
the detection results for each particular B-block size in Table IX.
It can be seen that the overall performance is dragged down
mainly by the poor performance as B is large. It confirms that
using a larger B is less likely to be detected. The reason is due
in part to the more randomized locations of the H-blocks and

in part to the rather low data embedding rate when B is large.
Specifically, readers can refer to Table I which shows that the
averaged data embedding rate is as low as around, and even
below, 0.05 bpac as the B-block size B is equal to 15 or 14 when
QF, = 750r 70 and QF, = 75. At such a low data embedding
rate other existing steganographic schemes, say, some proposed
in [13]-[17], are also undetectable as reported in [22], [23], and
[26]. It indicates YASS may lose its superiority at such a low
data embedding rate.

C. Limitation of the Proposed Method

From the experimental results, we can conclude that when
the B-block size of the YASS algorithm gets large, the perfor-
mance of the proposed method will drop. This is due to the fact
that the embedding locations of the H-blocks are more random-
ized as well as the data embedding rate of the YASS algorithm
decreases. Thus, the proposed SO-domain will access the data
embedding domain of the YASS algorithm with a smaller prob-
ability.

It is clear that the proposed steganalytic technique is specifi-
cally designed for detecting YASS [27]-[29]. It shows us a fea-
sible method to construct an effective SO-domain by finding
two kinds of sets, namely, one kind of set that can maximize
the probability of accessing the data embedding domain and an-
other kind of set that can minimize the probability of accessing
the data embedding domain.

If a YASS-like scheme, which may be referred to as the next
generation of YASS, is designed in the future to further ran-
domize the data hiding locations while keeping an appealing
data embedding rate, the proposed method may be restricted or
even fail to construct an SO-domain with the aforementioned
two kinds of sets. Therefore, a new SO-domain should be in-
vestigated, and some new features may be extracted from the
new SO-domain for this new steganography. But the proposed
method is still beneficial for steganalysis by showing a possible
direction on the selection of the new SO-domain. That is, maxi-
mizing the probability of accessing the data embedding domain.

VI. CONCLUSION

In this paper, YASS [27]-[29] has been under investigation.
A specific method for detecting the YASS algorithm has been
proposed and possible ways to defeat the further strategies of
YASS have been discussed. The contributions made in this paper
are summarized as follows.

First, a new term, steganalytic observation domain (SO-do-
main), is defined in this paper as the domain from which the
statistical features are extracted for steganalysis. We have con-
structed an SO-domain, which has been proved to be effective
in detecting the YASS algorithm. The proposed SO-domain par-
tially accesses the data embedding domain of the YASS algo-
rithm and it catches the very defect that the locations of the
H-blocks are not randomized enough. On the one hand, itis clear
to see that the selection of an effective SO-domain is critical
for steganalysis. On the other hand, the concept of the SO-do-
main provides insight on enhancing the security of a stegano-
graphic scheme. Steganography in the next generation should
avoid leaking information about the embedding locations to a
warden.



LI et al.: STEGANALYSIS OF YASS

Second, we extract the steganalytic features with high effi-
ciency for steganalysis of YASS while maintaining a low di-
mensionality. The features of the frequency of zero requan-
tized coefficients (first-order statistics) are proposed with inno-
vation. They are highly effective in discriminating stego images
from cover images, since they are designed purposely to capture
the QIM artifacts which are caused by YASS. Inspired by the
ideas from [25] and [41], we proposed the features of the prob-
abilities of the first significant digits of requantized coefficients
(first-order statistics) and the features of the joint probabilities of
requantized coefficients in neighboring F-blocks (second-order
statistics). Not only can the features be used to enhance the per-
formance of detecting stego images, but also do they help iden-
tify some parameters in embedding.

Third, combining the steganalytic features with a two-class
classification scheme, we differentiate cover images and stego
images embedded by the YASS algorithm with high accu-
racy, if the B-block size and the design quality factor of the
stego image are known as prior knowledge. The performance
outperforms the results reported in prior arts [27], [30] by
a large margin. When the designed quality factor is known
but the B-block size is unknown, a multiclass classification
strategy can be employed to resolve the problem of identifying
B-block size easily. When the B-block size in YASS is known
but the design quality factor is unknown, the design quality
factor can be identified by using the proposed features with a
multiclass classifier trained by cover images and stego images
with different design quality factors. If the B-block size and
the designed quality factor are unavailable at the same time, a
specially designed multiclass strategy is still able to identify
the B-block size with a satisfactory accuracy. Identifying the
embedding parameters will give a warden more options to deter
the covert communication. Experimental results demonstrate
the effectiveness of the proposed method.

