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In this paper, we introduce an unobservable, censorship-resistant message anonymization protocol, named
MessageVortex. It bases on the zero-trust principle and a distributed peer-to-peer like architecture. It requires
no dedicated or modified infrastructures within the Internet. Instead of using traditional approaches like
creating a new layer 3+ protocol, we blend its traffic into suitable existing transport protocols. This blending
makes it impossible to block its traffic with standard methods such as firewalls, without significantly affecting
regular users of the transport medium. The protocol requires no additional protocol-specific infrastructure
in public networks. It allows a sender to control all aspects of a message. These aspects include the degree
of anonymity, timing, and redundancy of the message transport without disclosing any of these details to
the routing or transporting nodes. To minimize the information footprint for a malicious node within the
network, we designed special operations which make it impossible to differentiate decoy from real traffic or
follow a message stream without knowledge over all involved routing nodes.
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1 INTRODUCTION

Networks build a base of our communication-based society these days. These networks allow us to
connect quickly with any person or company of our wish. At the same time, they allow us to collect
vast amounts of data in an automated way. Such collected data may be used to judge upon anyone’s
intentions and, therefore, this data requires confidentiality even if we have “nothing to hide.” This
problem has dramatically increased in the last years as big companies and countries started to
collect all kinds of data and created the means to process them. Such a judgment allows, supposedly,
to classify people and their intentions. This judgment is not limited to what they are doing but as
well on what they did and what they might do. Numerous events show that multiple actors, some
of which are state-sponsored, collected data on a broad base within the Internet. Undisputed is
that such data requires careful handling, and accusations should base on solid facts. Unacceptable
seems the use of “guesses” or “extrapolations” in most cases. However, such unacceptable behavior
happened in the past, even in so-called “free countries” [Leuenberger1989].

Whistleblower Edward Snowden leaked a vast amount of documents. These documents sug-
gested that such attacks on privacy commonly exist on a global scale. According to these docu-
ments, the National Security Agency (NSA) infiltrated ten thousands of computer networks with
malware to collect classified or personal information. They furthermore infiltrated Telecom-Operators
such as Belgacom to collect data and targeted high members of governments even in associated
states [NCR2013, XKeyscore, Ball2013, Ackerman2013, Greenberg2013]. The magnitude of

Author’s address: Martin Gwerder, University of Applied Sciences Northwestern Switzerland, Windisch, AG, Switzerland
, University of Basel, Basel, BS, Switzerland, martin.gwerder@fhnw.ch.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2471-2566/2020/4-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: April 2020.


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Martin Gwerder

these programs is vast. XKeyscore[XKeyscore] spanned (in 2008) ~ 150 sites with 700 Severs
collecting emails, web traffic, and chat messages.

The collection of vast amounts of data allows a potent adversary to build a profile of a per-
son. In the last couple of years, the availability of such information rose to new heights with the
Internet. An entity in possession of such Profiles may use them for many purposes. Such uses
include but are not limited to service adoption, personalized advertising, or classification of citi-
zens. The examples given above show that the effects of this data is not limited to the Internet but
reaches us effectively in the real world. While people may classify personalized advertising as legit
use, a general classification of citizens is broadly considered unacceptable[NCR2013, XKeyscore,
Ball2013, Greenberg2013, Leuenberger1989].

The main problem of this data is that it may be collected over a considerable amount of time
and evaluated at any time. It even happened that standard practices of the time are judged differ-
ently upon later. Persons may then be judged retrospectively upon these types of practice. This
questionable type of judgment is visible in the tax avoidance discussion[Amat1999].

This list of events shows that big players are collecting and storing vast amounts of data for
analysis. The list of events also shows that the use of such data was supposedly questionable in
the past.

Most communication today is unencrypted (e.g., email) and a valuable source of knowledge.
However, not only the message content is interesting for analysis. Social network analysis includes
analysis of metadata such as message sizes, peer partners, message frequency, or suspected proper-
ties of peer partners. According to the Snowden papers[Ackerman2013], NSA uses such methods
to identify potential terrorists and the Chinese government to create a citizen score[socialCreditSystem].
A suitable anonymity protocol has, therefore, not only to hide a message but additional attributes
as well. It includes leaving the message itself aside, all metadata, and all the traffic flows. As a part
of possible countermeasures, this work analyses the possibility of using state-of-the-art counter-
measures for messaging to minimize the information footprint of a person on the Internet. Such a
solution should be censorship-resistant and having no specific or centralistic infrastructure mak-
ing it possible to pressurize owners or maintainers.

With this work, we present a way to reduce the footprint of such data. Our work provides an un-
observable and under ideal conditions censorship-resistant protocol called MessageVortex. It com-
bines well-proven technologies such as F5 steganography and onionized routing structure. Mes-
sageVortex has been developed and published as RFC-draft{MessageVortexRFC]. Furthermore,
we created an implementation of the RFC draft for academic research.

Nodes of the network send the messages in an onionized form to each other. Unlike in compa-
rable systems, the message is not routed as a whole or in a chunked form. Instead, the routing
information contains instructions about how to handle all parts of the message. While crafting
the instructions, we extended great care not to give any information away, enabling an attacker to
distinguish decoy from payload traffic. This restriction is even the case when having full insight
into a routing node.

Another problem with mass surveillance is the possibility of censorship. A dedicated, identifi-
able protocol such as Tor[tor-spec] or SCION[perrig2017scion] allows censorship. We take a
definition attributed to Chuck Stone, professor at the School of Journalism and Mass Communica-
tion, University of North Carolina.

Censorship: the cyclical suppression, banning, expurgation, or editing by an individ-
ual, institution, group or government that enforce or influence its decision against
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members of the public — of any written or pictorial materials which that individual, in-
stitution, group or government deems obscene and “utterly without redeeming social
value,” as determined by “contemporary community standards.”

Please note that “Self Censorship” (not expressing something in fear of consequences) is a form
of censorship according to this definition too. In our technical context, we reduce the definition to

Censorship: A systematic suppression or modification of data in a network by either
removal, or modification of the data, or systematic influencing of entities (e.g., servers,
networks, or operators) involved in the processing of this data.

This simplified definition narrows down the location to computer networks. Furthermore, it
limits the definition to the maximum reach within that system. A censorship-resistant system is a
system that allows the entities of the system and the data itself to be unaffected from censorship.
Please note that this does not deny the presence of censorship per se. It still may exist outside the
system or maybe ineffective within the system.

To be censorship-resistant MessageVortex features some unique properties. First, there is no
protocol-specific infrastructure within the public part of the Internet required. The protocol in-
stead piggybacks on common messaging protocols (such as SMTP or XMPP). By not requiring spe-
cific protocol extensions, we may use ordinary accounts of messaging providers (such as Freenet,
GMX, Gmalil, or Yandex) as infrastructure. The messages themselves are kept as indistinguishable
as possible from regular messaging traffic. Only the blending layer residing on an endpoint device
may determine if a message contains traffic destined for the current node of the MessageVortex
network. All endpoint devices (e.g., smartphones or notebooks) work alike, and there are no such
things as entry or exit nodes as there are in other similar systems such as Tor[tor-spec]. Cen-
tralized infrastructure such as keyservers, directory servers, or similar does not exist. This lack of
customized infrastructure makes the protocol less susceptible to attacks.

