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Abstract

In this paper, we introduce an unobservable message anonymization protocol, named MessageVortex. It bases on the zero-trust principle,
a distributed peer-to-peer (P2P) architecture, and avoids central aspects such as fixed infrastructures within a global network. It scores
over existing work by blending its traffic into suitable existing transport protocols, thus making it next to impossible to block it without
significantly affecting regular users of the transport medium. No additional protocol-specific infrastructure is required in public networks
and allows a sender to control all aspects of a message such as the degree of anonymity, timing, and redundancy of the message transport
without disclosing any of these details to the routing or transporting nodes. Part of this work is an RFC document attached in Appendix
A describing the protocol. It contains all the necessary information to build protocol nodes. The RFC draft is available through the official
RFC channels. Additionally, the RFC document, additional documents, and a reference are available under https://messagevortex.net/.
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1 Foreword

Almon Brown Strowger was the owner of a funeral parlor in St. Pe-
tersburg. He filed a patent on March 10t 1891 for an “Automatic
Telephone Exchange” [pulseDialingPatent]. This patent built the
base for modern automated telephone systems. According to sev-
eral sources, he was annoyed by the fact that the local telephone
operator was married to another undertaker. She diverted potential
customers of Mr. Strowger to her husband instead, which caused
Almon B. Strowger to lose business. In 1922, this telephone di-
aling system, which is nowadays called pulse dialing, became the
standard dialing technology for more than 70 years until tone dialing
replaced it.

This dialing technology is the base for automatic messaging for
voice and text messages (e.g., telex) up until today and is the foun-
dation for current routed networks. These networks build the base
for our communication-based Society these days and allow us to
connect quickly with any person or company of our wish. We use
these networks today as communication meaning for all purposes,
and most of the people spend minimal thoughts on the possible con-
sequences arising if someone puts hands on this communication.

This collected data may be used to judge our intentions and thus is
not only confidential if we have something to hide. This problem has
dramatically increased in the last years as big companies and coun-
tries started to collect all kinds of data and created the means to pro-
cess them. It allows supposedly to judge peoples not only on what
they are doing but as well, on what they did and what they might
do. Numerous events past and present show that actors, some of
which are state-sponsored, collected data on a broad base within
the Internet. Whether this is a problem or not is a disputable fact.
Undisputed is, however, that such data requires careful handling,
and accusations should then base on solid facts. While people
may classify personalized advertising as legit use, a general clas-
sification of citizens is broadly considered unacceptable[NCR2013,
XKeyscore, Ball2013, Greenberg2013, Leuenberger1989].

To show that this may happen even in democracies, we might re-
fer to events such as the “secret files scandal” (or “Fichenskan-
dal”) in Switzerland. In the years from 1900 to 1990 Swiss gov-
ernment collected 900’000 files in a secret archive (covering more
than 10% of the natural and juristic entities within Switzerland at
that time). The Swiss Federal Archives document this event in
depth[Leuenberger1989].

Whistleblower Edward Snowden leaked a vast amount of docu-
ments. These documents suggest that such attacks on privacy are
commonly made on a global scale. The documents leaked in 2009
by him claim that there was a data collection starting in 2010. Since
these documents are not publicly available, it is hard proving the
claims based on these documents. However — A significant num-
ber of journalists from multiple countries screened these documents
claiming that the information seems credible. According to these
documents (verified by NRC), NSA infiltrated more than 50k com-
puters with malware to collect classified or personal information.
They furthermore infiltrated Telecom-Operators (mainly executed
by British GCHQ) such as Belgacom to collect data and targeted
high members of governments even in associated states (such
as the mobile phone number of Germany’s president) [NCR2013,
XKeyscore, Ball2013, Ackerman2013, Greenberg2013]. A later
published shortened list of “selectors” in Germany showed 68 tele-
phone and fax numbers targeting economy, finance, and agricultural
parts of the German government. A global survey done by the free-
dom house[FOTN2018] claims a decrease in Internet freedom for
the p8 year in a row.

This list of events shows that big players are collecting and storing
vast amounts of data for analysis or possible future use. The list of
events also shows that the use of such data was at least partially
questionable. This work analyses the possibility of using state-of-
the-art technology to minimize the information footprint of a person
on the Internet.

We leave a large information footprint in our daily communication.
On a regular email, we disclose everything in an “postcard” to any
entity on its way. Even when encrypting a message perfectly with
today’s technology (S/MIME[RFC2045] or PGP[RFC2015)), it still
leaves at least the originating and the receiving entity disclosed, or

we rely on the promises of a third party provider which offers a pro-
prietary solution. Even in those cases, we leak pieces of information
such as “message subject”, “frequency of exchanged messages”,
“size of messages”, or “client being used”. A suitable anonymity
protocol must cover more than the sent message itself. It includes,
besides the message itself, all metadata, and all the traffic flows.
Furthermore, a protocol to anonymize messages should not rely on
the trust of infrastructure other than the infrastructure under control
of the sending or receiving entity. Trust in any third party might be
misleading in terms of security or privacy.

Furthermore, central infrastructure is bound to be of particular inter-
est to anyone gathering data. Such control by an adversary would
allow manipulating the system or the data or the data flow. So,
avoiding a central infrastructure is a good thing when it comes to
minimizing an information footprint available to a single entity.

Leaving no information trail when sending information from one per-
son to another is hard to achieve. Most messaging systems disclose
at least the peer partners when posting messages. Metadata such
as starting and endpoints, frequency, or message size are leaked in
all standard protocols even when encrypting messages.

Allowing an entity to collect data may affect senders and recipients
of any information. The collection of vast amounts of data allows a
potent adversary to build a profile of a person. Unlike in the past,
the availability of information has risen to a never known extent with
the Internet.

An entity in possession of such Profiles may use them for many
purposes. These include service adoption, directed advertising, or
classification of citizens. The examples given above show that the
effects of this data is not limited to the Internet but reaches us effec-
tively in the real world.

The main problem of this data is that it may be collected over a
considerable amount of time and evaluated at any time. It even
happened that standard practices at a time are differently judged
upon at a later time. Persons may then be judged retrospectively
upon these types of practice. This questionable type of judgment is
visible in the tax avoidance discussion[Amat1999].

People must be able to control their data footprint. Not providing
these means does effectively allow any country or a more prominent
player to ban and control any number of persons within or outside
the Internet.

We design in this work a new protocol. This protocol allows mes-
sage transfer through existing communication channels. These
messages are next to unobservable to any third party. This unob-
servability does not only cover the message itself but all metadata
and flows associated with it. We called this protocol “MessageVor-
tex” or just “Vortex”. The protocol is capable of using a wide va-
riety of transport protocols. It is even possible to switch protocols
while the messages are in the transfer. This behavior allows media
breaches (at least on a protocol level) and makes the analysis even
harder.

The new protocol allows secure communication without the need
to trust the underlying transport media. Furthermore, the usage of
the protocol itself is possible without altering the immediate behav-
ior of the transport layer. The transport layers’ regular traffic does,
therefore, increase the noise in which hidden information has to be
searched.

This work splits into multiple parts. In the first part, we collect avail-
able researches and technologies. We emphasize techniques on
the strength and weaknesses relevant to this work.

In the second part, we reassemble the pieces to a new protocol.

In the third part, we analyze the protocol for the fitness of the pur-
pose. We try to find weaknesses and work out recommendations
for protocol usage.

In the last part, we discuss the results and try to summarize the
findings. We furthermore elaborate to what extent the protocol ful-
fills the requirements mentioned in the previous sections.


http://www.nrc.nl/nieuws/2013/11/23/nederland-sinds-1946-doelwit-van-nsa

1.1 Contributions

This thesis contributes to the topic in the following senses:

« It introduces a consistent model for message delivery, which
includes all endpoints and involved parties.

« It shows an approach based on existing protocols for anony-
mous communication, which gives full control of the anonymity
to the sender while controlling the costs.

« It offers a client application implementing the proposed Proto-
col as IMAPv4 cache daemon and as SMTP relay.

2 Notation

2.1 Cryptography

The theory in this document is heavily based on symmetric en-
cryption, asymmetric encryption, and hashing. To use a uni-
formed notation | use EX«(M) (where «a is an index to distinguish
multiple keys) resulting in MX= as the encrypted message. If
we are reflecting a tuple of information, we write it in boldface.
To express the content of the tuple, we use angular brackets
L{normalAddress, vortexAddress). If we want Messages encrypted
with multiple keys do list the used keys as a comma-separated list
in superscript EX¢ (EKH (M)) = MKaKs,

For a symmetric encryption of a message M with a key K, resulting
in MX2 where a is an index to distinguish different keys. Decryption
uses therefore DX«(MKa) = M.

As notation for asymetric encryption we use EXa (M) where as K;!
is the private key and K is the public key of a key pair k2. The

asymmetric decryption is noted as DX« : (M).

For hashing, we do use H(M) if unsalted and HS« if using a salted
hash with salt S,. The generated hash is shown as Hy, if unsalted
and H;¢ if salted.

If we want to express what details contained in a tuple we
use the the notation M(t, MURB, serial) respectively if encrypted
MKa(t, MURB, serial).

asymetric:EXa' (M) = MKa'
DK (EKa_] (M)) -M
pFa' (E’(J (M)) -M
symetric:EXe (M) = MK«

DX« (EX« (M) =
hashing (unsalted):H (M) =Hy
hashing (salted):H5« (M)
In general, subscripts denote selectors to differentiate the values
of the same type, and superscript denotes relevant parameters to

operations expressed. The subscripted and superscripted pieces of
information are omitted if not needed.

We refer to the components of a VortexMessage as follows:

Prefix component:PREFIX - pa (P’(FI) =D(P)

Header component:HEAD - pki (HKF 1) - D(H)

Route component:ROUTE - pka (R’(F 1) =D(R)

In general, a decrypted Block is written as a capitalized multi-
character boldface sequence. An encrypted Block is expressed as
a capitalized, single character, boldface letter.

2.2 Code and commands

We write code blocks as a light grey block with line numbers:

1 public class Hello {

2 public static void main(String args[]) {
3 System.printin("Hello._"+args[1]);

4}

5 }

Commands entered at the command line are in a grey box with a top
and bottom line. Whenever root rights are required, the command
line is prefixed with a “#”. Commands not requiring specific rights
are prefixed with a “$”. Lines without a trailing “$” or “#” are output
lines of the previous command. If long lines are split to fit into the
paper, a “«" is inserted to indicate that a line break was inserted
for readability.

# su -

# javac Hello.java

# exit

$java Hello

Hello.

$java Hello "This is a very long command-line that had to be broken «
to fit into the code box displayed on this page."

Hello. This is a very long command-line that had to be broken to =
fit into the code box displayed on this page.

2.3 Hyperlinking

The electronic version of this document is hyperlinked. References
to the glossary or the literature may be clicked to find the respective
entry. Chapter or table references are clickable too.

3 Main Research Question

The main topic of this thesis was defined as follows:

* Is it possible to have a specialized messaging protocol used on
the Internet-based on “state of the science” technologies offer-
ing a high level of unlikability (sender and receiver anonymity)
towards an adversary with a high budget and privileged access
to Internet infrastructure?

Based on this central question, there are several sub-questions
grouped around various topics:

1. What technologies and methods may be used to provide
sender and receiver anonymity and unlinkability when sending
messages against a potential adversary? (SQ1)

2. How can entities utilizing MessageVortex be attacked, and
what measures are available to circumvent such attacks?
(SQ2)

3. How can design mitigate attacks target anonymity of a sending
or receiving entity within MessageVortex? (SQ3)

3.1 SQ1: Technologies for Sending Messa-

ges Maintaining Unlinkability

This question covers the principal part of the work. We first elab-
orate on a list of criteria for the MessageVortex protocol. We then
create a list of suitable technologies and methods. Based on these
findings, we define a protocol combining these technologies and re-
searches into a solution. This solution is implemented and analyzed
for suitability based on the criteria specified previously.

Main results of this question are found in part Il and part Il



3.2 SQ2: Attacking unlinkability and circum-
vention

Within this question, we look at various attacks and test resistance
of the protocol based on the definition of the protocol. We do this
by first collecting well-known attacks (either generic or specific to a
technology used in the protocol). We then elaborate if those attacks
might be successful (and if so under what circumstances).

We discuss this question in part IV.

3.3 SQ3: Attack Mitigation by design

Within this question, we define baselines to mitigate attacks by iden-
tifying guidelines for using the protocol. We analyze the effective-
ness of the guidelines and elaborate on the general achievement
level of the protocol by looking again at the criteria defined in SQ1.

This question is answered in part IV.






Part I

Methodes






In this part of the thesis, we collect requirements, definitions, meth-
ods, and existing research relevant to the topic of this thesis. We
explain the choices made and what solutions have been discarded.

We start by collecting requirements for the protocol. Having the re-
quirements, we collect existing technologies on research and imple-
mentation levels. Each of the techniques is quickly categorized and
either further studied or rejected, naming the reasons for rejection.

The list of technologies and research collected is big. All rele-
vant technologies, either widely adopted or thoroughly researched,
should be included in this chapter. All Technologies and research
are categorized. We reference technologies through their stan-
dards. If applicable, multiple standards may be part of the analysis.
A short introduction into the protocol is given and then analyzed for
suitability for a specific problem addressed in this work. Whenever
quoting research, we refer to the respective papers. If appropri-
ate, multiple related pieces of research are collected together into
a bigger picture and then analyzed. When analyzing, we focus on
suitability concerning specific problems. If related to standard tech-
nology, we link to the respective standards. Transport layer proto-
cols have been shortened to the outcomings in table 5.1. For an
extensive analysis see appendix B

In chapter 4, we collect the requirements of the protocol. Based
on the findings in this section, we collect in chapter 5. In chapter
6, we collect relevant research about the topic. In chapter 7, we
summarize the chosen methods. We explain choices and give a
rough outline of the protocol working.

4 Requirements for an Anonymizing
Protocol

In the following sections, we elaborate on the main characteristics
of the anonymizing protocol.

The primary goal of the protocol is to enable Freedom of speech,
as defined in Article 19 of the International Covenant on Civil and
Political Rights (ICCPR)[iccpr].

everyone shall have the right to hold opinions without in-
terference

and

Everyone shall have the right to freedom of expression;
this right shall include freedom to seek, receive and impart
information and ideas of all kinds, regardless of frontiers,
either orally, in writing or print, in the form of art, or through
any other media of his choice.

We imply that not all participants on the Internet share this value. As
of September p1, 2016 Countries such as China (signatory), Cuba
(signatory), Qatar, Saudi Arabia, Singapore, United Arab Emirates,
or Myanmar did not ratify the ICCPR. Other countries such as the
United States or Russia did either put local laws in place supersed-
ing the ICCPR or made reservations rendering parts of it ineffec-
tive. We may, therefore, safely assume that freedom of speech is
not given on the Internet, as at least countries explicitly supersede
them.

Network packets may pass through any point of the world. A sender
has no control over it. This lack of control is since every routing de-
vice decides on its own for the next hop. This decision may be based
on static rules or influenced by third party nodes or circumstances
(e.g., BGB, RIP, OSPF...). It is furthermore not possible to detect
what way has a packet taken. The standard network diagnostic tool
tracert respectively traceroute returns a potential list of hops.
This list is only correct under certain circumstances (e.g., a sta-
ble route for multiple packets or same routing decisions regardless
of other properties than the source and destination address). Any
Output of these tools may, therefore, not taken as a log of routing
decisions. There is no possibility in standard IP routed networks to
foresee a route for a packet, nor can it be measured, recorded, or
predicted before, while, or after sending.

As an example of the problems analyzing a packet route, we may
look at traceroute. According to the man page of traceroute,

traceroute uses UDP, TCP, or ICMP packets with a short TTL and
analyses the IP of the peer sending a TIME_EXCEEDED (message
of the ICMP protocol). This information is then collected and shown
as a route. This route may be completely wrong. The man page
describes some of the possible causes.

We cannot state that data packets we are sending are passing only
through countries accepting the ICCPR to the full extent, nor can
we craft packages following such a rule.

$traceroute www.ietf.org

traceroute to www.ietf.org.cdn.cloudflare-dnssec.net (104.20.0.85), 64 hops max
1147.86.8.253 0.418ms 0.593ms 0.421ms
210.19.0.253 1.177ms 0.829ms 0.782ms
310.19.0.253 0.620ms 0.427ms 0.402ms
4193.73.125.35 1.121ms 0.828ms 0.905ms
5193.73.125.81 2.991ms 2.450ms 2.414ms

6 193.73.125.81 2.264ms 1.961ms 1.959ms

7 192.43.192.196 6.472ms 199.543ms 201.152ms
8130.59.37.105 3.465ms 3.138ms 3.121ms

9 130.59.36.34 3.904ms 3.897ms 4.989ms

10 130.59.38.110 3.625ms 3.333ms 3.379ms

11 130.59.36.93 7.518ms 7.232ms 7.246ms

12 130.59.38.82 7.155ms 17.166ms 7.034ms

13 80.249.211.140 22.749ms 22.415ms 22.467ms
14 104.20.0.85 22.398ms 22.222ms 22.146ms

Figure 4.1: A traceroute to the host www.ietf.org

To enable freedom of speech, we need a mean of transport for mes-
sages which keep sender and recipient anonymous.

4.1 Threat model

We refer to jurisdiction as a geographical area where a set of legal
rules created by a single actor or a group of actors apply, which
contains executive capabilities (e.g., police, army, or secret service)
to enforce this set of legal rules.

We assume for our protocol that adversaries are state-sponsored
actors or players of large organizations. These actors have high
funding and expected to have elaborated capabilities themselves or
within reach of the sponsor. Actors may join forces with other actors
as allies. However, achieving more than 50% on a world scale is
excluded from our model. We always assume one or more actors
with disjoint interests covering half of the network or more.

We assume the following goals for an adversary:

* An adversary may want to disrupt non-authorized communica-
tion.

* An adversary may want to read any information passing
through portions of the Internet.

» An adversary may want to build and conserve information
about individuals or groups of individuals of any aspect of their
life.

To achieve these goals, we assume the following properties of our
adversary:

» An adversary has elaborated technical know-how to attack any
infrastructure. This attack may cover any attack favoring his
goals, starting with exploiting weaknesses of popular software
(e.g., buffer overflows or zero-day exploits) down to simple or
elaborated (D)DoS attacks.

» An adversary may monitor traffic at any point in public networks
within a jurisdiction.

» An adversary may modify routing information within a jurisdic-
tion freely.

An adversary may freely modify even cryptographically weak
secured data where a single or a limited number of entities
grant proof of authenticity or privacy.

» An adversary may inject or modify any data on the network of
a jurisdiction.



» An adversary may create their nodes in a network. He may
furthermore monitor their behavior and data flow without limi-
tation.

» An adversary may force a limited number of other non-allied
nodes to expose their data to him. For this assumption, we
explicitly excluded actors with disjoint interests.

» An adversary may have similar access to resources as within
its jurisdiction in a limited number of other jurisdictions.

we may furthermore subdivide the adversaries into the following
sub-classes:

» A censoring adversary
The primary goal of this adversary is censoring messages and
opinions, not within his interests. He does this, regardless of
whether the activities of censorship may be observed or not.
Therefore, this adversary does not cloak its activities and typi-
cally bans censorship circumventing activities as illegal.

An observing adversary

This adversary behaves like a traditional spy. He collects and
classifies information while hiding its activities. Unlike within
reach of a censoring adversary, in this case, typically, no re-
strictions apply to the use of anonymization technology.

4.2 Required Properties of an unobservable
network

In this section, we summarize the required properties of an anon-
ymizing system.

4.2.1 Anonymizing and Unlinking

As we are unable to limit the route of our packets through named ju-
risdictions, we must protect ourselves from unintentionally breaking
the law of a foreign country. Therefore, we need to be anonymous
when sending or receiving messages. Unfortunately, most transport
protocols (in fact, almost all of them such as SMTP, SMS, XMPP, or
IP) use a globally unique identifier for senders and receivers, which
are readable by any party which is capable of reading the packets.

As a result, the anonymization of a sender or a receiver is not sim-
ple. A relay may allow at least the anonymization of the original
sender given trust into the proxy. By combining it with encryp-
tion, we may even achieve a simple form of a sender and receiver
pseudonymity. If cascading more relay like infrastructures and com-
bining it with cryptography, we may achieve sender and receiver
anonymity. When introducing anonymous remailing endpoints, we
may additionally achieve both simultaneously.

These are the standard approaches in remailers and mixes. Their
approaches are questionable as shown in 6.5.4.2 and 6.5.1. We
have seen attacks on such systems in the past. Some of them were
successful.

4.2.2 Censorship Resistant

In our scenario in 4, we defined the adversary as someone with
superior access to the network and its infrastructure. Such an ad-
versary might attack a message flow in several ways:

« Identify sender
« Identify recipient
» Read messages passed or extract meta information

« Disrupt communication fully or partially

We furthermore have to assume that all actions taken by a poten-
tial adversary are not subject to legal prosecution. This assumption
based on the fact that an adversary trying to establish censorship
may be part of the government of jurisdiction. We may safely as-
sume that there are legal exceptions in some jurisdictions for such
entities.

To be able to withstand an adversary outlined above, the messa-
ges sent requires to be unidentifiable by attributes or content. “At-
tributes” include any meta information including, but not limited to,
frequency, timing, message size, sender, protocol, ports, or recipi-
ent.

4.2.3 Controllable trust

We have multiple options for relying on trust when building our sys-
tem. We may rely on trust in infrastructure, we may work with dis-
trust in infrastructure. In our model, we will work with distrust into
the infrastructure. As every infrastructure node learns from each
transaction (e.g., the usage of the network or size of messages),
we have to minimize or ideally eradicate such information gains. A
main problem is that we are unable to hide peer senders or recipi-
ents when routing messages. In jurisdictions where such infrastruc-
ture usage is illegal, we need to hide the presence of our routing
messages from any party not trusted. Such hiding concludes that
we need to be able to control which nodes are involved when send-
ing messages. We refer to this concept as controllable trust.

In terms of trust, we have to conclude that:

1. We trust in infrastructure because it is under full control of ei-
ther the sender or the recipient.

2. We should not trust all other infrastructure as an adversary is
potentially able to misuse data passed through it.

In this work, we work with both cases. We will, however, avoid when-
ever possible to trust in any third party apart from the sender and
recipient.

4.2.4 Reliable

Any message-sending protocol needs to be reliable in its function-
ality. If the means of message transport are unreliable, users tend
to use different means for communication[zhou2011examining].

4.2.5 Diagnoseable

Transparent behavior is a prerequisite for reliability. If something
is generating a behavior, but we are unable to determine the rea-
son for it (i.e., if we are expecting a different behavior), we usu-
ally assume a malfunction. Therefore “reliable” means not only
stable by its behavior. It also means diagnoseable. A user’s
perception will not be “reliable” if he is not able to determine
causes for differences in observed and expected behavior (e.g.,
[nicholson2003assessing]).

4.2.6 Available

Availability has two meanings in this context, which do differ. Tech-
nology is available if. ..

1. asender and a recipient have (or may have) the means of using
it.
2. the infrastructure provides the service (as opposed to: “is run-

ning in a degraded or faulty state and, therefore, unable to pro-
vide the service”).

The first meaning tells us that a protocol must run on infrastructure
on which the user has access to it.
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The second meaning tells us that messages must always be ca-
pable of flowing from the sender to the recipient. As a part of the
infrastructure may fail at any time, the protocol must offer the possi-
bility to send messages through alternate routes. Alternative routes
are simple to achieve, and many protocols implement such redun-
dancies already. However, taking into account that the sender and
recipient are not known to a routing node, this is a goal hard to
achieve. If we leave the choice of routing to any node apart from a
trusted node, we will enable untrusted nodes to manipulate routing
decisions and thus affect the security of a message.

4.2.7 Identifiable Sender

A messaging system offering unlinkability may offer sender anon-
ymity. If so, a sender should be identifiable in such a way, that a
classification of senders is possible at any time, and impersonation
is not achievable. It is important to understand that an identifiable
sender does not necessarily mean that we can identify a sender as
a specific party. In our case, any identification will do, which offers
non-hijackable pseudonymity. We decided to go for a short-lived
pseudonymity (see elD in section 4.3.1). This system guarantees
that while only a pseudonym of the sender is known, the hijacking
of data by other participants of the system is not possible.

4.3 Outline of Protocol

To fulfill the criteria given above, we outline our idea of the protocol
and its layers. We give an overview in figure 4.2. The protocol works
on the base of onion routing. Unlike Tor (see 6.6.11), it does not rely
on central, censorable infrastructures. To hide message sizes, we
designed the system in such a way that it is not limited to onion-
ized messages. Instead, it is capable of splitting and reassemble
messages at any intermediate router.
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Figure 4.2: A generic overview for the protocol showing a circular
path of a message

The protocol itself sends messages through a well-known trans-
port protocol (“Transport”). We use this protocol for transporting
our messages to the next peer. The messages are hidden within
regular messages already using that transport layer. In an ideal im-
plementation, any messages sent by our protocol should be indistin-
guishable from regular messages (by computers and humans). To
achieve this steganographic task, we introduce a “blending layer”.
This layer usually is specific to the underlying transport layer and
may vary. We will describe our blending layer implementation in
section 7.2.4.

The “routing layer” is the layer that receives and sends messages.
It parses only the core protocol, and the data processed here is en-
tirely independent of the underlying transport and blending layer.
Our routing layer processes payloads received from VortexMes-
sages with a limited set of predefined operations. The sending node
chooses the operations applied to the message.

The “accounting layer” disassembles the received messages into
its parts. It then recomposes and stores the messages for further
routing. We introduce accounting to avoid that unsolicited bulk mes-
sages (UBM) may be transmitted over our media. This accounting
additionally prevents a sender from using up too many resources
of any intermediate node. It enables any node to keep control of
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its resource usage and keeps other nodes from eating up more re-
sources than planned.

The messages passed through such a protocol stack are onionised
to offer anonymity from evil nodes. Furthermore, any node or ex-
ternal observer is unable to tell whether a message was intended
for a specific other node or not. In consequence, we have to guar-
antee that all nodes, including sender and recipient, offer the same
functions and are indistinguishable.

Operations applied always result in a valid message. As an
onionised packet typically loses data on its way, the operations must
increase and decrease the message in size to mitigate size tracking
attacks. The operations must not leak, which part is a decoy or real
parts of the message. Operations not carried out due to missing
data might be either intentionally or a malfunction.

The defined message operations are as follows:

» Split a message block into two parts of variable size or join
them.
We use this operation to fan out decoy traffic, to cut off decoy
data, or to send multiple parts of a message through different
routing nodes.

Encrypt or decrypt a block with a given key.

Add and remove redundancy information to a stream

We use this operation to send a message or decoy through
multiple channels or recover a partially received message ac-
cording to the redundancy operation.

To avoid making this system attractive to UBM and to protect DoS
attacks, we introduce accounting to make a mass transfer of data
more expensive than other means of message transport. The sys-
tem works as follows:

+ Routing nodes may offer their services at a cost. A participating
node may pay a fee or solve a crypto-puzzle to pay for these
costs.

» The following operations may be cost-effective:

— Getting an ephemeral identity (elD) on a node (prerequi-
site for accounting; See section 4.3.1).

— Assign a maximum number of messages and bytes in a
specified interval to an elD on a node.

— Offer information about the known routing network by the
node.

— Offer information about the current quota of an elD.

As we want to keep resource consumption for accounting as low as
possible, all quotas are limited to a time interval. Such time-bound
quotas guarantee that quota data of an accounting layer does not
grow indefinitely. It is up to the node to decide what time duration is
still acceptable.

We minimize the possibility of an overload attack against a node.
We achieve this with the following precautions:

The message build process is far more complex than the rout-
ing carried out by the nodes.

Messages may be processed in parts to minimize the amount
of work. After processing the start of a message, a node may
already decide whether it will route the message or not.

The protocol minimizes the use of inefficient operations (e.g.,
asymmetric encryption).

The server may limit specific operations.



4.3.1 Ephemeral Identity

We use accounting on various levels. While we are dealing with
anonymity, accounting has still to be linked to some identity allowing
us to detect malicious actions and ban misbehaving behavior. For
this reason, we are introducing a term called “ephemeral identity”
(elD).

An elD is a temporary identity, which is defined by the
following attributes:

« It is an identity represented by a public key.
« Itis only valid for a short, limited time-span.

+ It is not linkable to another identity of any kind. It is
not linkable, especially to the senders’ known iden-
tity unless this sender is trustworthy, and the sender
trusts the infrastructure. Such a trust would always
be an exception and is not a prerequisite for suc-
cessful message transfer.

The key to this definition is the last point. It is crucial and, at the
same time, hard to achieve. In the protocol, any node may request
from another node to accept a new elD with a specified quota and a
limited lifespan. The node accepting the identity may link its accep-
tance to the solving of a proof of work puzzle or paying a micro fee
in digital currency.

As the elDs are limited in their lifespan, a single user has at least
one probably multiple elDs on any node used directly or indirectly
for routing.

4.4 Draft of VortexMessages

For our protocol, we assume the following outline for a message:

» Header block

This block contains an elD of the sender on the message pro-
cessing host. It allows the host to decide whether he is willing
to process the rest of the message or not. It is essential to
know that the identity block contains a symmetric key for de-
cryption of the main block and a secret repeated in the main
block. This secret, shared among blocks, keeps a malicious
node from exchanging any block.

Routing Blocks

This block contains routing information for all blocks. It further-
more may contain instruction for processing the data blocks
and routing/reply blocks for subsequent processing. Routing
blocks are not necessarily related to the payload in the same
message. They may pick up payloads from other blocks.

payload Block

These Blocks form the payload data. They might contain a
message, parts of a message, or decoy material in an unread-
able and unidentifiable form.

The message is picked up from the transport layer by the blend-
ing layer. This layer extracts the contained data with the help of a
host key and passes it to the routing layer. The routing layer ex-
tracts the message by decrypting the header block. The account-
ing layer is called to authorize further processing for the identity. If
approved, the routing layer adds the routing blocks to the identity-
specific workspace. As soon as the time specified in the routing
block arrises, the routing block is processed by following the oper-
ations specified within. New messages are assembled and sent.
The accounting layer keeps track of the elDs quota concerning the
newly created messages.

5 Transport Layer Protocol analysis

In this chapter, we look at the various transport layer protocols. The
primary goal is to identify strong candidates as a transport layer. For
a full analysis see B.
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5.1 Crtieria

When evaluating the transport protocols, we first compiled a list of
common messaging protocols. We then analyze these protocols for
the following criteria:

» Widely adopted (Ct1)
The more widely adopted and used a protocol is, the harder it
is for an adversary to monitor (due to the sheer mass), filter, or
block the protocol (censorship resistance).

Reliable (Ct2)

Message transport between peers should be reliable. As mes-
sages may arrive anytime from everywhere, we do not have
means to synchronize the peer partners on a higher level with-
out investing a considerable effort. To avoid this effort, we do
look for inherently reliable protocols.

Symmetrical built (Ct3)

The transport layer should rely on a peer to peer base. All
servers implement a generic routing that requires no prior
knowledge of all possible targets. This criterion neglects cen-
tralized infrastructures. This criterion may be dropped, assum-
ing that the blending layer or a specialized transport overlay is
responsible for routing.

5.2 Evaluation Result for Transport Proto-

cols
Criteria | c11: Widely adop Ct2: Relia Ct3: Symmetrically built

Protocol

HTTP 7 v x
FTP v v x
TFTP X x x
MQTT ~ v X
AMQP ~ v X
CoAP ~ ~ X
WAMP x v )
XMPP v v .
SMTP v 4 4

Table 5.1: comparison of protocols in terms
transport layer

of the suitability as

Table 5.1 sums up all previously analyzed protocols in section B.
We use “v” for a fulfilled criterion, “~” for a partially fulfilled criterion,
and “x” for a not fulfilled criterion. This overview shows in compact
form protocols identified as strong candidates for use as a transport
layer in terms of an anonymizing protocol.

This table shows that strong identified candidates are SMTP (being
already a message sending protocol on asynchronous base) and
XMPP (a real-time chat protocol able to attach files). Both have
the advantages that they are widely adopted on the Internet and do
additional support content (such as alternatives or attachments).

If assuming an implemented transport layer overlay on the Mes-
sageVortex protocol side, HTTP and FTP are suitable candidates
as well.

6 Existing Research and
Implementations on the Topic
6.1 Anonymity Research

In this section, we collect protocols research related to anonymity.
We did not stick to anonymous message transfer. Instead, we took
a broad focus in terms of technology and outlined in each protocol
strengths and weaknesses identified, which may be relevant to this
research.



6.1.1 Definition of Anonymity

As the definition for Anonymity we take the definition as specified in
[anonTerminology].
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Anonymity of a subject means that the subject is not iden-
tifiable within a set of subjects, the anonymity set.’

and

Anonymity of a subject from an attacker’s perspective
means that the attacker cannot sufficiently identify the
subject within a set of subjects, the anonymity set.'

We define the anonymity set as the set of all possible subjects within
a supposed message. The anonymity of a subject towards an ob-
serving third party is a crucial factor as it relates directly to our ad-
versary model.

6.1.2 k-Anonymity

k-anonymity is a term introduced in [k-anonymous:ccs2003]. This
work claims that entities are not responsible for an action if an ob-
server is unable to match a specific action to less than k entities.

The Document distinguishes between Sender k-anonymity, where
the sending entity can only be narrowed down to a set of k entities
and Receiver k-anonymity.

The size of k is a crucial factor. One of the criteria is the legal re-
quirements of the jurisdiction. Depending on the jurisdiction, it usu-
ally is not possible to prosecute someone if an action is not directly
coupled to one person. Another criterion might be the decreasing
of k over time. If a Vortex account is used, we have to assume that
some vortex identities go out of commission over time. If k is cho-
sen according to a legal requirement, it should be taken into account
that £ might be decreasing over time.

6.1.3 (-Diversity

In [machanavajjhala2007diversity] an extended model of k-
anonymity is introduced. In this paper, the authors emphasize that it
is possible to break a k-anonymity set if there is additional informa-
tion available which may be merged into a data set so that a distinct
entity can be filtered from the k-anonymity set. In other words, if an
anonymity set is to tightly specified, additional background informa-
tion might be sufficient to identify a specific entity in an anonymity
set.

It might be arguable that a k-anonymity in which a member is not
implicitly k-anonymous still is sufficient for k-anonymity in its sense.
However, the point made in this work is right and is taken into ac-
count. Their approach is to introduce an amount of invisible diversity
into k-anonymous sets, so that common background knowledge is
no longer sufficient to isolate a single member.

6.1.4 r-Closeness

While ¢-diversity protects the identity of an entity, it does not pre-
vent information gain. A subject which is in a class has the same
attributes. This is where r-closeness[li2007t] comes into play. -
closeness is defined as follows:

An equivalence class is said to have t-closeness if the dis-
tance between the distribution of a sensitive attribute in
this class and the distribution of the attribute in the whole
table is no more than a threshold. A table is said to have
t-closeness if all equivalence classes have r-closeness.

6.2 Single Use Reply Blocks and Multi-Use
Reply Blocks

Chaum first introduced the use of reply blocks in [CHAUM1]. A
routing block, in general, is a structure allowing to send a message

Tfootnotes omitted in quote

to someone without knowing the targets’ real address. Reply blocks
may be differentiated into two classes “Single Use Reply Blocks”
(SURBs) and “Multi-Use Reply Blocks” (MURBs). SURBs may be
used once while MURBs may be used a limited number of times.

Within our research, we discovered that if a routing protocol is re-
producible, the traffic of a MURB may be used to identify some of
the properties of the message. Depending on the type of attack,
the block has to be repeated very often. For this reason, we lim-
ited the number of replays to a low number. The concept is that
we have, in our case a routing block, which might be used up to
n times (0 < n < 127). It is easily representable in a byte integer
(signed or unsigned) on any system. It is big enough to support hu-
man communication sensibly and is big enough to add not too much
overhead when rerequesting more MURBs. The number should not
be too big because if a MURB is reused, the same pattern of traf-
fic is generated, thus making the system susceptible to statistical
attacks.

6.3 Censorship

As a definition for censorship we take

Censorship: the cyclical suppression, banning, expur-
gation, or editing by an individual, institution, group or
government that enforce or influence its decision against
members of the public — of any written or pictorial ma-
terials which that individual, institution, group or govern-
ment deems obscene and “utterly without redeeming so-
cial value,” as determined by “contemporary community
standards.”

The definition is attributed to Chuck Stone Professor at the School
of Journalism and Mass Communication, University of North Car-
olina. Please note that “Self Censorship” (not expressing something
in fear of consequences) is a form of censorship too.

