
MessageVortex
Unlinkable, censorship-resistant
communication

Vorführender
Präsentationsnotizen
The following slide set is a short intro in MV a system suitable for anonymous communication even in censored environments.

TABLE OF CONTENT

 Why Anonymity
 Predecessor Systems
 Anonymity Technologies
 What are the problems?
 MessageVortex

 Why do we need it
 What are the problems
 How does it work

 The General Idea

 The Message

 The Peer Key

 The Sender Key

 The Header (and eIDs and workspaces)

 The Routing Block

 The Operations

 Processing

 Routing Strategies

 What are its benefits

 Any Questions Left?

Vorführender
Präsentationsnotizen
First we look at the question “why (and where) is anonymity important”

We then look at the predecessor systems and identify main problems of them

We then dive into the MessageVortex system and explain how we achieve anonymity and why our way is better.

At the very end we reconsider the lists of the downsides and compare them to MV

BEWARE: High pace ahead.

Vorführender
Präsentationsnotizen
A word of caution the pace of this presentation is very high due to the density of information.

MESSAGEVORTEX
WHY DO WE NEED IT?

Everyone shall have the right to hold opinions without interference

Everyone shall have the right to freedom of expression; this right shall include freedom
to seek, receive and impart information and ideas of all kinds, regardless of frontiers,
either orally, in writing or print, in the form of art, or through any other media of his
choice.

Article 19 of the International Covenant
on Civil and Political Rights (ICCPR)

In other words: Wherever censorship
exists, there is no freedom of speech.

Vorführender
Präsentationsnotizen
The International Convenant on Civil and Political Rights states that “Everyone shall have the right to hold opinions without interference”

This is what we normally refer as freedom of speech.

A typical interference in this context is a censor.

But: The only way speaking freely, is when we are anonymous towards a possible censor.

5min

MESSAGEVORTEX
WHY DO WE NEED IT?

 Censoring (in general and of Anonymity technology) happens today
 China (blocks Tor, calculate citizen score)
 Turkey (VPNs banned, Websites censored)
 United Arab Emirates (VPN is illegal for illegal activities ;-))
 Iran (Only Government approved VPNs are legal)
 Egypt (Website censorship, working on banning VPNs)
 And more … (Bahrain, Ethiopia…)

 Censorship is done to…
 fight „terrorism.“
 fight „state decomposing elements.“
 stopping “immoral or anti-religious works.”

Vorführender
Präsentationsnotizen
So we have to ask ourselfes: Are there any censors?

Yes. We know many of them and most of them ban anonymization technologies.

MESSAGEVORTEX
WHY DO WE NEED IT?

Conclusion: Anonymity matters especially in censored environments.

 Achieving anonymity is hard from an academic point

 Achieving anonymity in a censored environment is far harder
 All identifiable technologies are censored

 We lack systems designed for censoring environments
 Some offer extensions which try to address this issue (e.g., Tor and its pluggable

transports)

Vorführender
Präsentationsnotizen
So we need a system which is not only suitable for “free” jurisdictions, but for ALL.

PRE-EXISTING SYSTEMS

 Remailers (0-III)
 Nym Remailers

 Cypherpunk

 Mixmaster

 Mixminion

 Onion/Garlic Routing (SOR, Tor, I2P, …)

 DHT (Salsa, Tarzan, …)

 DC-Nets (Herbivore, Dissent, …)

 Broadcast (Hordes, …)

 Distributed Storages (Freenet, Guntella(2), …)

None of these systems were designed with a
censor in mind!

Vorführender
Präsentationsnotizen
We have many preexisting environments for anonymity such as “Onion Routing Systems”, DHT, DC-nets, broadcast based systems, or distributed storages and remailers. But none of these systems were designed with a censoring environment in mind.

WHAT ARE THE PROBLEMS?

 Technology
 A (network) packet is always visible…

 everyone may see it.

 everyone may analyze it.

 everyone may forward(modified or unmodified) or keep it.

 If we distribute data, we need to recover enough parts.

 It is relatively easy to build something for the lab but most
of the approaches (e.g., broadcast based) do not scale.

 Juristic
 Every jurisdiction applies their own laws

 Laws may disagree with each other

Vorführender
Präsentationsnotizen
We have two kinds of problems technological problems and jurisdictional problems.

On the technological side one of the main problem is, that a network packet is always visible and might be manipulated. If we distribute data a recipient needs to recover enough parts while a censor must be unable to censor them. And if we build something as an academic system it should work outside the lab.

On the jurisdictional side we have no means of controlling what jurisdiction applies to a packet. And the applicable laws may disagree.

MESSAGEVORTEX
GENERAL WEAK SPOTS OF ANONYMIZATION SOLUTIONS

Anonymization infrastructure
Sender

Sender

Sender

Sender

Sender

aRouter

aRouter

aRouter

aRouter

aRouter

aRouter

aRouter

aRouter

Receiver

Sender

Sender

Receiver

Receiver

Receiver

Receiver

• Identifiable meta data
• Identifiable messages
• Replayable messages
• Bugable parts
• Tagable parts
• Bootstrapping problem
• Identification problem
• Huge traffic overhead

Vorführender
Präsentationsnotizen
A typical anonymity system consists of a set of message senders, a set of recipients and a set of anonymity routers doing their magic to anonymize.

Some of them have messages leaking information or allowing tagging or bugging

Almost all of them outcurve a bootstrapping problem using centralized, known infrastructures which allow a censor to centrally attack such a system.

Most of them do not allow that sender and recipient may disclose their identity in a pseudonymous way. That I can discover if two messages were received from the same (unknown) person.