Fourth, we have discussed how to generalize the proposed
steganalytic method to counter the further strategies of YASS.
For some strategies, the proposed method targeted to detect
the YASS algorithm can be employed to defeat these strategies
without fundamental change. For some other strategies, the
SO-domain may need to be changed accordingly. In addition,
shifting the origin of the B-block grid is not taken into consider-
ation in YASS. However, randomizing the origin of the B-block
grid is a possible way to increase the randomness of the loca-
tions of H-blocks, and therefore enhance the security of YASS.
A multiple-time-applied two-class classification strategy with
the proposed steganalytic features is still able to differentiate
cover images from stego images under the circumstance that
the origin of the B-block grid is arbitrarily located and the
B-block size and the design quality factor are both unknown.

In summary, the proposed method sheds light on the insecure
aspect of YASS. It should stimulate the design of a more secure
steganography and a more capable steganalysis.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their valuable comments.

[1]
[2]

[3]

[4]

[5

=

[6

=

[7]

[8]

[9]

[10]

(1]

[12]

[13

[ty

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

381

REFERENCES

S. Wang and H. Wang, “Cyber warfare: Steganography vs. steganal-
ysis,” Commun. ACM, vol. 47, no. 10, pp. 76-82, 2004.

C. Cachin, “An information-theoretic model for steganography,” in
Proc. 2nd Int. Workshop Information Hiding, Portland, OR, Apr. 1998,
pp- 306-318.

R. Chandramouli, M. Kharrazi, and N. Memon, “Image steganography
and steganalysis: Concepts and practices,” in Proc. 2nd Int. Workshop
Digital Watermarking, Seoul, Korea, Oct. 2003, pp. 35-49.

X.Luo, D. Wang, P. Wang, and F. Liu, “A review on blind detection for
image steganography,” Signal Process., vol. 88, no. 9, pp. 2138-2157,
2008.

H. Farid and S. Lyu, “Higher-order wavelet statistics and their applica-
tion to digital forensics,” in Proc. IEEE Workshop Statistical Analysis
in Computer Vision, Madison, W1, 2003.

S. Bayram, I. Avcibas, B. Sankur, and N. Memon, “Image manipulation
detection,” J. Electron. Imaging, vol. 15, no. 4, pp. 1-17, 2006.

Y. Q. Shi, C. Chen, and W. Chen, “A natural image model approach to
splicing detection,” in Proc. ACM Workshop on Multimedia and Secu-
rity, Dallas, TX, Sep. 2007, pp. 51-62.

Y. Q. Shi, C. Chen, and G. Xuan, “Steganalysis versus splicing detec-
tion,” in Proc. 7th Int. Workshop on Digital Watermarking, Guangzhou,
China, Dec. 2007, pp. 158-172.

G. K. Wallace, “The JPEG still picture compression standard,”
Commun. ACM, vol. 34, no. 4, pp. 30-44, 1991.

JSteg. [Online]. Available: http://zooid.org/~paul/crypto/jsteg/

S. Hetzl and P. Mutzel, “A graph theoretic approach to steganography,”
in Proc. 9th Int. Conf. Communications and Multimedia Security,
Salzburg, Austria, 2005, pp. 119-128.

N. Provos, “Defending against statistical steganalysis,” in Proc. 10th
USENIX Security Symp., Washington, DC, Aug. 2001, pp. 323-325.
P. Sallee, “Model-based steganography,” in Proc. 2nd Int. Workshop
Digital Watermarking, Seoul, Korea, Oct. 2003, pp. 154-167.

A. Sarkar, K. Solanki, U. Madhow, S. Chandrasekaran, and B. S.
Manjunath, “Secure steganography: Statistical restoration of the
second order dependencies for improved security,” in Proc. IEEE Int.
Conf. on Acoustics, Speech and Signal Processing, Honolulu, HI, Apr.
2007, pp. 277-280.

A. Westfeld, “High capacity despite better steganalysis (F5—A
steganographic algorithm),” in Proc. 4th Int. Workshop on Information
Hiding, Pittsburgh, PA, Apr. 2001, pp. 289-302.

J. Fridrich, M. Goljan, and D. Soukal, “Perturbed quantization
steganography,” ACM Multimedia Security J., vol. 11, no. 2, pp.
98-107, 2005.