In our more technical we reduce the definition to

Censorship: A systematic suppression, modification, or
banning of data in a network by either removal, or mod-
ification of the data, or systematic influencing of entities
involved in the processing (e.g., by creating, routing, stor-
ing, or reading) of this data.

This simplified definition narrows down the location to the Internet
as it is the only relevant location for us. Furthermore, it limits the
definition to the maximum reach within that system.

6.3.1 Censorship Resistant

A censorship-resistant system is a system that allows the entities
of the system and the data itself to be unaffected from censorship.
Please note that this does not deny the presence of censorship per
se. It still exists outside the system. However, it has some conse-
quences for the system itself.

» The system must be either undetectable or out of reach for an
entity censoring.
The possibility of identifying a protocol or data allows a censor-
ing entity to suppress the use of the protocol itself.

» The entities involved in a system must be untraceable.
Traceable entities would result in a mean of suppressing real-
world entities participating in the system.

6.3.2 Parrot Circumvention

In [oakland2013-parrot] oakland2013-parrot express that it is
easy for a human to determine decoy traffic as the content is easily
identifiable as generated content. While this is true, there is a pos-
sibility here to generate “human-like” data traffic to a certain extent.



As an adversary may not assume that his messages are replied to,
the problem does not boil down to a true Turing test. It remains
on a “passive observer Turing test”, enabling the potential nodes to
choose their messages.

In our design, this is the job covered by the blending layer. The
blending layer generates these messages. These messages are
context-less or remain in the context of previous conversations.

6.3.3 Censorship Circumvention

Several technical ways have been explored to circumvent censor-
ship. All seem to boil down to the following main ideas:

» Hide data

» Copy or distribute data to a vast amount of places to improve
the lifespan of data

» Qutcurve censorship measurements

In the following section, we look at technologies and ideas dealing
with these circumvention technologies.

6.3.3.1 Covert Channel and Channel Exploitations

The original term of covert channels was defined by
Lampson73anote[Lampson73anote] as

not intended for information transfer at all, such as the
service program’s effect on system load.

This was defined in such a way to distinguish the message flow from

legitimate channels used by the confined service, such as
the bill.

The use of a legitimate channel such as SMTP and hide information
within this specific channel is not a usage of a covert channel. We
refer to this as channel exploitation.

6.3.3.2 Steganography

Steganography is an important part when it comes to unlinking in-
formation. In [6828087] and [subhedar2014current] we get a very
rough overview. As some of the types and algorithms address spe-
cific topics of steganography (e.g., some hide from automatic de-
tection and others address a human message stream auditor), we
need to choose carefully. In our specific case, the main idea is to
hide within the sheer mass of Internet traffic. As a human auditor
screening all the messages is a minor thread, we focus on machine-
based censorship. Most of the images sent in SMTP are jpg images
(see table 9.2 on page 45). We limited our search to algorithms ca-
pable of hiding binary data within these files. The number of aca-
demically researched options was surprisingly low.

6.3.3.3 Timing Channels

Timing channels are a specialized form of covert channels. In tim-
ing channels, the information itself hides not within the data of the
channel, but the usage of the channel is in such a way that it is
capable of reflecting the data. As we do not have control over the
timing of the transport channel, this is not an option for us.

6.4 Cryptography

Whenever dealing with obfuscating data and maintaining the in-
tegrity of data, cryptography is the first tool in the hand of an im-
plementer. A vast amount of research in this area does already
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exist. For this work, we focussed on algorithms either very well re-
searched and implemented or research, which seem very valuable
when putting this work into place.

In symmetric encryption in this paper always assumes that

DX« (EX (M) = M (6.1)
For a key K, # K, this means

Df(EX () = M (6.2)

DX (EX ) = M (6-3)

The following candidates have been analyzed:

* AES
NIST announced AES in standard2001announcing as a re-
sult of a contest. The algorithm works with four opera-
tions (subBytes, ShiftRows, mixColumns, and addRoundKey).
These operations are repeated depending on the key length 10
to 14 times.

AES is up until now (2018) unbroken. It has been weakened in
the analysis described in [tao2015improving], which reduces
the complexity by roughly one to two bits.

Camellia

The camellia algorithm is described in [RFC3713]. The key
sizes are 128, 192, and 256. Camellia is a Feinstel cipher with
18 to 24 rounds depending on the key size. Up until today, no
publication claims break this cipher.

For all asymmetric encryption algorithm in this paper, we may as-
sume that...

pFa' (EKa‘ (M)) - M (6.4)
Dk (EKE ‘ (M)) - M (6.5)
It is important that
DR (B o) # (6.6)
DX (EKi (M)) # 6.7)
And for any other Keypair K} # K}
DXy (EKflI (M)) + M (6.8)
DXs (EKflI (M)) + M (6.9)
D& (EKJ : (M)) 2 M (6.10)
pXs (EKu‘ (M)) + M 6.11)

The number of crypto algorithms was higher than the steganogra-
phy options. When looking for well-researched algorithms basing on
different mathematical problems and having well-defined outlines,
numbers dropped dramatically again.

* RSA
In Rivest:1978:M0D:359340.359342 the authors
Rivest:1978:M0D:359340.359342 published with
[Rivest:1978:MO0D:359340.359342] a paper which did

revolutionize cryptography for years. In their paper, the authors
described an encryption method later to be called RSA, which
required a key pair (K,) referenced as public (K}) and private
keys (K;'). The novelty of this system was that anything
encrypted with the public key was only decryptable with the
private key and vice versa.



RSA is up until the day of writing this paper not pub-
licly know to be broken (unless a too small key size is
used). However — Shor97polynomial-timealgorithms de-
scribed in Shor97polynomial-timealgorithms an algorithm
which should enable quantum computers to break RSA far
faster than done with traditional computers. In the section 6.4.3
we do elaborate these effects further.

ECC

The elliptic curves were independently suggested by
[Miller1986] and [Koblitz04guideto] in 1986. Elliptic
curve Cryptography started to be widely deployed in the public
space in 2006. Since then, it seems to compete very well with
the well established RSA algorithm. While being similarly well
researched ECC, has the advantage of far shorter key sizes
for the same grade of security.

McElliece

McEliece was first implemented and then removed again. The
key size to gain equivalent security to RSA1024 was ~ 1MB.
This was impractical and thus discarded again. This was done,
although there is up until now no known quantum capable al-
gorithm reducing the key size of McEliece.

NTRU

In [Hoffstein1998] Hoffstein1998 described the NTRU algo-
rithm. The inclusion of this algorithm was disputed as it is
patented in the united states as US7031468. It was included
because the company Security Innovation holding the patent,
released the NTRU algorithm on March 2 2018 into the pub-
lic domain according to a blog entry on the company website.
While NTRU is not as well researched as RSA, it has been
around for more than 20 years without being significantly af-
fected by known attacks.

ElGammal

We rejected ElGamal as a cryptosystem to include. It bases
on the same mathematical problems for cryptoanalysis as RSA
(discreet logarithms) but is not as common as RSA.

6.4.1 Homomorphic encryption

Homomorphic encryption, as introduced in
[feldman1987practical], was from the beginning a strong
candidate to be used within our work. Unfortunately, we did not find
a way to apply the core addRedundancy operation in homomorphic
encryption. Transforming the original data to the GF space in an
efficient way to apply matrices was not doable and thus rejected.

6.4.2 Deniable Encryption and Deniable

Steganography

Deniable encryption and deniable steganography have been con-
sidered out-of-bounds for this work. The main reason is that the
presence of encryption (which is not deniable in both cases) may
be sufficient for a censor to block a message. Adding a layer to
make sure that encryption or steganography is deniable, does not
add valuable properties to our system as the sheer presence of en-
cryption might be sufficient for censorship.

6.4.3 Key Sizes

The question of key sizes is hard to answer as it depends on the
current and future possibilities of an adversary, which is again de-
pending on not foreseeable research. We tried to collect a couple
of recommendations.

Encrypt Il (http://www.ecrypt.eu.org/) recommends currently for a
“foreseeable future” 256 Bits for symmetric encryption and for asym-
metric encryption based on factoring modulus 15424 Bits. Elliptic
Curve Cryptography and Hashing should be sufficient if used with
at least 512 Bits. If the focus is reduced to the next ~ 20 years, then
the key size recommendations are reduced to 128 Bit for symmetric
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encryption, 3248 Bits for factoring modulus operations, and 256 Bits
for elliptic curves and hashing.

According to the equations proposed by Lenstra04keylength. in
[LenstraO4keylength.] an asymmetric key size of 2644 Bits respec-
tively symmetric key length of 95 Bits, or 190 Bits for elliptic curves
and hashing should be sufficient for security up to the year 2048.

According to [CNSASuite] (superseding well known and often used
[nsa-fact-sheet-B]) data classified up to “top secret” should be
signed with RSA 3072+ or ECDSA P-384. For symmetric encryp-
tion, they recommend AES 256 Bits, for Hashing at least SHA-384
and for Elliptic curves a 384 Bit sized key.

As it might seem not a wise idea to consider the recommendation of
a potential state-sponsored adversary and the Formulas proposed
by LenstraO4keylength. do not explicitly take quantum computers
into account, we follow the advice of ENCRYPT II.

Furthermore, taking all recommendations together, it seems that all
involved parties assume the most trust in elliptic curves rather than
asymmetric encryption based on factoring modulus.

6.4.4 Cipher Mode

The cipher mode defines how multiple blocks encrypted with the
same key are handled. Main characteristics of cipher modes to us
are:

Parallelisable

Can multiple parts of a plaintext be encrypted simultaneously?
This feature is important for multi CPU and multi-core systems
as they can handle parallelizable more efficiently by distributing
them on multiple CPUs.

Random access in decryption
Random access on decryption allows efficient partial encryp-
tion of a ciphertext.

Initialisation vector

An initialization vector has downsides and advantages. On
the downsides is the fact that an initialization vector must be
shared with the message or before distributing it. It is essential
to understand that the initialization vector itself usually is not
treated as a secret. It is not part of the key.

Authentication

Authentication guarantees that the deciphered plaintext has
been unmodified since encryption. It does not make a state-
ment over the identity of the party encrypting the text. Such an
identifying authentication is referred to as signcryption.

We evaluated the most common cipher modes for suitability. For
MessageVortex, we focussed on modes that have the properties
parallelizable, random access, and do not do authentication. The
main focus, besides the characteristics mentioned above, was on
the question of whether there is an open implementation available
in java, which is reasonably tested.

+ ECB (Electronic Code Book)

ECB is the most basic mode. Each block of the cleartext is
encrypted on its own. This results in a big flaw: blocks contain-
ing the same data will always transform to the same ciphertext.
This property makes it possible to see some structures of the
plain text when looking at the ciphertext. This solution allows
the parallelization of encryption, decryption, and random ac-
cess while decrypting. Due to these flaws, we rejected this
mode.

CBC (Cypher Block Chaining)

CBC extends the encryption by xor'ing an initialization vector
into the first block before encrypting. For all subsequent blocks,
the ciphertext result of the preceding block is taken as xor in-
put. This solution does not allow parallelization of encryption,
but decryption may be paralleled, and random access is possi-
ble. As another downside, CBC requires a shared initialization
vector. As with most IV bound modes, an IV/key pair should
not be used twice, which has implications for our protocol.


http://www.ecrypt.eu.org/

PCBC (Propagation Cypher Block Chaining)

CBC extends the encryption by xor’ing, not the ciphertext but a
xor result of ciphertext and plaintext. This modification denies
parallel decryption and random access compared to CBC.

EAX
EAX has been broken in 2012[minematsu2013attacks] and is
therefore rejected for our use.

CFB  (Cypher Feedback) CFB is specified in
[dworkin2001recommendation] and works precisely as
CBC with the difference that the plain text is xor'ed and the
initialization vector, or the preceding cipher result is encrypted.
CFB does not support parallel encryption as the ciphertext
input from the preceding operation is required for an encryp-
tion round. CFB does, however, allow parallel decryption and
random access.

OFB

[dworkin2001recommendation] specifies OFB and works ex-
actly as CFB except for the fact that not the ciphertext result is
taken as feedback but the result of the encryption before xor’ing
the plain text. This denies parallel encryption and decryption,
as well as random access.

OCB (Offset Codebook Mode)

This mode was first proposed in [rogaway2003ocb] and later
specified in [krovetz-ocb-04]. OCB is specifically designed for
AES128, AES192, and AES256. It supports authentication tag
lengths of 128, 96, or 64 bits for each specified encryption al-
gorithm. OCB hashes the plaintext of a message with a spe-
cialized function Hocp(M). OCB is fully parallelizable due to its
internal structure. All blocks except the first and the last can be
encrypted or decrypted in parallel.

CTR

CTR is specified in [lipmaa2000ctr] and is a mixture between
OFB and CBC. A nonce concatenated with a counter incre-
menting on every block is encrypted and then xor’ed with the
plain text. This mode allows parallel decryption and encryp-
tion, as well as random access. Reusing IV/Key-pairs using
CTR is a problem as we might derive the xor’ed product of two
messages. This problem only applies where messages are not
uniformly random such as in an already encrypted block.

CCM

Counter with CBC-MAC (CCM) is specified in [RFC3610]. It al-
lows to pad and authenticate encrypted and unencrypted data.
It furthermore requires a nonce for its operation. The size of
the nonce is dependent on the number of octets in the length
field. In the first 16 bytes of the message, the nonce and the
message size is stored. For the encryption itself, CTR is used.
It shares the same properties as CTR.

It allows parallel decryption and encryption as well as random
access.

GCM (Galois Counter Mode)

GCM has been defined in [mcgrew2004galois], and is re-
lated to CTR but has some major differences. The nonce
is not used (just the counter starting with value 1). To
authenticate the encryption, an authentication token auth is
hashed with Hgrmu: and then xor'ed with the first cipher
block. All subsequent cipher blocks are xored with the
previous result and then hashed again with Hgppu,.  Af-
ter the last block the output o is processed as follows:

HG Fmuir(0 P len(A)||len(B))) D EX° (countery). As a result, GCM
is not parallelizable and does not support random access.

The mode has been analyzed security-wise in
mcgrew2004security and showed no weaknesses in the
analyzed fields [mcgrew2004security].

GCM supports parallel Encryption and decryption. Random
access is possible. However, authentication of encryption is
not parallelizable. The authentication makes it unsuitable for
our purposes. Alternatively, we could use a fixed authentication
string.
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+ XTS (XEX-based tweaked-codebook mode with ciphertext
stealing)
This mode is standardized in IEEE 1619-2007 (soon to be
superseded). A rough overview of XTS may be found at
[Martin2010]. It was developed initially for Disks offering ran-
dom access and authentication at the same time.

CMC (CBC-mask-CBC) and EME (ECB-mask-ECB)

In [Halevi:2003] Halevi:2003 introduces a cipher mode which
is extremely costly as it requires two encryptions. CMC is not
parallelizable due to the underlying CBC mode, but EME is.

LRW

LRW is a tweakable narrow-block cipher mode described in
[tschorsch:translayeranon]. This mode shares the same
properties as EBC but without the weakness of the same clear
text block resulting in the same ciphertext. Similarly to XEX, it
requires a tweak instead of an IV.

6.4.4.1 Summary of Cipher Modes

Criteria

Mode auth Requires IV parallelisable random access
CBC I3 v I3 X
CCM 3 v X X
CFB X v v v
CTR 3 v v v
ECB X X v v
GCM v v X X
ocB v x1 x x
OFB x v x X
PCBC 3 v X X
XTS x /2 v x
LRW x /2 v v
CMC X /2 X X
EME x /2 v v

Table 6.1: comparison of encryption modes in terms of the suitability

6.4.5 Padding

A plain text stream may have any length. Since we always encryptin
blocks of a fixed size, we need a mechanism to indicate how many
bytes of the last encrypted block may be safely discarded.

Different paddings are used at the end of a cipher stream to indicate
how many bytes belong to the decrypted stream.

6.4.5.1 RSAES-PKCS1-vi_5 and RSAES-OAEP

This padding is the older of the paddings standardized for PKCS1.
It is basically a prefix of two bytes followed by a padding set of non
zero bytes and then terminated by a zero byte and then followed
by the message. This patting may give a clue if decryption was
successful or not. RSAES-OAEP ist the newer of the two padding
standards

6.4.5.2 PKCS7

This padding is the standard used in many places when applying
symmetric encryption up to 256 bits key length. The free bytes in
the last cipher block indicate the number of bytes being used. This
makes this padding very compact. It requires only 1 Byte of func-
tional data at the end of the block. All other bytes are defined but
not needed.

6.4.5.3 OAEP with SHA and MGF1 padding

This padding is closely related to RSAES-OAEP padding. The hash
size is, however, bigger, and thus, the required space for padding
is much higher. OAEP with SHA and MGF1 Padding is used in

Tincluded in auth
2Requires tweak instead of IV



asymmetric encryption only. Due to its size, it is important to note
that the payload in the last block shrinks to keySizelnBits/8 — 2 —
MacSize/4.

In our approach, we have chosen to allow these four paddings. The
allowed sha sizes match the allowed mac sizes chosen above. It is
important to note that padding costs space at the end of a stream.
Since we are always using one block for signing, we have to take
care that the chosen signing mac plus the bytes required for padding
do not exceed the key size of the asymmetric encryption. While this
usually is not a problem for RSA as there are keys 1024+ Bits re-
quired, it is an essential problem for ECC algorithms as there are
much shorter keys needed to achieve an equivalent strength com-
pared to RSA.

We have introduced an additional type of padding not related to
these paddings. We required for the addRedundancy the follow-
ing unique properties. Unfortunately, we were unable to find any
padding which matched the following properties simultaneously:

» Padding must not leak successful decryption
For our addRedundancy operation, we required padding that
had no detectable structure as a node should not be able to tell
whether a removeRedundancy operation did generate content
or decoy.

» Padding of more than one block
Due to the nature of the operation, it is required to be able to
pad more than just one block.

Details of this padding are described in the section "Add and Re-
move Redundancy Operations” in A.

6.5 Routing

If we can follow data from a source to a destination, we may safely
assume that the participants of this data exchange are no longer
anonymous. So special care should be taken to this aspect. In the
past, several approaches have been made to avoid the detection of
data while routing. In the following sections, we will look at some
basic concepts which have been proposed up until today. We de-
scribe their idea and have a look at their weaknesses discovered so
far.

In System Implementations, we analyze some related real-world
systems regarding how they work and how they have been attacked
in the past.

6.5.1 Mixing

Mixes have been first introduced by CHAUM1[CHAUM1] in
CHAUM1. The basic concept in a mix goes as follows. We do
not send a message directly from the source to the target. Instead,
we use a kind of proxy server or router in between which picks up
the packet, anonymizes it, and forwards it either to the recipient or
another mix. If we assume that we have at least three mixes cas-
caded, we then can conclude that:

* Only the first mix knows the true sender

 All intermediate mixes know neither the true sender nor the
true recipient (as the data comes from mixes and is forwarded
to other mixes)

* Only the last mix knows the final recipient.

This approach (in this simple form) has several downsides and
weaknesses.

« In a low latency network, the message may be traced by ana-
lyzing the timing of a message.

» We can emphasize a path by replaying the same message mul-
tiple times (assuming we control an evil node), thus discovering
at least the final recipient.
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+ If we can “tag” a message (with content or attribute), we then
may be able to follow the message.

In RP03-1 RP03-1 analyzed the suitability for mixes as an anon-
ymizing network for masses. They concluded that there are three
possibilities to run mixes.

+ Commercial, static MixNetworks
+ Static MixNetworks operated by volunteers

» Dynamic MixNetworks

They concluded that in an ideal implementation, a dynamic mix net-
work where every user is operating a mix is the most promising
solution as static mixes always might be hunted by an adversary.

6.5.2 Onion Routing

Onion routing is a further development of the concept of mixes. In
onion routers, every mix gets a message which is asymmetrically
encrypted. By decrypting the message, he gets the name of the
next-hop and the content which he has to forward. The main dif-
ference in this approach is that in traditional mix cascades, the mix
decides about the next hop. In an onionised routing system, the
message decides about the route it is taking.

While tagging attacks are far harder (if we exclude side-channel at-
tacks to break sender anonymity), the traditional attacks on mixes
are still possible. So when an adversary is operating entry and exit
nodes, it is straightforward for them to match the respective traffic.

One very well known onion routing network is Tor
(https://www.torproject.org). For more information about Tor
see section 6.6.11.

6.5.3 Crowds

Crowds is a network that offers anonymity within a local group. It
works as follows:

« All users add themselves to a group by registering on a so-
called “blender”.

« All users start a service (called JonDo).

» Every JonDo takes any received message (might be from him
as well) and sends it with a 50% chance either to the correct
recipient or to a randomly chosen destination

While crowds as specified in [crowds:tissec] does anonymize
the sender from the recipient rather well, the system offers no
protection from someone capable of monitoring crowds traffic.
The system may, however, be easily attacked from within by in-
troducing collaborating johndos. It has been further developed
to D-Crowds [DBLP:conf/esorics/DanezisDKT09], ADU/RADU
[Munoz-Gea2008], Freenet[freenet] and others.

Furthermore, the blender is aware of all JonDos and thus of particu-
lar interest for any observing or censoring adversary. Control of the
blender enables an adversary to split the network into controllable
parts, adding a high likelihood of discovering an original sender.

6.5.4 Mimic routes

Mimics are a set of statical mixes which maintain a constant mes-
sage flow between the static routes. If legitimate traffic arrives, the
pseudo traffic is replaced by legitimate traffic. An outstanding ob-
server is thus incapable of telling the difference between real traffic
and dummy traffic.

If centralized mixes are used, the system lacks the same vulnera-
bilities of sizing and observing the exit nodes as all previously men-
tioned systems. If we assume that the sender and receiver operate


https://www.torproject.org

a mixer by themselves, the system would no longer be susceptible
to timing or sizing analyses. The mimic routes put a constant load
onto the network. This bandwidth is lost and may not be reclaimed.
It does not scale well as every new participant increases the need
for mimic routes and creates (in the case of user mixes) a new mimic
load. Furthermore, the mixes are easily identifiable as their charac-
teristic data stream contrasts compared to other network service
streams.

6.5.4.1 DC Networks

DC networks are based on the work chaum-dc by
chaum-dc[chaum-dc]. In this work, chaum-dc describes a
system allowing a one-bit transfer (The specific paper talks about
the payment of a meal). Although all participants of the DC net are
known, the system makes it unable to determine who has been
sending a message. The message in a DC-Net is readable for
anyone. This network has the downside that a cheating player may
disrupt communication without being traceable.

Several attempts have been made to strengthen the pro-
posal of Chaum[golle:eurocrypt2004, disco, herbivore:tr,
Corrigan-Gibbs:2010:DAA:1866307.1866346]. However, no one
succeeded without introducing significant downsides on the privacy
side.

6.5.4.2 Annonymous Remailer

Remailers have been in use for quite some time. There are sev-
eral classes of remailers, and all of them are somehow related to
Mixnets. There are “types” of remailers defined. Although these
“types” offer some hierarchy, none of the more advanced “types”
seem to have more than one implementation in the wild.

Pseudonymous Remailers (also called Nym Servers) take a mes-
sage and replace all information pointing to the original sender with
a pseudonym. This pseudonym may be used as an answer ad-
dress. The most well known pseudonymous remailer possibly was
anon.penet.fi run by Johan Helsingius. This service has been forced
several times to reveal a pseudonyms true identity before Johan
Hedsingius decided to shut it down. For a more in-depth discussion
of Pseudonymous Remailers see 6.6.1

Cypherpunk remailers forward messages like pseudonymous re-
mailers. Unlike pseudonymous remailers, Cypherpunk remailers
decrypt a received message, and its content is forwarded without
adding a pseudonym. A reply to such a message is not possible.
They may, therefore, be regarded as an “decrypting reflector” or a
“decrypting mix” and may be used to build an onion routing network
for messages. For a more in-depth discussion of type-1-remailers,
see section 6.6.3.

Mixmaster remailers are very similar to Cypherpunk remailers. Un-
like them, Mixmaster remailers hide the messages, not in an own
protocol, but use SMTP instead. While using SMTP as a trans-
port layer, Cypherpunk remailers are custom (non-traditional mail)
servers listening on port 25. For a more in-depth discussion of type-
2-remailers, see section 6.6.4.

Mixminion remailers extend the model of Mixmaster remailers. They
still use SMTP but introduce new concepts. New concepts in
Mixminion remailers are:

Single Use Reply Blocks (SURBSs)

Replay prevention
» Key rotation
Exit poicies

Dummy traffic

For a more in depth discussion of Mixminion remailers see section
6.6.5.
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6.6 System Implementations

The following sections emphasize on implementations of anonymiz-
ing (and related) protocols regardless of their usage in the domain
of messaging and anonymity. It is a list of system classes or their
specific implementations together with a short analysis of strengths
and weaknesses.

Wherever possible, we try to refer to sources. If systems are no
longer in use or have never been adopted outside the scientific com-
munity, we try to refer to publicly available sources. Some of them
do not even have a rudimentary implementation. Instead, they are
limited to an idea or a simulator.

If a system shows strong similarities in parts, then we emphasize
on these parts and analyze the findings and attacks.

All systems have in common that they are easily identifiable on the
network layer except for Tor when working with “pluggable trans-
ports’’

6.6.1 Pseudonymous Remailer

The basic idea of remailers was discussed in [CHAUM1]. The most
well-known remailer was probably anon.penet.fi, which operated
from 1993 to 1996. This type of remailer is often referred to as
type-0-remailer.

In principle, an anonymous remailer works as an ordinary forward-
ing SMTP server. The only difference is that it strips off all header
fields except for “from”, “to”, and “subject” and then replaces the
sender and recipient address with pseudonyms respectively with

the real address.

This kind of remailer is easily attackable by an authority. Since
the remailer knows tuples of pseudonyms and their respec-
tive real identities, it was forced in the past to reveal true
identities[penetClosure]. Furthermore, the message may be mon-
itored at the server or on its way, and then due to the unmodified
content matching is easy.

This remailer offers, therefore, no protection against an adversary
defined in our problem.

6.6.2 Babel

Babel was an academic system defined in a paper by babel in
babel[babel]. It has been developed at IBM Zurich Research Lab-
oratory. It was a mixing system using onionized addresses. The
sender remains anonymous while he may provide a reply routing
block called RPI. If both parties would like to remain anonymous,
the RPI of the initiator is deployed in a forum thread. Anyone using
this block adds an RPI for its address to the message.

This system has all the disadvantages of a system using MURBs.
Traffic highlighting and similar attacks are possible.

6.6.3 Cypherpunk-Remailer

With the failing of anon.penet.fi, it became clear that the weakest
spot of a single server infrastructure the information stored on the
server and the vulnerability of their owner. The new type-1-remailers
score over the existing type-1-remailers by using encryption for the
message. By combining multiple type-1-remailers, an onion-like
structure of the message was achievable.

This approach was promising, but it was still observable. An obser-
vation was possible in the example of correlating the message sizes
and timing information.

6.6.4 Mixmaster-Remailer

Like Cypherpunk remailers, the Mixmaster remailers were working
with onion-like encrypted messages. In contrast to type-1-remailers,



the use of cascading mixes became systematic.

6.6.5 Mixminion-Remailer

Mixminion was the standard implementation of a type-3-remailer.
It tried to address many issues previously not solved. A Mixmin-
ion router splits messages in equally sized chunks and supports
SURBs. Furthermore, replay protection and key rotation were avail-
able. Unlike the previous remailer types, Mixminion was no longer
using SMTP as the transport protocol. Instead, Mixminion intro-
duced a new transport protocol. The sources of this remailer are
available on GitHub under https://github.com/mixminion/mixminion.

6.6.6 Tarzan

Tarzan is a P2P IP protocol using UDP to communicate. It is spec-
ified in [tarzan:ccs02]. Tarzan nodes may be used to anonymize
Internet traffic in general. An initiator on the original sender ma-
chines encapsulates traffic into a layered UDP package and sends
the package through a mix like relayd’s. The last relayd acts as an
exit node. A replier may send answers the opposite way. Each re-
layd knows its next and previous relayd. To minimize the impact of
observation, Tarzan forwards packets only every 20ms and features
replay protection.

6.6.7 AN.ON (2003)

AN.ON, as suggested in [federrath2003system], is a mixing net-
work. It generates messages in equally sized chunks and sends
them in fixed time slots after random mixing. lts implementation is
called JAP and may be found under https://anon.inf.tu-dresden.de/.
JAP is many ways similar to the capabilities of Tor. The network
was at the time of writing a lot smaller (10 JonDos compared to
6500 relays in the Tor network).

6.6.8 MorphMix (2002)

MorphMix is another mix network and specified in
[morphmix:wpes2002]. It was a circuit-based mix system for net-
working anonymity. The core of the network was collision detection.
This detection has been circumvented by [morphmix:pet2006].
Since then, no new papers have been published, and the project
seems to be dead.

6.6.9 SOR (SSH-based onion routing)

SOR [Egners_2012] is blaming the complex and monocultural land-
scape of anonymizing software and proclaims a simple approach
based on onionized SSH tunnels. While the approach is both simple
and effective, it is not suitable against a powerful adversary. First,
he may be able to snoop the forwarding when on the system. Sec-
ond, due to the timing behavior, tunnels belonging to each other
may be identified, and third, the package size information does leak
as well.

6.6.10 SCION

SCION[perrig2017scion] is a clean slate Internet protocol. While
SCION is not really an anonymizing protocol. It contains, how-
ever, many interesting features. Unlike with the traditional net-
works, we have the possibility of influencing the routing of
data within SCION. Furthermore, with PHI[chen2017phi] and
Dovetail[sankey2014dovetail], SCION may feature strong and fast
anonymity features.

Unfortunately, as this is a clean slate Internet design, it is not avail-
able commonly currently, and as it is easily identifiable, it enables
easy censorship as the relevance is due to its current availability of
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no importance, and a censoring adversary may just ban and censor
SCION entirely.

6.6.11 Tor

Tor is one of the most common onion router networks these days
and onionizes generic TCP streams. It is specified in [tor-spec]. It
might be considered one of the most advanced networks since it
has a considerable size, and much research has been done here.

According to [onion-routing:pet2000] Tor is a network consisting
of multiple onion routers. Each client first picks an entry node. Then
it establishes an identity, gets a listing of relay servers, and chooses
a path through multiple onion routers. The temporary identity links
to such a path and should be changed on a regular base along with
its identity. Transferring data works by splitting the data into equally
sized cells of 512 bytes.

There is a centrally organized directory in the Tor network, knowing
all tor relay servers. Any Tor relay server may be a directory server
as well.

Many attacks involving the Tor networks have been discussed in
the academic world such as [hs-attack06, esorics13-cellflood,
bauer:wpes2007, esorics12-torscan, oakland2013-trawling,
danner-et-al:tissec12, congestion-longpaths] and some have
even been exploited actively. In the best case, the people discover-
ing the attacks did propose mitigation to the attack. Some of these
mitigations flowed back into the protocol. Some general thoughts of
the attacks should be emphasized here for treatment in our protocol.

Being an exit node may be a problem in some jurisdictions. In gen-
eral, it seems to be accepted that routing traffic with unknown con-
tent (to the routing node) is not regarded as illegal per se. So by
being unable to tell malicious or illegal traffic apart from legitimate
traffic, this is not a problem. However —being an exit node can mean
that unencrypted and illegal traffic is leaving the routing traffic. In
this specific case, operators of a relay node might fear legal prose-
cution. Tor nodes may proclaim themselves as “ non-exit nodes” to
avoid the possibility of legal prosecution.

Furthermore, several DoS-Attacks have been carried out to over-
load parts of the Tor network. Most of them do a bandwidth drain
on the network layer.

Attacking anonymization has been done in several ways. First of
all, the most common attack is a time-wise correlation of packets
if in control of an entry and an exit node. A massive attack of this
kind was published in 2014 and has been published on the tor web-
site (relay early traffic confirmation attack). This attack was possible
because tor is a low latency network. Another attack is to identify
routes through tor by statistically analyze the traffic density in the
network between nodes. More theoretical attacks focus on the pos-
sibility of controlling the directory servers to guarantee that an entity
may be deanonymized because it is using compromised routers.

sin-
Ac-

the effectiveness of of
gle nodes or whole networks is disputed.
cordng to a study by ccs2013-usersrouted in
ccs2013-usersrouted[ccs2013-usersrouted], a system in
the scale of PRISM should be able to correlate traffic of 95% of the
users within a “few days”. Other sources based on the Snowden
Papers claim that NSA was unable so far to de-anonymize users of
Tor. However, since these papers referenced to “manual analysis”,
the statement may be disputed when looking at automated attacks
as well.

Generally, the  monitoring

It is, according to https://www.torproject.org/docs/
pluggable-transports, impossible to use transborder Tor traf-
fic in at least China, Uzbekistan, Iran, and Kazakstan. In censored
countries, Tor offers so-called bridged Transports. Currently de-
ployed transports in the standard Tor browser bundle package are
obfs4, meek, FTE, and ScrambleSuit. Only meek is listed as work-
ing in China. Meek achieves this by hiding its traffic in a standard
protocol (https).

[saleh2018shedding] is an excellent survey listing recent develop-
ments and attacks within the Tor project.


https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://www.torproject.org/docs/pluggable-transports
https://www.torproject.org/docs/pluggable-transports

6.6.12 [°P

The name I?P is a derived from “Invisible Internet Project” according
to geti2p.net. The system itself is comparable to Tor for its capabili-
ties. Mayor differences are:

P2P based

Packet-switched routing (tor is “circuit-switched”)

Different forward and backward routes (called tunnels)

Works pseudonymously

Supports TCP and UDP

I?P has not attracted as much attention as Tor so far. So it is hard
to judge upon its real qualities.

In pets2011-i2p pets2011-i2p presented in [pets2011-i2p] an at-
tack. As I” Ps security model is chosen based on IP addresses, the
authors propose to use several cloud providers in different B-Class
networks. By selectively flooding peers, an adversary may extract
statistical information. The paper proposes an attack based on the
heuristic performance-based peer selection. The main critics of the
paper were that the peer selection might be influenced by an adver-
sary enabling him to recover /2P has not attracted as much attention
as Tor so far. So it is hard to judge upon its real qualities.

In pets2011-i2p pets2011-i2p presented in [pets2011-i2p] an at-
tack. As I Ps security model is chosen based on IP addresses, the
authors propose to use several cloud providers in different B-Class
networks. By selectively flooding peers, an adversary may extract
statistical information. The paper proposes an attack based on the
heuristic performance-based peer selection. The main critics of the
paper were that the peer selection might be influenced by an adver-
sary enabling him to recover data on a statistical base.

6.6.13 Freenet

Freenet was initially designed to be a fully distributed data
store[freenet]. Documents are stored in an encrypted form. Down-
loaders must know a document descriptor called CHK containing
the file hash, the key, and some background about the crypto being
used. A file is stored more or less redundantly based on the num-
ber of accesses to a stored file. The primary goal of Freenet is to
decouple authorship from a particular document. It furthermore pro-
vides fault-tolerant storage, which improves caching of a document
if requested more often.

Precisely as 2P, Freenet is not analyzed thoroughly by the scientific
world.

The Freenet features two protocols FCPv2 acts as the client pro-
tocol for participating in the control of the Freenet storage. The
Freenet client protocol allows us to insert and retrieve data, to query
the network status, and to manage Freenet nodes directly con-
nected to an own node. FCPv2 operates on port 9481, and blocking
is thus easy, as it is a dedicated port.

The Freenet project seems to be under active development as
pages about protocols were updated in the near past (Last update
on the FCPv2 Page was July 5" 2016 at the time of writing).

6.6.14 Herbivore

Herbivore is a network protocol designed by herbivore:tr in
[herbivore:tr]. It is based on the dining cryptographers
paper[chaum-dc]. At the time of writing, no herbivore client or
an actual protocol implementation could be found on the Internet.
Wikipedia lists Herbivore as “dormant or defunct”.
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6.6.15 Dissent

Dissent is defined in [Corrigan-Gibbs:2010:DAA:1866307.1866346].1

It is an anonymity network based on DC-nets. A set of servers
forms these DC-nets. At least one of the servers in the used net
must be trustworthy, and none may be misbehaving. A server
failure results in the stall of all message delivery using this server.

6.6.16 #°

The Peer-to-Peer Personal Privacy Protocol is defined in
[sherwood-protocol]. It provides sender-, receiver- and sender-
receiver anonymity. According to the project page of #°, there is
only a simulator available for the protocol.

The transport layer problematic has been wholly ignored. As there is
no precise protocol specification but only a rough outline about the
messaging and the crypto operations, P> offers minimal possibilities
for analysis.