All of them have a significant traffic overhead

MESSAGEVORTEX
GENERAL WEAK SPOTS OF ANONYMIZATION SOLUTIONS

• Identifiable sets for senders and
receivers

• Identifiable infrastructure
• Nodes in general
• Entry nodes
• Exit nodes

• Central elements in infrastructure
• Directory servers

• Not prone to active adversaries
• Identifiable (censorable) protocols
• (Limited) trust in infrastructure

Anonymization infrastructure
Sender

Sender

Sender

Sender

Sender

aRouter

aRouter

aRouter

aRouter

aRouter

aRouter

aRouter

aRouter

Receiver

Sender

Sender

Receiver

Receiver

Receiver

Receiver

Vorführender
Präsentationsnotizen
The sender and recipient sets are typically identifiable (due to protocol breaches in entry and exit nodes.

They have identifiable infrastructure and are typically not prone to active adversaries.

Furthermore, they typically put trust in bigger parts of their infrastructure.

[10 Minuten]

HOW DOES IT WORK
THE GENERAL IDEA

 Principles
 Unobservable from the outside

 Distrust everyone (…)
 Routing nodes learn as little as possible from routing a message

 The routing process is controlled by the builder of the routing block in the message

 The routing path is diagnoseable by the builder of the routing block

 Our only trust: initial sender of the message and final recipient of the message

 Decoy traffic is not even identifiable for the node generating or routing.

 Resistant to common attacks which are hard to cover

Vorführender
Präsentationsnotizen
So what do we do different in MV?

We follow some design criteria which counter such weaknesses.

We designed a protocol which should be as invisible as possible from the outside.

We distrust everyone except the sender and the recipient.

Decoy traffic should not be identifiable. This should be even the case for the node generating the decoy traffic.

We keep the known attacks (and not only the anonymity) in mind wen creating our protocol.

HOW DOES IT WORK
THE GENERAL IDEA (2)

 Messages are sent from node to node in a mix type like system
 One VortexNode consists of…

 An always connected device of an end-users

 Common Transport account (e.g., Gmail account)

 Mixer Applies operations controlled by the routing block builder (RBB)

 Outer Messages of the system
 Have machine generated content (e.g., password recovery request)

 Include at least one image
 VortexMessage is steganographically hidden within the Image

Vorführender
Präsentationsnotizen
And how do we send messages?

We send a message through several VortexNodes. Each node consists of an always connected user owned device such as a mobile phone and a transport layer infrastructure (which may be something like a gmail account).

The messages sent by the system look like regular, machine generated messages such as password recovery requests or monitoring messages containing custom imagery. We hide our VortexMessage within these images using steganographic algorithms such as F5.

 Each node gets a couple of payload blocks
 It recombines available payload blocks

 Payload block of any message from the same sender (short term pseudonym)

 Outcome may be bigger or smaller depending on the applied operation:
 Any payload block may be decoy or true message content!

 Even the routing node generating decoy cannot tell decoy from message traffic apart.

 Agile
 Broken (crypto) algorithms must not break the protocol
 Network does not depend on a monolithic software version
 Any type of algorithm should have an alternative

HOW DOES IT WORK
THE GENERAL IDEA (2; FUNCTIONING)

Vorführender
Präsentationsnotizen
Each receiving node gets with a message a couple of payload blocks and the instructions how to handle them.

The applied operations result in either a bigger, same sized or smaller block.

A node is unaware if the received or sent block (which is special) is decoy or real message traffic.

All implemented algorithms have alternatives. A sender may decide on the kind of operations such as encryption and its parameters. If AES is no longer suitable an alternative such as camelia has been defined for each algorithm. Nodes are able to signal their capabilities.

MESSAGEVORTEX
HOW DOES IT WORK?

 Nodes send and mix messages
 All equal

 All may be endpoint of a
message

 All do routing

 Hide their traffic in common
transport protocols

 Messages
 Purely controlled by an

onionized routing block
 Not identifiable unless you

possess a node specific key

Always connected end-user device
(e.g., mobile phone)

Any Transport layer infrastructure
(e.g., Gmail account)

Vorführender
Präsentationsnotizen
So a sender, which is a VortexNode, sends a message through other VortexNodes. Any of the nodes may be the sender or the recipient of a message.

The message properties are controlled by the builder of the routing block which we call “Routing Block Builder” or RBB. This is typically the original sender but may be the recipient in the case of a reply block.

No node may talk to another node unless the public key of the receiving node is known.

In our protocol we refer to a sender of a VortexMessage on the transport layer as sending respectively receiving peer. The original sender of the message is referred as “Sender” and the final recipient as “Recipient”.

MESSAGEVORTEX
HOW DOES A MESSAGE LOOK LIKE (ON THE TRANSPORT LAYER)?

Dear sir

This is an obviously machine generated
text with some images. May be a
password recovery request, a routing
graph, or any other kind of machine
generated information.

Yours
MessageVortex

Generated image. E.g.,
• QR-Code
• Network graph
• Identicon
• Gravatar
• Random-Avatr

Vorführender
Präsentationsnotizen
So… when a VortexNode receives a message the imagery is searched for a steganographically hidden message and extracts an encrypted stream candidate

MESSAGEVORTEX
HOW DOES A MESSAGE LOOK LIKE?