MessageVortex is a protocol providing censorship-resistance under ideal circumstances. It does
this using a rigid design from bottom up to provide the required properties. While being a protocol
on its own, it uses many standard protocols. Partly to provide user-friendliness, but mostly to hide
within the regular network flows. As such, a protocol requires to be undetectable on the network.
A protocol all alone may not be undetectable as each protocol sends data over a network. This
data is detectable. A protocol sending undetectable data requires to be embedded undetectably
in legit message flows or hide in side channels. Such embedding is usually done either by side-
channel transmissions or by employing steganography. Steganography is the preferred way in
MessageVortex as it implies no control over the transport infrastructure.
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MessageVortex does not rely on the trust of infrastructure other than the infrastructure under
control of the sending or receiving entity. Trust in any third party might be misleading in terms of
the security of the protocol. Central infrastructure is bound to be of particular interest to anyone
gathering data. It may furthermore allow manipulating the system or the data or the data flow.
Therefore, MessageVortex does not have such infrastructure. The only protocol-specific devices
are the endpoint devices of the users.

For definition of terms “unlinkability”, “anonymity”, and “undetectability”, we use [anonTerminology].

From an academic point of view, achieving anonymity is relatively simple. All we need is a
trusted party distributing the messages while making sure that no trace from the sender arrives at
the recipient. An example of this was the remailer anon.penet.fi. Unlinkability is much harder to
achieve. It requires that a specified attacker is unable to link a sender and recipients of a message.
One scenario to break unlinkability would be to analyze the traffic of a remailer for similar message
sizes in a specific time window.

As soon as a system provides properties identifiable by third parties, it is prone to denial of
service and, thus, partial or full censorship. By introducing a global observer or infiltrating parts
of the system, an attacker may gain insight into the messages transported by the system and
thus leaking information. For our protocol to be censorship-resistant, it requires many critical
properties. As outlined, it should be undetectable from the outside. From within the system, we
need to provide the possibility to make it ideally impossible to follow message flows or identify
participants.

In the next section, we explain the main characteristics and working of our protocol, mitigating
these problems. We then introduce core terms and a general adversary model. We furthermore
elaborate on the notation used to describe our protocol. In section 4, we dive into the technical
details of the protocol and describe its operations in detail. In section 5, we discuss key findings
related to the protocol.

2 OUR CONTRIBUTION

In this work, we introduce a new protocol to allow message transfer through existing communi-
cation channels. These messages are unobservable for any third party. This unobservability does
cover the message and all metadata and flows associated with it. The protocol is designed to use
a wide variety of existing transport protocols. Messages may switch protocols while in transmis-
sion. An adversary has to take all message flows into account and their timely relationship, which
makes analysis harder as it has to span multiple protocol properties. MessageVortex allows secure
communication without the need for trusting the underlying transport media.

As the usage of the protocol itself is possible without altering the immediate behavior of the
transport layer, the transport layer’s regular traffic increases the noise in which an adversary has
to search for information. A sender may hide its messages within regular messages, UBE, or even
messages destined for M2M communication. For our implementation, we use the standard internet
transport protocols SMTP and XMPP as a store and forward service for our messages. We set up
our nodes (VortexNodes) fetching these messages from the transport layer. These nodes extract our
messages from the transport layer and process them as part of our routing.

To send a message, a VortexNode first selects a mesh of other VortexNodes destined for routing
of the message. Next, the vortexNode creates temporary workspaces on each of the involved nodes
(or it may use pre-allocated ones) and defines a set of instructions for every VortexNode involved
required to route the message. The instructions include splitting and reassembling messages, en-
crypting and decrypting messages, and adding and removing redundancy information. While the
first two sets of instructions are well known and standard, the third is a core functionality unique
to our protocol.
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We use a Reed-Solomon function with a Vandermonde matrix to process previously encrypted
message chunks. This operation allows us to increase or decrease transport volume and redun-
dancy. The resulting blocks of the operation are encrypted again. After employing this operation,
any sufficient number of blocks may be used together with their keys rebuilding the original infor-
mation. If we send these blocks to different nodes, the current node is unable to tell which of the
next peers is involved in routing and which ones receive decoy traffic. A sending node generates
traffic overhead, which may be used to rebuild the original message. It is impossible to identify
any of the blocks as decoy messages without knowing the whole previous operations and all sub-
sequent operations afterward applied to the message. A sending node compiles all information
into one or more routing blocks with an onionized structure. Each node decrypting the routing
block obtains its set of routing blocks and instructions on how and when to compile subsequent
messages.

The sender assembles a VortexMessage. Any VortexMessage contains some parts of the message,
and possibly decoy payload. Furthermore, it contains the previously built routing block and some
additional information in a header required for the protocol (such as the assigned workspace). Each
VortexNode executes the set of instructions in the allocated workspace with the received message
parts.

A workspace contains a series of slots identified with IDs to store the message parts. The first
couple of IDs of any workspace do have a special meaning. The first slots starting from ID 1
serve as temporary storage for incoming messages. The slot with ID 0 is a special slot, signaling a
VortexNode, that the result is destined for the current node.

So, our protocol allows the passing of message fragments through a mesh of VortexNodes. Each
node is aware of the previous sender of a message and the receiver of his processed result. However,
none of the nodes is aware where the original message came from, where the final target of the
original messages is, or if the passed VortexMessage contains payload or just decoy. A VortexNode
is even unable to identify additional traffic generated on the local node as decoy or message traffic.

2.1 Threat Model

We refer to jurisdiction as a geographical area where a set of legal rules created by a single actor or
a group of actors apply, which contains executive capabilities (e.g., police, army, or secret service)
to enforce this set of legal rules.

We assume for our protocol that adversaries are state-sponsored actors or players of large orga-
nizations. Such actors have high funding and are assumed to have elaborated capabilities within
reach of the sponsor. Actors may join forces with other actors as allies.

We assume the following goals for an adversary:

e An adversary wants to disrupt non-authorized communication.

e An adversary wants to read any information passing through the Internet.

e An adversary wants to build and conserve data about individuals, companies, or groups of
individuals of their life.

To achieve these goals, we assume the following properties of our adversary:

e An adversary has elaborated technical know-how to attack any infrastructure. Such an at-
tack may cover any attack favoring his goals, starting with exploiting weaknesses of popular
software (e.g., buffer overflows or zero-day exploits) down to simple or elaborated (D)DoS
attacks.

e An adversary can monitor traffic at any point in networks within a jurisdiction.

e An adversary can modify routing information within a jurisdiction.
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6 Martin Gwerder

e An adversary can modify cryptographically weak secured data where a single or a limited
number of entities grant proof of authenticity or privacy.

e An adversary can inject or modify any data on the network of a jurisdiction.

e An adversary can create their nodes in a network. He may furthermore monitor their behav-
ior and data flow without limitation.

e An adversary can force a limited number of other non-allied nodes to expose their data to
him.

e An adversary can have similar access to resources as within its jurisdiction in a limited
number of other jurisdictions.

However, an adversary is unable to...

e ...achieve more than 50% of all jurisdictions on a world scale.
e ...to have no identifiable actor with disjoint interests as compared to an adversary.

For our analysis, we differentiate two kinds of adversaries by their goals.