6.6.17 Gnutella

Gnutella is not a protocol for the anonymity world in special. Instead,
the Gnutella protocol implements a general file sharing on a Peer
to peer base. This peer-to-peer approach is the most interesting
aspect of Gnutella in this context. Furthermore, Gnutella has proven
to be working with a large number of clients.

The current protocol specification may be found under http://rfc-
gnutella.sourceforge.net/. While the Gnutella network is defunct.
The approaches solving some of the peer-to-peer aspects were
very interesting.

6.6.18 Gnutella2

Despite its name, Gnutella2 is not the next generation of Gnutella.
It was a fork in 2002 from the original Gnutella and has been de-
veloped in a different direction. The specification may be found on
http://g2.doxu.org. Just as its predecessor, Gnutella2 seems
to be dead. The last relevant update to the main site or its protocol
is dated four years back.

6.6.19 Hordes

Hordes was a multicast-based protocol for anonymity specified in
[Levine:2002]. Hordes used the abilities to handle multicast ad-
dresses of routers to generate a dynamic set of receivers and then
sends messages to them. It assumes that a single observer or
router does not know all participating peers.

This assumption is correct for a local observer. Unfortunately, it is
not sufficient assuming an adversary as defined in this paper.

6.6.20 Salsa

Salsa was proposed in [Salsa] and described a circuit based
anonymization pattern based on distributed hash tables (DHT).
An implementation for Salsa is available, but it is not public.
[ccs2008:mittal] claims that by combining active and passive at-
tacks, anonymity can be compromised.

6.6.21 AP3

AP3, as defined in [mislove2004ap3], is an anonymous communi-
cation system and very similar to crowds. It performs a random walk
over a set of known nodes. Not all nodes are known to anyone, and
all nodes are aware of the final recipient.


https://geti2p.net/
http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://g2.doxu.org

The system is susceptible to numerous attacks, as shown by
[ccs2008:mittal], and does not withstand our adversary as the fi-
nal recipient is known to the routing nodes.

6.6.22 Cashmere

Cashmere is specified in [zhuang2005cashmere]. It defines a pro-
tocol for the use of chaum mixes. Unlike most of the protocols,
the chaum mixes in cashmere are virtual. So-called relay groups
represent them. Each mix in the relay group may be used as an
equivalent mix to all other mixes in the same group.

This design means that the failure of one mix does not result in the
non-delivery of a message.

No client implementation could be found on the nternet. The project
homepage http://current.cs.ucsb.edu/projects/cashmere/ has not
been updated since 2005. This suggests that this project is dead
or sleeping.

6.6.23 Riffle
[kwon201 eriffle]D
6.6.24 Atom

[kwon2017atom]D

6.6.25 Riposte

[corrigan201 5riposte]n

6.6.26 Pung

[angel201 6unobservable]D

6.6.27 PIR
[angel201 8pir]D
6.6.28 Karaoke

[lazar201 8karaoke]n

6.6.29 Loopix

[piotrowska201 7Ioopix]u

6.6.30 Stadium

[tyagi201 7stadium]u

6.6.31

[van201 5vuvuzela]n

Vuvuzela
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6.6.32 SMTP and Related Client Protocols

Today’s mail transport is mostly done via SMTP protocol, as spec-
ified in [RFC5321]. This protocol has proven to be stable and reli-
able. Most of the messages are passed from an MUA to an SMTP
relay of a provider. From there, the message is directly sent to the
SMTP server of the recipient and subsequently to the server-based
storage of the recipient. The recipient may, at any time, connect to
his server-based storage and may optionally relocate the message
to a client-based (local) storage. The delivery from the server stor-
age to the MUA of the recipient may happen by message polling or
by message push (whereas the latter is usually implemented by a
push-pull mechanism).

To understand the routing of a mail, it is essential to understand the
whole chain starting from a user(-agent) until arriving at the target
user (and being read!). To simplify this, we used a consistent model
that includes all components (server and clients). The figure 6.1
shows all involved parties of a typical mail routing. It is essential
to understand that mail routing remains the same regardless of the
client. However, the availability of a mail at its destination changes
drastically depending on the type of client used. Furthermore, con-
trol of the mail flow and control is different depending on the client.

The model ha!three main players storage (Storage), agent (Agent)
and service (Service). Storages are endpoint facilities storing
emails received. Not explicitly shown are temporary storages such
as spooler queues or state storages. Agents are simple programs
taking care of a specific job. Agents may be exchangeable by other
similar agents. A service is a bundle of agents that is responsible
for a specific tdlk or task sets.

Mal enpoint (originating user) Mail Server (ISP relay)

local mail storage

remote MDA

Forwarding mail server

h
remote MDA

local MDA

local mal storage

Mail endpoint (destination user)

. Network connection (thru internet)

. Local connection (IPC)

—
]

[0 Periodically or sporadically working service

Permanently connected and running server

Permanently running service

Figure 6.1: Mail Agents

In the following paragraphs (for definitions), the term “email” is used
synonymously to the term “Message”. “Email” has been chosen
over “messages"')ecause of its frequent use in standard docu-
ments.

Emails are typically initiated by a Mail User Agent (MUA). An MUA
accesses local email storage, which may be the server storage or a
local copy. The local copy may be a cache only copy, the only ex-
isting storage (when emails are fetched and deleted from the server
after retrieval), ol collected representation of multiple server stor-
ages (cache or authoritative).
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Besides the MUA, the only other component accessing local email
storage is the Mail Delivery Agent (MDA). An MDA is responsible
for storing and fetching emails from the local mail storage. Emails
destined for other accounts than the current one are forwarded to
the MTA. Emails destined to a User are persistently stored in the
local email storage. It is essential to understand that email storage
does not necessarily reflect a single mailbox. It may as well rep-
resent multiple mailboxes (e.g., a rich client-serving multiple IMAP
accounts) or a combined view of multiple accounts (e.g., a rich client
collecting mail from multiple POP accounts). In the case of a rich
client, the local MDA is part of the software provided by the user
agent. In the case of an email server, the local MDA is part of the
local email store (not necessarily of the mail transport service).

On the server-side, there are usually two components (services) at
work. A “Mail Transport Service” (MTS) responsible for mail trans-
fers and a “Mail Storage System” which offers the possibility to store
received Mails in a local, persistent store.

An MTS generally consists out of three parts. For incoming con-
nects, there is a daemon called Mail Receiving Agent (Server MRA)
is typically a SMTP listening daemon. A Mail Transfer Agent (MTA)
which is responsible for routing, forwarding, and rewriting emails.
Moreover, a Mail Sending Agent (MSA) which is responsible for
transmitting emails reliably to another Server MRA (usually sent via
SMTP).

An MSS consists of local storage and delivery agents which do of-
fer uniform interfaces to access the local store. They do also deal
with replication issues, and grant should take care of the atomicity
of transactions committed to the storage. Typically there are two dif-
ferent kinds of MDAs. Local MDAs offer possibilities to access the
store via efficient (non-network based) mechanisms (e.g., IPC or
named sockets). This is usually done with a stripped-down protocol
(e.g., LMTP). For remote agents there a publicly — network-based
— agent available. Common Protocols for this Remote MDA include
POP, IMAP, or MS-OXCMAPIHTTP.

Mail endpoints consist typically of the following components:

» A Mail User agent (MUA)
» A Local Mail storage (MUA)

A Local Mail Delivery Agent (Local MDA)
A Mail Transfer Agent (MTA)

A Mail Sending Agent (MSA)

A Mail Receiving Agent (MRA)

Only two of these components do have external interfaces. These
are MSA and MRA. MSA usually uses SMTP as transport protocol.
When doing so, there are a couple of specialties.

« Port number is 587 (specified in [RFC4409]).
Although port numbers 25 and 465 are valid and do usually
have the same capabilities, they are for mail routing between
servers only. Mail endpoints should no longer use them.

Connections are authenticated.

Unlike a normal server-to-server (relay or final delivery) SMTP
connections on port 25, clients should always be authenticated
of some sort. This may be based on data provided by the user
(e.g., username/password or certificate) or data identifying the
sending system (e.g., IP address)[RFC4409]. Failure in do-
ing authentication may result in this port being misused as a
sender for UBM.

Mail User Agents (MUA) are the terminal endpoint of email delivery.
Mail user agents may be implemented as fat clients on a desktop
or mobile system or as an interface over a different generic protocol
such as HTTP (Web Clients).

Server located clients are a special breed of fat clients. These
clients share the properties of fat clients except for the fact that they
do not connect to the server. The client application itself has to
be run on the server where the mail storage persists. This makes
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delivery and communication with the server different. Instead of in-
terfacing with an MSA and a client MDA, they may directly access
the local mail storage on the server. On these systems, the local
mail storage may be implemented as a database in a user-specific
directory structure.

6.6.32.1 Fat clients

The majority of mail clients are fat clients. These clients score over
the more centralistic organized web clients in the way that they may
offer mail availability even if an Internet connection is not available
(through client-specific local mail storage). They furthermore pro-
vide the possibility to collect emails from multiple sources and store
them in the local storage. Unlike Mail servers, clients are assumed
to be not always online. They may be offline most of the time. To
guarantee the availability of a particular email address, a respon-
sible mail server for a specific address collects all emails (the MSS
does this) and provides a consolidated view onto the database when
a client connects through a local or remote MDA.

As these clients vary heavily, it is mandatory for the MDA that they
are well specified. Lack of doing so would result in massive interop-
erability problems. Most commonly the Protocols IMAP, POP and
EWS are being used these days. For email delivery, the SMTP pro-
tocol is used.

Fat clients are commonly used on mobile devices. Ac-
cording to [clientDistribution] in Aug 2012 the most typi-
cal fat email client was Apple Mail client on iOS devices
(35.6%), followed by Outlook (20.14%), and Apple Mail (11%).
clientDistribution2[clientDistribution2] as a more recent source
lists in February 2014 iOS devices with 37%, followed by Outlook
(13%), and Google Android (9%).

6.6.32.2 Server located clients

Server located clients build an absolute minority. This kind of clients
was common in the days of centralized hosts. An example for a
Server Located Client is the Unix command “mail”. This client reads
email storage from a file in the users home directory.

6.6.32.3 Web clients

Web clients are these days a common alternative to fat clients. Most
big provider companies use their proprietary web client. According
to [clientDistribution2] the most common web clients are “Gmail™,
"Qutlook.com™, and "Yahoo! Mail”. All these Interfaces do not
offer a kind of public plug-in interface. However, they do offer IMAP-
interfaces. This important for a future generalistic approach to the
problem.

6.6.33 S/MIME

S/MIME is an extension to the MIME standard. The MIME standard
allows in simple text-oriented mails an alternate representation of
the same content (e.g., as text and as HTML), or it allows to split a
message into multiple parts that may be encoded. It is important to
note that MIME encoding is only effective in the body part of a mail.

S/MIME, as described in [RFC3851], extends this standard with the
possibility to encrypt mail content or to sign it. Practically this is
achieved by either putting the encrypted part or the signature into an
attachment. It is essential to know that this method leaks significant
pieces of the data.

As the mail travels directly from sender to recipient, both involved
parties are revealed. Neither message subject nor message size or
frequency is hidden. This method does offer limited protection when
assuming an adversary with interest in the message content only. It
does not protect from the kind of adversary in our case.

The trust model is based on a centralistic approach involving gen-
erally trusted root certification authorities.



6.6.34 PGP/MIME

Exactly as S/MIME PGP[rfc4880] builds upon the base of MIME.
Although the trust model in PGP is peer-based. The encryption
technology does not significantly differ (as seen from the security
model).

Like S/MIME, PGP does not offer anonymity. Sender and endpoints
are known to all routing nodes. Depending on the version of PGP,
some meta-information or parts of the message content such as
subject line, the real name of the sender and receiver, message
size is leaked.

A good thing to learn from PGP is that peer-based approaches are
offering limited possibilities for trust. The trust in PGP is based on
the peer review of users. This peer review may give an idea of how
well verified the key of a user is.

6.6.35 Characteristics of known anonymity Sys-
tems

Table ?? shows the previously analyzed protocols.

6.7 Pseudo Random Number Generators

The following sections list two PRNG specifications to follow the
recommendations of [rfc1750]. These PRNGs are used to complete
the padding specified in the addRedundancy operation.

We have chosen to support two kinds of PRNG. These algorithms
are not relevant for the security of the system, but they guarantee
non-detectable padding when doing the addRedundancy operation.
The two PRNGs selected were xorshift128+ and Blum Micail PRNG.
Both PRNGs were quoted to pass BigCrush. However, recent de-
velopment shows that this might not be true for xorshift128+, as
demonstrated in [LEMIRE2019139].

6.8 Known Attacks

In the following sections, we emphasize on possible attacks to an
anonymity preserving protocols. These attacks may be used to at-
tack the anonymity of any entity involved in the message channel. In
a later stage, we test the protocol for immunity against these classes
of attacks.

6.8.1 Broken Encryption Algorithms

Encryption algorithms may become broken at any time. This either
to new findings in attacking them, by more resources being avail-
able to an adversary, or by new technologies allowing new kinds of
attacks. A proper protocol must be able to react to such threads
promptly. This reaction should not rely on a required update of the
infrastructure. Users should solely control the grade of security.

We cannot do a lot for attacks of this kind to happen. However, we
might introduce a choice of algorithms, paddings, modes, and key
sizes to give the user a choice in the degree of security he wants to
have.

6.8.2 Attacks Targeting Anonymity

Attacks targeting users anonymity are the main focus of this work.
Many pieces of information may be leaked, and the primary goal
should, therefore, rely on the principles established in security.

» Prevent an attack
Attack prevention can only be done for attacks that are already
known and may not be realistic in all cases. In our protocol, we
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have strict boundaries defined. A node under attack should at
any time of protocol usage (this excepts bandwidth depletion
attacks) be able to block malicious identities. Since establish-
ing new identities is costly for an attacker, he should always
require far more resources than the defender.

Minimize attack surface
This part of the attack prevention is included by design in the
protocol.

Redirect an attack
Although the implementation does not do this, it is possible to
handle suspected malicious nodes differently.

Control damage

For us, this means leaving as little information about identities
or meta information as possible on untrusted infrastructures. If
we leave traces (i.e., message flows, or accounting informa-
tion) they should have the least possible information content
and should expire within a reasonable amount of time.

Discover an attack

The protocol is designed in such a way that attack discovery
(such as a query attack) is possible. However, we consider
active attacks just as part of the regular message flow. The
protocol must mitigate such attacks by design.

Recover from an attack
An attack does always impose a load onto a system’s re-
sources regardless of its success. It is vital that a system re-
covers almost immediately from an attack and is not covered
in a non-functional or only partial-functional state either tem-
porarily or permanently.

In the following subsections, we list a couple of attack classes that
have been used against systems listed in 6.6 or the respective aca-
demic works. We list the countermeasures which have been taken
to deflect these attacks.

6.8.2.1 Probing Attacks

Identifying a node by probing and check their reaction is commonly
done when fingerprinting a service. As a node is participating
in a network and relaying messages probing may not be evaded.
However, it may be made costly for an adversary to do systematic
probing. This should be taken into account. Both currently speci-
fied transport protocol features an indefinite number of possible ac-
counts. Since not the server but the endpoint address is behaving,
node probing is more complicated than in other cases where prob-
ing of service is sufficient.

One of the problems is clear-text requests. These requests may be
used on any transport layer account without previous knowledge of
any host key. Thus the recommendation in table 9.1 is generally not
to answer the requests. Routing nodes in jurisdictions not fearing
legal repression or prosecution may reply to clear text requests, but
it is usually discouraged as they allow harvesting of addresses.

One strategy to avoid would be to put high costs onto clear-text re-
quests in such a way that a clear-text request may have a long reply
time (e.g., up to one day). A node is free to blacklist an identity in
case of an early reply. This is an insufficient strategy as a big adver-
sary may have lots of identities in stock. Requesting an unusually
long key as a plain-text identity does not make sense either as these
as well may be kept in stock. We may, however, force a plaintext re-
quest to have an identity block with a hash following specific rules.
We may, for example, put in a requirement that the first four bytes
of the hash of a header block translates to the first four characters
of the routing block. At the moment, this has been rejected in the
standard for practical reasons. First, as the request is unsolicited,
a sender is the only one able to decide the algorithm of the hash.
This would allow a requester to choose upon the complexity of the
puzzle. Second, any negotiation of the cost of the request would
result in the disclosure of the node as VortexNode, which might be
unsuitable.
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Table 6.2: Classification table for anonymization protocols according to [Shirazi2018]

6.8.2.2 Hotspot Attacks

Hotspot attacks aim to isolate high traffic sites within a network.
By analyzing specific properties or the general throughput locations
with outstanding traffic may be identified. These messages do quite
often reveal senders or recipients. Sometimes an intermediate node
in an anonymizing system.

6.8.2.3 Message Tagging and Tracing

When using an anonymization system, a message may be either
fully or partially traced or even tagged. Tagging allows one to rec-
ognize a message at a later stage and map it to its predecessors.
Protocols with tagable messages are not suitable for anonymization
systems.

6.8.2.4 Side Channel Attacks

Side-channel attacks are numerous. Especially important to us
are attacks related to either lookup in independent channels (e.g.,
downloading of auxiliary content of a message) or behavior related
to timing patterns.

6.8.2.5 Sizing Attacks

There are two kinds of sizing attacks identified to be relevant for
us. One is the possibility for matching messages with related sizes,
and the other one is to relate message size to the original messa-
ges. Both attacks may be considered as a tracing attack and will be
analyzed accordingly.

6.8.2.6 Bugging Attacks

Numerous attacks are available through the bugging of a protocol.
In this chapter, we outline some of the possibilities and how they
may be countered:

» Bugging through certificate or identity lookup:
Almost all kinds of proof of identities, such as certificates, of-
fer some revocation facility. While this is a perfect desirable
property of these infrastructures, they offer a flaw. Since the
location of this revocation information is typically embedded in
the proof of identity, an evil attacker might use a falsified proof
of identity with a recording revocation point.

There are multiple possibilities to counter such an attack. The
easiest one is to do no verification at all. Having no verification
is, however, not desirable from the security point of view. An-
other possibility is only to verify trusted proof of identities. By
doing so, the only attacker could be someone having access
to a trusted source of proof of identities. A third possibility is
to relay the request to another host either by using an anon-
ymity structure such as Tor or by using its infrastructure. Using
Tor would violate the “Zero Trust” goal. Such a measure would
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only conceal the source of the verification. It would not hide the
fact that the message is processed. A fourth and most promis-
ing technology would be to force the sender of the certificate
to include a “proof of non-revocation”. Such a proof could be
a timestamped and signed partial CRL. It would allow a node
to verify the validity of a certificate without being forced to dis-
close itself by doing a verification. On the downside has to be
mentioned that including proof of non-revocation involves the
requirement to accept a certain amount of caching time to be
accepted. This allowed caching time reduces the value of the
proof as it may be expired in the meantime. It is recommended
to keep the maximum cache time as low as 1d to avoid that
revoked certificates may be used.

Bugging through DNS traffic:

A standard protocol on the Internet is DNS. Almost all network-
related programs use it without thinking. Typically the use of
such protocol is only a minor issue since the resolution of a
lookup usually done by an ISP. In the case of a small Internet
service provider (ISP), this might, however, already become a
problem.

The bugging in general attack works as follows: We include
a unique DNS name to be resolved by a recipient. This can
be done most easily by adding an external resource such as
an image. A recipient will process this resource and might,
therefore, deliver information about the frequency of reading,
or the type of client.

It must be taken into account that the transport layer will al-
ways do DNS lookups and that we may not avoid this attack
completely. We may, however, minimize the possibilities of this
attack.

Bugging through external resources:

A straightforward attack is always to include external resources
into a message and wait until they are fetched. In order to avoid
this kind of attack, plain text or other self-contained formats
should be used when sending a message. As we may not
govern the type of contained message, we can make at least
recommendations concerning its structure.

6.8.3 Denial of Service Attacks

6.8.3.1 Censorship

Whereas traditional censorship is widely regarded as selective infor-
mation filtering and alteration, very repressive censorship can even
include denial of information flows in general. Any anonymity sys-
tem not offering the possibility to hide in legitimate information flows,
therefore not censorship-resistant.

6.8.3.2 Denial of service
An adversary may flood the system in two ways.

» He may flood the transport layer exhausting resources of the
transport system.



This is a straightforward attack. MessageVortex has no control
over the existing transport protocol. Therefore, all flooding at-
tacks on that layer are still effective. However, If an adversary
attacks a node, the redundancy of a message may still be suf-
ficient. On the other hand, flooding disrupts at least all other
services using the same transport layer on that node. This re-
sult may be unacceptable for an attacker. More likely would be
censorship.

He may flood the routing layer with invalid messages.
Identifying the messages is relatively easy for a node. Usu-
ally, it should be sufficient to decode the CPREFIX block of a
message. If the CPREFIX is valid, then the header block either
identifies a valid identity or processing may be aborted.

He may flood an accounting layer with newldentity.

Flooding an accounting layer with identities is possible. Since
the accounting layer is capable of adapting costs to a new iden-
tity, it may counter this attack by giving large puzzles to new
identities. This affects all new identities and not only those
flooding. If a flooding attack is carried out over a long time, a
node may decide to split its identity. All recent active users get
a new identity, whereas the old one opposes high costs. This
would force an attacker to work in intervals and is no longer
able to make a permanent DoS attack.

6.8.3.3 Credibility Attack

Another type of DoS attack is the credibility attack. While not a tech-
nical attack, it is very effective. A system not having a sufficiently
big user base is offering thus a lousy level of anonymity because the
anonymity set is too small or the traffic concealing message flow is
insufficient.

Another way is to attack the reputation of a system in such a way
that the system is no longer used. An adversary has many options
to achieve such a reduction in credibility. Examples:

Disrupt functionality of a system.

This may be done by blocking of the messaging protocol it uses
or by blocking messages. Furthermore, an adversary reduces
functionality when removing known participants from the net-
work either by law or by threatening.

Publicly dispute the effectiveness of a system.

Disputing the effectiveness is a very effective way to destroy a
system. People are not willing to use a system which believed
to be compromised if the primary goal of using the system is
avoiding being observed.

Reduce the effectiveness of a system.

A system may be considerably loaded by an adversary to de-
crease the positive reception of the system. He may further
use the system to send UBM to reduce the overall experience
when using the system. Another way of reducing effectiveness
is to misuse the system for evil purposes such as blackmailing
and making them public.

Dispute the credibility of the system founders.
Another way of reducing the credibility of a system is to un-
dermine its creators. If — for example — people believe that a
founders’ interest was to create a honey pot (e.g., because he
is working for a potential state-sponsored adversary) for per-
sonal secrets, they will not be willing to use it.

Dispute the credibility of the infrastructure.

If the infrastructure is known or suspected to be run by a poten-
tial adversary, people’s willingness to believe in such a system
is expected to be drastically reduced.

7 Applied Methodes

Based on the findings of the previous chapter, we used the following
methodology in order to find a solution:

1. Identify problem hotspots for a new protocol.
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2. Design a protocol that addresses the previously identified
hotspots.

3. Build a protocol prototype.
4. Analyse the protocol for weaknesses using attack schemes.

a) Tagging/Bugging attacks.
b)
)
)

Tracing attacks.
c¢) Content and identification targeting attacks.

(
(
(
(d) DoS attacks.

7.1 Problem Hotspots

Starting from the previous research, we identified several hotspots
that have to be taken care of. The following sections list identified
problems and the possible countermeasures which have not been
broken in the past.

7.1.1  Zero Trust Philosophy

One main disadvantage of almost any system listed in section 6.6
is that trust (unlimited or limited) has been put into the infrastruc-
ture. For example, when using Tor, we need to trust the directory
servers. Control over the directory servers might give an attacker
the possibility to redirect a connection to controlled entry and exit
nodes, which would then break anonymity. In general, control of
entry and exit nodes makes a system vulnerable.

To avoid this problem, we decided to apply a zero trust model. We
do not trust any platform except for the sending and the receiving
computer. We assume that all other devices may be compromised
and do create detailed logs about what they are doing. This trust
extends partially to our personally known contacts. We believe that
some of them might be evil, but they are generally trustworthy. We
furthermore assume that traffic on the network layer is observed
and recorded at any time. This philosophy creates very hard to
meet goals. However, by assuming so, we prevent the system from
leaking information through side channels.

RQ1 (Zero Trust): No infrastructure should be trusted unless it is
the senders’ or the recipients’ infrastructure.

7.1.2 Information leakage and P2P Design

An anonymizing system must keep information on messages or
their metadata within the system. Ideally, even not disclosing to its
members. In a perfectly encrypted system, such metadata is leaked
at least by the entry and the exit node. To avoid this, all peers must
behave alike. All nodes should be valid endpoints as well as legiti-
mate senders or mixes. Covering all functions in all nodes implies
a design with equally built nodes and is shared with many P2P de-
signs.

A fundamental problem of the P2P design is that usually, port for-
warding or central infrastructure is required. Technologies such as
“hole punching” and “hairpin translation” typically require central in-
frastructures to support at least the connection and maybe depend-
ing on the client infrastructure being used fragile or ineffective. To
avoid these problems we decided to rely on traditional centralistic
transport infrastructures. As proof of concept, we decided to use
SMTP.

The approach supports, however, even mixing transport media.
This makes it harder for an attacker to trace a message as the mes-
sage flow may go through any suitable transport protocol at any time
of message transfer.

RQ2 (Equal nodes): Mixes and peers must be indistinguishable
from each other.



To guarantee that information is not leaked through owners of sys-
tems or to protect such owners from being forced into cooperation,
the system needs to be undetectable.

RQ3 (Undetectable): Nodes should be undistinguishable from reg-
ular transport media traffic.

7.1.2.1 Decoy traffic generation

To create decoy traffic in an untrusted way, we need means to in-
crease and decrease messages in size without knowledge of the
routing node. A straightforward approach would be to create decoy
traffic in the initial message. Such a design would create a pattern
of decreasing or repeating message sizes in the net. To avoid this,
we introduced a set of operations to be applied to the original mes-
sage. The operations are done in such a way that a mixer is unable
to tell whether the message size or decrease results in decoy traffic
generation/removal or not.

The main message operations are:

+ Split and merge messages.
» Add and remove redundancy information.

» Encrypt and Decrypt information.

At this point, we could have used homomorphic encryption instead
of redundancy operations. Such encryption would, however, add
much complexity to the algorithm with no apparent gain.

7.1.2.2 Message tagging or bugging protection

It is essential to the protocol that any operation at any point of the
protocol handling, which is not foreseen, should fail in message
transport. This property makes the protocol very fragile, but it pre-
vents mixes from introducing tags which may be followed throughout
the system. The protocols counter this fragility by the fact that re-
dundancy added in the message course may be used to recover
from misbehaving nodes.

In our approach, we give a single mix called the routing block builder
(RBB) full control over the message transport layer. The content
used for blending is discardable data. RBB has no control over
this aspect. This blending data is ephemeral and will (or may) be
removed by the next node. The data received by a mix may be used
to generate a “pseudo reply” on the blending layer to transport any
other message (related or unrelated) back to the sending node. So
tagging on this layer is worthless.

The reason for not giving control over the behavior to this layer to
the sender of the message is simple. By giving him control over
it, we would allow him to use the information provided here as the
primary medium. As an immediate result, the system would be suit-
able to blackmail any user of the world. It furthermore would create
unintentional “exit nodes” to the system, which might oppose further
legal threads for participants.

RQ4 (untagable): The message should be un-tagable (neither by
a sender nor by an intermediate party such as a mixer).

RQ5 (unbugable): The message should be unbugable (neither by
the sender nor by an intermediate party such as a mixer).

7.1.2.3 Message replay protection

Message reply protection is crucial for such a system. With the abil-
ity to replay a message, an adversary may “highlight” a message
flow as it would always generate the same traffic pattern. So there
needs to be a reply pattern protecting the protocol from message
replay. As we do have MURBs in our protocol, this is a problem. A
MURB is by design replayable. We, therefore, need a possibility for
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the original sender using a MURB to make messages distinguish-
able, which may not be used by an adversary.

RQ6 (replay): A message must not be replayable.

It should be able to increase and shrink in size, or all messages
must have a uniform size. Decoy traffic should not be distinguish-
able from message traffic.

7.1.2.4 No Dedicated Infrastructure Philosophy

There should be no infrastructure dedicated to the operation of the
solution. This avoids a single point of failure, as well as the possi-
bility for an adversary to shut down this infrastructure to disrupt the
functioning of the system as a whole. This requirement is already
covered implicitly in RQ1 (Zero Trust).

7.1.3 Accounting

The infrastructure must not be misused as UBM sending infrastruc-
ture. This implies that sending messages is connected to some
“cost”. “Costs” must be connected to some identity to allow ac-
counting. Linking to a global identity would allow assigning traf-
fic to a real-world user. Therefore the protocol must allow creating
ephemeral local identities not linked to a real identity.

RQ7 (accounting): The system must be able to do accounting with-
out being linked to a real identity.

7.1.4 Anonymisation

The system must allow the anonymizing of message source and
message destination at any point. It should not be visible to the in-
frastructure protocol whether a message has reached its destination
or not.

RQ8 (anonymisation): A system must be able to anonymize
sender and recipient at any point of the transport layer and any point
of mixing unless it is the sender or the recipient itself.

7.1.5 Initial Bootstraping

The system must allow bootstrapping from a zero-knowledge or
near-zero knowledge point. Therefore, the protocol must be able
to extend the network of known nodes on its own.

RQ9 (bootstrapping): The system must allow to bootstrap from a
zero-knowledge or near-zero-knowledge point and extend the net-
work on its own.

7.1.6 Cypher selection

In this protocol, a lot of encryption and hashing algorithms have to
be used. This choice of these algorithms should be explained.

From the requirements side, we have to follow the following princi-
ple:

RQ10 (algorithmic variety): The system must be able to use multi-
ple symmetric, asymmetric, and hashing algorithms to immediately
fall back to a secure algorithm for all new messages if required.

First of all, we need a subset of encryption algorithms all implemen-
tations may rely on. Defining such a subset guarantees interoper-
ability between all nodes regardless of their origins.



Secondly, we need to have a spectrum of algorithm in such a man-
ner that it may be (a) enlarged if necessary and (b) there is an alter-
native if an algorithm (or a mathematical problem class) is broken
(so that algorithms may be withdrawn if required without affecting
the function in general).

And third, due to the onion-like design described in this document,
asymmetric encryption should be avoided in favor of symmetric en-
cryption to minimize losses due to the key length and the generally
higher CPU load opposed by asymmetric keys.

If the algorithm is generally bound to specific key sizes (due to S-
Boxes or similar constructs), the key size is incorporated into the
definition. If not, the key size is handled as a parameter.

The key sizes have been chosen in such a manner that the key
types form tuples of approximately equal strength. The support of
Camelia192 and Aes192 has been defined as optional. However,
as they are wildly common in implementations, they have already
been standardized as they build a possibility to step up security in
the future.

Having these criteria for choice, we chose to use the following keys
and key sizes:

* Symmetric

— AES (key sizes: 128, 192, 256)
— Camellia (key sizes: 128, 192, and 256)

* Asymmetric

— RSA (key size: 2048, 4096, and 8192)
— Named Elliptic Curves

» secp384ri
» sect409k1
» secp521ri

Hashing

— sha3-256
— sha3-384
- sha3-512
— RIPE-MD160
— RIPE-MD256
— RIPE-MD320

Within the implementation, we assigned algorithms to a security
strength level:

« LOW
AES128, Camellia128, RSA1024, sha3-256

MEDIUM
AES192, Camellia 192, RSA2048, ECC secp384r1, sha3-256

« HIGH
AES256, Camellia256, RSA4096, ECC sect409k1, sha3-384

QUANTUM
AES256, Camellia256, RSA8192, ECC secp521r1, ntru, sha3-
512

This allows categorizing the used algorithms to a strength. This list,
however, should only serve the purpose of selecting algorithms for
people without cryptological know-how.

7.1.7 Reed-Solomon function

Originally [reed1960polynomial] introduced a system allowing the
use of polynomial codes to create error-correcting codes. In
[chaum1988multiparty] chaum1988multiparty, they have shown
that the codes are suitable for distributing data assuming enough
parties are honest.

Unlike Chaum et al’s proposition, we are not using the Reed
Solomon function to achieve anonymity or privacy. Instead, we use
it for decoy traffic generation. We are splitting a message into mul-
tiple parts at several points when routing and assemble it again on
different nodes. By doing so, we achieve two vital things. First,
we introduce the possibility of recovering errors due to misbehaving
nodes, and secondly, the real traffic can no longer be differentiated
from decoy traffic.

7.1.8 Usability

The system must be usable without cryptographic know-how and
with popular tools. This is necessary to accept the system broadly
and makes it easy to use for peoples already communicating.

RQ11 (easy handleable): The system must be usable without cryp-
tographic know-how and with popular tools.

7.2 Protocol outline

The protocol itself is independent of the transport layer specified.
We emphasize in this section to the general building blocks, the
cryptographic structure, and the general protocol attributes. In sec-
tion 9.4, we will then further elaborate on the protocols’ inner struc-
ture.

The protocol is built on multiple layers. On the logic side, the proto-
col is split into two parts:

1. Transport Layer
Standard Internet infrastructures provide this Layer. The pri-
mary goal is to hide or blend our protocol into regular traffic
within that layer.

2. Blending and subsequent layers

Any user of the Internet may provide these layers. Since these
layers may be mixes-only, or valid endpoints. Mixes may or
may not be publicly known. In a first implementation, we build
this system as a standard Java application. The primary goal is
to compile it to native code afterward and run it on an SoC like
infrastructure such as a RaspberryPi or port it to an android
device.

We may further split these layers into

(a) Blending layer
This layer takes messages and creates transport layer
conformant messages. In an ideal case, the messages
generated by this layer are indistinguishable from the reg-
ular message traffic, and the embedded message is only
visible for the receiving node.

Routing layer

The routing layer disassembles and reassembles messa-
ges. This operation guarantees that messages are gen-
erated in such a way that decoy traffic is not differentiable
from non-decoy traffic.

Accounting layer

The accounting layer has three jobs. First, he has to
authorize the message processing after decrypting the
header block. Secondly, he handles all header request
blocks and the reply blocks. And third, it keeps track of
the accounting regarding the sent messages.
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7.2.1 Protocol Terminology

For our protocol, we use the following terms:

» Sender: The user or process originally composing the mes-
sage.

* Recipient: The user or process destined to receive the mes-
sage in the end.



Router: Any node which is processing the message. Please
note that all nodes are routers.

Message: The “real content” to be transferred from the sender
to the recipient.

Payload: Any data transported between routers regardless of
the meaningfulness or relevance to the message.

Decoy traffic: Any data transported between routers that have
no relevance to the message at the final destination.

Identity: A tuple of a routable address, and a public key. This
tuple is a long-living tuple but may be exchanged from time to
time.

Ephemeral Identity: An identity created on any node with a
limited lifetime anyone possessing the private key (proven by
encrypting with it) is accepted as representative of that identity.

Routing Block Builder (RBB): An entity, which is building a
routing block. Typically identical to either sender or receiver.

7.2.2 Vortex Communication model

In this section, we introduce a new consistent, transport-
independent model for representing the different protocols used by
MessageVortex.

Vortex node Vortex node Vortex node Vortex node
Accounting Accounting Accounting Accounting
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Figure 7.1: A rough protocol outline of the MessageVortex protocol

We divide our protocol into four different layers, whereas only three
are specific to the MessageVortex protocol. The lowest layer is the
transport layer. As expressed earlier, dedicated protocols are easy
to censor. Therefore we build our protocol on top of other suitable
transport protocols.

The other Three layers are vortex specific and do not require any
infrastructure on the Internet. We elaborate further on these layers
in the next section.

7.2.3 Transport Layer

For our first tests, we used a custom transport layer, allowing us to
monitor all traffic quickly, and build structures in a very flexible way.
This transport layer works locally with a minimum amount of work for
setup and deployment. It furthermore works across multiple hosts
in a broadcast domain. The API may be used to support almost any
kind of transport layer.

After that, we focussed on the protocols identified in the previous
sections for transport:

* SMTP

- XMPP

For the prototype, we have implemented an SMTP transport agent
and the respective blending layer.
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7.2.4 Blending Layer
The blending layer is taking care of multiple problems:

« It is translating the message block into a suitable format for
transport
This translation includes jobs such as embedding a block as
encoded text, as a binary attachment or hide it within a mes-
sage using steganography.

Extract incoming blocks
Identify incoming messages containing a possible block and
extract it from the message.

Do housekeeping on the storage layer of the transport protocol
Access protocols POP and IMAP require that messages are

deleted from time to time to stay below the sizing quotas of an
account.