Y. Kim, Z. Duric, and D. Richards, “Modified matrix encoding tech-
nique for minimal distortion steganography,” in Proc. 8th Int. Workshop
Information Hiding, Old Town Alexandria, VA, Jul. 2006, pp. 314-327.
J. Fridrich, M. Goljan, and D. Hogea, “Steganalysis of JPEG images:
Breaking the F5 algorithm,” in Proc. 5th Int. Workshop Information
Hiding, Noordwijkerhout, The Netherlands, Oct. 2002, pp. 310-323.
J. Fridrich, M. Goljan, and D. Hogea, “Attacking the outguess,” in Proc.
ACM Workshop Multimedia and Security, Juan-les-Pins, France, Dec.
2002, pp. 3-6.

R. Bohme and A. Westfeld, “Breaking Cauchy model-based JPEG
steganography with first order statistics,” in Proc. 9th Eur. Symp.
Research Computer Security (ESORICS), Sophia Antipolis, France,
Sep. 2004, pp. 125-140.

J. Fridrich, “Feature-based steganalysis for JPEG images and its impli-
cations for future design of steganographic schemes,” in Proc. 6th Int.
Workshop Information Hiding, Toronto, ON, Canada, May 2004, pp.
67-81.

Y. Q. Shi, C. Chen, and W. Chen, “A Markov process based approach
to effective attacking JPEG steganography,” in Proc. 8th Int. Workshop
Information Hiding, Old Town Alexandria, VA, Jul. 2006, pp. 249-264.
T. Pevny and J. Fridrich, “Merging Markov and DCT features for
multi-class JPEG steganalysis,” in Proc. Electronic Imaging, Security,
Steganography, and Watermarking of Multimedia Contents IX SPIE,
San Jose, CA, Jan. 2007, pp. 1-13.

D. Fu, Y. Q. Shi, D. Zou, and G. Xuan, “JPEG steganalysis using
empirical transition matrix in block DCT domain,” in Proc. IEEE 8th
Workshop Multimedia Signal Processing, BC, Canada, Oct. 2006, pp.
310-313.

C. Chen and Y. Q. Shi, “JPEG image steganalysis utilizing both intra-
block and inter-block correlations,” in Proc. IEEE Int. Symp. Circuits
and Systems, Seattle, WA, May 2008, pp. 3029-3032.



382

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 3, SEPTEMBER 2009

J. Fridrich, T. Pevny, and J. Kodovsky, “Statistically undetectable
JPEG steganography: Dead ends challenges, and opportunities,” in
Proc. 9th ACM Workshop Multimedia and Security, Dallas, TX, Sep.
2007, pp. 3-14.

K. Solanki, A. Sarkar, and B. S. Manjunath, “YASS: Yet another
steganographic scheme that resists blind steganalysis,” in Proc. 9th
Int. Workshop Information Hiding, Saint Malo, France, Jun. 2007, pp.
16-31.

A. Sarkar, K. Solanki, and B. S. Manjunath, “Further study on YASS:
Steganography based on randomized embedding to resist blind ste-
ganalysis,” in Proc. Electronic Imaging, Security, Forensics, Steganog-
raphy, and Watermarking of Multimedia Contents X, SPIE, San Jose,
CA, Jan. 2008.

A. Sarkar, L. Nataraj, B. S. Manjunath, and U. Madhow, “Estima-
tion of optimum coding redundancy and frequency domain analysis
of attacks for YASS—A randomized block based hiding scheme,” in
Proc. IEEE Int. Conf. Image Processing, San Diego, CA, Oct. 2008,
pp. 1292-1295.

J. Kodovsky and J. Fridrich, “Influence of embedding strategies on se-
curity of steganographic methods in the JPEG domain,” in Proc. Elec-
tronic Imaging, Security, Forensics, Steganography, and Watermarking
of Multimedia Contents X, SPIE, San Jose, CA, Jan. 2008.

S. Lyu and H. Farid, “Detecting hidden messages using higher-order
statistics and support vector machines,” in Proc. 5th Int. Workshop In-
formation Hiding, Noordwijkerhout, The Netherlands, Oct. 2002, pp.
340-354.

G. Xuan, Y. Q. Shi, J. Gao, D. Zou, C. Yang, C. Yang, Z. Zhang, P.
Chai, C. Chen, and W. Chen, “Steganalysis based on multiple features
formed by statistical moments of wavelet characteristic functions,” in
Proc. 7th Int. Workshop Information Hiding, Barcelona, Spain, Jun.
2005, pp. 262-277.

B. Li, Y. Q. Shi, and J. Huang, “Steganalysis of YASS,” in Proc. 10th
ACM Workshop Multimedia and Security, Sep. 2008, pp. 139-148.

B. Chen and G. W. Wornell, “Quantization index modulation: A
class of provably good methods for digital watermarking and infor-
mation embedding,” IEEE Trans. Inform. Theory, vol. 47, no. 4, pp.
1423-1443, May 2001.