An observing adversary is interested in the message content. Its main goal is the discovery of
message flows between entities and the content of the messages. We assume that this observation
is in the corresponding jurisdictional entity legal and may be executed at any scale. The usage of a
VortexNode itself, in general, is legal in this jurisdiction. This definition describes a state-sponsored
adversary in a jurisdiction that is deemed to be “free” for an individual entity.

A censoring adversary shares the properties of an observing adversary. Unlike in the jurisdiction
of the observing adversary, the usage of MessageVortex is illegal in the jurisdiction of this adversary.
This definition reflects a worst-case adversary in a jurisdiction with limited individual freedom.

2.2 Notation

The theory in this document s is heavily based on symmetric encryption, asymmetric encryption,
and cryptographic hashing. To use a uniformed notation, we use EX« (M) (where a is an index to dis-
tinguish multiple keys) for an encrypting function with a key K,,. This results in MX: = EXa (M) for
the encrypted message. If we are reflecting a tuple of information, we write in boldface. To express
a concatenated set of information, we use angular brackets (normalAddress, vortexAddress).

For a symmetric encryption of a message M with a key K, resulting in MX: where a is an index
to distinguish different keys. Decryption uses therefore DX« (MX2) = M.

As notation for asymmetric encryption we use EXa(M) where as K;!is the private key and K}
is the public key of a key pair K”«. The asymmetric decryption is noted as DXa "(M).Ifa key K, is
specific to a host, we refer to it with a subscripted o (e.g., Kyeer, )-

For hashing, we do use H(M) if unsalted and H"* if using a salted hash with salt S,. The gener-
ated hash is shown as Hy if unsalted and Hff if salted.

If we want to express the details contained in a tuple, we use the notation M(t, MURB, serial)
respectively if encrypted MX: (t, MURB, serial).

asym:EKf:1 (M) = MK’
DK (EK«II (M)) - pka' (EK«i (M)) =M
sym:EXa (M) = MKa
DX (EX« (M) =M
hash:H (M) =Hy
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Unobservable Messaging with MessageVortex 7

In general, subscripts denote selectors to differentiate values of the same type, and superscript
denotes relevant parameters to operations expressed. The subscripted and superscripted informa-
tion may be omitted where not needed.

3 RELATED WORK
3.1 Terminology

»

For all anonymity relevant terms, such as “unlinkability”, “anonymity” and “undetectability” we
refer to [anonTerminology].

The set of terms is further broadened with k-Anonymity as defined in [k-anonymous:ccs2003].
k-Anonymity is relevant for all jurisdictions where it is insufficient to track an illegal action ac-
cording to the jurisdiction down to less than k — 1 subjects.

3.2 Existing work regarding Anonymity Protocols and Censorship Resistance

We were unable to identify a protocol withstanding the definition of our adversary. Even Tor is
weak as censorship is relatively easy, as shown by the china bordering firewalls, and the same
applies to SCION as it was never designed to be undetectable. There are possibilities to piggyback
other protocols with Tor messages (e.g., Meek) and to hide nodes on directories, but this technology
is unhandy compared to standard usability of Tor and only used in exceptional cases.

We have, however, found many protocols dealing with anonymity and very few dealing with
censorship circumvention or outside. We considered these approaches. It has to be said, however,
that very little of the mentioned protocols here had ever experienced broad adoption. Even more,
most of them were never implemented or challenged. Therefore, academic proof for fitness is, in
most cases, possibly weak or non-existent.

In terms of censorship circumvention, we found that only a little work has been done in academia.
Several technical ways have been explored to circumvent censorship. All of them seem to boil down
to the following main ideas:

e Hide data
The most common approaches we have found were either mimicking protocols (as in [mohajeri2013sk:
use protocols as payload transports (e.g., [AthanRAMO7]) or employ steganography (as in
[£5]) or comparable technologies as side channels.
e Copy or distribute data to a vast amount of places in order to improve the lifespan of data
This has been done by systems like [freenet], or WikiLeaks (partially based on Freenet).
e Outcurve censorship measurements
Censorship measurements, especially regarding the Internet censorship of China, have been
analyzed in depth under technological, sociological and economical aspects (e.g., [Ensafi:2015],
[Clayton:2006], or [lowe2007great]).

For anonymization the ideas concentrate around onionizing (Tor[tor-spec], SOR[Egners_2012],
DUO-Onions and Hydra-Onions[iwanik2005duo]), DC networks (DC-Nets[chaum-dc], Tarzan[tarzan:ccs(
GAS[AthanRAMO7]), mixing messages (Babel[babel], MorphMix[morphmix:wpes2002], Mixminion[min
Salsa[Salsa]), and distributed hash tables (e.g., Bifrost{Kondo2009], BitBlender[Bauer:2008]).

For network-layer high speed Protocols we identifyed LAP[hsia02012lap], PHI (related to SCI-
ON[perrig2017scion]), HORNET[chen2015hornet], and Dovetail[chen2015hornet]. While these
protocols delivered valuable inputs in terms of their weaknesses, we do not directly compare to
them as achieving anonymity in a low latence environment is much harder to achieve and some
generic restrictions applied we wanted to overcome such as context based timing analysis.
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8 Martin Gwerder

As we use alien transport protocols instead of our protocol, we decided to go for a mixing
approach. This approach minimizes the number of messages exchanged between the nodes. Fur-
thermore, mixing allows using the nodes in a structureless way as opposed to DC-nets, where we
would have to build fixed or ad-hoc rings for exchanging messages. Unlike other protocols, we do
not rely on the logic of mixing on the routing node. Instead, the node generating a routing block
(also referred to as RBB) decides on all mixing and decoy generation. Routing nodes follow an
onionized set of instructions to build messages.

4 THE MESSAGEVORTEX PROTOCOL

In this section, we introduce a new consistent, transport-independent model for representing
the different protocols used by MessageVortex. The focus of the description lies in academic con-
cepts. For more technical information specifying the protocol as implemented, refer to the RFC
draft[MessageVortexRFC]. The RFC draft provides details such as specific ASN.1 structures out-
lining every single block.

4.1 General Design

Generally, our system consists only of nodes, whereas a node may be any system always connected
to the Internet. This applies to any device regardless of NAT or similar technologies, which usually
oppose problems for services. Figure 2 shows a network of four nodes passing messages between
them. The symbols within the routing layer show the content of a workspace of one ephemeral
identity. We elaborate on those two concepts further in the next sections.

Vortex node Vortex node Vortex node Vortex node

Accounting

Accounting

Accounting

Accounting

Routing

Routing

Routing B‘ E‘

Routing

Transport

Fig. 2. Acircular graph showing a typical message flow without the possibility to identify original sender or
final recipient

The transport layer is a common message-passing protocol on the Internet. The infrastructure
for this message-passing protocol is used in unmodified form by VotexNodes, as it serves as a store-
and-forward infrastructure. Although we used SMTP for our experiments, it is not limited to this
protocol. The RFC draft document also specifies XMPP. We refer to the upper part of each node as
VortexNode. These nodes may be any device with a permanent connection to the Internet (e.g., a
RaspberryPi computer or a mobile phone). The message paths shown in the figure are not relevant.
Any path layout such as cyclical or tree-like may be possible.