We define the blending layer to work as follows when receiving mes-
sages:

1. Log arrival time (in UTC) on the transport layer.
2. Extract possible blocks.
3. Apply decryption on a suspected header block.

. |dentify the header block as valid by querying the accounting.
. Extract and decrypt subsequent blocks.

. Pass extracted blocks and information to the routing layer.

We define the blending layer to work as follows for sending messa-
ges:

. Assemble message as passed on by the routing layer.

. Using the blending method specified in the routing block, build
an empty message.

. Create a message decoy content.

. Send the message to the appropriate recipient using the trans-
port layer protocol.

There is no specification on the housekeeping part of the blend-
ing layer, as this part is specific to the requirements of the account
owner. We do, however, recommend to handle messages precisely
as if the messages would be handled on an account handled by a
human.

7.2.5 Routing Layer

The routing layer receives the message blocks in a decrypted and
authorized form from the blending layer and processes them as fol-
lows:

Build structure representing the block building and the appro-
priate block IDs.

Schedule all Routing blocks for processing in a priority queue.

Authorise all routing blocks ready for processing with the cal-
culated block sizes.

Process blocks.

Send prepared building blocks to the Blending layer.



7.2.5.1 Block Structure

A VortexMessages’ main block structure is a sequence of blocks.
This block sequence starts with a header containing a symmetric
key encrypted with the public key of the current node and a header
block containing the immediate details to decrypt the subsequent
blocks (if any).

A routing block follows the header block. This routing block con-
tains the information required for subsequent routing. According to
the instructions in this block, valid data blocks may be processed,
assembled, and sent to a subsequent location.

The next block is the routing log block. This block protocols the
routing information of a message and is somewhat similar to an
onionized variant of the received headers in SMTP.

The last part of the message is a sequence of data blocks. They
contain the actual data or decoy traffic.

7.25.2 MURBs

The protocol includes the capability of MURBs. Such MURBs en-
able a user to send a limited amount of times messages to an
anonymous receiver. Such sending may be done without having
any knowledge about its identity, the location, or infrastructure he is
using.

A MURB in our term is an entirely prepared routing instruction built
by the recipient of a message. The sender has only the routing
blocks and the instructions to assemble the initial message. It does
not know the message path except for the first message hops.

As a MURB is a routing block, it generates the same pattern on the
network each time a sender uses it. To avoid statistical visibility, we
need to limit the number of uses per MURB. As a maximum num-
ber of usages, the protocol is limited to 127 usages. This number
should be sufficiently sized for automated messages. A minute pat-
tern would disappear after 2 hours latest and an hourly pattern after
five days.

For a MURB to work, the RBB has to take care that all quotas re-
quired to the route are sufficiently sized. Such sizing is hard to fore-
see in some cases. An RBB may query these identities from time
to time to make sure that they do not deplete. Wherever possible,
MURBSs should be dropped in favor of multiple SURBSs to avoid the
dangers of MURBs.

7.3 Protocol handling

In the following sections, we outline the handling of messages we
split the handling into incoming messages and outgoing messages.
All handling assumes that we have a blending layer independently
picking up messages as advertised in the capabilities messages.

7.3.1 Block Processing

A Block is picked up in the blending layer and then handled in the
routing layer. First, we try to authenticate the message. If we can
authenticate the message, we process it and add the contained in-
structions to a processing workspace. Unauthenticated messages
may be discarded at any point.

The processing of a sending block is triggered by a routing block in
the workspace, as shown in figure 7.2. The assembly instructions
are processed to collect the payload blocks. Then the encryption
is applied to the message and passed on to the blending layer for
processing.
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7.4 Sub Research Questions Roundup

We sum up the findings of the last part regarding our three research
questions and describe the next steps to be taken.

7.4.1 SQ1: Technologies for sending messages

maintaining unlinkability against an adver-
sary

We were unable to identify a single technology that withstands our
adversary model entirely. The technologies were either too simple
to withstand an adversary (e.g., remailers), have substantial flaws
affecting their reliability (e.g., most mixes and DC networks), an ac-
tive adversary could sabotage them or do not scale.

We were able to describe a rough protocol that performs far better in
almost all aspects of anonymity than the solutions described in the
previous sections. This comparison was always made for the adver-
sary model given in section 4.1. If we assume that the constraints of
trust (only trust in sender and recipient infrastructure, whereas we
always have multiple recipients) are valid, we can make the follow-
ing statements regarding anonymity and unlinkability:

+ If an adversary identifies all involved nodes of a message
and identifies all the corresponding messages and controls, all
nodes except for senders and recipients nodes, he can deter-
mine message frequency, maximum message size, and mes-
sage peers.

If an adversary can identify all involved i nodes of a sending
party while controlling j nodes, then he may determine a k-
anonymity set whereas k = i — j for the message set and a
maximum message frequency.

If an adversary is running a node, he may identify other nodes
participating in the network by analyzing peer messages.

We may safely assume that a carefully crafted message within a
standard message flow is therefore unlinked from the two message
peers. An adversary running a node may identify over time, possibly
participating nodes, if not operating in a closed group, but he will be
unable to query or use such a node without the corresponding keys.
He may be able to observe such nodes, possibly view their activity,
but he is unable to match messages generated.

In the next section, we will further elaborate on this protocol and
analyze it. We will focus on the question of whether it is possible to
create a protocol that withstands our threat model.

7.4.2 SQ2: Attacking unlinkability and circum-
vention

In the previous part, we identified a lot of attack schemes used to
attack the anonymity of a protocol or infrastructure. While not all are
technical, technicality plays a major part. We identified:

» Anonymity attacks

Hotspot attacks
Side-channel attacks

Sizing analysis
Bugging attacks
— Tagging and tracing attacks

= Peer discovering attacks
= Traffic flow attacks

+ Availability and reliability attacks

— Denial of service (DoS) attacks
— Censorship attacks

* Non-technical Attacks
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Figure 7.2: flow diagram showing processing of outgoing messages

— Credibility attacks
— Censorship attacks

We identified several possibilities to circumvent the attack classes
listed above. Some of them, such as the bugging attack, may be
countered by design (e.g., by allowing only simple messages). Oth-
ers can only be countered partially in reality (e.g., DDoS attacks).
We will further elaborate on the protocol and then analyze the im-
pact of every single attack on the protocol.

7.4.3 SQ3: Attack Mitigation by design

This SQ is a part of the previous question to a certain extent.
We identified that reliability and trust are key factors to a protocol.
Therefore, allowing a single point of failure (SPOF) or extending
trust over central infrastructures is deadly for an anonymizing pro-
tocol. Undetectability is another crucial point ignored by almost all
protocols except for some aspects of Tor and some advanced forms
of remailers.

When elaborating on the protocol in the next part, we will focus on
introducing designs that will prohibit actions endangering anonym-
ity. In the Result section, we will focus on all attacks, which should
be mitigated by design.
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To verify the hypothesis made in this paper and to analyze the prop-
erties of the protocol in a real-world scenario, we implemented a
library in Java. This library is capable of handling all message pack-
ets and the routing stack as a whole. The implementation is avail-
able under https://messagevortex.net. The following para-
graphs describe the protocol developed in general as a generic ap-
proach. Appendix A gives the full ASN.1 representation of the pro-
tocol.

As ASN.1 has no means to express encrypted structures, we de-
fined all encrypted fields as OCTET STRING. The protocol supports
onionized information in an unencrypted form. These unencrypted
structures are for debugging purposes only. At no point should this
possibility be used in a production environment.

The protocol described in the next chapter is independent of rout-
ing. We built a blending layer for SMTP. Layers for other protocols
such as XMPP may be defined similarly. We extend the protocol
by adding new blending layers for the transport protocol and their
addressing schemes.

The Protocol outlined here is the final product and has undergone
many development cycles. We dropped a lot of advantageous
features and capabilities, such as a mechanism analogous to the
SMTP received headers, as they were beneficial but threatened se-
curity or anonymity.

8 Vortex Prerequisites

8.1 Hardware

We require no specialized hardware for running Vortex nodes. In-
stead, we designed Vortex in such a way that ordinary mobile
phones may act as Vortex nodes. It is, however, recommended
to have a node always connected to the Internet. A mobile phone
may disconnect from time to time based on the availability of the
network. For our experiments, we used a RaspberryPi Zero W. It
is, however, recommended to use a faster, newer model due to the
memory requirements of the proof of work algorithm.

The hardware currently requires a network interface and a fully func-
tional JSE VM to run the reference implementation.

8.2 Addresses

A Vortex address is built as follows:

1 localPart = <local part of address>

2 domain = <domain part of address>

3 email = localPart "@" domain

4 keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>

5 smtpAlternateSpec = localPart ".." keySpec ".." domain "@Iocalhost"
6 smtpUrl = "vortexsmtp ://" smtpAlternateSpec

To allow storage of Vortex addresses in standard messag-
ing programs such as Outlook or Thunderbird, we introduced
smtpAlternateS pec.

The suffix “@localhost” makes sure that any non-participating
server does not route a message intended for Vortex. The dou-
bly dotted notation is not RFC compliant but was accepted by all
tested client address books. The address is, however, not a valid
SMTP address due to its double-dotted notation. We selected this
representatiopn to differentiate Vortex addresses from valid email
addresses.

The main downside of vortex addresses is that they are no longer
readable by a human. The main reason for this is the public key,
which is required. We may abstract this further by allowing clear-
text requests on the primary email address for the public key. The
vortex account must then answer such requests with the valid Vortex
address.

The smtpUrl is representing the address in a standard way, which
makes it suitable for QR codes and intent filters on Android.

The public key of an address is encoded as follows:

1. The asymmetric key is encoded as specified in the Asymmet-
rickey in ASN.1

2. The ASN.1
BASE64

DER representation is then encoded using

8.3 Transport Layers

As transport layer protocols, we specified the protocols SMTP and
XMMP as valid transport layers. In the following sections, we specify
the blending properties for these protocols.

8.3.1 Embedding Spec

We always embed VortexMessages as attachments in SMTP and
XMPP messages.

The embedding supports some properties. A receiving host
chooses the supported properties. We describe valid properties by
the blending specification::

1 plainEncoding
2 F5Encoding

"("plain:"<#BytesOfOffset >[,<#BytesOfOffset >]«")
"(F5:"<passwordString >[,<PasswordString >]«")"

We use mainly plain embedding for our experiments. For better
readability, we used a specialized blending layer using unchunked,
plain embedding with an offset of 0. The message itself was the
ASN.1 block representation of the encoded block. The chosen en-
coding simplified to see the inner workings of the protocol. For pro-
duction use, we apply F5 embedding with a generated payload. The
current implementation of the blending layer is thus not suitable for
production use as the messages remain identifiable or at least sus-
picious.

8.4 Client

We did not create a Vortex client for sending messages. Instead, we
used a standard Thunderbird email client pointing to a local SMTP
and IMAP Server provided by a Vortex proxy. On the SMTP side,
Vortex does encapsulate where possible mails into a Vortex mes-
sage and builds an automated route to the recipient. The SMTP
part of Vortex may be used to encapsulate all messages automat-
ically with a known Vortex identity into a VortexMessage. On the
IMAP side, it merges a local Vortex message store with the stan-
dard Email repository building a combined view.

Using Vortex like this offers us the advantages of a known client with
the anonymity Vortex offers.

Using a proxy has certain downsides. At the moment, the vortex
client has only a local store. Such a local store makes it impossible
to handle multiple simultaneously connected clients to use Vortex.
This limitation is, however, just a lack of the current implementation
and not of the protocol itself. We may safely use IMAP storage for
storing VortexMessages centrally. This statement is true as long as:

+ The storage is not identifiable as such.
This requires:
— A non-identifiable folder/message structure
— A storage not identifiable by access patterns
— The stored messages do have the same strength as the
transmitted messages in terms of detectability

» A secured key
Either the host key is secured sufficiently with KDF, and a
passphrase (or similar), or the host key remains off-storage.

8.4.1 Vortex Accounts

By definition, any transport layer address may represent a Vortex
identity. This fact may make people believe that their current email
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or jabber address is suitable as a Vortex address. This statement
is technically perfectly true, but should not be done for the following
reasons:

» If an address is identified as a Vortex address, it may be
blocked (directly or indirectly) by an adversary. Such blocking
would lead to blocking of regular email traffic as well.

If a vortex node is malfunctioning non- VortexMessages should
remain unaffected. Isolation is far better if we keep non-Vortex
messages in a separate account.

If a user wants no longer to maintain its Vortex address, he may
give up his Vortex transport accounts. If he had been using his
normal messaging account for Vortex, he would receive mixing
messages which are hard to filter even with a known host key.

8.4.2 Vortex Node Types

8.4.2.1 Public Vortex Node

Public nodes are nodes, which advertise themselves as normal
mixes. Just as all nodes, they may be an endpoint or a mix. Typically
they accept all requests exactly as outlined in 9.1. As an immediate
result of the publicly available information about such a node, the
owner may be the target of our censoring adversary. Pressure may
be opposed to close down such a node. However, since we do not
need a specific account, we may safely close down one transport
account and open up a different one. Such account reopenings are
even possible on the same infrastructure. We are even able to notify
other users of the move and remain reachable, as a user may send
a newldentity request using the old identity.

8.4.2.2 Stealth Vortex Node

This node does not answer any clear-text requests. As an imme-
diate result, the node is only usable by other nodes knowing the
public key of this node. The node is, therefore, on a known secret
base only reachable. This node type may be used in environments
with a censoring adversary. People may form closed routing groups
routing and anonymizing themselves. We have to state clearly at
this point that putting trust into the routing nodes violates the Zero
Trust principle. It is, however, currently the only way to outcurve a
censoring adversary. Means such as using distribution lists as end-
points seemed to be of some value at first but turned out just to
shift the problem of detection from the routing to the less protected
transport layer.

8.4.2.3 Hidden Vortex Node

A hidden node is a special form to a stealth node. It has a pre-
defined set of identities. Only these already known identities are
processed. This behavior has certain drawbacks. An existing iden-
tity may not be changed, and new ephemeral identities may not be
created. As an immediate result, traffic may become pseudonymity.
To counter this effect, at least partially, we may use the same local
identity for multiple senders. To remove clashes in the workspace,
we may use preassigned IDs in the workspace. The sender is only
one of all senders knowing the private key of an identity. The ad-
vantage of such a node is that identities have unlimited quotas on
such nodes, no longer bothering about accounting and refreshing
identities. Such behavior seems to be a valuable option when using
bulletproof providers.

9 Vortex Protocol Overview

The Protocol details are described in the RFC document in A. The
RFC draft contains all the necessary information to build the proto-
col. The RFC is published through the official IETF channels. Be-
sides the RFC document, additional documents and references may
be found on the official website https://messagevortex.net/.
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The MessageVortex protocol described here is a protocol for asyn-
chronous data transfer. The protocol itself is embedded into a car-
rier protocol as binary information to avoid easy detection and make
it hard to block traffic without blocking other legitimate traffic.

The data transferred is passed through multiple routers. The builder
of a routing block (normally the sender) decides upon the following
attributes:

Hops for the message and all decoy traffic.
Timing behavior of the message.

Decoy traffic generation.

Set of possible recipients.

Set of all nodes involved in routing.

These decisions are compiled into a routing block structure, which
is onionized. This routing block may then be used to transfer a mes-
sage of almost any size. This message is then sent to the involved
mixes.

A mix may be just an intermediate station or the final target of a
message. Only the recipient of a message can tell whether a mes-
sage was intended for him or not. Any mix does a certain number
of operations on a message. Considering the message, the timing
and the operations applied a mix may extract the following pieces of
information:

IP of the sending mix.

Size of the message received.

Size of all processed sub-blocks.

Arrival time of a message.

Ephemeral identity a message belongs to (an ephemeral
pseudonym to the routing block builder (RBB)).

Validity time of the message on the node.

Operations applied to the message.

Size of all blocks sent.

IPs of the receiving mixes.

A routing node always applies the operations requested in the build-
ing instructions to the received data. If this is not done, the message
properly may fail to transfer to its final destination.

The operations to be applied to a message are chosen in such a
way that they may or may not generate decoy traffic. This design
guarantees that valid messages or decoys may not be identified on
the operations applied to the message.

Redundancy may be built in a routing block as well as progress
indication.

In the taxonomy of [Shirazi2018], this protocol would be classified
as follows:

Network topology: full

Network connection direction: unidirectional
Network connection synchronization: asynchronous
Network symmetry roles: hybrid

Network symmetry topology: flat

Network symmetry decentralization: fully decentralized

Routing network view: partial

Routing updating: Event-based
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Figure 9.1: Simplified message outline

Communication routing type: source routed’

Communication scheduling: fair

Communication node selection determinism: probabilistic

Communication node selection set: user-based

Communication node selection probability: uniform

Performance latency: high

Performance communication mode: message-based

Performance implementation: yes

Performances code availability: yes

Performance context: email, messaging

9.1 Vortex Message

The outline in figure 9.1 is a simplified view of the message block of
MessageVortex.

A Vortex message is a message passed from one router to another.
This message may or may not contain any valuable information.
The VortexMessage is encoded as binary data in the transfer pro-
tocol. Every router may decide for himself on the support of algo-
rithms and embedding mechanisms.

The block structure of a Vortex message is as follows:

» Encrypted peer key.
It contains a symmetrical key for decryption of follow up header
information and payload blocks. All symmetric keys are en-
crypted with a receiving host’s public key.

* Inner Message Block (encrypted with peer key)

— header (encrypted with sender key)

= |dentity
= “proof of work” information
= (optionally) header requests

— Routing blocks (encrypted with sender key)

» Next hop timing instructions

= Next hop routing blocks (encrypted)
= Next hop header

» Message build instructions.

= Next hop header key and spec.

» Next hop blending instructions.

— Payload blocks

10nly partially correct, as the RBB decides on the route. This builder is not necessarily
identical to the sender.

It is important to note that there are two symmetrical keys involved
in encrypting and decrypting message headers. Having two keys is
not a flaw in the protocol but necessary.

The first key of a VortexMessage is the message key. This key
is only accessible with the private key of the node receiving the
message. It allows the decryption of the routing blocks and the
header information. The sender of a message block is, therefore,
not able to tell if a message contains one or more routing blocks. It
is important to note that no other node should have access to this
information.

The second key is the sender key located before the encrypted
header. The RBB chooses the key. This key protects the inner struc-
ture of the Message. It makes it impossible for any node except the
sending party or the receiving peer node to detect the inner struc-
ture of the message. Without this key, any independent observer
with knowledge about the blending capabilities of a receiving node
may:

« Easier to identify the block structure.
This statement remains regardless of whether ASN.1 or length
prefixed structures are used. If the structure of a VortexMes-
sage can be easily identified, the messages may be logged or
dropped.

Identify the routing block size.
The value of this information is only minimal as it only reflects
the complexity of the remaining routing information indirectly.

Identify the number of payload blocks and their respective
sizes.
Sizing information is valuable when following the path of a mes-
sage.

For the exact usage of the keys, see section 9.1.1.

It is important to note that there is no structure dividing the en-
crypted peer key from the Inner message block. The size of the
peer key block is defined by the key and algorithm of the host key.

9.1.1 Key Usage

Several keys are being used during the life of a message. In the
following section, we emphasize on the type, the usage, and their
specialties.

9.1.1.1 Peer key

The peer key is a message specific symmetrical key known to two
adjacent routing nodes. It is generated by the sending routing node
and encrypted with the public key of the receiving nodes identity
key.

9.1.1.2 Header Key

The header key is a symmetric key protecting the routing and
ephemeral identity information of the message. It is prepended to
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the header section and protected by the identity key of the process-
ing node.

9.1.1.3 Host Key

The host key is a static, asymmetric keypair existing on a per-user
base used to sign messages or encrypt symmetric keys. We refer
here as a user any peer participating in the message stream. Every
user participating in the Vortex network requires at least one key
pair.

Depending on the use-case (e.g., unlikable signatures or scalable
security), a user may use multiple key pairs at the same time.

The host key is required for decrypting peer (K,.) and sender
(K semr’er) kGY-

9.1.1.4 Ephemeral Identity Key

An elD key identifies the sender to a processing host. The
ephemeral identity key must be handled in such a way that it is not
linkable. It is mainly used to process accounting information.

A user may have multiple key pairs on one routing host.

9.1.2 \VortexMessage Processing

A node requires FP arithmetic to process messages. To make sure
that all implementations on all platforms behave the same, we al-
ways use arithmetic as specified in IEEE754[IEEE754].

9.1.2.1 Receiving Messages

All messages are processed as follows:

1. Extract peer key from the block. A node aborts the operation if

a block is invalid or not decryptable.
. Decrypt sender key with hosts private key.

. Decrypt header block with the decrypted sender key. Abort if
not decryptable or invalid block.

« Verify identity

+ Check quotas (if any)

» Extract header key

» Extract requests (if any)
» Check replays (if any)

. Decide if the message should be processed. If not abort here.
. Decrypt rest of the inner message block with the peer key
. Extract payload chunks.

. Decrypt routing blocks with header key.

o N o O 9 »

. Check forwardS ecrets and discard if the inner message block
contains any non-matching values.

9. Process instructions
We may split the processing in an authenticated and unauthenti-
cated processing, as shown in figure 9.2. When applying this

Every routing block creates a new message.

The payload of a message is generated according to instructions in
the routing block. Timing instructions are relative to the arrival time
of the message containing the routing block. This relative timing
is necessary as a routing block may be used multiple times (see
section 7.2.5.2).

A VortexMessage may be composed not earlier than a “validFrom”
expressed in the respective routing block.
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9.1.2.2 Building and Sending Messages

Any time after a routing block reaches “validFrom” and before the
“validTo” is reached, processing of a routing block is triggered. An
implementation should, when triggering a routing block for process-
ing, trigger as many routing blocks as possible to make traffic anal-
ysis harder.

The message is then built as follows:

1. Check if all building instructions can be fulfilled due to their

prerequisites.
. Build requested payload blocks.
. Extract peer key from the routing block.

. Extract headerBlock and encrypted sender key from the routing
block.

. Extract (sender key encrypted) nextHop routing blocks from
routing block.

. Encrypt message using the peer key.
. Update accounting figures.

. Blend into the transport layer according to spec and send a
message.

9.2 Protocol design

In this section, we emphasize on the protocol blocks. These blocks
are extracted from the blending layer and passed to the routing
layer. A VortexMessage is split into two main parts. The peer key
block and the inner message block. The peer key block contains
the named key in encrypted form. the inner message block contains
the subparts “senderKey”, “header block”, “routing block”, and “pay-
loads”. Although these blocks are described in A as ASN.1 encoded
structures, they are not. In the message, they are just subsequent
blocks without any structure.

The reason for not using ASN.1 encoding is that it might be possible
to identify the unencrypted message on the transport layer as Vortex
message due to the ASN.1 structure. By not using this any support-
ing structure, we make it impossible for an adversary to identify the
encrypted structures of a VortexMessage.

Without the host key, it is impossible to find any structure within the
encrypted message. However, assuming an existing host key de-
tection is easy. The first block must result in an ASN.1 encoded
structure containing the symmetric key (and its spec). So for detec-
tion of a message with the host key, only the decryption of a single
asymmetrically encrypted block is required. A routing node uses the
obtained peer key to decrypt the sender key block and the header
block. After verification of the header blocks signature, a VortexN-
ode has all information required whether full processing is allowed
or not. If so, the processing node does decrypt the routing block
and check all forwardS ecrets. After passing this test, all structures
are added to the workspace of the elD.

9.2.1 Header block

The header block contains the identity and all information required
to decide whether subsequent blocks of the message should be
handled.

The header block contains the following data:

+ An identity block (identityBlock)
This block contains data reflecting the identity of the sender
and the use of the header and subsequent blocks. This data
includes:

— sending ephemeral identity public key (identityKey)
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+ An identity signature (identitySignature)
Contains a signed hash with the senders private key.

The identity in header blocks is always an ephemeral identity (elD).
It exists for a limited amount of time (a low number of days). Creat-
ing a new elD is done with an identity request.

The elD identifies the workspace and limits the available routing ca-
pabilities. A vortex node only processes known elDs with sufficient
quotas.



9.2.1.1 Requests

Requests are always embedded in a header block. All requests are
answered with a provided SURB.

There are several header requests defined:

» newldentity request:
This request may be answered with either a reject or a puzzle
that is required to solve. Solving the puzzle results in the cre-
ation of the identity on the node. The node may reject identities
for various reasons:

The node is not accepting newldentity requests

The identity is already taken.

The identity is not strong enough (it must apply stronger
cryptography).

The used encryption scheme is not supported by the
node.

An identity may be rejected if the wrong types of keys and key
sizes are used. However, it must accept at least the key types
and sizes it uses for its own identity.

If an identity is rejected, the request may not be replayed by
the same identity again. A sending party must generate a new
identity for a new request.

This request should be by far the most expensive request. It
must, at any time, be more expensive to request a new identity
compared to raise the quota of an existing one.

An identity on this level is always ephemeral and expires after
a given period. An elD can not be prolonged for security rea-
sons. Being unable to prolonge the lifetime of a elD has certain
drawbacks when using reply blocks. A reply block can only be
valid as long as all included identities are valid. To counter
this weakness without weakening security, a ctxlessNewlden-
tity block may be sent to a reply block owner providing him with
a new reply block.

queryPeer request:

A peer request is a request for publicly known Vortex nodes.
This request does offer the possibility of harvesting the Vortex
network. We hardened our system, therefore, with the following
limitations to make harvesting harder:

— The request is very costly

— Only nodes advertising themselves as “public” are dis-
closed.

— Only one or two nodes should be disclosed upon request.
— A node should always pick random nodes out of a 5%
pool of known Vortex addresses.

These measures limit the effectivity of harvesting attacks while
giving any node the possibility of bootstrapping itself.

queryCapabillity request:

This request is the only request answered as a clear-text re-
quest. We minimize the possibility of probing by answering
such requests only if the node owner agrees to it or generally
by public nodes.

messageQuota request:

This request raises the number of routing blocks which may
be processed for an identity. A node may reject this request
depending on the load of the node, personal preferences, or
because this identity causes too much traffic.

It is typically answered for all valid identities only. The node
should reject even recently elDs. A routing node should, how-
ever, not send a reply to an unknown elD as this behavior might
be used for the probing of a node.

trans ferQuota request:

This request raises the number of bytes that may be transferred
for an identity. A node may reject this request depending on
the current load, personal preferences, or because this identity
causes too much traffic.

The same restrictions as in messageQuota apply.
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* queryQuota request:
This request instructs the node to send information about the
given identity.

It is typically answered for all valid identities only. The node may
have recently expired. It is, however, not recommended to send a
reply to an unknown identity as this behavior might be used for the
probing of a node.

9.2.1.2 Replys to Clear Text Requests

It is up to the decision of the node whether it wants to answer a
clear-text request or not. Recommended for this behavior is to dis-
card plain text requests.

Discarding such requests should only be a problem when bootstrap-
ping or when adding new identities to their address book.

9.2.2 Routing Blocks

Routing blocks contain an onionised route, chosen by the builder of
the routing blocks, and may provide instructions for building subse-
guent messages.

Routing blocks contain the following information:

The node specification of the next hop (requires a full identity;
may be missing if there is no next hop)

The moment of processing as a range in seconds since the
time of arrival.

Retention time in seconds since the time of arrival.

The key blocks for the next hop

The peer key in plain

The identity block for the next hop

The routing block for the next hop

Payload building instructions

9.2.2.1 Payload Building Instructions

Payload is being built right before sending a block (processing a
routing block). The building instructions are built as follows:

build operation
_—

srcIDs targetlDs

Every node maintains a list of received blocks, including their IDs
and building instructions for them. Any node must keep blocks and
building instructions during the whole lifetime of a routing block. It
may keep it longer. If a conflicting building instruction arrives, all
conflicting older rules are removed. Building instructions are always
referring to the workspace of the signing elD. It is not possible to
reference building instructions of a different identity.

« splitPayload and mergePayload:
Split a message block into two parts of varying sizes. The size
of the first chunk is expressed either absolute or in percent of
the original block size.

encryptPayload and decryptPayload:

Encrypts and decrypts a payload chunk block with a given
symmetric key and algorithm. Please note that this operation
changes the size of a message due to the key size and the
padding.

addRedundancy and removeRedundancy:
Splits a payload block into uniform chunks and adds redun-
dancy information or removes it.



All the operations specified above have in common that they may
be applied to decoy traffic as well as on real message data. The
size of incoming and outgoing blocks do not relate as messages
are increasing the size as well as decreasing in size.

We describe the operations in detail in section 9.2.4.

9.2.2.2 payload Block

The payload block contains the actual message or decoy traffic.
Since this block is heavily modified in the course of the transport
of the block, it is built simplistically. It contains only the payload
data.

An active adversary may always replace a payload block when rout-
ing. Any tagging introduced by an active adversary at this point
does invalidate the stream. The output after the next hop is entirely
unpredictable and, thus, tagging ineffective.

9.2.2.3 Reply Block

Reply blocks are blocks embedded into payload blocks. There are
very few reply blocks necessary. Unlike normal data blocks, these
messages are not accounted to quotas on the node generating the
reply block.

It is up to the node to decide whether it wants to answer a request
or not.

Replies are being built as ordinary message blocks. To identify a
Vortex message, it must begin with the string “\special” encoded in
ASCII followed by a valid reply block structure. No additional bytes
may be appended. Blocks with other data should be discarded.
To express a block starting with “\special”, the token is repeated
prefixed with a backslash.

* replyCapability block:
The reply contains the following information:

— Supported Vortex transports, including blending specifi-
cation.

Maximum quota.

Supported ciphers and hashes.
Maximum number of simultaneous valid header serials.

Maximum number of simultaneous valid building opera-
tions.

Maximum identity lifespan in seconds.

It lists the capabilities a node advertises to the public.

requirement block:

Requirement blocks denote a requirement a requester has to
fulfill before a previously sent request is processed. Usually,
proof of work puzzles needs to be solved to allow a request
to be processed. Alternatively, a commercial supplier may re-
quest payment in digital currency. Currently, supported digital
currencies are Bitcoin, Ethereum, and ZCash.

replyS tatus block:
General answer block, which is signaling a status. The block
is limited in length to minimize the misuse of bandwidth. The
Block contains the following data:

— Three digit status number

— Sending node identity

— Status text (optional)

— Affected block ID (optional)

ctxlessNewidentity block:

This block may be used to signal the change of identity to a
recipient. As this request is signed with the old known identity,
no means should exist to hijack such an identity.

This request contains:
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— old Identity
— new |dentity
— Signature (with old identity)

This message may arrive at any time. Any recipient might de-
cide on its own whether it wants to accept the update or not.

A node should not accept an identity update if the strength of
the new identity has been lowered compared to the old iden-
tity. A client may make a difference in the fact of whether the
transport layer address or the key is exchanged.

9.2.3 Accounting
Accounting covers several purposes in this system:

« It makes the system costly for nodes sending bulk messages.
+ It protects from replaying.

« It offers an elD with pseudonymous characteristics and a lim-
ited lifespan.

As accounting data may be used to overfill a nodes accounting ta-
bles, special care has been taken to limit the number of information
which has to be maintained per identity. We furthermore tried to
minimize the risk that someone might occupy the accounting mem-
ory of a node without costs. Moreover, any node may cancel an
illicit behaving identity at any time.

It is essential that the accounting described here is for routing
nodes. A node building a routing block requires more accounting
information as it has to keep track of all ephemeral identities.

9.2.3.1 Accounting Data of an Ephemeral Identity

For an ephemeral identity, very little information has to be kept. This
identity expires after a certain amount of time. The maximum time
may be queried with a capability request. The choice of encryption
type and key size is left to the node requesting the identity. However,
a node may reject the request if it considers the identity to be unsafe,
it has no more capacity for new identities, or if it would create an
identity clash on the current node.

The following data has to be kept per identity:

* EID{expiry, pubKey, mesgsLeft, bytesLeft,temporary)
The EID tuple is the longest living tuple. It reflects an
ephemeral identity and exists as long as the current identity
is valid. All other tuples are short living lists. As the server
decides if he accepts new identities or not, the size of this data
is controllable. The temporary flag describes an identity which
has an unsolved puzzle.

* Puzz[|(expiry, request, puzzle)
The array Puzz[] is a list of not yet solved puzzles of this elD.
Every puzzle has a relatively short lifespan (typically below 1d).
A routing node controls the size of this list by only accepting re-
quests to a certain extent. Typically this list should not surpass
two entries as we should have either a maximum of two quota
requests or one identity creation request open.

Replay[|expiry, serial, numberO fU sages)

The array Replay[] is a list of replayable MURBs. List entries
are created upon their first usage and remain active until the
block is expired.

The following data has to be kept for routing within the elDs
workspace:

e Build[[{expiry, buildOperation)
The array Build[] is a list of building instructions for a message.
The server may decide at any time to reject a too big list or
long-living message. Thus he may control the size of this list
as well. However, controlling the size of this list will most likely
result in the non-delivery of a message.



« Payload|[]{expiry, payload, id)
The array Payload[] reflects a list of all currently active pay-
loads. Servers may decide to store derivatives of payloads.
However, as derived payloads inherit their expiry from the gen-
erating operation, such behavior may be safely omitted and
operations executed if their result is required.

All items have an expiry time, and no expiry time may surpass the
expiration of the elD.

9.2.4 VortexMessage Operations

All operations are expressed as described in section 9.2.2.1. The
following sections give important details about the implementation
of the operations.

9.2.4.1 SplitPayload Operation

The splitPayload operation splits a payload block into two chunks of
different or equal sizes. The parameters for this operation are:

 source payload block pb,

« fraction f
A floating-point number which is describing the size of the first
chunk. If the fraction is “1.0”, then the whole payload is trans-
ferred to the second target chunk

If len(pb;) expresses the size of a payloadblock called pb; in bytes
then the two resulting blocks of the SpitPayload Operation pb, and
pbs have to follow the following rules:

split(f,pb1) = (pb1, pbs) (9.1)

pby .startsWith(pb;) (9.2)
pb.endsWith(pbs) (9.3)
len(pby) = floor(len(pby) - f) (9.4)

len(pby) = len(pby) + len(pb3) (9.5)

9.2.4.2 MergePayload Operation

The mergePayload operation combines two payload blocks into one.
The parameters for this operation are:

« first source payload block pb,

» second source payload block pb;

If len(pb) expresses the size of a payloadblock called pb in bytes
then resulting block of the MergePayload Operation pb; have to fol-
low the following rules:

merge(pbi, pb) pbs
pbs.startsWith(pby)
pbi.endsWith(pby)

len(pbs)

len(pby) + len(pby)

9.2.4.3 EncryptPayload Operation

The encryptPayload operation encrypts a payload block pb; sym-
metrically resulting in a block pb,. The length of block pb, may vary
according to mode and padding chosen. The parameters for this
operation are:

» Source payload block pb;
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+ Encryption specification spec

» Symmetric key k

The operation follows the following rules (please note section 2.1 for
notation):

encrypt(pby, spec,k) = pby (9.10)
pbr = Ejfec(pb1) (9.11)
len(pby) =  len(pby) (9.12)

9.2.4.4 DecryptPayload Operation

The decryptPayload operation decrypts a payload block pb; sym-
metrically resulting in a block pb,. The length of block pb, may vary
according to mode and padding chosen. The parameters for this
operation are:

» Source payload block pb;
» Decryption specification spec

» Symmetric key k

The operation follows the following rules (please note section 2.1 for
notation):

decrypt(pby, spec,k) = pby (9.13)
pby = D (phy) (9.14)
len(pby) < len(pby) (9.15)

9.2.4.5 addRedundancy and removeRedundancy Operation

These operations build the core of the routing capabilities of a node.
The operation allows a RBB to add to a message redundancy infor-
mation or to rebuild a block from a chosen set of information.

The Operation itself is shown in figure 9.3.
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Figure 9.3: Outline of the addRedundancy operation

output

It may be subdivided into the following operations:

+ Pad the original message block in such a way, that all resulting
blocks are a multiple of the block size of the encrypting cipher.

» Apply a Reed Solomon operation in a given GF space with a
vanderMonde matrix.

» Encrypt all resulting blocks with unpadded, symmetrical en-
cryption.



Properties of GF(8) based addRedundancy transformations
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Figure 9.4: Resulting entropy of addRedundancy with and without encryption step

The padding applied in the first step is non-standard padding. The
reason for this lies in the properties required by the operation. The
presence of standard padding may leak, whether the block has been
successfully decrypted or not. Therefore, we created a padding with
the following properties:

.

The padding must not leak whether the rebuild cycle of the
operation was successful or not.

Anyone knowing the routing block content and the transmitted
message must be able to predict any treated block, including
all padding bytes.

.

The padded content must provide resulting blocks of required
size to enable non-padded encryption after the RS operation

.