K. Solanki, N. Jacobsen, U. Madhow, B. S. Manjunath, and S. Chan-
drasekaran, “Robust image-adaptive data hiding based on erasure and
error correction,” IEEE Trans. Image Process., vol. 13, no. 12, pp.
1627-1639, Dec. 2004.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47, no.
2, pp. 498-519, Feb. 2001.

C.-E. W. Sundberg, “Erasure and error decoding for semiconductor
memories,” IEEE Trans. Comput., vol. C-21, no. 8, pp. 696-705, Aug.
1978.

K. Sullivan, Z. Bi, U. Madhow, S. Chandrasekaran, and B. Manjunath,
“Steganalysis of quantization index modulation data hiding,” in Proc.
IEEE Int. Conf. Image Processing, Singapore, Oct. 2004, vol. 2, pp.
1165-1168.

H. Malik, K. P. Subbalakshmi, and R. Chandramouli, “Nonparametric
steganalysis of QIM-based data hiding using kernel density estima-
tion,” in Proc. 9th ACM Workshop Multimedia and Security, Dallas,
TX, Sep. 2007, pp. 149-160.

T. Pevny and J. Fridrich, “Detection of double-compression in JPEG
images for applications in steganography,” IEEE Trans. Inf. Security
Forensics, vol. 3, no. 2, pp. 247-258, Jun. 2008.

B. Li, Y. Q. Shi, and J. Huang, “Detecting doubly compressed JPEG
images by using mode based first digit features,” in Proc. IEEE Int.
Workshop Multimedia Signal Processing, Cairns, Queensland, Aus-
tralia, Oct. 2008, pp. 730-735.

D. Fu, Y. Q. Shi, and W. Su, “A generalized Benford’s law for JPEG
coefficients and its applications in image forensics,” in Proc. SPIE, Se-
curity, Steganography and Watermarking of Multimedia Contents IX,
San Jose, CA, Jan. 2007.

[43] A. Webb, Statistical Pattern Recognition, 2nd ed. Hoboken, NI:
Wiley, 2002.

[44] NRCS Photo Gallery [Online]. Available: http://photogallery.nrcs.
usda.gov

Bin Li (S’07) received the B.E. degree in communi-
cations engineering and the Ph.D. degree in commu-
nications and information systems from Sun Yet-sen
University, China, in 2004 and 2009, respectively.

He is currently a lecturer with the College of
Information Engineering, Shenzhen University,
China. From 2007 to 2008, he received a scholarship
from the China Scholarship Council and conducted
research as a visiting scholar in New Jersey Institute
of Technology. His current research interests include
multimedia signal processing, pattern recognition,
and information security.

Jiwu Huang (M’98-SM’00) received the B.S. de-
gree from Xidian University, China, in 1982, the M.S.
degree from Tsinghua University, China, in 1987, and
the Ph.D. degree from the Institute of Automation,
Chinese Academy of Science, in 1998.

He is currently a Professor with the School of In-
formation Science and Technology, Sun Yat-Sen Uni-
versity, Guangzhou, China. His current research in-
terests include multimedia security and data hiding.

Dr. Huang serves as a member of IEEE CAS So-
ciety Technical Committee of Multimedia Systems
and Applications and the chair of IEEE CAS Society Guangzhou chapter.

Yun Qing Shi (M’90-SM’93-F’05) received the
B.S. and M.S. degrees from Shanghai Jiao Tong
University, Shanghai, China, and the M.S. and Ph.D.
degrees from the University of Pittsburgh, PA.

He has been with the Department of Electrical
and Computer Engineering, New Jersey Institute of
Technology, since 1987, and is now a professor there.
His research interests include digital multimedia
data hiding, steganaysis, forensics and information
assurance, visual signal processing and communica-
tions, motion analysis, theory of multidimensional
systems, and signal processing. He is an author/coauthor of more than 200
papers, a book, and four book chapters. He holds five U.S. patents and has an
additional 30 U.S. patents pending.

Dr. Shi is the founding Editor-in-Chief of LNCS Transactions on Data Hiding
and Multimedia Security (Springer), and an Associate Editor of Journal on
Multidimensional Systems and Signal Processing (Springer). He served as an
Associate Editor of IEEE TRANSACTIONS ON SIGNAL PROCESSING and IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART II, an Associate Editor of
International Journal of Image and Graphics, and a guest editor of special is-
sues for a few journals, the technical program chair of ICMEQ7, co-technical
chair of IWDWO06, 07, 09, MMSPO05, and co-general chair of MMSPO2. He is a
member of a few IEEE technical committees.




