
ETH Zurich, Department of Computer Science
SS 2017

Dr. Martin Hirt
Chen-Da Liu Zhang

Cryptographic Protocols

Solution to Exercise 9

9.1 Shamir Sharings

a) Suppose there is another polynomial f ′ of degree at most n−1 with the property that
f ′(αi) = si for all i = 1, . . . , n. Then, the polynomial h := f − f ′ has n roots (namely
α1, . . . , αn). Since it has degree at most n − 1, h must be the all-zero polynomial.
Thus, f = f ′.

b) For T ⊆ {1, . . . , n} and s ∈ F, denote by ST,s the distribution sampled as follows:
Choose random coefficients R1, . . . , Rt, compute Si := p(αi) for p(x) := s + R1x +
R2x

2 + . . .+Rtx
t and set ST,s := (Si)i∈T . That is, ST,s denotes the random variable

corresponding to the vector of shares of the players Pi with i ∈ T when s ∈ F is shared.

A sharing scheme reveals no information about s to up to t players if for every T ⊆
{1, . . . , n} with |T | ≤ t,

ST,s ≡ ST,s′ (1)

for all s, s′ ∈ F.

Consider now a second distribution S̃T,s, which is defined as ST,s except that the shar-
ing polynomial p̃(x) is obtained by choosing values R̃1, . . . , R̃t of p̃(x) and interpolating
the unique polynomial p̃(x) through the points (α̃i, R̃i) and (0, s) for some t arbitrary
distinct non-zero positions α̃i. It is easily seen that ST,s ≡ S̃T,s for all T and s, since
every choice of coefficients Ri = ri uniquely determines a polynomial p(x), which in
turn uniquely determines the values at the t positions α̃i and vice-versa.

Since the t arbitrary positions α̃i can be chosen as the (αi)i∈T , S̃T,s ≡ S̃T,s′ (both
distributions are simply |T | uniformly random and independent field elements). This
implies (1).

c) Denote by f(X) = a′X + a and g(X) = b′X + b the sharing polynomials of a and b,
respectively. In the following we create a system of equations that will allow P2 to
compute a and b from the values which he sees in the protocol:

f(α2) = a2 ⇐⇒ 2a′ + a = a2 (2)

g(α2) = b2 ⇐⇒ 2b′ + b = b2 (3)

Using the announced shares ci, one can compute the unique polynomial h of degree
at most 2 that goes through these points, i.e., h(1) = c1, h(2) = c2 and h(3) = c3:

h(X) = h1 + h2X + h3X
2 (4)

for some coefficients h1, h2,and h3, which can be computed, e.g., using Lagrange’s
interpolation formula.

Because h corresponds to the polynomial resulting from the multiplication of f and g,
it should have the following form:

h(X) = f(X) · g(X)

= (a+ a′X) · (b+ b′X)

= ab+ (ab′ + a′b)X + a′b′X2 (5)

Because the coefficients in (4) and (5) should be the same

ab = h1

ab′ + a′b = h2

a′b′ = h3

The above three equations, together with (2) and (3), form a system of 5 equations
over GF(5) with 4 unknowns. Solving these equations P2 can compute the factors a
and b.

d) The adversary can use its shares to interpolate a degree-(t − 1) polynomial g′ 6= g,
since the degree of the sharing polynomial g is exactly t. Because g(αi) = g′(αi) for t
indices i ∈ {1, . . . , n}, g(0) 6= g′(0) (since otherwise g′ = g). Thus, the adversary can
exclude g′(0) as the secret, which violates privacy.

9.2 Circuit Evaluation

a) Since the order of the multiplicative group of F is p− 1, xp−1 = 1, which implies that
xp−2 · x = 1, hence x−1 = xp−2.1 Note that when x = 0, then the computed “inverse”
equals 0.

b) Let c ∈ {0, 1}. To execute the “if”-statement, compute

z := (1− c) · x+ c · y.

For an arbitrary c ∈ F, compute

z := (1− cp−1) · x+ cp−1 · y.

This results in the correct value z since cp−1 = 1 if c 6= 0 and cp−1 = 0 if c = 0.

9.3 Impossibility and Feasibility Proofs

a) If the players want to compute b1 ⊕ b2, then the next protocol is passively secure:

Party P1 sends b1 to P2, then party P2 sends b2 to P1, and both output b1 ⊕ b2.
Observe that P1 can obtain the input b2 from his input b1 and the output b1 ⊕ b2.
Also, P2 can obtain the input b1 from his input b2 and the output b1 ⊕ b2. Hence,
regardless of who the adversary corrupts, he does not learn anything beyond what is
leaked by the output.

b) If the output is constant (0 or 1), the parties can trivially output the constant without
exchanging any messages. We only need to focus on the case where the number of
ones is two.

If there are two ones, the outputs can be either the first input (0, 0, 1, 1), the second
input (0, 1, 0, 1), the XOR of the inputs (0, 1, 1, 0), or the negation of one of the three
cases.

1This can be implemented efficiently using the square-and-multiply method.

If the output is equal to the input of a party Pi, the protocol consists of one message,
where Pi sends his input xi to the other party, and both output xi. In the previous
subtask we saw a passively secure protocol that computes the XOR.

For the negated functions, it is enough to execute the protocol for the non-negated
function, and at the end negate the output.

c) Now we show that if the output vector contains exactly a one, it is impossible to
construct a protocol for such a function. We make the argument for the case where
the vector is (1, 0, 0, 0), since all cases are similar. In this case, the function is ¬b0∧¬b1.
We sketch a reduction to the impossibility proof for the AND function presented in the
lecture. Assume there is a protocol π that computes the function ¬b0 ∧ ¬b1. In order
to construct a protocol that computes the AND function easily, the parties negate
their inputs, and execute the protocol π on inputs ¬b0 and ¬b1.
Finally, if the vector has three ones, it is enough to execute the protocol for the negated
function which has only a one, and negate the output.