The padding must work with any size of padding space.

.

The padded and encrypted block must not leak an estimate of
the original content.

The padded block X is created from a padding value p, the un-
padded block M and a series of padding bytes. We build X for a
function RS i, of n @and an encryption block M sized K as follows:

i = len(M) (9.16)
e = k-n (9.17)
;= [w e (9.18)
e
22—
p = i+(C1-l (mod { J-l)) (9.19)
X = (p,M,Ri(s,l—i—4)) (9.20)
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The remainder of the input block, up to length I, is padded with
random data. The random padding data may be specified by RBB
though a PRNG spec r and an initial seed value s. The message is
padded up to size L. All resulting, encrypted blocks do not require
any padding. This baecause the initial padding guarantees that all
resulting blocks are dividable by the block size of the encrypting
function. If not provided by an RBB, an additional parameter C1 is
chosen as random positive integer and C2 = 0 by the node execut-
ing the operation.

To reverse a successful message recovery information the of a
padded block X, we calculate the original message size by extract-
ing p and doing len(M) = p (mod len(X)).

This padding has many important advantages:

1. The padding does not leak if the rebuilding of the original mes-
sage was successful. Any value in the padding may reflect a
valid value.

. Since we have a value C2, the statement that a message size
is within len(X) < size < (len(X) — k - n) is no longer true and any
value smaller len(X) — k - n may be correct as well.

. An RBB may predict the exact binary image of the padded mes-
sage when specifying C1, C2, and R,(s, ).

After the padding, the date is ready for the addRedundancy operation.
We first group the data vector into a matrix A with m columns to do
the operations efficiently. The previous padding guarantees that all
columns have a length, which is dividable by the block size of the
encryption step applied latter.



t = n-1 (9.21)
A = vechat(X, le"”(lx)) (9.22)

00 01 02 O(m—l)

10 11 12 l(mfl)

0 1 2 (m—1)
v = |2 2 2 2 (9.23)

tb I.I tﬁ t(m.—l)
P = VA(GF(29)) (9.24)
(Q1,...,Qn) = row2vec(P) (9.25)
R = EN(Q) (9-26)

We do the Reed-Solomon operation by employing a Vandermonde
matrix (V). We build the data matrix (A) by distributing the data into
% columns. This results in a matrix with m rows. Unlike in error-
correcting systems, we do not normalize the matrix so that the result
of the first blocks is equivalent to the original message. Instead, the
error-correcting information is distributed over all resulting blocks
(Q4). Since the entropy of the resulting blocks is lowered as shown
in figure 9.4 and may thus leak an estimate of how a resulting block
may have been treated, we added the encryption step to equalize
entropy again. The previously introduced padding guarantees that
there is no further padding on block-level required. The key used to
encrypt the single blocks must not be equivalent. Equivalent keys
have the side effect encrypting equal blocks into the same cypher-
text. We observed faint but statistically relevant reminders of the
unencrypted graphs when treating the same block with the same
key and different redundancy parameters.

9.3 Request Processing

VortexMessage requests allow a Vortex node to gain knowledge
about the Vortex network and create new identities. A request may
contain either a request for information such as the current quota or
capabilities of the router. It may contain a request for a new identity,
or it may contain a request for raising the quotas. The following
sections explain the different kinds of requests.

9.3.1 Requests

These requests are contained in the header portion of a Vortex mes-
sage. These requests are purely for bootstrapping and maintaining
the quota system and for requesting network capability.

The request information is defined in section 9.2.1.1. For more in-
formation about the exact binary representation of all blocks and
data, see chapter 9.4.

Any node decides on its own what type of requests are being an-
swered.

A node not replying to clear text request is called a “stealth node”
(see 8.4.2.2). Such a stealth node discloses itself only to partici-
pants who do already know at least the public key of the node. This
usually means that they have “earned” this information by issuing a
queryPeer request to another node, and obtaining the information
did already generate costs to the sender.

A node only replying to a fixed set of identities (in that specific
case they are not ephemeral) is called a “hidden node” (see sec-
tion 8.4.2.3).

It is recommended that unencrypted requests are not answered. A
node may decide to answer unencrypted queryCapability requests
to enable clients to bootstrap without (or with a minimal) network
knowledge.

If a message contains n requests in a header block, it must supply
at one reply blocks at the beginning of the routing block list. All reply
blocks are concatenated and sent using the reply block. If the first
block in the routing block list is not a reply block, the request will fail.
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9.3.1.1 QueryCapability Request

This request is primarily used to initialize a conversation with a
node. It contains valuable information about the capability of the
node as well as information about the embedding supported or the
encryption. A node may or may not reply to queryCapability re-
quests. Doing so confirms the node to be participating in the vortex
network.

The only valid reply is a replyCapability message in encrypted form.

9.3.1.2 Newldentity Request

If this request is accepted, it generates a new ephemeral identity.
The identity itself is stored in the header fields. The standard be-
havior is to reply with a replyPuzzleRequired block.

This request generates a temporary, ephemeral identity for the lim-
ited time denoted in the validity field of the reply block. No quota is
assigned during that phase. As soon as the identity offers a correct
puzzle solution, the requested quota is allocated, and the identity
may be used for subsequent requests.

If a puzzle is not solved within the given time, the temporary identity
may be deleted. A node should not accept a solved puzzle after the
given duration.

Requests with a too high message or transfer quota should not
be answered with a replyPuzzleRequired block containing a zero-
length puzzle.

9.3.1.3 QueryPeer Request

As outlined in section 9.2.1.1, this request should be very costly, and
the harvesting of public addresses should be hard. Furthermore,
this request should always disclose the nodes from a fixed subset
of the nodes known to the queried mix. This maximizes the effort to
harvest participating nodes.

It is at the same time worth mentioning that this limit may oppose a
thread that traffic is concentrated on similar nodes within participat-
ing nodes using the same initial set of public addresses to bootstrap.
This because if using the same node to bootstrap for multiple par-
ticipants within a group results in peer knowledge, which is similar.
They are thus resulting in a similar network.

Participants belonging to more than one group will evolve as their
different peer partners will result in different anonymity sets over
time, even when applying precisely the same reproducible rules.

9.3.1.4 TransferQuota, MessageQuota, and QueryQuota Re-
quest

This request may be accepted by a node if and only if the sender is
a valid identity. It may be accepted even for a temporary identity.

The transfer quota offers the capability to raise the number of bytes
an identity may transfer. This quota is increased upon request by the
ephemeral identity at any time. It is up to the owner of an ephemeral
identity and the node using the identity to decide whether an identity
may be kept or not, respectively, its quotas raised.

The Message Quota is a quota not limiting the number of bytes but
the number of messages. As every message generates accounting
overhead, this number has to be limited as well. There are con-
straints similar to transferQuota when raising this value.

The queryQuota request enables the owner of an ephemeral iden-
tity to query the current amount of remaining messages, respec-
tively, bytes.

9.3.2 Reply Blocks

Reply blocks are as outlined in section 9.2.2.3 prefixed payload
blocks.



9.3.2.1 ReplyCapability block

The replyCapabilityBlock is the reply block to a queryCapability Re-
quest. The information provided here is outlined in section 9.2.2.3.
It is important to note that this block is even when requested in plain
is always onionized and thus unreadable for third parties.

A node may offer different capabilities to known identities than to
anonymous clear-text requests.

9.3.2.2 replyPuzzleRequired block

The replyPuzzleRequired block is the block reflecting the payment
for a requested operation such as newldentity, queryPeer, transfer-
Quota, or messageQuota request.

Every puzzle block will create an accounting entry, as outlined in
section 9.2.3.

A node may reject an operation for any reason, including exceeding
a high amount of outstanding puzzles.

A reply containing a null length puzzle means that the requested
operation is rejected.

9.4 Protocol Usage

This approach is different from all approaches discussed previously.
Unlike them, we put complete distrust into the infrastructure being
used. Furthermore, we do not rely on a custom server infrastructure
on the Internet. Instead, we take advantage of the availability of
Internet-connected devices such as mobile phones, tablets, or even
commonly available SoC such as RaspberryPi or similar. It is still
tough to maintain a server on the Internet. Considering the vastly
growing amount of automated attacks carried out against Internet-
connected servers, it is not advisable or realistic to assume that a
future user of this system owns either a server or connects to a
service that is offering anonymizing services. These infrastructures
would be susceptible to monitoring or even banning. Instead, we
take a different approach.

We use common messaging protocols as transport layers and con-
nect to them using the respective client protocols. The actual mixes
are operated by the users on their “always connected” devices.
Such a system is far less reliable than a traditionally run server as
this hardware is typically cheap and generally connected to the In-
ternet using a bandwidth shared media.

The basic idea is that a client generates all traffic (including de-
coy and diagnosis) by itself. It defines the routes a message takes
through the mixes and decides which targets are receiving dummy
traffic at the same time. In such a system, even when possessing all
the nodes routing the traffic (without the endpoints), an anonymity
set of k (whereas the sender defines the size of k) is guaranteed.

As decoy traffic is generated with the same operations as the real
content is split, it is impossible for an adversary running a node to
determine whether he is generating noise or processing the real
message. All nodes, regardless of endpoint or mix, implement the
same logic, and fulfill the same functions, which make it impossible
to determine the function. Exit nodes, as in Tor or similar systems,
do not exist.

9.5 Accounting

The Accounting layer maintains all local identities and controls
the overall load to the system. He processes requests from an
ephemeral identity and generates replies to these requests.

In table 9.1, we show under what circumstances a reply to a
header request should be sent. The capitalized words MAY,
MUST, SHOULD, and SHOULD NOT are used as defined in
RFC2119[RFC2119].
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9.6 Routing

The routing of a message is simple. A workspace of an elD con-
tains routing blocks and payload blocks. A routing block has an ac-
tive time window. Anytime during that time window, a routing layer
processes the routing instructions contained in the assembly oper-
ations of the routing block. If successful, the message will be sent
using the specified blending layer and target address.

9.7 Blending layer

The blending layer must be crafted carefully. A blending layer is re-
sponsible for the sensible content generation of the transport media
plus embedding a VortexMessage into the transport layer according
to specs provided by the original sender.

The original sender has no control over the plain text messages to
avoid the possibility of sending targeted messages over the trans-
port layer using MessageVortex. This differentiates MessageVortex
from other systems having “exit nodes” such as Tor.

9.7.1 Plain Inclusion

The data stream has of the MessageVortex protocol has no struc-
ture visible from the outside. This property allows embedding as
structureless information in files with a similar entropy. We did an
analysis of common file formats on the Internet to figure out which
file format is suitable for this type of inclusion.

It is essential to understand that this is a frail form of information
hiding. A human observer may easily tell “real” data from “broken”
data apart. A human is not able to tell whether a file is severely
broken or contains a VortexMessage.

9.7.1.1 File Type Candidates

We were unable to find any scientifical data regarding what type of
traffic or attachment is common on the Internet. We, therefore, tried
to analyze mail logs (SMTP) of a mail provider. We were scanning
567594 emails for attachment properties after the spam elimination
queue. 16.5% of all scanned messages had an attachment. The top
20 attachment types distributions are shown in table 9.2.

Type %
image/jpeg 274
application/ms-tnef 13.7
image/png 13.3
application/pdf 10.7
image/gif 7.4
application/x-pkcs7-signature 5.4
message/rfc822 7.0
application/msword 3.1
application/octet-stream 3.0
application/pkcs7-signature 23
application/vnd.. .. .wordprocessingml.document 1.4
message/disposition-notification 1.1
application/vnd.ms-excel 0.8
application/vnd.. .. .spreadsheetml.sheet 0.6
application/zip 0.5
application/x-zip-compressed 0.5
image/pjpeg 0.4
application/pkcs7-mime 0.4
video/mp4 0.4
text/calendar 0.4

Table 9.2: Distribution of top 20 attachment types

As expected, the number of images within mail was very high
(~ 50%). Unfortunately, we were unable to analyze the content of
ms-tnef attachments retrospectively. It seems that based on these



A tcmerla unknown identity; cleartext unknown identity; encrypted expired identity; encrypted known identity; encrypted
eques

newldentity SHOULD NOT MAY Invalid (Error) Invalid (Error)

queryPeer MUST NOT MUST NOT MAY MAY

queryCapability SHOULD NOT MAY MAY MUST

messageQuota MUST NOT MUST NOT MAY MUST

transferQuota MUST NOT MUST NOT MAY MUST

Table 9.1: Requests and the applicable criteria for replies

figures, information hiding within images in email traffic is a good
choice.

For our implementation, we worked with F5 blending into jpeg im-
ages, as this choice seemed to undermine credible content based
on table 9.2.

9.8 Considerations for Building Messages

In a worst-case scenario, we assume that an adversary is control-
ling most of the network utilized for anonymization. While this is not
necessarily a problem, it allows an adversary to track a message
while agents are being used under his control. So for simplicity
and as a worst-case assumption, we always assume that an adver-
sary has perfect knowledge of an associated message flow. This
is, however, a worst-case scenario. One missing agent disconnects
the whole chain, and as messages are no longer traceable.

9.8.1 Ephemeral identities

Any VortexMessage sender may maintain one or more ephemeral
identities per node. These identities might be active in parallel, over-
lapping, or even with interruptions. A routing block building node is
advised to select multiple trustworthy nodes (such as known end-
points) and add some publicly available nodes or nodes obtained
by bootstrapping. Those nodes are not trustworthy and may be
chosen from a list of different networks.

9.8.2 Timing of messages

Messages are flowing in a timed manner through the network. As
a RBB has to take into account that potential routing mechanisms
of the transport layer consume time, a message is delayed in each
hop. The RBB controls the timing and duration of delivery. Depend-
ing on the number of hops for the longest path of the message and
the delay windows on every hop, the total message has a delay,
which is controllable by the RBB.

9.8.3 Diagnostics

To diagnose the flow of a message, any part of the message may be
sent directly or indirectly back to the RBB. This allows him to judge
upon the message progress and whether nodes are well-behaving
or not.

There is no fingerprinting operation available for making such a di-
agnosis. Such operations would make the traffic identifiable as di-
agnostic traffic.

9.8.3.1 Implicit Diagnostic

When a message contains a routing block sending any parts back
to the RBB, we call this implicit diagnostic. Any block built by the
addRedundancy function may be seen as a kind of fingerprint over
the whole message. A block sent back to the originating node may,
therefore, reflect the message state up to this point and the way
back.
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9.8.3.2 On-Demand Diagnostic

Whenever a message fails or suspected fails, a new routing block
may be composed picking up parts of the message in workspaces
anywhere within the participating nodes. This kind of diagnostic we
call On-Demand diagnostic.

On-demand diagnostic allows error conditions identified by implicit
diagnostic to be tracked and narrowed down to the first offending
node.

9.9 Considerations for Routing Messages

Messages should always be sent nearby other messages timewise.
This means that the best moment for sending a message in a ready
queue is at a time when sending other messages is due. However,
no optimization should be done to send as many messages as pos-
sible at the same time. This would lead to a foreseeable behavior of
the routing layer and thus to miss-usable behavior.

The approach is furthermore heavily dependent on the transport
protocol and builds on top of a new obfuscating/routing layer. For
this system to become a real peer-to-peer approach, some ad-
ditional quirks are required. A message-Vortex-Account always
needs an active routing handler. This routing handler may be in-
troduced by new server capabilities or by having a device handling
the routing from the client-side. For this reason, we built a Rasp-
berryPi appliance capable of connecting to one (or more) accounts
fetching incoming emails, analyzing them, and reroute them if nec-
essary. Although the system is designed to be run on a Raspber-
ryPi, the software might be installed to any Java-capable client. The
RaspberryPi is just one affordable, lightweight device that offers all
required capabilities.

There was up until very late a routing log functionality in the pro-
tocol. This functionality did, however, have the disadvantage that
it allowed bugging and could disclose intermediate mixes to a re-
cipient who did not comply with the policy the mixes might have
chosen. Therefore this feature was dropped and replaced with the
fetch block behavior.

The RBB controls the blending. Besides that, he has no control over
it. If blending is done carelessly, a message can be easily detected
and thus disrupted.

The message leaks its size when a routing block is reused. This
is due to the version number and the ephemeral identity contained
in the header. The message chunks reflect approximately the mes-
sage size compared to the previous message sent.

10 Verification of requirements

In the previous sections, we identified a list of requirements.

In the following subsections, we will iterate through all requirements
and verify to what degree we achieved the goal.

RQ1 (Zero Trust): We have not put any trust in an external in-
frastructure. While we do assume that all routing nodes act as de-
fined. A misbehaving node may be identified and eliminated without
putting any trust in other nodes. Analysis has shown no means for
a misbehaving node, which might be intentional or unintentional en-
dangering anonymity at any time. We do not rely on any third-party
technology or infrastructure for our anonymity.

This requirement is, therefore, fulfilled.



RQ2 (Equal nodes): No node has additional privileges or offers
additional services. All are equal and share the same privileges.

This requirement is, therefore, fulfilled.

RQ3 (Undetectable): Detectability is highly dependent on the re-
spective implementation of the blending layer. We can clearly state
that research in F5 showed no weaknesses so far. Plain blending is
not suitable as human censors may detect such blending.

We did not invest any research effort in the clear text part of the
messages. We can clearly state that messages do not have to look
like human-generated messages. Status messages from monitor-
ing systems or similar M2H messages are suitable as well. Such
messages explain uncommon activities such as 24x7 operation or
systematic message outlines. For the academic implementation to
be of any value for the public, the current implementation has to be
replaced by a blending layer creating suitable content in this respect.

This requirement can be fulfilled, but the current implementation
does not meet the required criteria.

RQ4 (untagable): Messages may not be tagged. All content is
either strictly onionised or defined and linked with unknown hooks.
Tampering with a message will typically cause the message delivery
to fail at the next node. Furthermore, may tampering be detected.

This requirement is, therefore, fulfilled.

RQ5 (unbugable): There are always means to bug a message.
As we put trust in the sender and recipient, and we know already
that an intermediate mixing node is not able to modify the message,
the protocol is hard to bug. There may be a possibility to bug a
message with a routing log entry over DNS. If a recipient is not
resolving names or trusts in the content of such a message, he is
safe.

This requirement is, therefore, fulfilled. It may be only partially ful-
filled if log entries are not handled with care.

RQ6 (replay): Messages may only be replayed a limited amount of
times. The number of replays is controlled by the sender and may
not be altered by any mix. A malfunctioning mix replaying more
often than allowed will not be able to extract any information than
the information it obtained when sending the first time.

This requirement is, therefore, fulfilled.

RQ7 (accounting): All identities generated are not traceable as
any identity is generated without any context and may not be
mapped to an older or newer identity (perfect anonymous forward
identity). Neither the source nor the replies may be used to be
traced as all messages.

This requirement is, therefore, fulfilled.
RQ8 (anonymisation): Anonymity is hard to proof.

The following statements are the findings of the previous chapters:

» Routing nodes are identifiable by an in-depth inspection.
A routing node features unique features that can be identified.

Identifyable properties discovered are:
— The usage of the plain embedding is identifiable by a hu-

man and using probabilistic approaches even by a scan-
ner.

— Arrouter is always connected and sends messages at any
time of day

— A router is connected to multiple accounts

+ A routing node can link a message to an ephemeral identity
This is a minor issue and is countered by the fact that
ephemeral identities have a very short lifespan and are uncon-
nected.

A routing node learns about other nodes over time.

A routing node is unable to communicate with peers without
a host key. It may, however, learn the endpoint address of its
peer. Assuming a censoring adversary, this may be a problem
in a single case as the provider of the transport layer may be
forced to block the account.

On the other hand, no node can tell by observing traffic if another
node is a final recipient or just another router.

There are, however, some weaknesses in the protocol. As the im-
plementation is currently connecting simultaneously to the transport
layer endpoint (email or Jabber account in the current implementa-
tion) and the Vortex account, that fact might identify the user. Using
an anonymization proxy could solve the problem, but it would violate
the Zero trust principle.

A sender is capable of leaking the presence of a receiver to a global
observer.

This requirement is, therefore, only partially fulfilled. However, the
weakness is very faint.

RQ9 (bootstrapping): The header request peer functionality al-
lows to query for routing nodes. The key handling of the protocol
allows using a node without disclosing its host key. Each node may
decide on whether it leaks its own identity.

This requirement is, therefore, fulfilled.

RQ10 (algorithmic variety): The protocol lists at least two com-
pletely independent algorithms of each kind to be supported. This
allows switching if an algorithm has been broken. Wherever possi-
ble, a well-known algorithm and an algorithm basing on an entirely
different mathematical problem have been chosen.

This requirement is, therefore, fulfilled.

RQ11 (easy handleable): The protocol allows the use of clients
already available and know to the user to send messages. The
whole encryption and anonymity problem is hidden in a local proxy.
This allows users to stick to their favorite tools.

This requirement is, therefore, fulfilled.

11 Security Analysis

In the following sections, we emphasize on attacks targeting either
sender-recipient tuples or participating nodes.

Based on the threat model, we may safely assume the following key
points:

» An adversary knows and controls a significant number of
nodes.

+ An adversary may observe the traffic at any point without get-
ting any information about the message content

» An adversary is not capable of matching multiple messages on
different nodes to one message.

We always assume an adversary to have more knowledge than we
think he may extract from the messages.

» We assume that an adversary knows all messages of a trans-
action running over his nodes and matches them correctly to
the same message.

+ We assume that an adversary is aware of any message only
containing decoy traffic.



We assume that the adversary is targeting the following pieces of
information:

Sender identity

Recipient identity

Message content

Message size

Message frequency

Attacks on the users’ identity are no longer possible as the iden-
tity used on the nodes is based on elDs instead of the users’ true
identity. As the elDs may exist in parallel, overlapping, or in a serial
manner and are strictly unlinked to the true identity, no statement
can be made concerning the linking of ephemeral identities to the
real identities. Frequency patterns or behavioral patterns may be
split among multiple identities and distributed over multiple nodes.

Frequency and bandwidth analysis are not possible as the fre-
quency and bandwidth of a single message are not trackable, and
the size of a message is generally not related to the message flow.
An exception to this statement is when routing a different message
through a vortex system using a reused routing block general state-
ments such as “the message is bigger than the previous one” about
the size of the message is possible if the routing block makes use
of relative split operations. In experiments, we were able to mimic
any desired communication pattern we wanted for an adversary to
be found.

The message content remains cryptographically secured if the dual
trust (sender and receiver node) is not broken, the message is en-
crypted on the senders’ node, the message is only decrypted on the
node of the receiver, and remains at least wrapped in this encryption
during the whole transfer.

11.1 Additional Considerations

11.1.1 Man in the Middle Attacks to Conversa-

tions

Traditional man-in-the-middle (MITM) attacks are not possible when
using the MessageVortex protocol as the remote identity secures
the recipient to a specific recipient. If, however, a recipient iden-
tity has been compromised either by stealing its private key or by
injecting a wrong identity in the senders’ repository man in the mid-
dle attacks become possible. We do not cover this problem within
this work as a secure, verifiable way to exchange identities is not
included in the protocol.

11.1.2 Identification of Participating Nodes

Participating nodes may be identified when injecting evil routing
nodes. When suspecting such nodes first step should be moving
outside the jurisdictional reach before reaching out to the final an-
onymity set. If the anonymity set is compromised, identification of
the participating nodes is, however, possible.

11.1.2.1 Identification by Content

Message extraction by content is not generally possible even if
knowing the blending type and corresponding blending keys. As the
VortexMessage does not show an outer structure such as ASN.1 or
similar. The message itself remains undetectable.

11.1.2.2 Identification by Query

A vortex node may be identified by the query if the node responds to
unencrypted requests. An active node may be differentiated from an
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inactive node at any time if a valid blending specification is known.
With such a specification, an evil routing node is capable of creating
requests such as new identity requests. As soon as the evil node
receives a reply, the node may conclude that the probed node is a
VortexNode.

11.1.2.3 Identification by Traffic Type

Vortex node shows a specific behavior in terms of supported proto-
cols. Depending on the implementation, this behavior is detectable.
At the moment, supported protocols are POP/SMTP and XMPP.
Since both protocols are widespread among Internet users, this
footprint is shallow.

11.1.3 Storage of Messages and queues

The storage of messages sent through MessageVortex should be
handled with great care. It seems, at first sight, a good idea to
merge all messages in globally available storage such as the IMAP
account of the receiving entity. However — In doing so, we would dis-
cover the message content to the providing party of a mail account.
Since we handled the message with great care and tremendous
costs up until this point, it would be careless doing so.

Storing them in a localized and receiving entity controlled storage
is a good idea but leaves security considerations like a backup pos-
sibly to an end-user. This might be better but, in effect, a ques-
tionable decision. There is, however, a third option: By leaving the
message unhandled on the last transport layer of the MessageVor-
tex chain, we may safely back up the data without disclosing the
message content. Merging the content then dynamically through a
specialized proxy would allow the user to have a unified view on his
without compromising the security.



Part IV

Discussion
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In the following chapters, we analyze the protocol thoroughly for
fitness of purpose.

We first apply an analysis of the protocol to identify all pieces of
information leaked at all levels.

Then we apply a dynamic attack analysis of the protocol to identify
all meta pieces of information leaked during transmission of the pro-
tocol such as timing or context between messages. We analyze this
by assuming behaving and misbehaving nodes.

We distinguish between passive and active adversaries. Passive
adversaries follow the MessageVortex protocol, have unlimited ob-
servation capabilities on the network up to layer 4 of the ISO/OSI
protocol, and do have unlimited observation capabilities on the
transporting layer of MessageVortex. We assume that an observing
adversary, as defined in 4.1, is part of these adversaries. Active ad-
versaries share the capabilities of passive adversaries, but do not
follow the MessageVortex protocol. Both adversaries try to obtain
valuable information (e.g., message content, metadata such as the
communicating peers or message frequencies).

We then sum up the achieved goals by looking at well-known attacks
and analyze the effectiveness of them on the protocol.

At the very end of this chapter, we identify the gaps uncovered by
this work.

12 Protocol Analysis

In this section, we analyze the protocol statically. Looking at a
full message, we get the protocol outline, as shown in (12.1) on
page 52.

12.1 Transport and Blending Layer

12.1.1 Analysis of Plain Embedding

It is undeniable why a file treated with plain embedding is easily
identifiable as a broken or tampered file. While the information re-
mains parseable, its content is no longer sensible to a human and
thus at least suspect.

We wanted to know if there is a simple method to detect the modi-
fications of such a file. While most of the analysis method requires
the processing of large data sets, we tried to find apparent, non-
calculation-intense test methods that were generic. We did not take
any content-based characteristics such as “outline of an image” or
“resulting spectrum of a sound file” into account. As our embedding
is generic, we searched for a similar detection method.

A property of encrypted ciphertext is the high entropy. We, there-
fore, used the calculation of the Shannon entropy in bytes as prop-
erty and tried to show the shift of entropy within the files. This de-
tection method depended very much on the type of file used for
embedding. It showed an expected behavior, that file types having
in the expected area a similar entropy were not detectable by this
method. However, we identified some file types to be unsuitable for
plain blending due to their entropy structure.

We analyzed the files by calculating the entropy of blocks 256 bytes
with a sliding window over a randomly collected set of images (e.g.,
the first 100 entries of a file type after searching for “mouse”, “cat”,
“camel”, or “dog”). We did intentionally not filter or eliminate im-
ages. Surprisingly, we were able to tell file types apart, were able
to identify files with thumbnails or an interlaced structure. We even
identified certain specific patterns regarding the producer type of
an image (e.g., we could differentiate between pictures scanned or
taken by a camera). It was not so much surprising that we were
able to identify these features, but the fact that we could see them
in entropy data.

We then carried out an analysis identifying the typical entropy and
the inner structures. The graphs in 12.2 show a typical analysis.
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In that case, we looked at 100 images of each type. We graphed
and analyzed their entropy and tested for the suitability of a plain
embedding. Table 12.1 lists the average entropy of analyzed file
types and makes remarks about the suitability for plain embedding.
In practice, we found that most suitable file formats have an entropy
of ¥ 7.2 and an interquartile range (IQR) of 0.15 or less. Further-
more, files should have a big, uniform, the non-structured range
containing these characteristics. Such a file has a suitable space
for embedding. For reference, Figure 12.3 shows the distribution of
typical MessageVortex blocks. We did find that the entropy must be
uniformly matched in the case of plain embedding.

When blending into images, BMP showed a strongly varying entropy
within a file. A sampling of ten blocks at random position resulted
already in detection with a failure rate below 5%. PNG and JPG files
showed to be very robust within the sample. We did not succeed in
identifying the MessageVortex blending content based on entropy
values. GIF images showed to be unsuitable. Archive formats such
as zip files were extremely robust. We were able to embed it into a
zip file and marking it (generically) as an encrypted password file.
This embedding was genuinely undetectable. However, such em-
bedding may potentially lead to censorship based on blacklisting.

OGG and MP3 are suitable. However, we were able to detect the
entropy difference when taking extreme dense samples. These for-
mats may, however, be suitable for not yet standardized forms of
steganography. While PDF has low entropy and a high IQR typ-
ically, some parts of the files are very well suited for embedding.
Plain embedding with knowledge of the format was even possible
without affecting the visual result of the file.

We could show that with an approach based on Shannon entropy,
we may identify plain embedded MessageVortex blocks in BMP and
WAV files. Most of the file formats analyzed were performing well.
They required a multitude of samples to detect the presence based
on the entropy property.

All movie formats were performing similarly to jpg and PNG. How-
ever, due to the very complex structure with scattered blocks, they
seem to be unsuitable for plain embedding. They are, however,
strong candidates for steganography.

12.1.2 Identifying a Vortex Message Endpoint

Depending on the blending method, a single, identifiable message
is sufficient to identify a VortexNode. Detectability depends on vari-
ous factors, such as:

Broken internal file structure (due to plain blending)

Uncommon high entropy in a structureless file

» Unrelated message flow (see [oakland2013-parrot])
Non-human behaviour on the transport layer (e.g., message
traffic 24x7)

If an endpoint is successfully identified, then all peering endpoints
of the same protocol may be identified as well by following the mes-
sage flow. This does, however, not enable an adversary to inject
messages as the host key is not leaked.

Assuming a global observer as an adversary and unencrypted traf-
fic, he might discover the originating routing layer and thus iden-
tify it as Vortex node by following traces of the transport layer. In
most protocols, however, this address is spoofable and not a reli-
able source for the originating account.

12.2 Senders routing layer

A sender may have some knowledge about the Routing block size
and may, therefore, guess the complexity of the routing path. He is,
however, unable to gain any additional information such as time of
travel or number of hops until the target.



VortexMessage =(MPKivsx, CPKiosy HEsdery | EXntery (H (HEADER))

[RKmdmv] L [PL] #)Kpeerny (12.1)

MPiosv =EXios (PREFIX(K peern)) (12.2)

CPKivav =EXiosy (CPREFIX(K sndern)) (12.3)

HEsendert = ERsendery (HEADER) (12.4)
HEADER =<K.: endern» S€rial, maxReplays, validity, [requests, requestRouting Block],

[puzzleldentifier, proofOfWork]) (12.5)

REsenderN” = pKsenderk (ROUTING) (12.6)

ROUTING =([ROUTINGCOMBOYJx, forwardsS ecret, replyBlock) (12.7)

ROUTINGCOMBO =(processintervall, Kpeern+1, recipient, nextCP, nextMP,

nextHEADER, nextROUTING, assemblylnstructions, id) (12.8)

PL =(payload octets)= (12.9)

(12.10)

Figure 12.1: Detailed representation of a VortexMessage

o Criteria Avg. Entropy IQR Remarks
JPG 7.008 0.097 -
PNG 7.116 0.086 -
GIF 6.978 0.194 -
BMP 2.997 4.964 not suitable
PDF 6.660 0.282 Hard to embed due to a very complex inner structure but well suited
MP3 7.076 0.091 -
WAV 4.777 0.927 -
OGG 7.104 0.093 relatively easy to embedd. Hard not to break the file structure.
mpg4 n/a n/a good to embedd. Steganography could be applied here easily too.
zip 7.148 0.080 easy to embedd when using “password protected” archives
MVaes 7.176 0.072 Without length padding as reference encrypted with AES 256 CBC
MVcam 7.175 0.070 Without length padding as reference encrypted with Camellia 256 CBC

Table 12.1: comparison of protocols in terms of the suitability criteria as transport layer

12.3 Intermediate node routing layer

An intermediate node does know all the operations applied and the
immediate next hop. It does learn the routing addresses of the im-
mediately following endpoints but is unable to use these endpoints.
This is because he has no means to get the host key required to
communicate.

If a routing block is repeated, a router may identify the routing block
as repetition. Identifying the repetition of a block can be done by
looking at the serial number of replay protection. We then may give
a rough estimate of the message size by comparing the payload
chunks. This estimate is, however, very rough as it is bounded by
the block size of the symmetrically applied encryption.

12.4 Security of Protocol Blocks

To analyze the security of the protocol, we first go through all proto-
col blocks. After that, we will look at the possibilities of block recom-
binations and how to gain data or services based on such behavior.

Assuming plain embedding, the presence of a chain of blocks may
leak an existing VortexMessage. At the moment, the protocol ex-
pects at the offset and the size of the bytes to be skipped to the
next block. The encoding does not assume an end of the chain
marker as such a marker would make the design identifiable. As
an encoding scheme, a variable byte length has been chosen. This
guarantees that any file will always result in a valid chain of blocks
and thus not leak such a presence.

The entropy of the only two blocks in this stream (MPREFIX and
InnerMessageBlock) is comparable as both blocks are encrypted.
Both blocks are encrypted and feature a similar entropy. The blocks
follow each other without any delimiter. This results in a continuous
stream of data with constant properties.

To avoid repeating patters at the beginning of streams due to reused
identity blocks, a MURB must provide sufficient peer keys and prefix
blocks. A VortexNode may, however, refuse to process MURBS
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(only accept maxReplays equal to 0).

All blocks of InnerMessageBlock are protected by the peer key
EXpeer . The forward secrets in all blocks except the payload blocks
make sure that the recombination of blocks does not work for an
adversary. To be successful, an adversary requires to know the
forward secret of the next hop.

To keep the secrets of the next hop, hidden from the host assem-
bling the message, the subsequent header and the routing block are
protected by the sender key EXsender. A message assembling node
is, therefore, not even capable of creating its own messages to an

unknown node as the hosts’ public key EXios is not derivable from a
message.

Therefore, a routing node is not able to assemble messages for a
specific host on the base of a routed message only. A routing node
does not gain any additional knowledge except for the locally exe-
cuted operations, the number of messages of the ephemeral iden-
tity, the size of messages of any ephemeral identity, the sending IP
of a received VortexMessage and the transport endpoint address
of any receiving endpoint. The most critical information is endpoint
data, as all other data is unrelated to the original message (sender
recipient and size). This information becomes absolutely crucial if
assuming a censoring adversary. Therefore, a sender in a jurisdic-
tion where the use of MessageVortex is deemed illegal must use
only trusted nodes within the jurisdiction and at least for the first
hop outside the jurisdictional reach of an adversary.

13 Dynamic Attack Analysis

In the dynamic analysis, we reach out to an active adversary. An
active adversary modifies traffic in a non-protocol conformant way,
or misuses available or obtained information to disrupt messages,
nodes, or the system as a whole.
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13.1 Attacks against the vortex system itself

An active adversary may attack the transport layer. Most of the
transport layers are not able to react upon message flooding. There-
fore, it is easy to attack a transport layer with a flooding attack, such
as a distributed denial of service (DDoS) attack. Due to the na-
ture of the protocol, we are unable to create additional protection
on the transport layer as such modification would require a mod-
ification of the transport layer. The Vortex Message format itself
is, however, crafted in such a way that only minimal effort is suffi-
cient to get the involved parties of a transmission. The Operations
Kinsgy = DSios (P) and HEADER = DKnsev (H) are sufficient to iden-
tify message senders. Unknown Senders may be discarded without
further processing. Known senders may be identified as legitimate
and processed further. Known misbehaving identities and message
duplicates may be discarded.

13.1.1 DoS Attacks against the System

An active adversary may not follow the protocol and modify any
parts of the message. The following paragraphs reflect different
kinds of behavior and how they affect the messages and the sys-
tem as a whole.

An adversary may not follow the blending specification. If he uses a
less secure specification, an independent third party observer may
follow traffic. This is not sensible as such a node may send all the
knowledge to such a collaborating node directly. In the case of a
target node not supporting the chosen blending method, the partial
message path becomes interrupted. A possible redundancy in the
path may recover the message from such a case.
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13.1.1.1 DoS by Traffic Replay

Traffic replay is a common way to highlight traffic in many systems
by replaying the same traffic and increase the signal to noise ratio
of a system. In our case, we can use the replay of a VortexMessage
block to increase the traffic to a node. After decoding the header,
a MessageVortex node identifies the block as a repeated block and
rejects further processing.