Each VortexNode constitutes of three layers. A blending layer embedding and extracting mes-
sages from the transport layer, a routing layer processing the VortexMessages and providing “work-
spaces” for “ephemeral identities”, and an accounting layer which is authorizing messages. We
describe the inner workings of these layers in detail in the next sections.
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Unobservable Messaging with MessageVortex 9

The protocol is built in a modular way. A node may query another node about properties such
as used blending type, PRNG, asymmetric or symmetric encryption algorithms, modes, paddings,
and hashing algorithms. Such queries are possible as soon as the protocol endpoint (the transport
protocol address) and the host key is known. Therefore, all these properties may vary from node
to node. As an RBB may willingly choose all parameters for all hops, it may omit any node not
fulfilling a required level of security. On the other hand, new algorithms may be introduced at any
time without the need to upgrade the whole network simultaneously.

The instructions on how and when to pass a message are generated by a node we refer to
as “routing block builder” (RBB). The RBB defines almost all relevant properties of the message
passing, such as:

e the path of the message

o the type of hiding (blending) in the transport protocol

o the operations applied to each part of the message in each node
o the timing of every block within the path

To avoid collision between operations of different nodes, an RBBs create “ephemeral identities”
with an assigned workspace within each involved node. Ephemeral identities are random, short
term identities containing a workspace and quotas for a limited time. Ephemeral identities of a
node are unrelated to each other or to any generating identity. In the workspaces attached to
the ephemeral identities, messages may be assembled, transformed, or decomposed with the op-
erations stated above. Results are sent to other nodes. Due to the nature of the operations, all
messages passed on may contain decoy traffic or “real message parts” (We prove this claim in sec-
tion 5.1). A node identifies a message destined for it when a message processes data to ID 0 of the
identities workspace.

The RBB may be the sender of a block or a different VortexNode. If the RBB is not identical to
the sender, then the sender is using the routing block for sending a message without knowing its
final destination.

PAYLOAD,
PAYLOAD;
PAYLOAD,_,

Ksendero HEADERU

Kpeer,| I_‘EK}IG”G )
EXhosto (.. I—‘

ROUTE,

FXsender, (... '—‘ L ) L

Fig. 3. A simplified message outline for a message destined for a host o

Every VortexNode may decide for itself on the support of algorithms and embedding mechanisms.
A VortexMessage contains an encrypted symmetric key E°st (Kpeer,) immediately followed by an
inner message EXreero which is encrypted with this key. The inner message contains a series of
blocks encoded in ASN.1. We show in Figure 3 a simplified view on a VortexMessage. The block
structure of a VortexMessage is as follows:

o Encrypted peer key Kpeer,
It contains the symmetrical key for decryption of follow up header information and payload
blocks. The symmetric key is encrypted with the receiving host’s public key (EK’“’Sfo (erera)
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10 Martin Gwerder

). The key Kpeer, is known to the RBB, the message sending node, and the message receiving
node.
e Padding PAD
This padding is a defined excerpt of the transferred payload blocks (see further down). It
makes sure that the message part encrypted with the peer key does look different for each
payload even when reusing keys. This case is not recommended but unavoidable in the case
of a reused routing block. Using a different IV is not an option as the IV would be replayed
as well.
e header block encrypted with Kepnger, and signed with the identities private key (detached
signature).
— Identity
Authenticated by a signature. It serves as an identifier for the workspace.
— Replay protection information
It allows a node to identify replayed messages even if the payload has been modified.
— Forward secret information (forwardSecret)
It allows a node to identify VortexMessages where tampering occurred by recombining
blocks of multiple messages.
— (optionally) Proof-of-work information
Allows a sending node to fulfill a proof of work requirement raised due to a previously sent
request. Proof-of-work (puzzle) is required to assign a “cost” to a creator of an ephemeral
identity. A node fulfilling a puzzle is “prepaying” the costs for one or multiple potential
message transfers.
e Routing blocks (encrypted with sender key)
— Next hop timing instructions
Specifies relative block in time for the building instructions to be carried out. There may
be multiple timing instructions. Each of the instructions refers to precisely one routing
and one header block.
— Next-hop routing blocks
These with Ksenger,,, pre-encrypted routing blocks are placed into the VortexMessage cre-
ated according to the build instructions. They are not readable for the current node.
— Next hop header (encrypted with Ksender,,,)
These pre-encrypted header blocks are placed into the VortexMessage created according to
the build instructions.
— Message build instructions
These instructions form the core for the workspace and contain all instructions and the
information which payload blocks should be included in each of the messages.
— Next hop peer key Kpeer,,,
This part contains one or more peer keys.
— Next hop blending instructions
These contain the information about what transport to use, what blending to use, and the
address of the next router node.
o Encrypted payload blocks (encrypted with peer key)
— Payload blocks

It is important to note that there are two symmetrical keys involved in encrypting and decrypt-
ing message headers. Having two keys is not a flaw in the protocol but necessary.

The first key of a VortexMessage is the peer key Ksenger,- This key is only accessible with the
private key of the node receiving the message and is furthermore known by the RBB. It allows
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Unobservable Messaging with MessageVortex 11

the decryption of the routing blocks concerning the current node and the header information. The
sender of a message block is, therefore, not able to tell if a VortexMessage contains one or more
routing blocks for the next node. It is important to note that no other node should have access to
this information, as this builds the unlinkability between two non-adjacent nodes.

The second key is the peer key Ky, preceding the encrypted HEAD block. The RBB chooses
the key. This key protects the inner structure of the message. It makes it impossible for any node
except the sending or the receiving peer node to detect the inner structure of the message. Without
this key, any independent observer with knowledge about the blending capabilities of a receiving
node may:

e Easier identify the block structure
This remains the case regardless of whether ASN.1 or length prefixed structures are used. If
the structure of a VortexMessage is identifiable, the messages may be logged or dropped by
an adversary.

o Identify the routing block size
The value of this information is only minimal as it only reflects the complexity of the re-
maining routing information indirectly.

o Identify the number of payload blocks and their respective sizes
This is valuable information when following the traffic of a message.

Furthermore, by providing a pre-encrypted key, we hide the asymmetric key required to the
next node. So, a node can compile a message for another node without being aware of the required
public key.

The Accounting layer maintains all local identities called ephemeral identities and controls the
overall load to the system. Ephemeral identities are temporary accounting objects identified with
the public part of an asymmetric key.

The accounting layer processes requests from other nodes. Each request is either a request for
information about the node, the creation of a new ephemeral identity, or a request to process
messages. The accounting layer creates replies to such requests and maintains the accounting
information of such an entity. The accounting layer has the option to either accept a request, reject
a request, silently drop a request (usually done to improve privacy), or to request the solving of a
proof-of-work puzzle (puzzle). To send a reply to the unknown requester, the header block contains
a routing block prebuilt by the RBB.

The only implemented puzzle so far is a hash-based puzzle. The puzzle opposes that a header
block H;_; has to be resent including a challenge ¢ (an ASN.1 octet string) and has to result in a
specific bit sequence s of the hashed block with signature.

Therefore we assume that a validly solved puzzle when:

HEAD = DKsender (H) = (H;_4, c) (1)
puzzleSolved = Hgpec(H).startsWith(s) (2)

The puzzle has an assigned lifetime. To solve the puzzle successfully, the requesting host has to
solve this puzzle within the specified time frame.