The encrypted
peer key

The encrypted
sender key

The sender key protects
the vital blocks

Onionized routing blocks
containing information on how
to route and mix the message

One to many message payloads
(parts of the message or decoy)

The peer key protects the
„inner message“

Header block „identifying“ the
sender and containing requests

(short term pseudonym)

Vorführender
Präsentationsnotizen
The extracted stream has the following building block structure…

MESSAGEVORTEX
THE PEER KEY

The peer key is only
known to the two peering

partners and the RBB

The peer key is encrypted
with the receiving nodes

public key

(sending)
VortexNode

Transport layer

(receiving)
VortexNode

Transport layer

VortexNode

Transport layer

Routing Block Builder (RBB)

The peer key was also included in
the message build instructions (in
the routing block) of the sending

node

Important side note: The sending
node does not(need to) have the

receiving nodes public key

(other)
VortexNode

Transport layer

The RBB is the creator of
the routing block

MESSAGEVORTEX
THE SENDER KEY

(sending)
VortexNode

Transport layer

(receiving)
VortexNode

Transport layer

VortexNode

Transport layer

(other)
VortexNode

Transport layer

Routing Block Builder (RBB)

The sender key is only
known to the receiving

node and the RBB.

The sender key is encrypted
with the receiving nodes‘

public key.

Reminder: The sender key protects the header
and the routing block additionally. Otherwise,

the sending peer would know its content.

MESSAGEVORTEX
THE HEADER

• Contains:
• An „ephemeral ID“ (eID; public key; synonymous to the sender)
• A serial (allows replay protection)
• Validity interval

• May contain:
• Requests (and the reply block)
• Proof of work (if requesting something)

• Important: All eIDs sign their header blocks with their private key.

Vorführender
Präsentationsnotizen
The header contains an “ephemeral ID” which is a short term pseudonym of the sender and is cryptographically signed,

Furthermore it contains a serial with a validity interval for replay protection and house keeping and may contain header requests or assigned proof of works (which are required to protect from flooding attacks).

MESSAGEVORTEX
WHAT IS AN eID? WHAT IS A WORKSPACE?

• An eID is a short term synonym for the sender.
• A sender must request eIDs on each node (with a request) before sending

messages with a payload.
• A sender may require solving a crypto puzzle to get an eID.
• An eID enables a sender to have a temporary, exclusively assigned storage on

the node called „workspace“.
• Each eID has a quota assigned.

• The maximum number of inbound messages with a payload.
• The maximum number of outbound bytes of messages with a payload.

• A workspace is…
• For one eID
• Contains

• Payload blocks (referenced by IDs)
• Routing blocks/combos
• Operations

Vorführender
Präsentationsnotizen
The eID is an asymmetric key. It has first to be allocated by the sender.

The eID maps to a custom storage for this ephemeral identity for routing payloads.

Furthermore it has quotas assigned limiting the number of incoming messages with payload blocks as well as the number of outgoing bytes.

The workspace contains the payload blocks received for this eID, the routing blocks to be processed and the operations required to assemble subsequent payload blocks.

MESSAGEVORTEX
THE ROUTING BLOCK

The routing block contains

• Handling instructions for the current node
Operations required for local handling which includes mapping of IDs from the message into
the workspace.

• Onionized routing information required for building subsequent messages (Routing combos).
They contain:

• The pre-encrypted peer key for the next peer
• The pre-encrypted header key for the next peer
• The pre-encrypted header
• The pre-Encrypted routing block
• Mappings for workspace IDs into the message
• The blending information for the generated message

• Transport address
• Blending methode (e.g., F5 with key “test123”)

Vorführender
Präsentationsnotizen
The routing block contains:

The operations required for handling the incoming payload blocks.

And routing combos containing all the pre-encrypted blocks required for the subsequent message as well as the instructions on how to compose them. Furthermore the routing combo contains the blending instructions as well as the transport layer address for the subsequent nodes.

 Each operation is defined by
input Ids and output Ids.

 We have three types of
operations (always a tuple):
 Split/Merge a payload

 Encrypt/Decrypt a payload

 addRedundancy and
removeRedundancy

MESSAGEVORTEX
WHAT ARE THE AVAILABLE OPERATIONS? This is where the magic

happens

Payload S

Pay

load

Payload E „&+/WSGJ

Payload R M e a u P o

o n s a a

r t t y d

e r h j l

M

D Payload

Payload

R-1 Payload

Vorführender
Präsentationsnotizen
The operations themselves are simple.

We have an operation to split and merge a payload block.

We have an operation to encrypt and decrypt a payload block and we have a operation to add or remove redundancy information.

There is actually a fourth operation called mapping available which simply maps one ID to another for operational reasons.

MESSAGEVORTEX
THE addRedundancy OPERATION (1)

 The primary purpose of this operation is to add
size to the data without leaking who is getting
decoy and who is getting message traffic!

 As a side effect, we may realize redundant paths
only containing partial message content.

 We carry addRedundancy out in three steps:
 Pad data and split it into vectors
 𝐵𝐵1,𝐵𝐵2,⋯ ,𝐵𝐵𝑛𝑛−𝑚𝑚

 Apply Reed-Solomon to the data vectors (allowing
up to m out of n vectors to fail)  𝐶𝐶1,𝐶𝐶2,⋯ ,𝐶𝐶𝑛𝑛

 Encrypt all resulting vectors
 𝑂𝑂1,𝑂𝑂2,⋯ ,𝑂𝑂𝑛𝑛

 This operation creates n blocks. n-m blocks are
required to reverse the operation.

Vorführender
Präsentationsnotizen
The redundancy operation forms the core of our system and is thus described here closer. It consists of three steps:

Padding, adding the redundancy information, and encrypting the resulting blocks.

At the end we have n blocks where as any n-m blocks are sufficient to recover the transferred information.