An adversary may replay blocks with varying content. This will not
result in a DoS attack as the quota is not decreased on replayed
messages (see Figure 9.2).

13.1.1.2 DoS by Traffic generation

An adversary may first collect identities and quotas and use them
later in a coordinated attack to force the node processing. The ad-
versary may increase the impact by using large payloads and pro-
cessing them in a costly manner. A possibility is to make extensive
use of addRedundancy or encryption operations. Furthermore, an at-
tacker may attack the memory by distributing the message through-
out the workspace to exhaust the routers’ runtime memory.

As a router is free to process the operations of identity, he may
discard an ephemeral identity and all associated resources at any
time. Misbehaving or suspected misbehaving nodes may, therefore,
be stopped. On the other hand, we are unable to prevent an ad-
versary from allocating new identities. We may, however, work with
multiple local host keys and distribute them according to the trust. A
known party or someone trusted by them might receive a key differ-
ent from a publicly advertised key. This identity key may be dropped
at any time and distributed to further parties again with an identity
update. We may even subdivide trusted parties into several groups
by updating them with different new host keys to identify misbehav-
ing routers without knowing them.
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Figure 12.3: Distribution Analysis of a MessageVortex Block

13.1.2 Attacking a single ephemeral Identity of a
MessageVortex Node
13.1.2.1 Denial of Service by Exhausting Quotas or Limits

A malicious node may try to exhaust quotas or limits. As we do trust
in the sender and recipient, all other nodes do not know the forward
secrets used in the message. The options for an adversary are then
as follows:

* Resend a MURB (with different content) as often as possible
to exhaust message and transfer quota.

» Create intentionally huge, incorrect message content to ex-
haust transfer quota.

13.1.3 Attacking Sending and Receiving Identi-
ties of the MessageVortex System

The most valuable goal of an adversary is breaking an entity’s an-
onymity or monitor their traffic by the content or the metadata. In
the following sections, we analyze the possibility of

13.1.3.1 Traffic Highlighting

Traffic caused by a routing block may be observed to a certain extent
on a statistical base. A node may generate bad message content of
exceptionally large or small nature. This might potentially highlight
messages involved in message routing using no split or relative split
operations as well as addRedundancy operations.

13.1.4 Recovery of Previously Carried Out Oper-
ations

It is crucial that an adversary is unable to recover parameters of a
previously carried out operation. We analyzed though the protocol
operations carefully to be sure not to leak any of the parameters.
Some operations leak apparent data such as an encryption opera-
tion with a block cipher does typically leaks its block size. This has,
however, been classified as invaluable data as the block size does
not result in any information gain usable for attacking the system or
narrowing down efforts. In figure ??, we can show that the parame-
ters are visible. We took the same 10kb block and treated it with all
possible combinations of operation parameters. The image shows
that there is a possibility of guessing the parameter with a high prob-
ability. For guessing the average Monte Carlo Pi and the average
Shanon entropy in bits per byte were already sufficient. The results
got a bit less clear when applying the same operation to random
blocks while doing the analysis.

We have, however, found a flaw in theaddRedundancy operation.
When applying this operation to an encrypted block, the entropy
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of the resulting block leaks some of the parameters of the opera-
tion. As a result of this finding, we added a custom padding and
an additional encryption step. The repeated analysis showed that
the operation does no longer leak these parameters through this
channel.

13.2 Achieved Anonymity and Flaws

13.2.1 Measuring Anonymity

It is tough to measure anonymity, as it involves many uncontrollable
factors. We may, however, control the degree of anonymity accord-
ing to the number of involved parties. Assuming a sender knows the
complete message path, including all operations carried out on any
untrusted node a message travels through, the anonymity is maxed
to the number of involved nodes n, excluding the sender nodes. This
degree of n—1 may be further reduced if all well-known “routing only”
or at least “routing mostly” nodes are reduced. Under these harsh
assumptions, the set may be reduced to the potential set of “well
known” recipients of a message.

We have to differentiate between several problems. An adversary
has to identify the participants of an anonymity system. Then he has
to identify members of a message or a communication anonymity
set. Starting from there, he has to identify message flows and detect
senders and receivers of messages within an anonymity set (which
is not doable in all cases). If any adversary achieves this, we have
to consider the anonymity to be broken. Depending on the degree
of anonymity required, which is influenced by external factors, the
participation in any or a small enough set may be sufficient to suffer
consequences.

13.2.2 Attacking Routing Participants

While very hard in our case as we do not have “dedicated”
anonymization infrastructure, It might be possible to identify mem-
bers of the routing network. This due to flaws in the blending layer.
While it is possible to scare off or block members of a routing net-
work. It is far harder in a network where the members are mobile.
Any user may change at any time the identity, including the end-
point, without losing its known peers. This unique property makes
the participating entities very mobile and allows them to switch
servers at any time without losing contact with peers for subsequent
communication.

Routing participants may be identified either by publicly available in-
formation (e.g., published routing address) or by identifying unique
properties of the protocol. Transport layer provider may then be
forced to deanonymize the customer related to the account (if pos-
sible), or the relating account on the transport layer may be blocked.

To counter a possible threatening deanonymization, a MessageVor-
tex node owner must maintain anonymity towards the transport layer
provider. Nowadays, this is easily done in the XMPP protocol.



The account is typically not linked to any subsequent user informa-
tion, such as telephone or email. Email accounts are more restric-
tively regulated. Providers providing accounts without registration
of phone numbers or subsequent email addresses do exist (e.g.,
Yandex) but are rare. In both cases, a user might be identified by its
IP address. This is why concealing its IP address while connecting
to the transport layer is an advisable practice. Using Tor when ac-
cessing the transport layer may suffice to do so. The anonymizing
service has to be strong enough to conceal the IP. The protection of
the traffic itself is not required as it is already protected.

13.2.3 Attacking Anonymity through Traffic Anal-
ysis

As traffic and decoy traffic and decoy traffic are chosen by the cre-
ator of the routing block, frequency patterns cannot be detected,
unlike the router did create them. The same applies to message
sizes and traffic hotspots. When reusing the same routing block,
eventually message sizes or general estimates such as “bigger” or
“smaller size” can be made.

For an evil routing node, even paired with a global observer, it is
hard to extract any useful information. An adversary might iden-
tify all messages following through it as messages of the same
true identity. As ephemeral identities are short term identities,
this is of limited values. By monitoring the endpoints used by an
ephemeral identity, we might calculate a “likelihood of matching” for
two ephemeral identities. Luckily this is not doable without allowing
a high factor of uncertainty. This matching does not improve when
combining multiple ephemeral identities over time. The matching
might slightly improve when trying to match ephemeral identities on
different routing nodes. Making strong statements about those like-
lihoods is not possible as we did intentionally not define a specific
behavior. We may safely say that the possibility of deanonymization
is degrading if using short-lived ephemeral identities.

The knowledge a node may gain from ephemeral identities is min-
imal. The ephemeral identity is created by a node unknown to
the receiver of the request. The only thing we know is what node
was adjacent when creating the ephemeral identity. As the cre-
ation of an ephemeral identity is not linked to any other identity
or ephemeral identity relationship between ephemeral identities on
two nodes cannot be established. If two adjacent nodes cooper-
ate when processing two linked ephemeral identities, no additional
knowledge may be won. If two collaborating nodes have one or
more non-collaborating nodes between them, they lose all linking
knowledge due to the non-collaborating nodes.

Operations have been carefully crafted to leak as little information
as possible. Being able to encrypt or decrypt a payload block does
not leak any information. The data processed may be true mes-
sage traffic or decoy as we do not know what the nature of the re-
ceived message was. If an RBB avoids repeating patterns of blocks
on nodes, it is not possible to link ephemeral identities of two non-
adjacent nodes. Repeating patterns may arise, for example, if a
block pb, is decrypted and re-encrypted on two nodes. In this case,
both nodes may match the message as it contains the same content
between the operations.

node f:
pby = D(pb
pbs = EN(pby)
node f+1:
node f+x:
pbs = DN (pbs)

In this example the patterns of pb3 and pbs = pb, are two patterns
repeating on non-adjacent nodes. The same conclusions are even
more valid for splitting operations. These two operations should be
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regarded as helpers for the addRedundancy and removeRedundancy
operations. These operations may be used to generate decoy traf-
fic or to destroy data without knowledge of doing so of the pro-
cessing node. If we process a function addRedundancyy, 3, any of
the output blocks contains the input payload, and any two of them
may be used to recover the data. At the same time, an operation
removeRedundancy,,r3 may be successful or not. The node is unable
to differentiate between the two states. The padding applied and the
unpadded encryption makes it impossible to judge upon success or
fail of an operation.

As the communication pattern is defined by the RBB and not always
the same, it is hard to judge on the security. We may, however, look
at some generic examples and show that we can achieve the goals
byzantine fault tolerance, privacy and unlinkability, and anonymity.
Figure 13.1 shows a sending node s, a series of routing nodes n;, j
assembled to routing chains. Furthermore, we have a r for which the
message is destined and a set of nodes g building the anonymity
set. Neither the number of chains j nor the length of the chains i
is relevant. A node or a sequence of nodes may be part of multiple
chains. By normalizing a path into such a form, we may at least
analyze some properties of the protocol. We furthermore have to
keep in mind that we trust sender s and receiver r. Any possible
routing block may be reduced to this scheme if knowing the exact
building instructions applied by the RBB.

— related VortexMe

—— unrelated Vortex)

routing node n routing node ny

routing node n, ;

Figure 13.1: A possible path of a VortexMessage

We have to consider the fact that two adjacent nodes collaborat-
ing may build one combined workspace executing all operations.
They are, therefore, able to link all operations of these two adjacent
nodes and follow all incoming and outgoing paths. We, therefore,
may assume that two adjacent nodes or an uninterrupted series of
collaborating nodes may be substituted by one node.

So a routing node n;, may not know if a VortexMessage received
from s is the result of processing another message or the mes-
sage has been injected on node s. Furthermore, if s was act-
ing as a routing node, it successfully unlinked the message from
any previous node. The sending node s may send a message by
first employing an addRedundancy operation or splitting and encrypt-
ing the message. Each path through the streams has then not
enough information to rebuild the combined message. If employing
an addRedundancy operation, a receiver r may recover a message,
if sufficient paths through the routing nodes were acting according
to the protocol. Paths with misbehaving nodes may eventually be
identified depending on the number of redundancy operations. As-
suming that the RBB included proper padding Information for the
receiver r, the receiver may identify what set of VortexMessages
leads to the original message due to the padding applied before the
RS function. So if sufficient paths, depending on the chosen opera-
tions at r, provide correct data, we may recover nodes misbehaving
in our paths. If one node in a path is not collaborating with adja-
cent nodes in the path, the path of the VortexMessage becomes
unlinked as previously shown with sender s. If multiple paths are
used, all paths must have at least one honest node to unlink the
message.

If all nodes in the anonymization set a; .. . . a; are honest, any preced-
ing node may not know whether the message ends at that node or
the message is just routed through an honest node. Even if some of
the anonymization nodes are not honest or collaborating with an ad-
versary, the anonymity set may be reduced in size, but the receiver



is still part of the anonymity set spanning the honest anonymization
nodes. So, we have shown that depending on the chosen routing
block, anonymity, unlinkability, and fault tolerance against a misbe-
having node may be achieved. AN RBB may furthermore send ad-
ditional VortexMessages to suspected misbehaving nodes. If mis-
behavior is reproducible within an ephemeral identity, the RBB may
identify it by picking up parts of the previously sent message and
comparing them to an expected state. An RBB may even introduce
message paths leading back to the RBB itself. Such a message
path may allow observation of the progress and success of the mes-
sage delivery.

13.2.4 Attacking Anonymity through Timing
Analysis

Timing is under full control of the routing block builder. No infor-
mation can be derived from the timing. This is even the case if a
routing block is reused. The precise timing on the network depends
additionally on other factors, such as delaying through anti-UBE or
anti-malware measures or delays through local delivery between
multiple nodes.

13.2.5 Attacking Anonymity through Throughput
Analysis

Increasing the throughput to highlight a message channel is not
possible since the replay protection will block such requests. It may
be possible for a limited number of times by replaying a MURB. This
is one of the reasons why the usage of MURBEs is discouraged un-
less necessary.

13.2.6 Attacking Anonymity through Routing
Block Analysis

The routing block is cryptographically secure. The size of the routing
block may leak an estimate about its inner complexity. It does not
reveal any critical pieces of information like remaining hops to the
message end or target or similar.

13.2.7 Attacking Anonymity through Header
Analysis

The header contains valuable data that is cryptographically secured
and only visible to the next receiver.

To an adversary not knowing the key, the size of the prefix block may
leak the key size. The size of the header block itself may leak the
presence of any optional blocks. Besides that, no other information
is leaked to such an adversary.

To an adversary knowing the decryption key (evil routing node), the
content of the header block is visible. This header block leaks all
routing information for the respective node and thus the ephemeral
identity. This block leaks some information of minimal value. It may
leak the activity of an ephemeral identity, including frequency. This
activity is, however, only matching the minimal activity of an end-
point identity as an endpoint may have multiple ephemeral identities
on one node.

13.2.8 Attacking Anonymity through Payload
Analysis

The payload itself does not leak any information about the mes-
sage content. All content is cryptographically secured. Content
may, however, leak the block size of the applied cipher.
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13.2.9 Attacking Anonymity through Bugging

Bugging is one of the most pressing problems. The protocol has
been carefully crafted not to allow any bugging. The use of MIME
messages in the final message, however, enables the bugging of
the message itself. A bugged message content may breach receiver
anonymity to the sender of the message.

13.2.10 Attacking Anonymity through Replay
Analysis

Due to the replay protection, no traffic may be generated or multi-
plied except for the traffic sent by the attacking node. As this in-
formation is already known to the node, there is no value in doing
so.

13.2.11 Diagnosability of traffic

13.2.11.1 Hijacking of Header and Routing Blocks

An attacker might try to recombine a header block of the third party
with a routing block crafted to get the workspace content of a differ-
ent node. To protect against this scenario, every routing block and
its corresponding header block has a shared value called forward-
Secret. As the content of a hijacked header block is not known, he
is unable to guess the forward secret within the block.

Itis not possible to brute-force the value due to the replay protection.
More precisely, the probability of hijacking a single identity block is
2% Hijacking such a block allows onetime access to the working
space and is visible to the owner due to the manipulated quotas.
Failing an attack will result in deleting the ephemeral identity, and a

new, unlinked ephemeral identity will be created.

13.2.11.2 Partial Implicit Routing Diagnosis

We can create data that is routed back to or through the original
sending node. This traffic is well defined and may be used to certify
that the loop processing the message is working as expected. By
combining the messages and sending intermediate results through
multiple paths, it is even possible to extract the sub status of some
loops and combine the result within transfer into a single message.

As a special case, a sender may use implicit routing diagnostic to
diagnose the full route. A sender may do this by taking specific
excerpts of the received message at the recipients’ node and route
these blocks back from the recipient to the sender.

13.2.11.3 Partial Explicit Routing Diagnosis

If a message fails to deliver according to implicitly routing diagno-
sis, additional messages may be sent to pick up the content of the
workspace of ephemeral identities throughout the path. These mes-
sages are due to the only binding to the ephemeral identity, not
distinguishable from the original messages. Assuming that a node
always behaves either according to or not according to the rules of
the system, a node may be identified by capturing built blocks with
known content.

If a node is identified as a misbehaving node, it may be excluded
from subsequent routing requests or reduced in its reliability or
trustability ratings. A node may calculate such scores locally to
build a more reliable network over time, avoiding misbehaving or
non-conformant nodes. This does not violate our zero-trust philos-
ophy as the scoring is made locally and relies on our observations.

14 Recommendations on Using the

Vortex Protocol

The following sections list recommendations using the VortexProto-
col. It is a summary of the previous sections.



14.1 Reuse of Routing blocks

Routing blocks should not be reused. The reuse of a routing block
may leak some limited information to an adversary node such as
approximate message size or message frequency of an unknown
tupel using this network.

14.2 Use of Ephemeral Identities

Ephemeral identities should be used for a minimal number of mes-
sages. Using multiple identities with overlapping lifespans is con-
sidered a good practice. Using different ephemeral identities for the
same message is acceptable and can be a good practice as long
as operations do not leak the linking between those two identities.

Special care must be taken if using overlapping ephemeral identi-
ties across nodes. While ephemeral identities may be completely
unlinked on a single node, the linking between multiple nodes may
leave a trace from one identity to the next. It is advisable to recre-
ate on a regular base all ephemeral identities from scratch. This
guarantees an unlinking from previous ephemeral identities.

14.3 Recommendations on Operations ap-
plied on Nodes

All operations, carried out on a single node, have to be crafted in
such a way that no information whether the operation is a decoy or
areal message is leaked. Otherwise, it becomes possible to narrow
down the message flow.

Encryption operations should be either strictly encrypting or strictly
decrypting. At no point in the path, a previously applied encryption
on an untrusted node should be removed as removal might lead to
linking to the previous inverse operation.

Similarly, there are rules for adding and removing redundancy infor-
mation. As these operations serve as decoy traffic generators, great
care needs to be taken not to leak this information. We emphasize
here again that it is possible to add redundancy information on one
node, encrypt one or multiple blocks once, or multiple blocks on
a second node, and then remove the redundancy information again
from the new set. This will lead to a payload data block than the orig-
inal. However, this does not qualify the block as decoy traffic. The
process may be reversed on the final recipient. Such an operation
is, however, mathematically very demanding if the same operation
is used for redundancy at the same time as multiple possible tuples
need to be tried if one node has failed.

Whenever possible, the reappearance of a payload block in a single
encoding it should be avoided or limited to an absolute minimum as
such an occurrence allows linking of two ephemeral identities.

14.4 Reuse of Keys, IVs or Routing patterns

An RBB should avoid reuse of any keys, IVs, routing patterns, or
PRNG seeds along its routing path of untrusted nodes. Reusing
such values would allow an attacker to match ephemeral identities
to a single identity. While this is minimal risk and may be ignored
in some cases, an RBB should avoid it as it may leak information to
collaborating nodes.

14.5 Recommendations on Choosing in-

volved Nodes

Involved nodes should be trustworthy but not necessarily trusted.
A message should always include a set of known recipients. It is
regarded as a good practice to use a minimal fixed anonymity set of
known recipients as routers. Doing so does not leak any information
unless always the same pattern of operations is applied (see 14.1).
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14.6 Message content

Although it is possible to embed any content into a Vortex message,
great care should be taken as the content may allow disclosing a
reader’s identity or location. For this reason, only self-contained
messages should be used (such as plain text messages).

Allowing a user to use more complex representations such as MIME
offers many possibilities for the bugging of the content. A client dis-
playing such messages should always handle them with great care.
Taping messages by downloading external images or verifying the
validity by OCSP or even doing a reverse lookup on an IP address
may leak valuable information.

14.6.1 Splitting of message content

Message content should be split and distributed among routing
nodes. Splitting should, however, not be done excessively to avoid
failure due to too many failing nodes. It furthermore makes diagnos-
tics complicated.

14.7 Routing

14.7.1 Redundancy

Redundancy is a valuable feature of the protocol. It allows unsus-
picious decoy generation and to compensate message path disrup-
tion. A routing block should always be crafted in such a way that
redundancy is aligned with the complexity of the routing block and
the importance of a message to avoid an adversary controlling all
nodes except for the sender’s and receiver’s one.

14.7.2 Operation Considerations

Operations should be kept easy, but at the same time, guarantee
anonymity. The following recommendations are kept to an absolute
minimum in order not to create any identifiable behavior.

A payload block should always have a single representation only
once when traveling through routing nodes. A recurring pattern
would allow an evil router to identify and thus match an ephemeral
identity of one router to an ephemeral identity of another router even
if there are multiple routes in between. So, when applying encryp-
tion only operations between routing nodes, the encryption should
be onionized. A clear onionizing routing pattern (only showing en-
cryption steps on a single chunk) is OK. A pattern such as removing
encryption and then reapply different encryption is not.

14.7.3 Anonymity

Anonymity is greatly dependent on the quality of the routing block
and the chosen anonymity set for a single message and a commu-
nication tuple over time.

14.7.3.1 Size of the Anonymity Set

The requirement for an anonymity set is dependent on jurisdictional
restrictions. In some of the more restrictive countries, no one can
be held guilty for an action that may not be credibly assigned to
him alone. In other jurisdictions, it is possible to be held liable for
actions just because of an identified membership in a group. This
makes it essential that message traffic and the crafting of the blend-
ing is under the sole control of the sender. He needs to create an
anonymity-set sufficiently large and spanning enough jurisdictions
to create sufficient anonymity for his situation.



15 Missing gaps to be covered in future
analysis

The current blending layer is simple in its inner working. It creates
context-less messages based on an easily recognizable scheme.
An unsuspecting observer may have the impression that this is just
a way of communicating, but censor may, by observing the message
flow easily and conclude that these messages are not written by a
human. Such detection could lead to censorship of the respective
routing node and thus disrupt the message flow. It is easy to recover
from such censorship by advertising a new identity to known peer
partners. To minimize the effects of censorship, an improvement in
this area would help.

To be undetectable, all work done by the blending layer has to be
indistinguishable from regular human communication. This applies
not only to the message steganographic embedding of the message
but to the message content as well. This is very much similar to the
problems of chatterbots these days. Assuming that a blending layer
is only communicating with other nodes correctly embedding mes-
sages, we have a chatterbot problem. It is reduced as the chatterbot
must only reply credibly and undetectable to generated messages
of other chatterbots. If assuming that a blending layer replies to
any non-Vortex nodes, the problem boils down to a Turing test, as
stated in [turing1950computing]. As we defined that an adversary
has enormous but limited resources, this blending is, however, suffi-
cient if it is done “good enough”. What criteria would apply here is a
topic for further research. Applying any research to this topic would
require to add a more precise adversary model.

The currently applied choice of transport layer protocol is a snap-
shot of current Internet traffic. While done with great care, it must be
adapted to the changing communication habits of humanity. Iden-
tifying new or depreciated communication protocols and blending
schemes would be another field of research.

A comprehensive survey of the newest trends and techniques in
steganography is another topic to be covered. It would allow identi-
fying new candidates for blending techniques. Especially interesting
are steganography algorithms covering movie file formats.

This is especially hard since true evidence of in-depth protocol us-
age seems to be completely missing. While we were able to gather
much data which is collected by simple routers (such as bandwidth),
credible figures about client and content usage seemed to be com-
pletely missing or of very poor quality.

Anonymity has effects on the behavior of humans. We have
found that although there is some research in this field (such as
[postmes2001social]), the evidence is very weak. Although the
possibility of anonymity is undisputed among so-called free coun-
tries, the downsides (e.g., misuse for criminal acts) of anonymity
are apparent. More research in this field is required. On the other
hand, a lack of awareness for anonymity, especially in “non-free” ju-
risdiction, has been observed, which would be another relevant field
of research.
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1. Introduction

Anonymisation is hard to achieve. Most previous attempts relied on either trust in a
dedicated infrastructure or a specialized networking protocol.

Instead of defining a transport layer, Vortex piggybacks on other transport protocols. A
blending layer embeds Vortex messages (VortexMessage) into ordinary messages of
the respective transport protocol. This layer picks up the messages, passes them to a
routing layer, which applies local operations to the messages, and resends the new
message chunks to the next recipients.

A processing node learns as little as possible from the message or the network utilized.
The operations have been designed to be sensible in any context. The 'onionized'
structure of the protocol makes it impossible to follow the trace of a message without
having control over the processing node.

MessageVortex is a protocol which allows sending and receiving messages by using a
routing block instead of a destination address. With this approach, the sender has full
control over all parameters of the message flow.

A message is split and reassembled during transmission. Chunks of the message may
carry redundant information to avoid service interruptions during transit. Decoy and
message traffic are not differentiable as the nature of the addRedundancy operation
allows each generated portion to be either message or decoy. Therefore, any routing
node is unable to distinguish between message and decoy traffic.

After processing, a potential receiver node knows if the message is destined for it (by
creating a chunk with ID 0) or other nodes. Due to missing keys, no other node may
perform this processing.

This RFC begins with general terminology (see Section 2) followed by an overview of
the process (see Section 3). The subsequent sections describe the details of the
protocol.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].
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1.2. Protocol Specification

Appendix A specifies all relevant parts of the protocol in ASN.1 (see [CCITT.X680.2002]
and [CCITT.X208.1988]). The blocks are DER encoded, if not otherwise specified.

1.3. Number Specification

All numbers within this document are, if not suffixed, decimal numbers. Numbers
suffixed with a small letter 'h' followed by two hexadecimal digits are octets written in
hexadecimal. For example, a blank ASCII character (' ') is written as 20h and a capital
'K' in ASCII as 4Bh.

2. Entities Overview

The following entities used in this document are defined below.

2.1. Node

The term 'node' describes any computer system connected to other nodes, which
support the MessageVortex Protocol. A node address' is typically an email address, an
XMPP address or other transport protocol identity supporting the MessageVortex
protocol. Any address SHOULD include a public part of an 'identity key' to allow
messages to transmit safely. One or more addresses MAY belong to the same node.

2.1.1. Blocks

A 'block’ represents an ASN.1 sequence in a transmitted message. We embed messages
in the transport protocol, and these messages may be of any size.

2.1.2. NodeSpec

A nodeSpec block, as specified in Section a.6, expresses an addressable node in a
unified format. The nodeSpec contains a reference to the routing protocol, the routing
address within this protocol, and the keys required for addressing the node. This RFC
specifies transport layers for XMPP and SMTP. Additional transport layers will require
an extension to this RFC.

Gwerder Expires 26 May 2020 Page 8

A8




Internet-Draft MessageVortex Protocol November 2019

2.1.2.1. NodeSpec for SMTP nodes

An alternative address representation is defined that allows a standard email client to
address a Vortex node. A node SHOULD support the smtpAlternateSpec (its
specification is noted in ABNF as in [RFC5234]). For applications with QR code support,
an implementation SHOULD use the smtpUrl representation.

localPart = <local part of address>

domain = <domain part of address>

email = localPart "@" domain

keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>
smtpAlternateSpec = localPart ".." keySpec ".." domain "@localhost"
smtpUrl = "vortexsmtp://" smtpAlternateSpec

This representation does not support quoted local part SMTP addresses.

2.1.2.2. NodeSpec for XMPP nodes

Typically, a node specification follows the ASN.1 block NodeSpec. For support of XMPP
clients, an implementation SHOULD support the jidAlternateSpec (its specification is
noted in ABNF as in [RFC5234]).

localPart = <local part of address>
domain = <domain part of address>
resourcePart = <resource part of the address>
jid = localPart "@" domain [ "/" resourcePart ]
keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>;
jidAlternateSpec = localPart ".." keySpec ".."

domain "@localhost" [ "/" resourcePart ]
jidurl = "vortexxmpp://" jidAlternateSpec

2.2. Peer Partners

This document refers to two or more message sending or receiving entities as peer
partners. One partner sends a message, and all others receive one or more messages.
Peer partners are message specific, and each partner always connects directly to a
node.
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2.3. Encryption keys

Several keys are required for a Vortex message. For identities and ephemeral identities
(see below), we use asymmetric keys, while symmetric keys are used for message
encryption.

2.3.1. Identity Keys

Every participant of the network includes an asymmetric key, which SHOULD be
either an EC key with a minimum length of 384 bits or an RSA key with a minimum
length of 2048 bits.

The public key must be known by all parties writing to or through the node.

2.3.2. Peer Key

Peer keys are symmetrical keys transmitted with a Vortex message and are always
known to the node sending the message, the node receiving the message, and the
creator of the routing block.

A peer key is included in the Vortex message as well as the building instructions for
subsequent Vortex messages (see RoutingCombo in Appendix A).

2.3.3. Sender Key

The sender key is a symmetrical key protecting the identity and routing block of a
Vortex message. It is encrypted with the receiving peer key and prefixed to the identity
block. This key further decouples the identity and processing information from the
previous key.

A sender key is known to only one peer of a Vortex message and the creator of the
routing block.

2.4. Vortex Message

The term 'Vortex message' represents a single transmission between two routing
layers. A message adapted to the transport layer by the blending layer is called a
'blended Vortex message' (see Section 3).
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A complete Vortex message contains the following items:

* The peer key, which is encrypted with the host key of the node and stored in a
prefixBlock, protects the inner Vortex message (innerMessageBlock).

The small padding guarantees that a replayed routing block with different content
does not look the same.

The sender key, also encrypted with the host key of the node, protects the identity
and routing block.

The identity block, protected by the sender key, contains information about the
ephemeral identity of the sender, replay protection information, header requests
(optional), and a requirement reply (optional).

The routing block, protected by the sender key, contains information on how
subsequent messages are processed, assembled, and blended.

The payload block, protected by the peer key, contains payload chunks for
processing.

2.5. Message

A message is content to be transmitted from a single sender to a recipient. The sender
uses a routing block either built itself or provided by the receiver to perform the
transmission. While a message may be anonymous, there are different degrees of
anonymity as described by the following.

« If the sender of a message is not known to anyone else except the sender, then this
degree is referred to as 'sender anonymity.'

o If the receiver of a message is not known to anyone else except the receiver, then
the degree is 'receiver anonymity.'

« If an attacker is unable to determine the content, original sender, and final
receiver, then the degree is considered 'third-party anonymity.'

 If a sender or a receiver may be determined as one of a set of <k> entities, then it
is referred to as k-anonymity[KAnon].

A message is always MIME encoded as specified in [REC2045].

2.6. Key and MAC specifications and usage

MessageVortex uses a unique encoding for keys. This encoding is designed to be small
and flexible while maintaining a specific base structure.
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The following key structures are available:

* SymmetricKey

* AsymmetricKey

MAC does not require a complete structure containing specs and values, and only a
MacAlgorithmSpec is available. The following sections outline the constraints for
specifying parameters of these structures where a node MUST NOT specify any
parameter more than once.

If a crypto mode is specified requiring an IV, then a node MUST provide the IV when
specifying the key.

2.6.1. Asymmetric Keys

Nodes use asymmetric keys for identifying peer nodes (i.e., identities) and encrypting
symmetric keys (for subsequent de-/encryption of the payload or blocks). All
asymmetric keys MUST contain a key type specifying a strictly-normed key. Also, they
MUST contain a public part of the key encoded as an X.509 container and a private key
specified in PKCS#8 wherever possible.

RSA and EC keys MUST contain a keySize parameter. All asymmetric keys SHOULD
contain a padding parameter, and a node SHOULD assume PKCS#1 if no padding is
specified.

NTRU specification MUST provide the parameters "n", "p", and "q".

2.6.2. Symmetric Keys

Nodes use symmetric keys for encrypting payloads and control blocks. These
symmetric keys MUST contain a key type specifying a key, which MUST be in an
encoded form.

A node MUST provide a keySize parameter if the key (or, equivalently, the block) size is
not standardized or encoded in the name. All symmetric key specifications MUST
contain a mode and padding parameter. A node MAY list multiple padding or mode
parameters in a ReplyCapability block to offer the recipient a free choice.

Gwerder Expires 26 May 2020 Page 12

A12




Internet-Draft MessageVortex Protocol November 2019

2.7. Transport Address

The term 'transport address' represents the token required to address the next
immediate node on the transport layer. An email transport layer would have SMTP
addresses, such as 'vortex@example.com,' as the transport address.

2.8. Identity

2.8.1. Peer Identity

The peer identity may contain the following information of a peer partner:

* A transport address (always) and the public key of this identity, given there is no
recipient anonymity.

* A routing block, which may be used to contact the sender. If striving for recipient
anonymity, then this block is required.

» The private key, which is only known by the owner of the identity.

2.8.2. Ephemeral Identity

Ephemeral identities are temporary identities created on a single node. These
identities MUST NOT relate to another identity on any other node so that they allow
bookkeeping for a node. Each ephemeral identity has a workspace assigned, and may
also have the following items assigned.

* An asymmetric key pair to represent the identity.
 Avalidity time of the identity.
2.8.3. Official Identity

An official identity may have the following items assigned.

» Routing blocks used to reply to the node.

» Alist of assigned ephemeral identities on all other nodes and their projected
quotas.

* Alist of known nodes with the respective node identity.
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2.9. Workspace

Every official or ephemeral identity has a workspace, which consists of the following
elements.

» Zero or more routing blocks to be processed.

« Slots for a payload block sequentially numbered. Every slot:

o MUST contain a numerical ID identifying the slot.
- MAY contain payload content.

- If a block contains a payload, then it MUST contain a validity period.

2.10. Multi-use Reply Blocks

'Multi-use reply blocks' (MURB) are a special type routing block sent to a receiver of a
message or request. A sender may use such a block one or several times to reply to the
sender linked to the ephemeral identity, and it is possible to achieve sender anonymity
using MURBs.

3. Layer Overview

The protocol is designed in four layers as shown in Figure 1.

B e e +
Vortex Node
R e +
| Accounting |
| |
R e R R +
| Routing |
| |
B B e e +
| Blending | ] Blending | ]
|| || |
I I
D oo + ot +
| Transport | | Transport in | | Transport out |

Figure 1: Layer overview
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Every participating node MUST implement the layer's blending, routing, and
accounting. There MUST be at least one incoming and one outgoing transport layer
available to a node. All blending layers SHOULD connect to the respective transport
layers for sending and receiving packets.

3.1. Transport Layer
The transport layer transfers the blended Vortex messages to the next vortex node and

stores it until the next blending layer picks up the message.

The transport layer infrastructure SHOULD NOT be specific to anonymous
communication and should contain significant portions of non-Vortex traffic.

3.2. Blending Layer

The blending layer embeds blended Vortex Message into the transport layer data
stream and extracts the packets from the transport layer.

3.3. Routing Layer

The routing layer expands the information contained in MessageVortex packets,
processes them, and passes generated packets to the respective blending layer.

3.4. Accounting Layer

The accounting layer tracks all ephemeral identities authorized to use a
MessageVortex node and verifies the available quotas to an ephemeral identity.

4. Vortex Message

4.1. Overview

Figure 2 shows a Vortex message. The enclosed sections denote encrypted blocks, and
the three or four-letter abbreviations denote the key required for decryption. The
abbreviation k_h stands for the asymmetric host key, and sk_p is the symmetric peer
key. The receiving node obtains this key by decrypting MPREFIX with its host key k_h.
Then, sk_s is the symmetric sender key. When decrypting the MPREFIX block, the node
obtains this key. The sender key protects the header and routing blocks by
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guaranteeing the node assembling the message does not know about upcoming
identities, operations, and requests. The peer key protects the message, including its
structure, from third-party observers.
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Figure 2: Vortex message overview

4.2. Message Prefix Block (MPREFIX)

The PrefixBlock contains a symmetrical key as defined in Section a.1 and is encrypted
using the host key of the receiving peer host. The symmetric key utilized MUST be
from the set advertised by a CapabilitiesReplyBlock (see Section 7.2.6). A node MAY
choose any parameters omitted in the CapabilitiesReplyBlock freely unless stated
otherwise in Section 7.2.6. A node SHOULD avoid sending unencrypted PrefixBlocks,
and a prefix block MUST contain the same forward-secret as the other prefix as well as
the routing and header blocks. A host MAY reply to a message with an unencrypted
message block, but any reply to a message SHOULD be encrypted.

The sender MUST choose a key which may be encrypted with the host key in the
respective PrefixBlock using the padding advertised by the CapabilitiesReplyBlock.

4.3. Inner Message Block

A node MUST always encrypt an InnerMessageBlock with the symmetric key of the
PrefixBlock to hide the inner structure of the message. The InnerMessageBlock
SHOULD always accommodate four or more payload chunks.
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An InnerMessageBlock always starts with a padding block, which guarantees that
when using the same routing block multiple times, its binary structure is not repeated
throughout the messages of the same routing block. The padding MUST be the first 16
bytes of the first four non-empty payload chunks (i.e., PayloadChunks). If a payload
chunk is shorter than 16 bytes, then the content of the padding SHOULD be filled with
zero-valued bytes (00h) from the end up to the required number of bytes. An inner
message block (i.e., InnerMessageBlock) SHOULD contain at least four payload chunks
with a size of 16 bytes or larger. If there are less than four payload chunks, then the
padding MUST contain a random sequence of 16 bytes for those missing, and a node
MUST NOT reuse random sequences.

An InnerMessageBlock contains so-called forwardSecrets, a random number that
MUST be the same in the HeaderBlock, RoutingBlock, and PrefixBlock. Nodes receiving
messages containing non-matching forwardSecrets MUST discard these messages and
SHOULD NOT send an error message. If a node receives too many messages with
illegal forward secrets, then the node SHOULD delete this identity. A node receiving a
message with a broken forwardSecret SHOULD treat the block as a replayed block and
discard it regardless of a valid forwardSecret. Any replay within the replay protection
time MUST be discarded regardless of a correct forward secret.