In general, each message is first pre-authenticated by the blending layer (incoming and outgo-
ing). On an incoming, valid message (all decryption successful and all forwardSecret do match),
the following checks are executed:

The routing layer processes the messages. Incoming messages are passed after extraction by the
blending layer to the routing layer. There the message is disassembled in its components.

As operations, we use some general capabilities such as splitting a message into two payload
blocks and merging them again. Another type of operation is encryption and decryption of payload
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12 Martin Gwerder

blocks. The third and most important type of operation is a redundancy operation. This operation
uses a Reed-Solomon[reed1960polynomial] function to add redundancy information to the data
while obfuscating its content. This function has previously been proposed mainly for information
sharing systems (e.g., [mceliece1981sharing]).

A routing block may be used once or multiple times if flagged accordingly. Repeating a routing
block allows a sender to use a routing block as an anonymous endpoint address. It is essential to
understand that reusing a routing block weakens privacy. Reusing a routing block does typically
create the same pattern on the network, assuming the same workspace layout. While the timing
might vary, the number of messages and the sequence of messages remains the same (see 6.1).

Tasks of the routing layer are:

o Build structure representing the block building and the appropriate block IDs.

o Schedule all routing blocks for processing in a priority queue.

e Authorize all routing blocks ready for processing with the calculated block sizes.
e Process blocks.

e Send prepared building blocks to the Blending layer.

The workspace of an ephemeral identity is shown in Figure 4.

Routing blocks
Operations
- Payload block
“oqee®” |
Payload slots

Fig. 4. A sample workspace containing eight payload blocks, two operations, and three routing blocks

Each workspace stores objects for a specific ephemeral identity for a limited amount of time.
The workspace receives routing blocks, payload blocks, and operations of the respective ephemeral
identity. The lifetime of such objects is limited by the lifetime of the header block, or by the routing
block. As soon as a routing block is due, he takes compiles a list of all payload blocks which have to
be sent and executes the operations to generate them. The routing layer then assembles the inner
message with padding (PAD), the header block with a prefix, the routing block, and the generated
payload blocks and encrypts the whole stream with the peer key Kpeer,,,. The header and routing
blocks are already pre-encrypted with Kender,,, -

The blending layer provides the “undetectability” feature of the Vortex system. To avoid trans-
port protocol misuse and unintentional exit nodes of the protocol, the RBB has no control over the
transported content except for the hidden VortexMessage and how it is embedded. This rule loads
the burden of sensible cleartext payload generation to the blending layer.

A blending layer may provide multiple strategies to embed a message. In our prototype, we al-
ways sent a VortexMessage by embedding its content into an attachment. While F5[f5] is currently
preferred for embedding, current implementation supports as well so-called plain embedding sim-
ply replacing the file content of the attachment with the VortexMessage. This may be done starting
at character 0 or any offset supported by the blending layer (to leave header data intact).

Furthermore, this layer is taking care of multiple problems:
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Unobservable Messaging with MessageVortex 13

o Translating the message into the transport format
This translation includes jobs such as embedding a message as encoded text, as a binary
attachment or hide it within a message using steganography.
e Extract incoming messages from the transport protocol
Identify incoming messages containing a possible block and extract it from the message.
o Do housekeeping on the storage layer
Access protocols may require message deletion.

We define the blending layer to work as follows when receiving messages:

(1) Log arrival time (in UTC) on the transport layer.

(2) Extract possible blocks.

(3) Apply decryption on a suspected header block.

(4) Validate the header using the accounting layer.

(5) Process header requests (if any)

(6) Extract and decrypt subsequent blocks.

(7) Pass extracted blocks and information to the routing layer.

We define the blending layer to work as follows for sending messages:

(1) Assemble message as passed on by the routing layer.

(2) Using the blending method specified in the routing block, build an empty message.
(3) Create a message body content.

(4) Send the message to the appropriate recipient using the transport layer protocol.

For the prototype, we have implemented an SMTP transport agent and the respective blending
layer.

The routing layer receives the message blocks in a decrypted and authorized form from the
blending layer. The routing layer then assembles all information of identity and executes the ac-
cepted operations using the available data.

It is relatively easy to generate a credible cleartext message to pass an automated testing engine.
This statement may be verified by looking at the effectivity of today’s junk mail filters. These filters
have huge problems continuously adapting to the new types of unsolicited bulk emails (UBE).

Things do, however, drastically change if taking a human censor into account. A human censor
is not only able to analyze the text and layout of a message. He is furthermore capable of judging
on the stringency of a communication. He may deduce data such as relationship and type of writ-
ing. Then, he may detect anomalies within conversations and judge whether the communication
pattern is more likely to be from a human or a chatbot.

A human censor can take very complex information into account when it comes to analyses
of message content. He is not only able to analyze a message for its content, but he may also see
the message in the context of other messages. In [oakland2013-parrot], oakland2013-parrot
expresses that it is easy for a human to determine decoy traffic as the content is easily identifiable
as generated content. While this is true for the very general case, there is a possibility in our
protocol to generate “human-like” data traffic to a certain extent. As an adversary may not assume
that his messages are replied to, the problem does not boil down to a Turing test. It remains on the
level of a “passive observer Turing test”. In this scenario, the censor is only able to judge on the
given messages instead of introducing his questions, wordings, and verbal challenges. By enabling
the potential nodes to choose their messages and the replies generated to them, we enabled them
to choose very reduced types of communications. The chosen messages may even be identifiable
as automated messages. Messages passed between two accounts may include machine-generated
content such as regular reports or events generated by a monitoring system. However, our system
is not limited to human-like messages. We may use messages of M2M based software as well, such
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as reports or notifications of monitoring events. It is self-evident that such messages arise in a
non-human behavior making it impossible for a human censor to detect a message if blending is
truly undetectable. As we use F5 as blending, we may say that this is not the case as it has been
challenged in the past, but no attack was unsuccessful so far (e.g.,[F5broken]).

The most straightforward approach would have been to give a routing block builder the possi-
bility of controlling the decoy message content. While such a possibility would be easy, it would
enable a routing block builder to use the node as a “exit node” from the system. Blackmailing mes-
sages could be sent through the system to a non-participating member and leak at the same time
the presence of a routing node. To deny this possibility, we shifted the ability to the routing node.

The VortexMessage itself is binary, and as such, there are only limited possibilities to hide it
within the transport protocol. We decided to use attachments or attachment-like structures. Within
the attachments, we currently support two types of embedding: plain and steganographic embed-
ding. Plain embedding means that we insert a sequence of blocks into a standard message. This is
typically done within files with a weaker structure and high entropy (such as an MP3 encoded file).
While this is very hard to detect for a machine, it becomes immediately suspicious for a human
censor. A human censor would detect the presence of a payload which does not make any sense.

For steganographic embedding, we decided to go for F5[f5]. It is a reasonably well-researched al-
gorithm which attracted many researchers. The original F5 implementation had a detectable issue
with artifacts[F5broken] caused by the recompression of the image. The issue was an implemen-
tation issue, and the researchers have provided a corrected reference implementation without the
weakness.