To make sure that we do not leak sizing information through the padding we apply a specialized padding.

MESSAGEVORTEX
THE addRedundancy OPERATION (2)

 We need a special padding! With a normal padding we
would leak successful recovery of the original operation and
may leak an illegal operation.

 We need a padding where all results are plausible

 Our padding is a specialized length prefix with a defined
padding filler (seeded PRNG)
Calculate

 The idea:
 Take message size

 Plus a number of bytes specified by the RBB as a fixed stuffing
 C2

 Plus 𝐶𝐶𝐶 � 𝑙𝑙𝑙𝑙𝑙𝑙 𝑿𝑿 − 4
This will disappear when decoding p

 Decoding:
 Take first four bytes (p)

 Calculate 𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑴𝑴 = 𝑝𝑝 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 𝑿𝑿 − 4)

 The rest is filled with a seeded PRNG  A known seed allows to
verify padding.

The padding value
(length; 4 Bytes uint)

The message

The padding data (PRNG seeded
with s and length 𝑙𝑙 − 𝑖𝑖)

The padded message

𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑴𝑴
𝑙𝑙 = 𝑏𝑏𝑙𝑙𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏𝑙𝑙 𝐸𝐸𝐾𝐾 � 𝑙𝑙

𝑙𝑙 =
𝑖𝑖 + 𝐶𝐶𝐶
𝑙𝑙

� 𝑙𝑙

𝑝𝑝 = 𝑖𝑖 + 𝐶𝐶𝐶 � 𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚
𝐶32 − 𝐶 − 𝑖𝑖

𝑙𝑙
� 𝑙𝑙

𝑋𝑋 = 𝑝𝑝,𝑴𝑴,𝑅𝑅 𝑏𝑏, 𝑙𝑙 − 𝑖𝑖

Vorführender
Präsentationsnotizen
The general idea behind the padding is that any padding value p for a message is valid. We calculate the length of the original message by calculating p mod the size of the resulting block on the recipient side.

The value p is calculated by using the length of the message to be padded plus a random stuffing (which reflect additional bytes) in the message plus a random number of block sizes (which will fall off with the modulo operation.

 (click)

The message itself is built by

(click) concatenating p as an four byte unsigned integer
(click) with the message to be padded
(click) and a stream of values from a seeded random number generator.

𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑴𝑴
𝑙𝑙 = 𝑏𝑏𝑙𝑙𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏𝑙𝑙 𝐸𝐸𝐾𝐾 � 𝑙𝑙

𝑙𝑙 =
𝑖𝑖 + 𝐶𝐶𝐶
𝑙𝑙

� 𝑙𝑙

𝑝𝑝 = 𝑖𝑖 + 𝐶𝐶𝐶 � 𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚
𝐶32 − 𝐶 − 𝑖𝑖

𝑙𝑙
� 𝑙𝑙

𝑋𝑋 = 𝑝𝑝,𝑴𝑴,𝑅𝑅 𝑏𝑏, 𝑙𝑙 − 𝑖𝑖
= 𝑝𝑝,𝑴𝑴,𝑅𝑅 𝑏𝑏, 𝑙𝑙 − (𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑙𝑙𝑙𝑙𝑙𝑙(𝑿𝑿) − 4)

MESSAGEVORTEX
THE addRedundancy OPERATION (3)

Block size of the operation (dependent
on the number of stripes and the cipher
block size)

The length of the
original message

Length of padded stream
len(𝑴𝑴,𝑅𝑅 𝑏𝑏, 𝑙𝑙 − 𝑖𝑖) without the padding
itself

Vorführender
Präsentationsnotizen
The calculation is done by

(click) taking the length of the unpadded message
(click) then calculating the minimum block size of the final message
(click) then calculating the padded size of the message accommodating at least the message and the stuffing

𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑴𝑴
𝑙𝑙 = 𝑏𝑏𝑙𝑙𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏𝑙𝑙 𝐸𝐸𝐾𝐾 � 𝑙𝑙

𝑙𝑙 =
𝑖𝑖 + 𝐶𝐶𝐶
𝑙𝑙

� 𝑙𝑙

𝑝𝑝 = 𝑖𝑖 + 𝐶𝐶𝐶 � 𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚
𝐶32 − 𝐶 − 𝑖𝑖

𝑙𝑙
� 𝑙𝑙

𝑋𝑋 = 𝑝𝑝,𝑴𝑴,𝑅𝑅 𝑏𝑏, 𝑙𝑙 − 𝑖𝑖
= 𝑝𝑝,𝑴𝑴,𝑅𝑅 𝑏𝑏, 𝑙𝑙 − (𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑙𝑙𝑙𝑙𝑙𝑙(𝑿𝑿) − 4)

MESSAGEVORTEX
THE addRedundancy OPERATION (3)

C1 is a generator for multiples of l and
guarantees that any 𝑝𝑝 > 𝑙𝑙𝑙𝑙𝑙𝑙 𝑿𝑿 − 4 is valid as
well.

C2 is a fixed value of bytes to
be added to the message.
By adding C2, we make it
possible, that value 𝑝𝑝 ≤
𝑙𝑙𝑙𝑙𝑙𝑙 𝑿𝑿 − 4 is valid.

We do NOT require the values for successful
decoding.

Vorführender
Präsentationsnotizen
We have some randomly chosen values by the RBB which are

(click) C2 representing the size of the stuffing. This is required so that we are unable to determine a possible length of the message when knowing the blocksize of the encryption and the number of resulting blocks.

(click) and C1 representing the number of len(X)-4 falling away with the modulo operation.