4.3.1. Control Prefix Block

Control prefix (CPREFIX) and MPREFIX blocks share the same structure and logic as
well as containing the sender key sk_s. If an MPREFIX block is unencrypted, a node
MAY omit the CPREFIX block. An omitted CPREFIX block results in unencrypted
control blocks (e.g., the HeaderBlock and RoutingBlock).

A prefix block MUST contain the same forwardSecret as the other prefix, the routing
block, and the header block.

4.3.2. Control Blocks

The control blocks of the HeaderBlock and a RoutingBlock contain the core
information to process the payload.

4.3.2.1. Header Block

The header block (see HeaderBlock in Appendix A) contains the following information.

» It MUST contain the local ephemeral identity of the routing block builder.
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* It MAY contain header requests.

» It MAY contain the solution to a PuzzleRequired block previously opposed in a
header request.

The list of header requests MAY be one of the following.

* Empty.
» Contain a single identity create request (HeaderRequestldentity).

» Contain a single increase quota request.

If a header block violates these rules, then a node MUST NOT reply to any header
request. The payload and routing blocks SHOULD still be added to the workspace and
processed if the message quota is not exceeded.

4.3.2.2. Routing Block

The routing block (see RoutingBlock in Appendix A) contains the following
information.

It MUST contain a serial number uniquely identifying the routing block of this
user. The serial number MUST be unique during the lifetime of the routing block.

» It MUST contain the same forward secret as the two prefix blocks and the header
block.

» It MAY contain assembly and processing instructions for subsequent messages.

It MAY contain a reply block for messages assigned to the owner of the identity.

4.3.3. Payload Block

Each InnerMessageBlock with routing information SHOULD contain at least four
PayloadChunks.

5. General notes

The MessageVortex protocol is a modular protocol that allows the use of different
encryption algorithms. For its operation, a Vortex node SHOULD always support at
least two distinct types of algorithms, paddings or modes such that they rely on two
mathematical problems.
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5.1. Supported Symmetric Ciphers

A node MUST support the following symmetric ciphers.

o AES128 (see [FIPS-AES] for AES implementation details).

* AES256.

* CAMELLIA128 (see [RFC3657] Chapter 3 for Camellia implementation details).
« CAMELLIA256.

A node SHOULD support any standardized key larger than the smallest key size.

A node MAY support Twofish ciphers (see [TWOFISH]).

5.2. Supported Asymmetric Ciphers
A node MUST support the following asymmetric ciphers.
* RSA with key sizes greater or equal to 2048 ([REC8017]).

« ECC with named curves secp384r1, sect409k1 or secp521r1 (see [SEC1]).

5.3. Supported MACs

A node MUST support the following Message Authentication Codes (MAC).

e SHA3-256 (see [ISO-10118-3] for SHA implementation details).
* RipeMD160 (see [[SO-10118-3] for RIPEMD implementation details).

A node SHOULD support the following MACs.

e SHA3-512.
* RipeMD256.
* RipeMD512.

5.4. Supported Paddings

A node MUST support the following paddings specified in [RFC8017].

* PKCS1 (see [RFC8017]).
* PKCS7 (see [RFC5958]).
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5.5. Supported Modes

A node MUST support the following modes.
* CBC (see [RFC1423]) such that the utilized IV must be of equal length as the key.
* EAX (see [EAX]).
* GCM (see [RFC5288]).

* NONE (only used in special cases, see Section 11).
A node SHOULD NOT use the following modes.

* NONE (except as stated when using the addRedundancy function).
* ECB.

A node SHOULD support the following modes.

* CTR ([REC3686]).
* CCM ([RFC3610]).
* OCB ([RFC7253]).
e OFB ([MODES]).

6. Blending

Each node supports a fixed set of blending capabilities, which may be different for
incoming and outgoing messages.

The following sections describe the blending mechanism. There are currently two
blending layers specified with one for the Simple Mail Transfer Protocol (SMTP, see
[REC5321]) and the second for the Extensible Messaging and Presence Protocol (XMPP,
see [RFC6120]). All nodes MUST at least support "encoding=plain:0,256".

6.1. Blending in Attachments

There are two types of blending supported when using attachments.

¢ Plain binary encoding with offset (PLAIN).
* Embedding with F5 in an image (F5).
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A node MUST support PLAIN blending for reasons of interoperability whereas a node
MAY support blending using F5.

6.1.1. PLAIN embedding into attachments

A blending layer embeds a VortexMessage in a carrier file with an offset for PLAIN
blending. For replacing a file start, a node MUST use the offset 0. The routing node
MUST choose the payload file for the message, and SHOULD use a credible payload
type (e.g., MIME type) with high entropy. Furthermore, it SHOULD prefix a valid
header structure to avoid easy detection of the Vortex message. Finally, a routing node
SHOULD use a valid footer, if any, to a payload file to improve blending.

The blended Vortex message is embedded in one or more message chunks, each
starting with two unsigned integers of variable length. The integer starts with the LSB,
and if bit 7 is set, then there is another byte following. There cannot be more than four
bytes where the last, fourth byte is always 8 bit. The three preceding bytes have a
payload of seven bits each, which results in a maximum number of 2429 bits. The first
of the extracted numbers reflect the number of bytes in the chunk after the length
descriptors. The second contains the number of bytes to be skipped to reach the next
chunk. There exists no "last chunk" indicator.

position:006h 02h 04h 06h  08h ... 400h 402h 404h 406h
408h 40Ah

value: 01 02 03 04 05 06 07 08 69 ... 01 65 OA 6B OC OD OE OF O
03 12 13

Embedding: "(plain:1024)"

Result: ©OA 13 (+ 494 omitted bytes; then skip 12 bytes to next chunk)

A node SHOULD offer at least one PLAIN blending method and MAY offer multiple
offsets for incoming Vortex messages.

A plain blending is specified as the following.

plainEncoding = "("plain:" <numberOfBytesOfOffset>
[ "," <numberOfBytesOfOffset> ]* ")"
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6.1.2. F5 embedding into attachments

For F5, a blending layer embeds a Vortex message into a jpeg file according to [F5]. The
password for blending may be public, and a routing node MAY advertise multiple
passwords. The use of F5 adds approximately tenfold transfer volume to the message.
A routing block building node SHOULD only use F5 blending where appropriate.

A blending in F5 is specified as the following.

f5Encoding = "(F5:" <passwordString> [ "," <PasswordString> ]* ")

Commas and backslashes in passwords MUST be escaped with a backslash whereas
closing brackets are treated as normal password characters unless they are the final
character of the encoding specification string.

6.2. Blending into an SMTP layer

Email messages with content MUST be encoded with Multipurpose Internet Mail
Extensions (MIME) as specified in [REC2045]. All nodes MUST support BASE64
encoding and MUST test all sections of a MIME message for the presence of a
VortexMessage.

A vortex message is present if a block containing the peer key at the known offset of
any MIME part decodes correctly.

A node SHOULD support SMTP blending for sending and receiving. For sending SMTP,
the specification in [RFC5321] must be used. TLS layers MUST always be applied when
obtaining messages using POP3 (as specified in [RFC1939] and [RFC2595]) or IMAP (as
specified in [RFC3501]). Any SMTP connection MUST employ a TLS encryption when
passing credentials.

6.3. Blending into an XMPP layer
For interoperability, an implementation SHOULD provide XMPP blending.

Blending into XMPP traffic is performed using the [XEP-0231] extension of the XMPP
protocol.

PLAIN and F5 blending are acceptable for this transport layer.
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7. Routing

7.1. Vortex Message Processing

7.1.1. Processing of incoming Vortex Messages

An incoming message is considered initially unauthenticated. A node should consider
a VortexMessage as authenticated as soon as the ephemeral identity is known and is
not temporary.

For an unauthenticated message, the following rules apply.

* Anode MUST ignore all Routing blocks.
* Anode MUST ignore all Payload blocks.
* Anode SHOULD accept identity creation requests in unauthenticated messages.
* Anode MUST ignore all other header requests except identity creation requests.

* Anode MUST ignore all identity creation requests belonging to an existing
identity.

A message is considered authenticated as soon as the identity used in the header block
is known and not temporary. A node MUST NOT treat a message as authenticated if the
specified maximum number of replays is reached. For authenticated messages, the
following rules apply.

* Anode MUST ignore identity creation requests.

* A node MUST replace the current reply block with the reply block provided in the
routing block (if any). The node MUST keep the reply block if none is provided.

* Anode SHOULD process all header requests.
* Anode SHOULD add all routing blocks to the workspace.
* Anode SHOULD add all payload blocks to the workspace.

A routing node MUST decrement the message quota by one if a received message is
authenticated, valid, and contains at least one payload block. If a message is identified
as duplicate according to the reply protection, then a node MUST NOT decrement the
message quota.

The message processing works according pseudo-code shown below.
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function incomming message(VortexMessage blendedMessage) {
try{
msg = unblend( blendedMessage );
if( not msg ) {
// Abort processing
throw exception( "no embedded message found" )
} else {
hdr = get header( msg )
if( not known identity( hdr.identity ) {
if( get requests( hdr ) contains HeaderRequestIdentity ) {
create new identity( hdr ).set temporary( true )
send message( create requirement( hdr ) )
} else {
// Abort processing
throw exception( "identity unknown" )

}
} else {
if( is duplicate or replayed( msg ) ) {
// Abort processing
throw exception "duplicate or replayed message" )
} else {
if( get accounting( hdr.identity ).is temporary() ) {
if( not verify requirement( hdr.identity, msg ) ) {
get accounting( hdr.identity ).set temporary( false )
}
}
if( get accounting( hdr ).is temporary() ) {
throw exception( "no processing on temporary identity" )

}

// Message authenticated
get accounting( hdr.identity
) .register for replay protection( msg )
if( not verify mtching forward secrets( msg ) ) {
throw exception( "forward secret missmatch" )

if( contains payload( msg ) ) {
if( get accounting( hdr.identity ).decrement message quota

0 A{
(msg ) {

while index,nextPayloadBlock = get next payload block

add workspace( header.identity, index,
nextPayloadBlock )
}
while nextRoutingBlock = get next routing block( msg ) {
add workspace( hdr.identity, add routing
( nextRoutingBlock ) )
}
process reserved mapping space( msg )
while nextRequirement = get next requirement( hdr ) {
add workspace( hdr.identity, nextRequirement )

}
} else {
throw exception( "Message quota exceeded" )
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}
}
}

} catch( exception e ) {
// Message processing failed
throw e;

}
}

7.1.2. Processing of Routing Blocks in the Workspace

A routing workspace consists of the following items.

* The identity linked to, which determines the lifetime of the workspace.
e The linked routing combos (RoutingCombo).

* A payload chunk space with the following multiple subspaces available:

o

ID 0 represents a message to be embedded (when reading) or a message to be
extracted to the user (when written).

o

ID 1 to ID maxPayloadBlocks represent the payload chunk slots in the target
message.

o

All blocks between ID maxPayloadBlocks + 1 to ID 32767 belong to a temporary
routing block-specific space.

All blocks between ID 32768 to ID 65535 belong to a shared space available to all
operations of the identity.

o

The accounting layer typically triggers processing and represents either a cleanup
action or a routing event. A cleanup event deletes the following information from all
workspaces.

 All processed routing combos.

 All routing combos with expired usagePeriod.

 All payload chunks exceeding the maxProcess time.
 All expired objects.

 All expired puzzles.

» All expired identities.

» All expired replay protections.
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Note that maxProcessTime reflects the number of seconds since the arrival of the last
octet of the message at the transport layer facility. A node SHOULD NOT take
additional processing time (e.g., for anti-UBE or anti-virus) into account.

The accounting layer triggers routing events occurring at least the minProcessTime
after the last octet of the message arrived at the routing layer. A node SHOULD choose
the latest possible moment at which the peer node receives the last octet of the
assembled message before the maxProcessTime is reached. The calculation of this last
point in time where a message may be set SHOULD always assume that the target node
is working. A sending node SHOULD choose the time within these bounds randomly.
An accounting layer MAY trigger multiple routing combos in bulk to further obfuscate
the identity of a single transport message.

First, the processing node escapes the payload chunk at ID 0 if needed (e.g., a non-
special block is starting with a backslash). Next, it executes all processing instructions
of the routing combo in the specified sequence. If an instruction fails, then the block at
the target ID of the operation remains unchanged. The routing layer proceeds with the
subsequent processing instructions by ignoring the error. For a detailed description of
the operations, see Section 7.4. If a node succeeds in building at least one payload
chunk, then a VortexMessage is composed and passed to the blending layer.

7.1.3. Processing of Outgoing Vortex Messages

The blending layer MUST compose a transport layer message according to the
specification provided in the routing combo. It SHOULD choose any decoy message or
steganographic carrier in such a way that the dead parrot syndrome, as specified in
[DeadParrot], is avoided.

7.2. Header Requests

Header requests are control requests for the anonymization system. Messages with
requests or replies only MUST NOT affect any quota.

7.2.1. Request New Ephemeral Identity

Requesting a new ephemeral identity is performed by sending a message containing a
header block with the new identity and an identity creation request
(HeaderRequestldentity) to a node. The node MAY send an error block (see Section
7.3.1) if it rejects the request.
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If a node accepts an identity creation request, then it MUST send a reply. A node
accepting a request without a requirement MUST send back a special block containing
"no error". A node accepting a request under the precondition of a requirement to be
fulfilled MUST send a special block containing a requirement block.

A node SHOULD NOT reply to any clear-text requests if the node does not want to
disclose its identity as a Vortex node officially. A node MUST reply with an error block
if a valid identity is used for the request.

7.2.2. Request Message Quota

Any valid ephemeral identity may request an increase of the current message quota to
a specific value at any time. The request MUST include a reply block in the header and
may contain other parts. If a requested value is lower than the current quota, then the
node SHOULD NOT refuse the quota request and SHOULD send a "no error" status.

A node SHOULD reply to a HeaderRequestIncreaseMessageQuota request (see
Appendix A) of a valid ephemeral identity. The reply MUST include a requirement, an
error message or a '"no error" status message.

7.2.3. Request Increase of Message Quota

A node may request to increase the current message quota by sending a
HeaderRequestIncreaseMessageQuota request to the routing node. The value specified
within the node is the new quota. HeaderRequestIncreaseMessageQuota requests
MUST include a reply block, and a node SHOULD NOT use a previously sent MURB to

reply.

If the requested quota is higher than the current quota, then the node SHOULD send a
"no error"” reply. If the requested quota is not accepted, then the node SHOULD send a
requestedQuotaOutOfBand reply.

A node accepting the request MUST send a RequirementBlock or a "no error block."

7.2.4. Request Transfer Quota

Any valid ephemeral identity may request to increase the current transfer quota to a
specific value at any time. The request MUST include a reply block in the header and
may contain other parts. If a requested value is lower than the current quota, then the
node SHOULD NOT refuse the quota request and SHOULD send a "no error" status.
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A node SHOULD reply to a HeaderRequestIncreaseTransferQuota request (see
Appendix A) of a valid ephemeral identity. The reply MUST include a requirement, an
error message or a '"no error" status message.

7.2.5. Query Quota

Any valid ephemeral identity may request the current message and transfer quota.
The request MUST include a reply block in the header and may contain other parts.

A node MUST reply to a HeaderRequestQueryQuota request (see Appendix A), which
MUST include the current message quota and the current message transfer quota. The
reply to this request MUST NOT include a requirement.

7.2.6. Request Capabilities

Any node MAY request the capabilities of another node, which include all information
necessary to create a parseable VortexMessage. Any node SHOULD reply to any
encrypted HeaderRequestCapability.

A node SHOULD NOT reply to clear-text requests if the node does not want to disclose
its identity as a Vortex node officially. A node MUST reply if a valid identity is used for
the request, and it MAY reply to unknown identities.

7.2.7. Request Nodes

A node may ask another node for a list of routing node addresses and keys, which may
be used to bootstrap a new node and add routing nodes to increase the anonymization
of a node. The receiving node of such a request SHOULD reply with a requirement
(e.g., RequirementPuzzleRequired).

A node MAY reply to a HeaderRequest request (see Appendix A) of a valid ephemeral

identity, and the reply MUST include a requirement, an error message or a "no error"”

status message. A node MUST NOT reply to an unknown identity, and SHOULD always
reply with the same result set to the same identity.

Gwerder Expires 26 May 2020 Page 28

A28




Internet-Draft MessageVortex Protocol November 2019

7.2.8. Request Identity Replace

This request type allows a receiving node to replace an existing identity with the
identity provided in the message, and is required if an adversary manages to deny the
usage of a node (e.g., by deleting the corresponding transport account). Any sending
node may recover from such an attack by sending a valid authenticated message to
another identity to provide the new transport and key details.

A node SHOULD reply to such a request from a valid known identity, and the reply
MUST include an error message or a "no error” status message.

7.3. Special Blocks

Special blocks are payload messages that reflect messages from one node to another
and are not visible to the user. A special block starts with the character sequence
"\special' (or 5Ch 73h 70h 65h 63h 69h 61h 6Ch) followed by a DER encoded special
block (SpecialBlock). Any non-special message decoding to ID 0 in a workspace starting
with this character sequence MUST escape all backslashes within the payload chunk
with an additional backslash.

7.3.1. Error Block

An error block may be sent as a reply contained in the payload section. The error
block is embedded in a special block and sent with any provided reply block. Error
messages SHOULD contain the serial number of the offending header block and MAY
contain human-readable text providing additional messages about the error.

7.3.2. Requirement Block

If a node is receiving a requirement block, then it MUST assume that the request block
is accepted, is not yet processed, and is to be processed if it meets the contained
requirement. A node MUST process a request as soon as the requirement is fulfilled,
and MUST resend the request as soon as it meets the requirement.

A node MAY reject a request, accept a request without a requirement, accept a request
upon payment (RequirementPaymentRequired), or accept a request upon solving a
proof of work puzzle (RequirementPuzzleRequired).

Gwerder Expires 26 May 2020 Page 29

A29




Internet-Draft MessageVortex Protocol November 2019

7.3.2.1. Puzzle Requirement

If a node requests a puzzle, then it MUST send a RequirementPuzzleRequired block.
The puzzle requirement is solved if the node receiving the puzzle is replying with a
header block that contains the puzzle block, and the hash of the encoded block begins
with the bit sequence mentioned in the puzzle within the period specified in the field
'valid.'

A node solving a puzzle requires sending a VortexMessage to the requesting node,
which MUST contain a header block that includes the puzzle block and MUST have a
MAC fingerprint starting with the bit sequence as specified in the challenge. The
receiving node calculates the MAC from the unencrypted DER encoded HeaderBlock
with the algorithm specified by the node. The sending node may achieve the
requirement by adding a proofOfWork field to the HeaderBlock containing any
content fulfilling the criteria. The sending node SHOULD keep the proofOfWork field
as short as possible.

7.3.2.2. Payment Requirement

If a node requests a payment, then it MUST send a RequirementPaymentRequired
block. As soon as the requested fee is paid and confirmed, the requesting node MUST
send a "no error" status message. The usage period 'valid' describes the period during
which the payment may be carried out. A node MUST accept the payment if occurring
within the 'valid' period but confirmed later. A node SHOULD return all unsolicited
payments to the sending address.

7.4. Routing Operations

Routing operations are contained in a routing block and processed upon arrival of a
message or when compiling a new message. All operations are reversible, and no
operation is available for generating decoy traffic, which may be used through
encryption of an unpadded block or the addRedundancy operation.

All payload chunk blocks inherit the validity time from the message routing combos as
arrival time + max(maxProcessTime).

When applying an operation to a source block, the resulting target block inherits the
expiration of the source block. When multiple expiration times exist, the one furthest
in the future is applied to the target block. If the operation fails, then the target
expiration remains unchanged.
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7.4.1. Mapping Operation

The straightforward mapping operation is used in inOperations of a routing block to
map the routing block's specific blocks to a permanent workspace.

7.4.2. Split and Merge Operations

The split and merge operations allow splitting and recombining message chunks. A
node MUST adhere to the following constraints.

* The operation must be applied at an absolute (measuring in bytes) or relative
(measured as a float value in the range 0>value>100) position.

e All calculations must be performed according to IEEE 754 [IEEE754] and in 64-bit
precision.

« If a relative value is a non-integer result, then a floor operation (i.e., cutting off all
non-integer parts) determines the number of bytes.

« If an absolute value is negative, then the size represents the number of bytes
counted from the end of the message chunk.

« If an absolute value is greater than the number of bytes in a block, then all bytes
are mapped to the respective target block, and the other target block becomes a
zero byte-sized block.

An operation MUST fail if relative values are equal to, or less than, zero. An operation
MUST fail if a relative value is equal to, or greater than, 100. All floating-point
operations must be performed according to [[EEE754] and in 64-bit precision.

7.4.3. Encrypt and Decrypt Operations

Encryption and decryption are executed according to the standards mentioned above.
An encryption operation encrypts a block symmetrically and places the result in the
target block. The parameters MUST contain IV, padding, and cipher modes. An
encryption operation without a valid parameter set MUST fail.
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7.4.4. Add and Remove Redundancy Operations

The addRedundancy and removeRedundancy operations are core to the protocol. They
may be used to split messages and distribute message content across multiple routing
nodes. The operation is separated into three steps.

1. Pad the input block to a multiple of the key block size in the resulting output
blocks.

2. Apply a Vandermonde matrix with the given sizes.

3. Encrypt each resulting block with a separate key.

The following sections describe the order of the operations within an addRedundancy
operation. For a removeRedundancy operation, invert the functions and order. If the
removeRedundancy has more than the required blocks to recover the information,
then it should take only the required number beginning from the smallest. If a seed
and PRNG are provided, then the removeRedundancy operation MAY test any
combination until recovery is successful.

7.4.4.1. Padding Operation

A processing node calculates the final length of all payload blocks, including
redundancy. This is done by L=roof((<input block size in bytes>+4)/<encryption block
size in bytes>)*<encryption block size in bytes>. The block is prepended with a 32-bit
unit length indicator in bytes (little-endian). This length indicator, i, is calculated by
i=<input block size in bytes>*randominteger\cdot L. The remainder of the input block,
up to length L, is padded with random data. A routing block builder should specify the
value of the $randomInteger$. If not specified the routing node may choose a random
positive integer value. A routing block builder SHOULD specify a PRNG and a seed
used for this padding. If GF(16) is applied, then all numbers are treated as little-endian
representations. Only GF(8) and GF(16) are allowed fields.

For padding removal, the padding i at the start is first removed as a little-endian
integer. Second, the length of the output block is calculated by applying <output block
size in bytes>=i mod <input block size in bytes>

This padding guarantees that each resulting block matches the block size of the
subsequent encryption operation and does not require further padding.
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7.4.4.2. Apply Matrix

Next, the input block is organized in a data matrix D of dimensions (inrows, incols)
where incols=(<number of data blocks>-<number of redundancy blocks>) and
inrows=L/(<number of data blocks>-<number of redundancy blocks>). The input block
data is first distributed in this matrix across, and then down.

Next, the data matrix D is multiplied by a Vandermonde matrix V with its number of
rows equal to the incols calculated and columns equal to the <number of data blocks>.
The content of the matrix is formed by v(i,j)=pow(i,j), where i reflects the row number
starting at 0, and j reflects the column number starting at 0. The calculations described
must be carried out in the GF noted in the respective operation to be successful. The
completed operation results in matrix A.

7.4.4.3. Encrypt Target Block

Each row vector of A is a new data block encrypted with the corresponding encryption
key noted in the keys of the addRedundancyOperation. If there are not enough keys
available, then the keys used for encryption are reused from the beginning after the
final key is used. A routing block builder SHOULD provide enough keys so that all
target blocks may be encrypted with a unique key. All encryptions SHOULD NOT use
padding.

7.5. Processing of Vortex Messages

The accounting layer triggers processing according to the information contained in a
routing block in the workspace. All operations MUST be executed in the sequence
provided in the routing block, and any failing operation must leave the result block
unmodified.

All workspace blocks resulting in IDs of 1 to maxPayloadBlock are then added to the
message and passed to the blending layer with appropriate instructions.

8. Accounting

8.1. Accounting Operations

The accounting layer has two types of operations.

* Time-based (e.g., cleanup jobs and initiation of routing).
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» Routing triggered (e.g., updating quotas, authorizing operations, and pickup of
incoming messages).

Implementations MUST provide sufficient locking mechanisms to guarantee the
integrity of accounting information and the workspace at any time.

8.1.1. Time-Based Garbage Collection

The accounting layer SHOULD keep a list of expiration times. As soon as an entry (e.g.,
payload block or identity) expires, the respective structure should be removed from
the workspace. An implementation MAY choose to remove expired items periodically
or when encountering them during normal operation.

8.1.2. Time-Based Routing Initiation

The accounting layer MAY keep a list of when a routing block is activated. For
improved privacy, the accounting layer should use a slotted model where, whenever
possible, multiple routing blocks are handled in the same period, and the requests to
the blending layers are mixed between the transactions.

8.1.3. Routing Based Quota Updates

A node MUST update quotas on the respective operations. For example, a node MUST
decrease the message quota before processing routing blocks in the workspace and
after the processing of header requests.

8.1.4. Routing Based Authorization

The transfer quota MUST be checked and decreased by the number of data bytes in the
payload chunks after an outgoing message is processed and fully assembled. The
message quota MUST be decreased by one on each routing block triggering the
assembly of an outgoing message.

8.1.5. Ephemeral Identity Creation

Any packet may request the creation of an ephemeral identity. A node SHOULD NOT
accept such a request without a costly requirement since the request includes a
lifetime of the ephemeral identity. The costs for creating the ephemeral identity
SHOULD increase if a longer lifetime is requested.
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10. IANA Considerations

This memo includes no request to IANA.

Additional encryption algorithms, paddings, modes, blending layers or puzzles MUST
be added by writing an extension to this or a subsequent RFC. For testing purposes, IDs
above 1,000,000 should be used.

11. Security Considerations

The MessageVortex protocol should be understood as a toolset instead of a fixed
product. Depending on the usage of the toolset, anonymity and security are affected.
For a detailed analysis, see [MVAnalysis].

The primary goals for security within this protocol rely on the following focus areas.

Confidentiality

Integrity

Availability

Anonymity

o Third-party anonymity
o Sender anonymity

o Receiver anonymity

These aspects are affected by the usage of the protocol, and the following sections
provide additional information on how they impact the primary goals.

The Vortex protocol does not rely on any encryption of the transport layer since Vortex
messages are already encrypted. Also, confidentiality is not affected by the protection
mechanisms of the transport layer.
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If a transport layer supports encryption, then a Vortex node SHOULD use it to improve
the privacy of the message.

Anonymity is affected by the inner workings of the blending layer in many ways. A
Vortex message cannot be read by anyone except the peer nodes and routing block
builder. The presence of a Vortex node message may be detected through the typical
high entropy of an encrypted file, broken structures of a carrier file, a meaningless
content of a carrier file or the contextless communication of the transport layer with
its peer partner. A blending layer SHOULD minimize the possibility of simply detection
by minimizing these effects.

A blending layer SHOULD use carrier files with high compression or encryption.
Carrier files SHOULD NOT have inner structures such that the payload is comparable
to valid content. To achieve undetectability by a human reviewer, a routing block
builder should use F5 instead of PLAIN blending. This approach, however, increases
the protocol overhead by approximately tenfold.

The two layers of 'routing’ and 'accounting' have the deepest insight into a Vortex
message's inner working. Each knows the immediate peer sender and the peer
recipients of all payload chunks. As decoy traffic is generated by combining chunks
and applying redundancy calculations, a node can never know if a malfunction (e.g.,
during a recovery calculation) was intended. Therefore, a node is unable to distinguish
a failed transaction from a terminated transaction as well as content from decoy
traffic.

A routing block builder SHOULD follow the following rules not to compromise a
Vortex message's anonymity.

 All operations applied SHOULD be credibly involved in a message transfer.

* A sufficient subset of the result of an addRedundancy operation should always be
sent to peers to allow recovery of the data built.

* The anonymity set of a message should be sufficiently large to avoid legal
prosecution of all jurisdictional entities involved, even if a certain amount of the
anonymity set cooperates with an adversary.

* Encryption and decryption SHOULD follow normal usage whenever possible by
avoiding the encryption of a block on a node with one key and decrypting it with a
different key on the same or adjacent node.

* Traffic peaks SHOULD be uniformly distributed within the entire anonymity set.
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* A routing block SHOULD be used for a limited number of messages. If used as a
message block for the node, then it should be used only once. A block builder
SHOULD use the HeaderRequestReplaceldentity block to update the reply to
routing blocks regularly. Implementers should always remember that the same
routing block is identifiable by its structure.

An active adversary cannot use blocks from other routing block builders. While the
adversary may falsify the result by injecting an incorrect message chunk or not
sending a message, such message disruptions may be detected by intentionally routing
information to the routing block builder (RBB) node. If the Vortex message does not
carry the information expected, then the node may safely assume that one of the
involved nodes is mishehaving. A block building node MAY calculate reputation for
involved nodes over time and MAY build redundancy paths into a routing block to
withstand such malicious nodes.

Receiver anonymity is at risk if the handling of the message header and content is not
done with care. An attacker might send a bugged message (e.g., with a DKIM or
DMARC header) to deanonymize a recipient. Careful attention is required when
handling anything other than local references when processing, verifying, or
rendering a message.
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MessageVortex-Schema DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS PrefixBlock, InnerMessageBlock, RoutingBlock,
maxID;
IMPORTS SymmetricKey, AsymmetricKey, MacAlgorithmSpec, CipherSpec
FROM MessageVortex-Ciphers
HeaderRequest
FROM MessageVortex-Requests
PayloadOperation
FROM MessageVortex-Operations

UsagePeriod, BlendingSpec
FROM MessageVortex-Helpers;

— 2 KOROR 3R oK KoK ok ok ok oK 5Kk Sk 3k >k K 5k ok 3k 3k K >k 5k K 3k 3k >k >k ok 3k 3k K >k 5k 5k kK 3k K >k ok 5k 3k K >k >k 5k K K >k >k >k 5k 3k K XK Kk >k k >k k k

-- Constant definitions
. skokok o ok ok ok ok ok ok 3 ok ok 3k ok ok sk K sk ok 3 ok ok 3k ok ok ok sk ok 3 sk ok 3k sk ok ok sk ok 3k sk ok 3k sk sk ok 3 ok ok 3k ok ok 3k K ok ok 3k ok ok K ok ok

-- maximum serial number

maxSerial INTEGER ::= 4294967295
-- maximum number of administrative requests
maxNumberOfRequests INTEGER ::= 8

-- maximum number of seconds which the message might be delayed
-- in the local queue (starting from startOffset)
maxDurationOfProcessing  INTEGER ::= 86400

-- maximum id of an operation

maxID INTEGER ::= 32767

-- maximum number of routing blocks in a message
maxRoutingBlocks INTEGER ::= 127

-- maximum number a block may be replayed
maxNumberOfReplays INTEGER ::= 127

-- maximum number of payload chunks in a message
maxPayloadBlocks INTEGER ::= 127

-- maximum number of seconds a proof of non revocation may be old
maxTimeCachedProof INTEGER ::= 86400

-- The maximum ID of the workspace

maxWorkspaceId INTEGER ::= 65535

-- The maximum number of assembly instructions per combo
maxAssemblyInstructions  INTEGER ::= 255

KRR oK KKK R K oK oK K K K oK oK oK K K oK oK ok oK K oK oK ok K K K oK ok oK K K K oK oK K K K K ok ok K K oK ok ok ok K K oK ok ok K K ok ok oK

-- Block Definitions
. skokok ok ok ok ok sk ok ok 3 ok ok 3k ok ok sk 3k ok ok 3 sk ok 3k sk ok ok sk ok 3k sk ok sk sk ok ok 3 sk ok 3k ok ok 3k sk sk ok 3 ok ok 3k ok ok sk sk ok ok 3k ok ok Kk ok

PrefixBlock ::= SEQUENCE {
forwardsecret ChainSecret,

key SymmetricKey,
version INTEGER OPTIONAL
}
IdentityBlock ::= SEQUENCE {
-- Public key of the identity representing this transmission
identityKey AsymmetricKey,
-- serial identifying this block
serial INTEGER (0..maxSerial),
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-- number of times this block may be replayed (Tuple is

-- identityKey, serial while UsagePeriod of block)

maxReplays INTEGER (0..maxNumberOfReplays),

-- subsequent Blocks are not processed before valid time.