4.2 The Core: Operations Executed in a Workspace
We differentiate three types of operations:

e Splitting and merging of chunks
e Encryption and decryption of chunks
e Redundancy calculations carried out on chunks

The first two Operations do not provide a high level of unlinkability as they do allow analysis
such as hotspot analysis and produce continuously inclining, steady, or declining message sizes
depending on the type of use. The third operation, however, adds a whole lot of new possibilities
in conjunction with the other two.

The splitPayload operation splits a payload block into two chunks of different or equal sizes.
The parameters for this operation are:

e Source payload block pb;
e Fraction 0 < f < 1 of pb; transferred to the first chunk pb;

If len(pb,) expresses the size of a payload block called pb; in bytes, then the two resulting blocks
of the SpitPayload Operation pb, and pbs have to follow the following rules:

split(f,pby) = (pby, pbs) 3)
pby.startsWith(pb,) (4)
pby.endsWith(pbs) ()

len(pby) = |len(pby) - f] (6)
len(pby) = len(pby) + len(pbs) (7)

The mergePayload operation combines two payload blocks into one and is defined as the re-
versing function to the splitPayload function. The mergePayload operation is defined analogous
to the splitPayload operation and joins the two blocks into one.
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The encryptPayload operation encrypts a payload block pb; symmetrically resulting in a block
pb,. The length of block pb, may vary according to mode and padding chosen. The parameters for
this operation are:

e Source payload block pb;
e Encryption specification spec
e Symmetric key K

The operation follows the following rules:

encrypt(pby, spec,K;) = pby (8)
pbz = Eggec (pby) )
len(pby) > len(pby) (10)

The decryptPayload operation decrypts a payload block pb; symmetrically resulting in a block
pb,. 1t is defined as the reversing operation to encryptPayload.

The Redundancy Operations build the core of the mixing operations. The operation allows us to
add redundancy information to a message or to rebuild a block from a chosen set of information.

Input
‘1

‘ padding and splitting ‘

B] BQ """""" Bn,—m—l anm
A Y A Y
‘ Reed-Solomon (m of n) ‘
Cl CQ Cn— 1 Cn
Bk || ER2 | Ekfn-1 || gkn
lO 1 iOZ lon,— 1 i() n
output

Fig. 5. Graphical representation of the addRedundancy operation

The operation itself is shown in Fig. 5 and may be subdivided into the following operations:

e Pad the original message block in such a way, that all resulting blocks are a multiple of the
block size of the encrypting cipher.

e Apply a Reed-Solomon (RS) operation in a given Galois field (GF) with a Vandermonde ma-
trix.

e Encrypt all resulting blocks with unpadded, symmetrical encryption.

The padding applied in the first step is a non-standard padding. The reason for this lies in the
properties required by the operation. The presence of a standard padding may leak, whether the
block has been successfully decrypted or not. Therefore, we created a padding with the following
properties:

o The padding must not leak whether the rebuild cycle of the operation was successful or not.

e Anyone knowing the routing block content and the transmitted message must be able to
predict any treated block, including all padding bytes.

e The padded content must provide resulting blocks of required size to enable non-padded
encryption after the RS operation

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: April 2020.



16 Martin Gwerder

e The padding must work with any size of padding space.
e The padded and encrypted block must not leak an estimate of the original content.

The padded block X is created from a padding value p, the unpadded block M and a series of
padding bytes. We build X for a function RSy, ofn and an encryption block M sized K as follows:

i = len(M) (11)
e = k-n (12)
I - {ﬂ e (13)
e
2% —i
p = i+ (Cl -1 (mod { ; J 'l)) (14)
X = (MR (s,1—i—4)) (15)

The remainder of the input block, up to length I, is padded with random data. The random padding
data may be specified by RBB though a PRNG spec t and an initial seed value s. The message is
padded up to size L. All resulting, encrypted blocks do not require any padding. This baecause the
initial padding guarantees that all resulting blocks are dividable by the block size of the encrypting
function. If not provided by an RBB, an additional parameter C1 is chosen as random positive
integer and C2 = 0 by the node executing the operation.

To reverse a successful message recovery information the of a padded block X, we calculate the
original message size by extracting p and doing len(M) = p (mod len(X)).

This padding has many important advantages:

(1) The padding does not leak if the rebuilding of the original message was successful. Any
value in the padding may reflect a valid value.

(2) Since we have a value C2, the statement that a message size is within len(X) < size <
(len(X) — k - n) is no longer true and any value smaller len(X) — k - n may be correct as well.

(3) An RBB may predict the exact binary image of the padded message when specifying C1, C2,
and R; (s, ).

The Reed-Solomon operation is done with a Vandermonde matrix. Unlike in error-correcting
systems, we do not normalize the matrix so that the result of the first blocks is equivalent to the
original message. Instead, the error-correcting information is distributed over all resulting blocks.
Since the entropy of the resulting blocks is lowered as shown in Fig. 6 and may thus leak an estimate
of how a resulting block may have been treated, we added the encryption step to equalize entropy
again. The previously introduced padding guarantees that there is no further padding on block-
level required. The key used to encrypt the single blocks must not be equivalent. Equivalent keys
have the side effect encrypting equal blocks into the same cyphertext. As entropy of the same text
is equal, some reminders of the graph may still be detectable, as shown without the encryption
step.

4.3 Usage of the Protocol

First, a sending node collects a set of nodes and keys it wants to use and creates identities on these
nodes using header requests. Then the sender creates a routing block containing all the routing
instructions (hops and operations). Alternatively, a sender may use a premanufactured routing
block for the specified target. This routing block is then concatenated to a message and passed to
the locally running routing node. From there, the message is routed as defined in the routing block.
An example of such a route is shown in Figure 2.
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Properties of GF(8) based addRedundancy transformations
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Fig. 6. Resulting entropy of addRedundancy with and without encryption step

A trivial routing block may only include the direct hop from the sender to the receiver. When
adding subsequent decoy paths leaving the receiver, it is even for an adversary capable of mapping
ephemeral identities to the respective RBB impossible to tell the final recipient. This obvious as a
message may increase or decrease in its size even after the final delivery through the addRedun-
dancy operation. Even the recipient node is unable to tell if there are any other messages routed
if appropriately crafted.

If a node is always using a set of K recipients of its address book, at least K anonymity is
achieved. If an adversary compromises all other nodes involved in routing, he is still unable to
obtain additional knowledge. All outgoing traffic from this node may be related or unrelated to
the observed message as linking between messages is no longer possible. Essential properties, such
as message size or routing block size, may increase or decrease. If the adversary can monitor all
messages from the inner side of the system (all messages are passed by an adversary controlled
node to the honest node), he may assume that a routing block, in general, may only decrease in
size. Starting from this assumption, he might be able to eliminate some candidates for linking.
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5 ANALYSIS OF THE DESIGN

We first focus on the protocol itself to show the strength and weaknesses of the protocol. After
that, we focus on the dynamic part and see what type of data may be collected when consider-
ing not only the protocol but the whole message flow. We then present guidelines for different
jurisdictional types.

We focus on an adversary in an environment, where the participation as a MessageVortex router,
is considered a criminal act and highlight some additional constraints applying in such situations.