MESSAGEVORTEX
THE addRedundancy OPERATION (4)

• Up until now we have padded the message with the following properties:
• The message has a perfect length to allow:

• Apply the Read-Solomon operation without further padding
• Apply the encryption without further padding

• Any value of p may reflect a valid padding

 Let‘s apply Reed-Solomon

Interlude:
Reed Solomon (RS) is a code used typically for error correction.
It adds a constant but selectable error correction information to the
data, allowing m out of n data chunks to fail.
In the real world, RS is typically used in a stripped manner in RAID6
systems to allow multiple disks to fail without losing data.

Vorführender
Präsentationsnotizen
We have now padded the message in a way the we do no longer require padding in the subsequent operations.

Furthermore the padding des no longer leak successful operation reversal.

(click)

Now we apply the Reed-Solomon operation. As an interlude. Nowadays we use this operation heavily in RAID6 systems to add scalable redundancy,

MESSAGEVORTEX
THE addRedundancy OPERATION (5)

 𝑡𝑡 = 𝑙𝑙 − 𝐶

 𝑨𝑨 = 𝑣𝑣𝑙𝑙𝑏𝑏𝐶𝑚𝑚𝑣𝑣𝑡𝑡 𝑋𝑋, 𝑙𝑙𝑙𝑙𝑛𝑛(𝑿𝑿)
𝑛𝑛−𝑚𝑚

 𝑽𝑽 =
00 ⋯ 0𝑛𝑛−𝑚𝑚−1

⋮ ⋱ ⋮
𝑡𝑡0 ⋯ 𝑡𝑡𝑛𝑛−𝑚𝑚−1

 𝑷𝑷 = 𝑽𝑽 � 𝑨𝑨 𝐺𝐺𝐺𝐺 𝐶𝜔𝜔

 𝐶𝐶1,𝐶𝐶2,⋯ ,𝐶𝐶𝑛𝑛 = row2vec 𝑷𝑷

We allign the padded data in a matrix

We prepare a suitable Vandermonde matrix (m
rows and n colums)

We apply RS
The result is a matrix with the message and added
redundancy information.

We extract the rows as vector

Vorführender
Präsentationsnotizen
(click)

First we align the padded data stream as a matrix with n-m rows

(click)

We then create a dispersal matrix by creating a vandermonde matrix. Actually, any matrix would do as long as a matrices resulting in deleting sufficient rows to form a square matrix are invertible.

(click)

we then multiply the two matrices over a finite field

(click)

And extract the rows of the resulting matrix as payload blocks

MESSAGEVORTEX
THE addRedundancy OPERATION (6)

 Now we do the last step (the encryption)

 𝑂𝑂𝑖𝑖 = 𝐸𝐸𝐾𝐾𝑖𝑖 𝐶𝐶𝑖𝑖
 Encryption is necessary as the chunks (𝑂𝑂0,⋯ ,𝑂𝑂𝑛𝑛) leak parameters of

the RS operation

Entropy and Monte Carlo PI WITHOUT encryption
with varying parameters on the same.

Entropy and Monte Carlo PI WITH encryption
with varying parameters on the same block.

Vorführender
Präsentationsnotizen
The only thing left is the encryption step.

This step is required as the reed Solomon operation leakes its parameters. This is shown in the graph.

(click) When not encrypted we clearly see an identifiale pattern when looking at the entropy.
(click) after the encryption step this pattern is gone again.

MESSAGEVORTEX
THE addRedundancy OPERATION (7)

 The reverse operation is applied by inversoing all operations

 Pick any available 𝑙𝑙 −𝑚𝑚 blocks of payload (they all must have the same length).

 Decrypt the blocks by applying 𝐶𝐶𝑗𝑗 = 𝐷𝐷𝐾𝐾𝑗𝑗 𝐼𝐼𝑗𝑗 and arrange them in rows of a matrix A.

 Eliminate in the Vandermonde matrix the discarded payload lines  𝑽𝑽𝑽

 invert V’ 𝑽𝑽𝑽−1

 Calculate D = 𝑽𝑽𝑽−1𝑨𝑨 (𝑮𝑮𝑮𝑮 𝟐𝟐𝝎𝝎) resulting in 𝐵𝐵1,𝐵𝐵2, … ,𝐵𝐵𝑛𝑛−𝑚𝑚 = 𝑟𝑟𝑚𝑚𝑟𝑟𝐶𝑣𝑣𝑙𝑙𝑏𝑏(𝑫𝑫)and arrange M as a byte stream.

 Get the first four bytes p and cut the payload to its original size by calculating i = 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 𝑿𝑿 − 4 .

 Verify the padding (if possible; requires s):

 Verify that the padded space matches 𝑅𝑅 𝑏𝑏, 𝑙𝑙𝑙𝑙𝑙𝑙 𝑿𝑿 − 𝑝𝑝 − 4

𝑿𝑿 = 𝑝𝑝,𝑴𝑴,𝑅𝑅 𝑏𝑏, 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑙𝑙𝑙𝑙𝑙𝑙(𝑿𝑿) − 4

Vorführender
Präsentationsnotizen
The reverse operation is just the inverse ssteps in the opposite order.

First pick any n-m blocks.
Decrypt the blocks with the key provided. And align as a matrix again.
Create the same dispersal matrix, eliminate the non-chosen block-rows and invert it
Multiply the two matrices over a finite field.

Calculate the message length by taking p mod len(X)-4.

Optionally you may verify the padding by seeding the specified PRNG and comparing the trailing bytes.

MESSAGEVORTEX
Processing an incoming message

 Extract message by the blending layer
 Extract message prefix block and decrypt it.