-- Host may reject too long retention. Recomended validity

-- support >=1Mt.

valid UsagePeriod,

-- represents the chained secret which has to be found in

-- subsequent blocks

-- prevents reassembly attack

forwardSecret ChainSecret,

-- contains the MAC-Algorithm used for signing

signAlgorithm MacAlgorithmSpec,

-- contains administrative requests such as quota requests

requests SEQUENCE (SIZE (0..maxNumberOfRequests))
OF HeaderRequest ,

-- Reply Block for the requests

requestReplyBlock  RoutingCombo,

-- padding and identitifier required to solve the cryptopuzzle

identifier [12201] Puzzleldentifier OPTIONAL,

-- This is for solving crypto puzzles

proofOfWork [12202] OCTET STRING OPTIONAL

}

InnerMessageBlock ::= SEQUENCE {
padding  OCTET STRING,
prefix CHOICE {

plain [11011] PrefixBlock,
-- contains prefix encrypted with receivers public key
encrypted [11012] OCTET STRING

identity CHOICE {
-- debug/internal use only
plain [116021] IdentityBlock,
-- contains encrypted identity block
encyrpted [11022] OCTET STRING
-- contains signature of Identity [as stored in
-- HeaderBlock; signed unencrypted HeaderBlock without Tag]
identitySignature OCTET STRING,
-- contains routing information (next hop) for the payloads
routing CHOICE {
plain [11031] RoutingBlock,
-- contains encrypted routing block
encyrpted [11032] OCTET STRING
-- contains the actual payload
payload SEQUENCE (SIZE (0..maxPayloadBlocks))
OF OCTET STRING
}

RoutingBlock ::= SEQUENCE {
-- contains the routingCombos
routing [332] SEQUENCE (SIZE (0..maxRoutingBlocks))
OF RoutingCombo,
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-- contains the secret of the header block

forwardSecret ChainSecret,

-- contains a routing block which may be used when sending
-- error messages back to the quota owner

-- this routing block may be cached for future use
replyBlock [131] SEQUENCE {

murb RoutingCombo,
maxReplay INTEGER,
validity UsagePeriod
} OPTIONAL
}
RoutingCombo ::= SEQUENCE {

-- contains the period when the payload should be processed

-- Router might refuse to long queue retention

-- Recommended support for retention >=lh

minProcessTime INTEGER (0..maxDurationOfProcessing),
maxProcessTime INTEGER (0..maxDurationOfProcessing),

-- The message key to encrypt the message

peerKey [401] SymmetricKey OPTIONAL,

-- contains the next recipient

recipient [402] BlendingSpec OPTIONAL,

-- PrefixBlock encrypted with message key

mPrefix [403] OCTET STRING OPTIONAL,

-- PrefixBlock encrypted with sender key

cPrefix [404] OCTET STRING OPTIONAL,

-- HeaderBlock encrypted with sender key

header [405] OCTET STRING OPTIONAL,

-- RoutingBlock encrypted with sender key

routing [406] OCTET STRING OPTIONAL,

-- contains information for building messages (when used as MURB
-- ID 0 denotes original message; ID 1-maxPayloadBlocks denotes
-- target message; 32768-maxWorkspaceld shared workspace for all
-- blocks of this identity)

assembly [407] SEQUENCE (SIZE (0..maxAssemblyInstructions))
OF PayloadOperation,
validity [408] UsagePeriod,
-- optional - to identify the sender of a message when received
id [409] INTEGER OPTIONAL
}
Puzzleldentifier ::= OCTET STRING ( SIZE(0..16) )
ChainSecret ::= INTEGER (0..4294967295)
END
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A.2. The VortexMessage Ciphers Structures
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MessageVortex-Ciphers DEFINITIONS EXPLICIT TAGS ::=
BEGIN

Gwerder

EXPORTS SymmetricKey, AsymmetricKey, MacAlgorithmSpec,
MacAlgorithm, CipherSpec, PRNGType;

CipherSpec ::= SEQUENCE {
asymmetric [16001] AsymmetricAlgorithmSpec OPTIONAL,
symmetric [16002] SymmetricAlgorithmSpec OPTIONAL,
mac [16003] MacAlgorithmSpec OPTIONAL,
cipherUsage[16004] CipherUsage

}

CipherUsage ::= ENUMERATED {
sign (200),
encrypt (210)

SymmetricAlgorithmSpec ::= SEQUENCE {
algorithm [16101]SymmetricAlgorithm,
-- if ommited: pkcsl
padding [16102]CipherPadding OPTIONAL,
-- if ommited: cbc
mode [16103]CipherMode OPTIONAL,
parameter [16104]AlgorithmParameters OPTIONAL
}
AsymmetricAlgorithmSpec ::= SEQUENCE {
algorithm AsymmetricAlgorithm,
parameter AlgorithmParameters OPTIONAL
b
MacAlgorithmSpec = SEQUENCE {
algorithm MacAlgorithm,
parameter AlgorithmParameters
}
PRNGAlgorithmSpec ::= SEQUENCE {
type PRNGType,
seed OCTET STRING
}
PRNGType ::= ENUMERATED {
mrg32k3a (1000),
blumMicali (1001)
I
SymmetricAlgorithm ::= ENUMERATED {
aesl28 (1000), -- required
aesl92 (1001), -- optional support
aes256 (1002), -- required
camellial28 (1100), -- required
camellial92 (1101), -- optional support
camellia256 (1102), -- required
twofish128 (1200), -- optional support
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twofish192 (1201), -- optional support
twofish256 (1202) -- optional support
}
CipherMode ::= ENUMERATED {
-- ECB is a really bad choice. Do not use unless really
-- necessary
ecb (10000),
cbc (10001),
eax (10002),
ctr (10003),
cecm (10004),
gcm (10005),
ocbh (10006),
ofb (10007),
none (10100)
}
CipherPadding ::= ENUMERATED {
none (1000),
pkcsl (1001),
pkcs7 (1002)
I
AsymmetricAlgorithm ::= ENUMERATED {
rsa (2000),
dsa (2100),
ec (2200),
ntru (2300)
}
MacAlgorithm ::= ENUMERATED {
sha3-256 (3000),
sha3-384 (3001),
sha3-512 (3002),
ripemdl160 (3100),
ripemd256 (3101),
ripemd320 (3102)
}
ECCurveType ::= ENUMERATED{
secp384rl (2500),
sect409kl (2501),
secp521rl (2502)
}
AlgorithmParameters ::= SEQUENCE {
keySize [10000] INTEGER (0..65535) OPTIONAL,
curveType [10001] ECCurveType  OPTIONAL,
initialisationVector [10002] OCTET STRING OPTIONAL,
nonce [10003] OCTET STRING OPTIONAL,
mode [10004] CipherMode OPTIONAL,
padding [10005] CipherPadding OPTIONAL,
n [10010] INTEGER OPTIONAL,
p [10011] INTEGER OPTIONAL,
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q [16012] INTEGER OPTIONAL,
k [10013] INTEGER OPTIONAL,
t [16014] INTEGER OPTIONAL

}

-- Symmetric key
SymmetricKey ::= SEQUENCE {
keyType SymmetricAlgorithm,
parameter AlgorithmParameters,
key OCTET STRING (SIZE(16..512))
}

-- Asymmetric Key
AsymmetricKey ::= SEQUENCE {
keyType AsymmetricAlgorithm,
-- private key encoded as PKCS#8/PrivateKeyInfo
publicKey [2] OCTET STRING,
-- private key encoded as X.509/SubjectPublicKeyInfo
privateKey [3] OCTET STRING OPTIONAL
}

END
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A.3. The VortexMessage Request Structures

MessageVortex-Requests DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS HeaderRequest;
IMPORTS RequirementBlock
FROM MessageVortex-Requirements
UsagePeriod, NodeSpec
FROM MessageVortex-Helpers;

HeaderRequest ::= CHOICE {
identity [0] HeaderRequestIdentity,
capabilities [1] HeaderRequestCapability,
messageQuota [2] HeaderRequestIncreaseMessageQuota,
transferQuota [3] HeaderRequestIncreaseTransferQuota,
quotaQuery [4] HeaderRequestQuota,

nodeQuery [5] HeaderRequestNodes,

replace [6] HeaderRequestReplaceldentity
b
HeaderRequestIdentity ::= SEQUENCE {

period UsagePeriod

HeaderRequestReplaceIdentity ::= SEQUENCE {
old NodeSpec,
new NodeSpec

}

HeaderRequestQuota ::= SEQUENCE {
}

HeaderRequestNodes ::= SEQUENCE {
numberOfNodes INTEGER (0..255)
}

HeaderRequestIncreaseMessageQuota ::= SEQUENCE {
messages INTEGER (0..4294967295)
}

HeaderRequestIncreaseTransferQuota ::= SEQUENCE {
size INTEGER (0..4294967295)
h

HeaderRequestCapability ::= SEQUENCE {
period UsagePeriod

}

END
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MessageVortex-Replies DEFINITIONS EXPLICIT TAGS ::

BEGIN
EXPORTS SpecialBlock;
IMPORTS BlendingSpec, NodeSpec
FROM MessageVortex-Helpers
RequirementBlock
FROM MessageVortex-Requirements
CipherSpec, PRNGType, MacAlgorithm
FROM MessageVortex-Ciphers;

SpecialBlock ::= CHOICE {
capabilities [1] ReplyCapability,
requirement [2] SEQUENCE (SIZE (1..127))
OF RequirementBlock,

quota [4] ReplyCurrentQuota,
nodes [5] ReplyNodes,
status [99] StatusBlock

b

StatusBlock ::= SEQUENCE {
code StatusCode

}

StatusCode ::= ENUMERATED {
-- System messages
ok (2000),
quotaStatus (2101),
puzzleRequired (2201),

-- protocol usage failures

transferQuotaExceeded (3001),
messageQuotaExceeded (3002),
requestedQuotaOutOfBand (3003),
identityUnknown (3101),
messageChunkMissing (3201),
messagelLifeExpired (3202),
puzzleUnknown (3301),

-- capability errors

macAlgorithmUnknown ( )
symmetricAlgorithmUnknown ( )
asymmetricAlgorithmUnknown (3803)
prngAlgorithmUnknown ( )
missingParameters ( )
badParameters ( )

-- Mayor host specific errors
hostError (5001)
}

ReplyNodes ::= SEQUENCE {

node  SEQUENCE (SIZE (1..5))
OF NodeSpec
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}

ReplyCapability ::= SEQUENCE {

-- supported ciphers

cipher SEQUENCE (SIZE (2..256)) OF CipherSpec,

-- supported mac algorithms

mac SEQUENCE (SIZE (2..256)) OF MacAlgorithm,

-- supported PRNGs

prng SEQUENCE (SIZE (2..256)) OF PRNGType,

-- maximum number of bytes to be transferred (outgoing bytes in

vortex message without blending)

}

maxTransferQuota INTEGER (0..4294967295),

-- maximum number of messages to process for this identity
maxMessageQuota  INTEGER (0..4294967295),

-- maximum simultaneously tracked header serials
maxHeaderSerials INTEGER (0..4294967295),

-- maximum simultaneously valid build operations in workspace
maxBuildOps INTEGER (0..4294967295),

-- maximum header lifespan in seconds

maxHeaderLive INTEGER (0..4294967295),

supportedBlendingIn SEQUENCE OF BlendingSpec

ReplyCurrentQuota ::= SEQUENCE {

}

END
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A.5. The VortexMessage Requirements Structures

MessageVortex-Requirements DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS RequirementBlock;
IMPORTS MacAlgorithmSpec
FROM MessageVortex-Ciphers
UsagePeriod, UsagePeriod
FROM MessageVortex-Helpers;

RequirementBlock ::= CHOICE {
puzzle [1] RequirementPuzzleRequired,
payment [2] RequirementPaymentRequired

RequirementPuzzleRequired ::= SEQUENCE {
-- bit sequence at beginning of hash from encrypted identity
-- block
challenge BIT STRING,
mac MacAlgorithmSpec,
valid UsagePeriod,
identifier INTEGER (0..4294967295)

}

RequirementPaymentRequired ::= SEQUENCE {
account OCTET STRING,
ammount REAL,
currency Currency

}

Currency ::= ENUMERATED {
btc (8001),
eth (8002),
zec (8003)

}

END
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MessageVortex-Helpers DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS UsagePeriod, BlendingSpec, NodeSpec;
IMPORTS AsymmetricKey, SymmetricKey
FROM MessageVortex-Ciphers;

-- the maximum number of parameters that might be embedded
maxNumberOfParameter INTEGER ::= 127

UsagePeriod ::= CHOICE {
absolute [2] AbsoluteUsagePeriod,
relative [3] RelativeUsagePeriod

}
AbsoluteUsagePeriod ::= SEQUENCE {
notBefore [0] GeneralizedTime OPTIONAL,
notAfter [1] GeneralizedTime OPTIONAL
)
RelativeUsagePeriod ::= SEQUENCE {
notBefore [0] INTEGER OPTIONAL,
notAfter [1] INTEGER OPTIONAL
}

-- contains a node spec of a routing point
-- At the moment either smtp:<email> or xmpp:<jabber>
BlendingSpec ::= SEQUENCE {

target [1] NodeSpec,
blendingType [2] IA5String,
parameter [3] SEQUENCE ( SIZE (0..maxNumberOfParameter) )
OF BlendingParameter
}
BlendingParameter ::= CHOICE {
offset [1] INTEGER,
symmetricKey [2] SymmetricKey,
asymmetricKey [3] AsymmetricKey,
passphrase [4] OCTET STRING
NodeSpec ::= SEQUENCE {

transportProtocol [1] Protocol,
recipientAddress [2] IA5String,

recipientKey [3] AsymmetricKey OPTIONAL

}

Protocol ::= ENUMERATED {
smtp (100),
xmmp  (110)

}

END
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A.7. The VortexMessage Additional Structures
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-- States: Tuple()=Value() [vallidity; allowed operations] {Store}
-- - Tuple(identity)=Value(messageQuota,transferQuota,sequence of
-- Routingblocks for Error Message Routing) [validity; Requested
-- at creation; may be extended upon request] {identityStore}

-- - Tuple(Identity,Serial)=maxReplays ['valid' from Identity

-- Block; from First Identity Block; may only be reduced]

-- {IdentityReplayStore}

MessageVortex-NonProtocolBlocks DEFINITIONS EXPLICIT TAGS ::=
BEGIN
IMPORTS PrefixBlock, InnerMessageBlock, RoutingBlock, maxID
FROM MessageVortex-Schema
UsagePeriod, NodeSpec, BlendingSpec
FROM MessageVortex-Helpers
AsymmetricKey
FROM MessageVortex-Ciphers
RequirementBlock
FROM MessageVortex-Requirements;

-- maximum size of transfer quota in bytes of an identity
maxTransferQuota INTEGER ::= 4294967295

-- maximum size of message quota in messages of an identity
maxMessageQuota INTEGER ::= 4294967295

-- do not use these blocks for protocol encoding (internal only)
VortexMessage ::= SEQUENCE {
prefix CHOICE {
plain [10011] PrefixBlock,
-- contains prefix encrypted with receivers public key
encrypted [10012] OCTET STRING

innerMessage CHOICE {
plain [10021] InnerMessageBlock,
-- contains inner message encrypted with Symmetric key from
-- Prefix
encrypted [10022] OCTET STRING
}
}

MemoryPayloadChunk ::= SEQUENCE {
id INTEGER (0..maxID),
payload [100] OCTET STRING,
validity UsagePeriod

}

IdentityStore ::= SEQUENCE {
identities SEQUENCE (SIZE (0..4294967295))
OF IdentityStoreBlock

}
IdentityStoreBlock ::= SEQUENCE {
valid UsagePeriod,
messageQuota INTEGER (0..maxMessageQuota),
transferQuota INTEGER (0..maxTransferQuota),
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-- if omitted this is a node identity

identity [1001] AsymmetricKey OPTIONAL,
-- if ommited own identity key
nodeAddress [1002] NodeSpec OPTIONAL,

-- Contains the identity of the owning node;
-- May be ommited if local node

nodeKey [1003] SEQUENCE OF AsymmetricKey OPTIONAL,
routingBlocks [1004] SEQUENCE OF RoutingBlock OPTIONAL,
replayStore [1005] IdentityReplayStore,
requirement [1006] RequirementBlock OPTIONAL

}

IdentityReplayStore ::= SEQUENCE {

replays  SEQUENCE (SIZE (0..4294967295))
OF IdentityReplayBlock

}

IdentityReplayBlock ::= SEQUENCE {
identity AsymmetricKey,
valid UsagePeriod,

replaysRemaining INTEGER (0..4294967295)

END
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B Analysis on Common Internet
Protocols Suitable as Transport
Layers for MessageVortex

B.1 Introduction

The following sections list common Internet protocols. We analyze
those protocols for the fitness as transport layer of message vortex.

B.2 Methods

All sections are structured the same way. We first refer to the proto-
col or standard and describe it in the simplest possible form. We
refer to subsequent standards if required to consider extensions
where sensible. We then apply the previously referenced criteria
and make a concise summary of the suiting of the protocol as a
transport layer. The findings of this section is listed in table 5.1. The
list here does not reflect the quality or maturity of the protocols. It is
a simple analysis of suiting as a transport layer.

All sections are structured the same way.

» Description
We first refer to the protocol or standard and describe it in the
simplest possible form. We refer to subsequent standards if
required to consider extensions where sensible.

Apply criteria

We then apply the previously referenced criteria and make a
concise summary of the suiting of the protocol as a transport
layer. The findings of this section is listed in table 5.1. The list
here does not reflect the quality or maturity of the protocols. It
is a simple analysis of suiting as a transport layer.

B.2.1 Applied Criteria

» Widely adopted (Ct1)
The more widely adopted and used a protocol is, the harder it
is due to the sheer mass for an adversary to monitor , filter, or
block the protocol. This is important for censorship resistance
of the protocol.

Reliable (Ct2)

Message transport between peers should be reliable. As mes-
sages may arrive anytime from everywhere, we do not have
means to synchronize the peer partners on a higher level with-
out investing a considerable effort. Furthermore, the availability
of information when what type of information should be avail-
able at a specific point in the system would drastically simplify
the identification of peers. To avoid synchronization, we do look
for inherently reliable protocols.

Symmetrical built (Ct3)

The transport layer should rely on a peer to peer base. All
servers implement a generic routing that requires no prior
knowledge of all possible targets. This criterion neglects cen-
tralized infrastructures. This criterion may be dropped, assum-
ing that the blending layer or a specialized transport overlay is
responsible for routing.

B.2.2 Analyzed Protocols

We were unable to find a comprehensive list of protocols being used
within the Internet and their bandwidth consumption. A weak refer-
ence is [zhou2011examining]. This wekaness is founded in the
fact that traffic in this report is callified among two critera: Know
server or known port. As streaming services consume a consid-
erable part of the Internet bandwidth (acording to the report more
than 60% download). The focus on the report lies on the bandwidth
intense figures. However, leavin aside all sources which are strictly

one way or dominated by a small number of companies worldwide,
the “top 10 list of the report shrinks to the two categories “File shar-
ing” (Rank 5; 4.2% download and 30.2% upload) and “Messaging”
(Rank 8; 1.6% download and 8.3% upload bandwidth).

In lack of such material we first collected a list of all common Internet
messaging protocols (synchronous and asynchronous). We added
furthermore some of the most common transfer protocols such as
HTTP and FTP and analyzed this list.

» Messaging Protocols

- SMTP
— CoAP
- MQTT
- AMQP
- XMPP
- WAMP
- SMS

- MMS

 Other Protocols

— FTP, SFTP, and FTPS
- TFTP
- HTTP

The following protocols have been discarded as we have considered
them as outdated:

* MTP[RFC780] (obsoleted by SMTP)

» NNTP[RFC3977] (outdated and has only a small usage acord-
ing to [kim2010today])

We furthermore discarded all RPC-related protocols as they would
by definition violate Ct3.

B.3 Analysis

B.3.1 HTTP

The HTTP protocol allows message transfer from and to a server
and is specified in RFC2616 [rfc2616]. It is not suitable as a com-
munication protocol for messages due to the lack of notifications.
There are some extensions that would allow such communications
(such as WebDAV). Still, in general, even those are not suitable as
they require a continuous connection to the server to get notifica-
tions. Having a “rollup” of notifications when connecting is not there
by default but could be implemented on top of it. HTTP servers lis-
ten on standard ports 80 or 443 for incoming connects. The port 443
is equivalent to the port 80 except for the fact that it has a wrapping
encryption layer (usually TLS). The incoming connects (requests)
must offer a header part and may contain a body part that would be
suitable for transferring messages to the server. The reply to this
request is transferred over the same TCP connection containing the
same two sections.

HTTPO0.9-HTTP/1.1 are clear text protocols which are human-
readable (except for the data part which might contain binary data).
The HTTP/2[rfc7540] protocol is using the same ports and default
behavior. Unlike HTTP/0.9-HTTP/1.1, it is not a clear text but en-
codes headers and bodies in binary form.

To be a valid candidate as storage, unauthenticated WebDAV sup-
port, as specified in [rfc4918], must be assumed.

The protocol does satisfy the first two main criteria (Ct1: Widely
Adopted and Ct2: Reliable). The main disadvantage in terms of
a message transport protocol is that this protocol is not symmet-
rically. A server is always just “serving requests” and not sending
information actively to peers. This Request-Reply violates criteria
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(Ct3: Symmetrically built) and makes the protocol not a primary
choice for message transport.

It is possible to add such behavior to the blending layer using HTTP
servers as pure storage. Such a behavior would however be most
likely detectable and thus no longer be censorship resistant.

B.3.2 FTP

FTP is defined in RFC959[RFC959]. This Protocol is intended for
authenticated file transfer only. There is an account available for
general access (“anonymous”). This account does normally not of-
fer upload rights for security reasons. It is possible to use FTP as
a message transfer endpoint. The configuration would work as fol-
lows: the user “anonymous” has upload rights only. It is unable to
download or list a directory. A node may upload a message with a
random name. In case a collision arises, the node retries with an-
other random name. The blending layer picks messages up using
an authenticated user. This workaround has multiple downsides. At
first, handling FTP that way is very uncommon and usually requires
an own dedicated infrastructure. Such beavior would make the pro-
tocol again possibly detectable. Secondly, passwords are always
sent in the clear within FTP. Encryption as a wrapping layer (FTPS)
is not common, and SFTP (actually a subsystem of SSH) has noth-
ing in common with FTP except for the fact that it may transfer files
as well.

Furthermore, FTP may be problematic when used in active mode for
firewalls. All these problems make FTP not very suitable as a trans-
port layer protocol. FTPS and SFTP feature similar weaknesses as
the FTP version in terms of detectability of non-standard behavior.

Like in HTTP, a disadvantage of FTP in terms of a message trans-
port protocol is that this protocol is not symmetrically. A server is
always just “serving requests” and not sending information actively
to peers. This Request-Reply violates criteria (Ct3: Symmetrically
built) and makes the protocol not a primary choice for message
transport. The Protocol, however, satisfies the first two criteria (Ct1:
Widely Adopted and Ct2: Reliable).

B.3.3 TFTP

TFTP has, despite its naming similarities to FTP, very little in com-
mon with it. TFTP is a UDP based file transfer protocol without any
authentication scheme. The possibility of unauthenticated message
access makes it not suitable as a transport layer. The protocol is
due to the use of UDP in a meshed network with redundant routes.
Since the Internet has a lot of these redundant routes, this neglects
the use of this protocol.

TFTP is rarely ever used on the Internet, as its UDP based nature
is not suitable for a network with redundant routes. Not being com-
mon on the Internet violates criterion one (Ct1: Widely Adopted).
TFTP is not symmetrically. This means that a server is always just
“serving requests” and not sending information actively to peers.
This Request-Reply violates criteria (Ct3: Symmetrically built) and
makes the protocol not a primary choice for message transport. The
Protocol furthermore violates Ct2 (Ct2: Reliable) as it is based on
UDP without any additional error correction.

B.3.4 MQTT

MQTT is an ISO standard (ISO/IEC PRF 20922:2016) and was for-
merly called MQ Telemetry Transport. The current standard as the
time of writing this document was 3.1.1 [mqtt].

The protocol runs by default on the two ports 1883 and 8883 and
can be encrypted with TLS. MQTT is a publish/subscribe based
message-passing protocol that is mainly targeted to m2m commu-
nication. This Protocol requires the receiving party to be subscribed
to a central infrastructure in order to be able to receive messages.
This makes it very hard to be used in a system without centralis-
tic infrastructure and having no static routes between senders and
recipients.

The protocol does satisfy the second criterion (Ct2: Reliable). It is
in the area of end-user (i.e., Internet) not widely adopted, thus vio-
lating Criteria 1 (Ct1: Widely Adopted). In terms of decentralization
design, the protocol fails as well (Ct3: Symmetrically built).

B.3.5 Advanced Message Queuing Protocol
(AMQP)

The Advanced Message Queuing Protocol (AMQP) was initially ini-
tiated by numerous exponents based mainly on finance-related in-
dustries. The AMQP-Protocol is either used for communication be-
tween two message brokers, or between a message broker and a
clientfamqp].

It is designed to be interoperable, stable, reliable, and safe. It sup-
ports either SASL or TLS secured communication. The use of such
a tunnel is controlled by the immediate sender of a message. In its
current version 1.0, it does, however, not support a dynamic routing
between brokers[amqp].

Due to the lack of a generic routing capability, this protocol is there-
fore not suitable for message transport in a generic, global environ-
ment.

The protocol satisfies partially the first criterion (Ct1: Widely
Adopted) and fully meets the second criterion (Ct2: Reliable). How-
ever, the third criterion is violated due to the lack of routing capabil-
ities between message brokers (Ct3: Symmetrically built).

B.3.6 Constrained Application Protocol (CoAP)

The Constrained Application Protocol (CoAP) is a communication
Protocol which is primarily destined to m2m communication. It is
defined in RFC7252[RFC7252]. It is defined as a lightweight re-
placement for HTTP in loT devices and is based on UDP.

The protocol does partially satisfy the first criteria (Ct1: Widely
Adopted). The second criterion (Ct2: Reliable) is only partially ful-
filled as it is based on UDP and does only add limited session con-
trol on its own.

The main disadvantage in terms of a message transport protocol
is that this protocol is not (like HTTP) symmetrically. This means
that a server is always just “serving requests” and not sending infor-
mation actively to peers. This Request-Reply violates criteria (Ct3:
Symmetrically built) and makes the protocol not a primary choice
for message transport.

B.3.7 Web Application
(WAMP)

Messaging Protocol

WAMP is a web-sockets based protocol destined to enable M2M
communication. Like MQTT, it is publish respectively subscribe ori-
ented. Unlike MQTT, it allows remote procedure calls (RPC).

The WAMP protocol is not widely adopted (Ct1: Widely Adopted),
but it is reliable on a per-node base (Ct2: Reliable). Due to its RPC
based capability, unlike MQTT, a routing like capability could be im-
plemented. Symmetrical protocol behavior is therefore not available
but could be built in relatively easy.

B.3.8 XMPP (jabber)

XMPP (originally named Jabber) is a synchronous message pro-
tocol used in the Internet. It is specified in the documents
RFC6120[RFC6120], RFC6121[RFC6120], RFC3922[RFC3922],
and RFC3923[RFC3923]. The protocol is a very advanced chat
protocol featuring numeros levels of security including end-to-end
signing and object encryption[RFC3923]. There is also a stream ini-
tiation extension for transferring files between endpoints [xep0096].

It has generic routing capabilities spanning between known and un-
known servers. The protocol offers a message retrieval mechanism
for offline messages similarily to POP [xep0013].
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The protocol itself seems to be a strong candidate as a transport
layer as it is being used actively on the Internet.

B.3.9 SMTP

The SMTP protocol is currently specified in [RFC5321]. It speci-
fies a method to deliver reliably asynchronous mail objects through
a specific transport medium (most of the time, the Internet). The
document splits a mail object into a mail envelope and its content.
The envelope contains the routing information, which is the sender
(one) and the recipient (one or more) in 7-Bit ASCII. The envelope
may additionally contain optional protocol extension material.

The content should be in 7-Bit-ASCII (8-Bit ASCIl may be re-
quested, but this feature is not widely adopted). It is split into
two parts. These parts are the header (which does contain meta-
information about the message such as subject, reply address, or
a comprehensive list of all recipients), and the body which includes
the message itself. All lines of the content must be terminated with a
CRLF and must not be longer than 998 characters, excluding CRLF.

The header consists of a collection of header fields. Each of them is
built by a header name, a colon, and the data. The exact outline of
the header is specified in [RFC5322] and is separated with a blank
line from the body.

[RFC5321] furthermore introduces a simplistic model for SMTP
message-based communication. A more comprehensive model is
presented in section SMTP and Related Client Protocols as the pro-
posed model is not sufficient for a detailed end-to-end analysis.

Traditionally the message itself is mime encoded. The MIME mes-
sages are mainly specified in [RFC2045] and [RFC2046]. MIME
allows to send messages in multiple representations (alternates),
and attach additional information (such as possibly inlined images
or attached documents).

SMTP is one of the most common messaging protocols on the Inter-
net (Ct1: Widely Adopted), and it would be devastating for the busi-
ness of a country if, for censoring reasons, this protocol would be cut
off. The protocol is furthermore very reliable as it has built-in sup-
port for redundancy and a thorough message design making it rela-
tively easy to diagnose problems (Ct2: Reliable). All SMTP servers
usually are capable of routing and receiving messages. Messages
going over several servers are common (Ct3: Symmetrically built),
so the third criterion may be considered as fulfilled as well.

SMTP is considered a strong candidate as a transport layer.

B.3.10 SMS and MMS

SMS capability was introduced in the SS7 protocol. This protocol
allows the message transfer of messages not bigger than 144 char-
acters. Due to this restriction in size, it is unlikely to be suitable for
this type of communication as the keys being required are already
sized similarly, leaving no space for Messages or routing informa-
tion.

The 3 Generation Partnership Project (3GPP) maintains the Mul-
timedia Messaging Service (MMS). This protocol is mainly a mobile
protocol based on telephone networks.

Both protocols are not widely adopted within the Internet domain.
There are gateways providing bridging functionalities to the SM-
S/MMS services. However, the protocol itself is insignificant on the
Internet itself.

B.3.11 MMS

This protocol is just like the SMS protocol accessible through the In-
ternet by using gateways but not directly usable within the Internet.

B.4 Results

We have shown that all common M2M protocols failed mainly at Ct3
as there is no need for message routing. In M2M communication
contacting foreign machines is not common. Therefore M2M pro-
tocolls are typically using static M2M communication over prepared
channels. Such behavior is, however unsuitable for a generic mes-
saging protocol.

Pure storage protocols fail at the same criteria as they typically have
a defined set of data sources and data sinks, whereas usually at
least the data sources are limited in number. This makes those
protocols unsuitable again.

We can clearly state that according to the criteria, only a few proto-
cols are suitable. Table B.1 on page 12 shows that only SMTP and
XMPP are suitable protocols. Eventually, similar protocols such as
HTTP (with WebDAV) or FTP may be usable as well.

Criteria | 1. Widely adop Ct2: Relial Ct3: Sy ically built

Protocol

HTTP 7 . X
FTP v v x
TFTP x x x
MQTT ~ v/ X
AMQP ~ v X
CoAP ~ ~ X
WAMP x v -
XMPP v v v/
SMTP v v 4

Table B.1: comparison of protocols in terms of the suitability as
transport layer

The findings of this short analysis suggested that we should use
the two protocols, SMTP and XMPP, for our first standardization.
We require at least two to prove that the protocol is agnostic to the
transport.
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C Glossary

adversary In this work, we are referring to an adverser to any entity
opposing to the privacy of a message. For a more throughout
definition refer to section 4.1

anonymity We refer to the term anonymity as defined in
[anonTerminology]. “Anonymity of a subject means that the sub-
ject is not identifiable within a set of subjects, the anonymity set.”!

Sender Anonymity The anonymity set is the set of all possible
subjects. For actors, the anonymity set consists of the subjects
who might cause an action. For actees, the anonymity set con-
sists of the subjects which might be acted upon. Therefore, a
sender may be anonymous (sender anonymity) only within a
set of potential senders, his/her sender anonymity set, which
itself may be a subset of all subjects worldwide who may send
a message from time to time.

Receiver Anonymity The same for the recipient means that a
recipient may be anonymous (recipient anonymity) only within
a set of potential recipients, his/her recipient anonymity set.
Both anonymity sets may be disjoint, be the same, or they may
overlap. The anonymity sets may vary over time.

Agent An agent is a single component of a service (Service) pro-
vided to a user or other services.

elD An ephemeral identity (elD) is a unique user of a vortex node
characterized by its public key. This user is created with a Vor-
texMessage and has only a limited lifetime. After expiry all infor-
mations related to this identity are deleted.

EWS Exchange Web Services (EWS) are a Microsoft proprietary
protocol to access exchange services from a client. It may be re-
garded as an alternative to IMAPv4. This is however incomplete
as EWS offers additional features such as User Configuration, Del-
egate Management or Unified Messaging.

IMAP IMAP (currently IMAPv4) is a typical protocol to be used be-
tween a Client MRA and a Remote MDA. It has been specified in
its current version in [RFC3501]. The protocol is capable of fully
maintaining a server-based message store. This includes the ca-
pability of adding, modifying, and deleting messages and folders
of a mailstore. It does not include however sending mails to other
destinations outside the server-based store.

Item of Interest (lol) The ltem of Intrest (lol) are defined in
[anonTerminology] and refer to any subject action or entity which
is of interest to a potential adversary.

LMTP The Local Mail Transfer Protocol is defined in [RFC2033].
This RFC defines a protocol similar to SMTP for local mail senders.
This protocol allows a sender to have no mail queue at all and thus
simplifies the client implementation.

Local Mail Store A Local Mail Store offers a persistent store on a
local non-volatile memory in which messages are being stored. A
store may be flat or structured (e.g., supports folders). A local mail
store may be an authoritative store for mails or a “cache only” copy.
It is typically not a queue.

Server Admin We do regard a server admin as a person with high
privileges and profound technical knowledge of a server and its
associated technology. A Server Admin may have access to one
or multiple servers of the same kind.

MDA An MDA provides uniform access to a local message store.

Remote MDA A Remote MDA is typically supporting a specific
access protocol to access the data stored within a local mes-
sage store.

Local MDA A Local MDA is typically giving local applications
access to a server store. This may be done thru an API, a
named socket or similar mechanisms.

MRA A Mail Receiving Agent is an agent, which receives emails
from another agent. Depending on the used protocol two subtypes
of MRAs are available.

Tfootnotes omitted in quote

Client MRA A client MRA picks up emails in the server mail
storage from a remote MDA. Client MRAs usually connect
through a standard protocol that was designed for client ac-
cess. Examples for such protocols are POP or IMAP.

Server MRA Unlike a Client MRA, a server MRA listens pas-
sively for incoming connections and forwards received mes-
sages to an MTA for delivery and routing. A typical protocol
supported by a server MRA is SMTP

MS-OXCMAPIHTTP Microsofts Messaging Application Program-
ming Interface (MAPI) Extensions for HTTP specifies the Mes-
saging Application Programming Interface (MAPI) Extensions for
HTTP in [ms-oxcmapihttp], which enable a client to access per-
sonal messaging and directory data on a server by sending HTTP
requests and receiving responses returned on the same HTTP
connection. This protocol extends HTTP and HTTPS.

MSA A Mail Sending Agent. This agent sends emails to a Server
MRA.

MTA A Mail Transfer Agent. This transfer agent routes emails be-
tween other components. Typically an MTA receives emails from
an MRA and forwards them to an MDA or MSA. The main task of
an MTA is to provide reliable queues and solid track of all emails
as long as they are not forwarded to another MTA or local storage.

MTS A Mail Transfer Service. This is a set of agents which provide
the functionality to send and receive messages and forward them
to a local or remote store.

MSS A Mail Storage Service. This is a set of agents providing a
reliable store for local mail accounts. It also provides Interfacing
which enables clients to access the users’ mail.

MUA A Mail User Agent. This user-agent reads emails from local
storage and allows a user to read existing emails, create and mod-
ify emails.

MURB A multi use reply block. This tzpe of routing block is provided
by a sender to give a node the possibilitz to route back answers
without the knowledge of a location of the sender. In contrast to a
SURB a MURB may be used mutiple times. The number of times
is regulated by the maxReplay field. Furthermore a MURB must
provide multiple peer keys for all routing steps to avoid repeating
patterns of key blocks. This structure makes a MURB much bigger
than a SURB.

Privacy From the Oxford English Dictionary: “

1. The state or condition of being withdrawn from the society of
others, or from the public interest; seclusion. The state or con-
dition of being alone, undisturbed, or free from public attention,
as a matter of choice or right; freedom from interference or
intrusion.

2. Private or retired place; private apartments; places of retreat.

3. Absence or avoidance of publicity or display; a condition ap-
proaching to secrecy or concealment. Keeping of a secret.

4. A private matter, a secret; private or personal matters or rela-
tions; The private parts.

5. Intimacy, confidential relations.

6. The state of being privy to some act.

"[OXFORD)]
In this work, privacy is related to definition two. Mails should be
able to be handled as a virtual private place where no one knows
who is talking to whom and about what or how frequent (except for
directly involved people).

Pseudonymity As Pseudonymity we take the definition as speci-
fied in [anonTerminology].

A pseudonym is an identifier of a subject other than
one of the subject’s real names. The subject which the
pseudonym refers to is the holder of the pseudonym. A
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subject is pseudonymous if a pseudonym is used as an
identifier instead of one of its real names.?

POP POP (currently in version 3) is a typical protocol to be used
between a Client MRA and a Remote MDA. Unlike IMAP, it is not
able to maintain a mail store. lts sole purpose is to fetch and delete
emails in a server-based store. Modifying Mails or even handling
a complex folder structure is not doable with POP

RBB A routing block builder (RBB) is a VortexNode assembling the
operations and hops for a message. If the RBB is not equal to
the sender of the message the receiver may be anonymous to the
sender.

Service A service is an endpoint on a server providing the func-
tionality to a client. This service may consist of several Agents
(Agent).

SMTP SMTP is the most commonly used protocol for sending
emails across the Internet. In its current version it has been speci-
fied in [RFC5321].

Storage A store to keep data. It is assumed to be temporary or
persistent.

SURB A single use reply block. This type of routing block is pro-
vided by a sender to give a node the possibility to route back an-
swers without the knowledge of a location of the sender. A SURB
may only be used once subsequent uses of the block are not possi-
ble. The lifetime of a SURB is typically limited to minutes or hours.

UBM We use the term Unsolicited Bulk Message as a term for any
mass message being received by a user without prior explicit con-
sent. A less formal term for such a message in email terminology
is spam or junk mail.

Undetectability As undetectability we take the definition as speci-
fied in [anonTerminology].

Undetectability of an item of interest (IOl) from an at-
tacker’s perspective means that the attacker cannot suf-
ficiently distinguish whether it exists or not.?

Unlikability We refer to the term unlinkability as defined in
[anonTerminology]. “Unlinkability of two or more items of inter-
est (IOls, e.g., subjects, messages, actions, ...) from an attacker’s
perspective means that within the system (comprising these and
possibly other items), the attacker cannot sufficiently distinguish
whether these I0ls are related or not.

Unobservability As unobservability we take the definition as spec-
ified in [anonTerminology].

Unobservability of an item of interest (I0l) means

+ undetectability of the IOl against all subjects unin-
volved in it and

« anonymity of the subject(s) involved in the 10l even
against the other subject(s) involved in that 10I.

As mentioned in this paper, unobservability raises the bar of re-
quired attributes again (= reads “implies”):

censorship resistance =  unobservability

unobserability = undetectability

unobserability = anonymity

user Any human or technical entity using a system not following
strict message processing rules. A user does always interface a
non-interface related entity and is triggered by this or triggers it
related, but not limited, to the message.

XMPP The Extensible Messaging and Presence Protocol
(XMPP)[RFC6120, RFC6121] was formerly also known as
Jabber protocol. It is an extensible instant messenger protocol
widely adopted in chat clients.

2footnotes omitted in quote

Zero Trust Zero trust is not a truly researched model in systems
engineering. It is, however, widely adopted. We refer in this work
to the zero trust model when denying the trust in any infrastruc-
ture not directly controlled by the sending or receiving entity. This
distrust extends especially but not exclusively to the network trans-
porting the message, the nodes storing and forwarding messages,
the backup taken from any system except the client machines of
the sending and receiving parties, and software, hardware, and op-
erators of all systems not explicitly trusted. As explicitly trusted in
our model, we do regard the user sending a message (and his im-
mediate hardware used for sending the message), and the users
receiving the messages. Trust in between the receiving parties (if
more than one) of a message is not necessarily given.
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