5.1 Protocol Block Structure Analysis

A VortexMessage is not identifiable as the message is structureless on the outside. All exposed
blocks have no properties enabling an adversary to identify the block itself. The VortexMessage
itself, in its encrypted form, follows the encrypted key without any structure. Therefore, we require
the host’s private key to tell whether there is a VortexMessage within a transport message or not.
Without the host key, enabling us to obtain the symmetric key of the message, there is no way to
distinguish random data from a VortexMessage.

The padding block PAD makes sure that, even if a routing block is reused, the VortexMessage
structure is not the same. However, the preceding block with the key remains the same unless the
RBB provided multiple key blocks. If a key block is reused, an adversary may identify repeated
MURBs using this fingerprint.

The use of prebuilt symmetric key blocks at the beginning of a VortexMessage allows not to
expose the host key of a peering node. The encrypted header and routing blocks enable in its
structure message assembly at a host without exposing subsequent operations or ephemeral iden-
tities. The forwardSecret embedded in the blocks allows a VortexNode to identify tampered blocks
created by the recombination of messages. The payload messages themselves are encrypted blocks.
They do, therefore, not leak information.

All operations may apply to true message chunks as well as decoy traffic. As a node cannot tell
if a traffic arriving is a decoy or true message content, it is unable to tell apart what outgoing traffic
is a decoy. An encrypted block is of the same nature before and after encryption. As we do not
know the blocks nature before, we are unable to tell the blocks nature after the encryption. The
same argument applies to decryption, split, and merge operations.

Redundancy operations are alike. They, however, fulfill an additional purpose. An operation
called addRedundancy enables the protocol to add size to a message without enabling the sender
to differentiate between redundancy information and original payload. If the original block was a
decoy, then all resulting blocks are decoys. If an originating block was message content, then all
resulting blocks hold the same amount of data from the original block. So, this operation allows
decoy traffic generation without enabling a generating node to identify the decoy traffic.

An active adversary may not create its routing blocks or header blocks and inject them due to the
forward secret. He may, however, replace the peer key of a message. As this key is known to him,
he gains no additional knowledge. Replacing the sender key block breaks the message. Replacing
the header or routing block of the message with another header or routing block from the same
ephemeral identity breaks the message unless the RBB reused the sender key and the forward
secret. Finally, exchanging, omitting, or adding payload blocks renders the message inoperable, but
does not generate additional knowledge. Replying the same or a modified block does not generate
any pattern on the network as the replay protection stops propagating messages at the next node.
Thus, a replayed block does not generate new knowledge to an observer.
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6 PROTOCOL USAGE ANALYSIS

The communication itself is undetectable for an adversary only observing as long as the blending
mechanism is secure, and the plain text communication of a node does not differ from any other
communication. While we can monitor the first criteria, the latter is far harder to achieve or mea-
sure as it involves many unobvious properties. Obvious properties are the credibility of message
content or stringency of communication over all messages. Unobvious properties may be the fre-
quency of messages (e.g., bundling of messages showing an inappropriate speed of writing of a
single entity or 24x7 activity of a natural person) or a message exchange massively in favor of one
recipient. We were not able to create a set of measurable properties covering these properties.

Next, and one of the biggest problems we found is that a VortexNode is aware of its immediate
peers. This flaw is because we do require a routable address for the transport protocol. Introducing
a new transport method would expose the protocol to censorship again. VortexNodes may thus
discover their immediate peers. It is, on the other side, not possible to use discovered peers. If
an adversary wants to use a peer, he requires in addition to the transport address a host key. A
VortexNode may query this key, but there is no obligation to reply to the node asked for the key. We
were unable to find a protocol commonly used on the Internet, allowing us to cloak the receiving
node of a message completely.

Depending on the blending method, an adversary may identify single messages as long as they
are detectable. Detectability depends on various factors, such as (broken) file structure, uncommon
attributes (e.g., mismatching entropy), unrelated message flow (e.g., [oakland2013-parrot]), or
non-human behavior (e.g., message traffic 24x7).

Assuming a global observer as an adversary and unencrypted traffic, he might discover the orig-
inating routing layer and thus identify it as VortexNode by following traces of the transport layer.
In most protocols, however, this address is spoofable and not a reliable source for the originating
account.

The knowledge a node may gain from ephemeral identities is minimal. The ephemeral identity
is created by a node unknown to the receiver of the request. The only thing we know is what node
was adjacent when creating the ephemeral identity. As the creation of an ephemeral identity is
not linked to any other identity or ephemeral identity relationship between ephemeral identities
on two nodes cannot be established. If two adjacent nodes cooperate when processing two linked
ephemeral identities, no additional knowledge may be won. If two collaborating nodes have one
or more non-collaborating nodes between them, they lose all linking knowledge due to the non-
collaborating nodes.

Operations have been carefully crafted to leak as little information as possible. Being able to
encrypt or decrypt a payload block does not leak any information. The data processed may be
true message traffic or decoy as we do not know what the nature of the received message was. If
an RBB avoids repeating patterns of blocks on nodes, it is not possible to link ephemeral identities
of two non-adjacent nodes. Repeating patterns may arise, for example, if a block pb; is decrypted
and re-encrypted on two nodes. In this case, both nodes may match the message as it contains the
same content between the operations.
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node f:
pba = D(pb;
pbs = EXt(pby)
node f+1:
node f+x:

pbs = DXt (pbs)

In this example the patterns of pb3 and pby = pb, are two patterns repeating on non-adjacent
nodes. The same conclusions are even more valid for splitting operations. These two operations
should be regarded as helpers for the addRedundancy and removeRedundancy operations. These
operations may be used to generate decoy traffic or to destroy data without knowledge of doing
so of the processing node. If we process a function addRedundancy,,r3 any of the output blocks
contains the input payload, and any two of them may be used to recover the data. At the same time,
an operation removeRedundancys,, 3 may be successful or not. The node is unable to differentiate
between the two states. The padding applied and the unpadded encryption makes it impossible to
judge upon success or fail of an operation.

As the communication pattern is defined by the RBB and not always the same, it is hard to judge
on the security. We may, however, look at some generic examples and show that we can achieve
the goals byzantine fault tolerance, privacy and unlinkability, and anonymity. Figure 7 shows a
sending node s, a series of routing nodes n;, j assembled to routing chains. Furthermore, we have
a r for which the message is destined and a set of nodes aj building the anonymity set. Neither
the number of chains j nor the length of the chains i is relevant. A node or a sequence of nodes
may be part of multiple chains. By normalizing a path into such a form, we may at least analyze
some properties of the protocol. We furthermore have to keep in mind that we trust sender s and
receiver r. Any possible routing block may be reduced to this scheme if knowing the exact building
instructions applied by the RBB.

We have to consider the fact that two adjacent nodes collaborating may build one combined
workspace executing all operations. They are, therefore, able to link all operations of these two
adjacent nodes and follow all incoming and outgoing paths. We, therefore, may assume that two
adjacent nodes or an uninterrupted series of collaborating nodes may be substituted by one node.