 If a valid structure with a peer key is provided continue
with the inner message by decrypting with the key
provided in the prefix block.

 Get sender key and decrypt header, and routing
block

 Verify signature of header and rules for processing

 Process header requests (if applicable)

 Apply mapping operations for IDs 1 up to 127 into
workspace (mapping of payload blocks into the
workspace)

 Add operations to the workspace

 Add routing combos to the workspace

 If a message is written to payload ID 0 then this
message is for the local user

Dear sir

This is an obviously machine generated text
with some images. May be a password
recovery request, a routing graph, or any other
kind of machine generated information.

Yours
MessageVortex

Vorführender
Präsentationsnotizen
So lets look at the processing of an incoming message in detail.

A transport layer message is received and the vortexMessage is extracted

(click)

MESSAGEVORTEX
Processing an incoming message

 Extract message by the blending layer

 Extract message prefix block and decrypt it.

 If a valid structure with a peer key is provided continue
with the inner message by decrypting with the key
provided in the prefix block.

 Get sender key and decrypt header, and routing
block

 Verify signature of header and rules for processing

 Process header requests (if applicable)

 Apply mapping operations for IDs 1 up to 127 into
workspace (mapping of payload blocks into the
workspace)

 Add operations to the workspace

 If a message is written to payload ID 0 then this
message is for the local user

 Add routing combos to the workspace

 If a message is written to payload ID 0 then this
message is for the local user

Vorführender
Präsentationsnotizen
We decrypt the peer key using our host key and decrypt the inner message.

(click)

MESSAGEVORTEX
Processing an incoming message

 Extract message by the blending layer

 Extract message prefix block and decrypt it.

 If a valid structure with a peer key is provided continue
with the inner message by decrypting with the key
provided in the prefix block.

 Get sender key and decrypt header, and routing
block

 Verify signature of header and rules for processing

 Process header requests (if applicable)

 Apply mapping operations for IDs 1 up to 127 into
workspace (mapping of payload blocks into the
workspace)

 Add operations to the workspace

 If a message is written to payload ID 0 then this
message is for the local user

 Add routing combos to the workspace

Vorführender
Präsentationsnotizen
We extract the sender key using again our host key and extract header and routing block.

MESSAGEVORTEX
Processing an incoming message

 Extract message by the blending layer

 Extract message prefix block and decrypt it.

 If a valid structure with a peer key is provided continue
with the inner message by decrypting with the key
provided in the prefix block.

 Get sender key and decrypt header, and routing
block

 Verify signature of header and rules for processing

 Process header requests (if applicable)

 Apply mapping operations for IDs 1 up to 127 into
workspace (mapping of payload blocks into the
workspace)

 Add operations to the workspace

 If a message is written to payload ID 0 then this
message is for the local user

 Add routing combos to the workspace

Extract Serial and do replay checks

Verify state of eID

Vorführender
Präsentationsnotizen
We verify the signature, the state of the ephemeral id and apply the replay checks. Furthermore, we need to check the incoming message quota.

MESSAGEVORTEX
Processing an incoming message

 Extract message by the blending layer

 Extract message prefix block and decrypt it.

 If a valid structure with a peer key is provided continue
with the inner message by decrypting with the key
provided in the prefix block.

 Get sender key and decrypt header, and routing
block

 Verify signature of header and rules for processing

 Process header requests (if applicable)

 Apply mapping operations for IDs 1 up to 127 into
workspace (mapping of payload blocks into the
workspace)

 Add operations to the workspace

 If a message is written to payload ID 0 then this
message is for the local user

 Add routing combos to the workspace

Process header requests:
• Create new eID
• Get node capabilities
• Get quotas
• Increase quotas
• Request routing nodes
• Replace identity

PoW or anonymous
payment may apply

Vorführender
Präsentationsnotizen
We process the requests if there are any.

Possible requests are:
Create an eID, query the nodes supported algorithms and constraints, query or increase the quotas, request more routing nodes or replace an existing identity.

For some of the requests a proof of work is requested if not required.

MESSAGEVORTEX
Processing an incoming message

 Extract message by the blending layer

 Extract message prefix block and decrypt it.

 If a valid structure with a peer key is provided continue
with the inner message by decrypting with the key
provided in the prefix block.

 Get sender key and decrypt header, and routing
block

 Verify signature of header and rules for processing

 Process header requests (if applicable)

 Apply mapping operations for IDs 1 up to 127 into
workspace (mapping of payload blocks into the
workspace)

 Add operations to the workspace

 If a message is written to payload ID 0 then this
message is for the local user

 Add routing combos to the workspace

Vorführender
Präsentationsnotizen
We then map the payloads into our workspace

MESSAGEVORTEX
Processing an incoming message

 Extract message by the blending layer

 Extract message prefix block and decrypt it.

 If a valid structure with a peer key is provided continue
with the inner message by decrypting with the key
provided in the prefix block.

 Get sender key and decrypt header, and routing
block

 Verify signature of header and rules for processing

 Process header requests (if applicable)

 Apply mapping operations for IDs 1 up to 127 into
workspace (mapping of payload blocks into the
workspace)

 Add operations to the workspace
 If a message is written to payload ID 0 then this

message is for the local user

 Add routing combos to the workspace

Vorführender
Präsentationsnotizen
Next we do the same with the operations provided

MESSAGEVORTEX
Processing an incoming message

 Extract message by the blending layer

 Extract message prefix block and decrypt it.

 If a valid structure with a peer key is provided continue
with the inner message by decrypting with the key
provided in the prefix block.