So a routing node n;, may not know if a VortexMessage received from s is the result of process-
ing another message or the message has been injected on node s. Furthermore, if s was acting as
a routing node, it successfully unlinked the message from any previous node. The sending node s
may send a message by first employing an addRedundancy operation or splitting and encrypting
the message. Each path through the streams has then not enough information to rebuild the com-
bined message. If employing an addRedundancy operation, a receiver r may recover a message, if
sufficient paths through the routing nodes were acting according to the protocol. Paths with mis-
behaving nodes may eventually be identified depending on the number of redundancy operations.
Assuming that the RBB included proper padding Information for the receiver r, the receiver may
identify what set of VortexMessages leads to the original message due to the padding applied before
the RS function. So if sufficient paths, depending on the chosen operations at r, provide correct
data, we may recover nodes misbehaving in our paths. If one node in a path is not collaborating
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Fig. 7. A possible path of a VortexMessage

with adjacent nodes in the path, the path of the VortexMessage becomes unlinked as previously
shown with sender s. If multiple paths are used, all paths must have at least one honest node to
unlink the message.

If all nodes in the anonymization set a;...a, are honest, any preceding node may not know
whether the message ends at that node or the message is just routed through an honest node.
Even if some of the anonymization nodes are not honest or collaborating with an adversary, the
anonymity set may be reduced in size, but the receiver is still part of the anonymity set spanning
the honest anonymization nodes. So, we have shown that depending on the chosen routing block,
anonymity, unlinkability, and fault tolerance against a misbehaving node may be achieved. AN
RBB may furthermore send additional VortexMessages to suspected misbehaving nodes. If misbe-
havior is reproducible within an ephemeral identity, the RBB may identify it by picking up parts
of the previously sent message and comparing them to an expected state. An RBB may even intro-
duce message paths leading back to the RBB itself. Such a message path may allow observation of
the progress and success of the message delivery.

6.1 Dynamic Protocol Analysis

As VortexMessages contain random waits and unpredictable increases and decreases in size, a global
observer is unable to analyze a message flow by timing or pattern of the exchanged traffic even
when being able to identify MessageVortex traffic. Source and target nodes of a message are in-
distinguishable from other nodes, even if having infiltrated significant portions of the network.
Cooperation between adjacent nodes does not gain more information. Linking of the message of
two non-adjacent nodes is not possible as there are no linking attributes. Even assuming evil nodes
analyzing message sizes produced will not help as a statistical approach as the size of VortexMes-
sages have nothing in common with the size of the original message, its sender, the path length,
the remaining path length of a message. Even the routing block which is continuously decreasing
has nothing common with the messages remaining path. A payload block sitting in a workspace
may be picked up by another routing block traveling through another path.
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Bootstrapping of addresses and identities is a privacy issue. This bootstrapping is needed as we
do require to know a significant number of nodes to create our routing blocks. In its current de-
sign, MessageVortex is not capable of using unknown routing nodes. While a concept of routable,
unknown addresses could be introduced, it has shown to be of known worth. Without the possi-
bility of mapping a node to a physical address, we have found no mean to prevent the generation
of an indefinite number of “service endpoints” with a minimal amount of work. In the protocols’
current design, an adversary may discover nodes over time using header requests. While it is not
possible to screen traffic destined to such nodes, a global observer may eventually identify peer
partners of these nodes on the transport level. This is especially an issue in jurisdictions where
the operation of routing nodes is considered a criminal act.

In environments with an observing adversary (see section 2.1), a VortexNode may disclose its
presence. As a result, a VortexNode is not forced to cloak its presence. In such an environment, an
RBB should choose the operations to be sensible, but great care is not required. Even if there is a
node with a known owner of the node and a suspected message is received, the owner may credibly
claim that the message in question was a decoy. No information obtained by any node involved in
the routing of the message may proof anything else. Since a message may be split into any number
of parts and related messages are only identifiable with a high degree of improbability, even meta
information such as the real size of the message, the sending time, or the involved parties in the
anonymity set are unknown. This statement is still valid if we consider an active adversary.

In environments where using a VortexNode is subject to criminal prosecution due to a censoring
adversary, much more care has to be applied. As all routing nodes know their immediate peer, we
were only able to find two weak solutions to this problem. The first solution is only to use trusted
nodes within the jurisdiction and for the first hop outside the jurisdictional reach of the adver-
sary. If we can trust all routing nodes, no external observer may prove that the message flow is
MessageVortex traffic. The RBB may reduce the set of eventually uncovered nodes by applying com-
municating groups of nodes (communication cells) with defined gateways nodes between them. In
such a scenario, only a cell and possibly adjacent cells may be discovered.

Reusing a routing block is required if the receiver is not known, and a continuous stream of
messages is required. Although it is possible to use multiple single route routing blocks (SURB)
instead of one multi-use routing block (MURB), it is costly. These costs arise due to the necessary
calculation power to create identities. MURBs do have, however, significant drawbacks in terms
of unlinkability and should be, therefore, avoided if possible. A MURB creates a repeated pattern
on the network in terms of messages. For a routing node, it is evident that the same tuple of
communication partners is exchanging messages. The size of the VortexMessage allows in such a
case an estimate of the current size in relation to the previous messages. Routing nodes processing
MURBs repeatedly are aware of the fact that they are processing a MURB.

Furthermore, security is affected when using MURBs. A MURB may be replayed and allows thus
to exhaust quotas of an ephemeral identity. To counter such exhaustion, the protocol introduces a
maximum replay rate, but this is only weak protection.

7 CONCLUSION

Creating a possibly censorship-resistant protocol is already hard. The analysis showed that even
when a protocol is crafted with great care, braking unobservability is far simpler than doing it right.
MessageVortex does show the desired properties. The protocol allows sending a message from a
sender to a recipient without exposing the linking between the two. Traditional analysis, such as
hotspot analysis, fail since the operations successfully hide properties of the message flow. At the
same time, we were able to present a system which requires an unmatched amount of observation,
infrastructure, and calculation power to be broken.
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7.1 Unsolved Issues and Future Research

For this protocol to be of any use, a user-friendly implementation is required. The currently re-
leased implementation works as a prototype for academic research. It is, however, far beyond
being user-friendly. A new implementation must provide excellent censorship-resistance while
providing easy to use recipes for message transfer. For the traffic to be truly undetectable, chat-
bots must generate meaningful conversations between blending nodes. This conversation does not
necessarily boil down to a Turing test. It is sufficient that two blending layers are capable of setting
up communication, which is indistinguishable from a regular human or machine communication.
As an adversary is typically not able to generate own traffic without exposing the probing activity
and a blender is not required to such probes, an attacker is very limited.

Furthermore, some issues have been identified, relating to updating nodes. A node should be able
to request the software over VortexMessages as official sources for updates may be blocked. Another
exciting field of academic research is creating strategies for Routing block builders (RBB). We
currently have a toolset of powerful operations, but academic researched strategies or guidelines
for good routing blocks are missing.

The hardware of a routing node should be protected with a small platform featuring deniable
encryption and anti-forensic measures. We are currently investigating the possibility of creating
such a cheap platform based on a RaspberryPi Zero.

7.2 Further Reading

This paper is a very rough overview of the MessageVortex protocol. For those interested in the
technical implementation details, the current version of the RFC[MessageVortexRFC]. For a more
elaborated analysis covering additional topics such as the blending types, additional literature
research, or arguments for a decision, we recommend reading the thesis paper [messageVortex].
In this document, we cover additional details such as elaborated analysis on the protocol, the
implications of the connection between transport endpoints and VortexNodes, or an analysis of the
plain embedding technique.
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