 Get sender key and decrypt header, and routing
block

 Verify signature of header and rules for processing

 Process header requests (if applicable)

 Apply mapping operations for IDs 1 up to 127 into
workspace (mapping of payload blocks into the
workspace)

 Add operations to the workspace

 If a message is written to payload ID 0 then this
message is for the local user

 Add routing combos to the workspace

Vorführender
Präsentationsnotizen
Lastly we put the routing combos into the respective workspace.

These combos trigger the generation of a subsequent message and contain all the information required t assemble them.

MESSAGEVORTEX
ROUTING STRATEGIES (GENERAL)

 Use addRedundancy to add decoy

 Use either encrypt or decrypt to (de)onionize

 Use Split and merge to join/distribute traffic
(requires onionizing or addRedundancy step)

Avoid repeating patterns!

Vorführender
Präsentationsnotizen
How do we assemble a routing block and chose the routing?

In general we use addRedundancy to add decoy traffic and use encrypt/decrypt to onionize the message. To vary the size and join respectively disjoin traffic, we may use split and merge, or addRedundancy.

MESSAGEVORTEX
A SIMPLE STRATEGY FOR BUILDING A ROUTING BLOCK

 Choose VortexNodes and allocate eIDs if required
 Choose a directed suitable graph (Nodes=VortexNodes; Edges=Messages).
 Select timing information for the blocks.
 Select path(s) for message transferal to final recipient.
 Select operations

 For the message
 For the decoy traffic

 Assemble routing block (it is always one at the beginning).
 Apply routing block to message and hand it over to the router (local)
 The algorithm does not matter! Just follow the rule:

 All operations are valid for a data stream
 No pattern is repeated on any node except for the sender and the recipient

Vorführender
Präsentationsnotizen
A general strategy may look like this:

First choose a suitable routing graph where nodes reflect vorexNodes and Edges reflect a message between two nodes.

We serialize the messages by assigning timing information.

Then we select a path to our final node and select suitable operations for that path.

Then we do exactly the same for all non covered paths

With this algorithm we may satisfy all preconditions.

In the next slides we cover a simplified example.

MESSAGEVORTEX
A SIMPLE STRATEGY FOR BUILDING A ROUTING BLOCK (A WORD OF CAUTION)

 For brevity, the following algorithm has no split/merge operations and all nodes
receive at least the entire message. This has some drawbacks:
 Huge message overhead

 Minimum size of message may be determined and traced

 Route diagnosis not covered

 But…
 It credibly anonymizes sender and recipient.

Vorführender
Präsentationsnotizen
This algorithm was shortened for presentation reasons. It distributes the whole message throughout the selected node.

It has some downsides such as a minimum message size or a huge overhead.

MESSAGEVORTEX
A SIMPLE STRATEGY FOR BUILDING A ROUTING BLOCK (THE MAIN PROCEDURE)

Vorführender
Präsentationsnotizen
First we select randomly the nodes. After that we assign edges.

(click)

MESSAGEVORTEX
A SIMPLE STRATEGY FOR BUILDING A ROUTING BLOCK (THE MAIN PROCEDURE 2)

Vorführender
Präsentationsnotizen
The edges are chosen by randomly choosing an already reached node and a random node from the whole node set. This step is repeated until we reach the minimum required edges and have reached all nodes of our graph.

MESSAGEVORTEX
A SIMPLE STRATEGY FOR BUILDING A ROUTING BLOCK (THE MAIN PROCEDURE 2)

A sample Graph containing seven
nodes, 17 hops, and six paths

Vorführender
Präsentationsnotizen
This is a resulting graph with seven nodes and six paths from the sender (which is shown as node 0) to the recipient node 1.

MESSAGEVORTEX
A SIMPLE STRATEGY FOR BUILDING A ROUTING BLOCK (ASSIGN TIMING)

Vorführender
Präsentationsnotizen
Next, we assign the timing we just loop through all nodes sequentially. And assign a random time increasing from message to message and having a guaranteed time gap between them, This tie gap is reflected by minHopTime.

For convenience, we created a special distribution which we describe in the slide.

MESSAGEVORTEX
A SIMPLE STRATEGY FOR BUILDING A ROUTING BLOCK (ASSIGN TIMING)

Vorführender
Präsentationsnotizen
This distribution squishes a gaussian bell curve in such a way that we may specify the optimal location of the maximum and distribute the rest over an interval suitable for us.

We can see the resulting curve of a getRandomTime(70,120,200) in the graph to the right.

MESSAGEVORTEX
A SIMPLE STRATEGY FOR BUILDING A ROUTING BLOCK (ASSIGN OPERATIONS)

Vorführender
Präsentationsnotizen
After having assigned the timing we have to select the operations.

We first check if the graph has the right properties as requested.

If so, we take a route from start to the final node and call “assignRoute”

After that we look for chains of nodes which have not yet been reached and repeat the step there.

MESSAGEVORTEX
A SIMPLE STRATEGY FOR BUILDING A ROUTING BLOCK (ASSIGN OPERATIONS)

Vorführender
Präsentationsnotizen
If we have no specific payload to transport we chose a random used payload ID from the current node.

We take the source payload ID and apply a valid operation with assignOperation. The resulting IDs are passed on to the next node and the assignRoute is applied recursively for that node.

MESSAGEVORTEX
A SIMPLE STRATEGY FOR BUILDING A ROUTING BLOCK (ASSIGN OPERATIONS)

Vorführender
Präsentationsnotizen
Our Assign operation is relatively simple if we have to route to multiple nodes, we make sure that we do an addRedundancy operation resulting in sufficient blocks. Any block is sufficient to recover the information. If there is only one subsequent node, we choose either an encryption step or an addRedundancy operation.

In any case the respective reverse operation is applied to the final recipient node.

This is a very simple algorithm to assemble a routing block.

But how do we obtain the nodes at the beginning for our routing block?

MESSAGEVORTEX
WHERE DO I GET MY PEER PARTNERS FROM?

 In a censoring environment
 You need to collect them yourself (manually)

 You may route messages outside of the censors reach. Once outside traditional mixing
nodes may be used

 In a non censoring environment (where usage of MessageVortex is no problem)
 Query the nodes directly with a capability request (HeaderRequestCapability)

 Ask a node to recover public routing nodes (HeaderRequestNodes)

Vorführender
Präsentationsnotizen
In a censoring environment: Only by knowing people. We were unable to find a solution which would not allow an adversary to harvest nodes.

In a non-censoring environment we have an “request node” header request which allows us to do so.

MESSAGEVORTEX
A WHAT ARE ITS BENEFITS?

 The first holistic approach targeting the needs of a partially/fully censoring environment
 Bases on proven technology

 Reed-Solomon operations are proven and well known
 Mixing (and its limitations) are well known

 Is Cryptoagile
 Allows diagnosis
 Allows localized trust
 Gives full control of all privacy related parameters to the builder of the routing block.
 Contributes

 A new padding type not leaking any information about successful decryption.
 An addRedundancy operation allowing to add redundancy and or decoy traffic without letting the routing node the type

of routed data know.
 A working system with a reference implementation

Vorführender
Präsentationsnotizen
How do we benefit from MessageVortex?

It is to our knowledge the first holistic attempt to create an anonymizing infrastructure in a censoring environment.

It uses proven technologies and has unique properties such as unidentifiable decoy traffic.

It is cryptoagile and allows diagnosis of routing paths without putting trust in routing nodes or disclosing diagnostic

It gives full control over all privacy aspects to the routing block builder.

And it contributes a specialized padding not leaking successful operation reversal

An novel addRedundancy operation

And a system implementation

MESSAGEVORTEX
GENERAL WEAK SPOTS OF ANONYMIZATION SOLUTIONS

• Identifiable sets for senders and
receivers

• Identifiable infrastructure
• Nodes in general
• Entry nodes
• Exit nodes

• Central elements in infrastructure
• Directory servers

• Not prone to active adversaries
• Identifiable (censorable) protocols

• (Limited) trust in infrastructure
• Identifiable meta data
• Identifiable messages
• Replayable messages
• Bugable parts
• Tagable parts
• Identification problem
• Bootstrapping problem
• Huge traffic overhead

Remains unsolved for censored environments

Vorführender
Präsentationsnotizen
Looking at the previous list of common problems for anonymity systems we can see, that we solved almost all common problems except for the bootstrapping problem and the huge traffic overhead.

QUESTIONS?

Vorführender
Präsentationsnotizen
Well that’s it…. Are there any questions left?

	MessageVortex
	Table of Content
	Foliennummer 3
	MessageVortex �Why do we need it?
	MessageVortex �Why do we need it?
	MessageVortex �Why do we need it?
	Pre-Existing Systems
	What are the Problems?
	MessageVortex �general weak spots of anonymization solutions
	MessageVortex �general weak spots of anonymization solutions
	How does it work�The general idea
	How does it work�The general idea (2)
	How does it work�The general idea (2; Functioning)
	MessageVortex�How does it work?
	MessageVortex�How does a message look like (on the transport layer)?
	MessageVortex�How does a message look like?
	MessageVortex�The peer key
	MessageVortex�The sender key
	MessageVortex�The Header
	MessageVortex�What is an eID? What is a workspace?
	MessageVortex�The Routing Block
	MessageVortex�What are the available operations?
	MessageVortex�The addRedundancy operation (1)
	MessageVortex�The addRedundancy operation (2)
	MessageVortex�The addRedundancy operation (3)
	MessageVortex�The addRedundancy operation (3)
	MessageVortex�The addRedundancy operation (4)
	MessageVortex�The addRedundancy operation (5)
	MessageVortex�The addRedundancy operation (6)
	MessageVortex�The addRedundancy operation (7)
	MessageVortex�Processing an incoming message
	MessageVortex�Processing an incoming message
	MessageVortex�Processing an incoming message
	MessageVortex�Processing an incoming message
	MessageVortex�Processing an incoming message
	MessageVortex�Processing an incoming message
	MessageVortex�Processing an incoming message
	MessageVortex�Processing an incoming message
	MessageVortex�Routing Strategies (general)
	MessageVortex�A simple Strategy for building a routing block
	MessageVortex�A simple Strategy for building a routing block (A word of caution)
	MessageVortex�A simple Strategy for building a routing block (The main procedure)
	MessageVortex�A simple Strategy for building a routing block (The main procedure 2)
	MessageVortex�A simple Strategy for building a routing block (The main procedure 2)
	MessageVortex�A simple Strategy for building a routing block (Assign Timing)
	MessageVortex�A simple Strategy for building a routing block (Assign Timing)
	MessageVortex�A simple Strategy for building a routing block (Assign Operations)
	MessageVortex�A simple Strategy for building a routing block (Assign Operations)
	MessageVortex�A simple Strategy for building a routing block (Assign Operations)
	MessageVortex�Where do I get my peer partners from?
	MessageVortex�A What are its benefits?
	MessageVortex �general weak spots of anonymization solutions
	Questions?

