Cryptographic Protocols Exercise 8

8.1 An MPC Protocol

Parties P_1, \ldots, P_n would like to conduct a majority vote. However, no one wants to reveal his voting behaviour.

- a) Suppose the parties plan to use Sum Protocol II modulo \mathbb{Z}_m from the slides to solve this problem. Describe the precise specification that is implemented by this protocol.
- b) Show that the sum protocol is secure against up to n-1 passively corrupted parties.
- c) What happens with your protocol if some party P_i starts with input $x_i = n$. Is the protocol insecure?
- d) Is the sum protocol secure against actively corrupted parties?

8.2 Types of Oblivious Transfer

Oblivious transfer (OT) comes in several variants:

- Rabin OT: Alice transmits a bit b to Bob, who receives b with probability 1/2 while Alice does not know which is the case. That is, the output of Bob is either b or \bot (indicating that the bit was not received).
- 1-out-of-2 OT: Alice holds two bits b_0 and b_1 . For a bit $c \in \{0, 1\}$ of Bob's choice, he can learn b_c but not b_{1-c} , and Alice does not learn c.
- 1-out-of-k OT for k > 2: Alice holds k bits b_1, \ldots, b_k . For $c \in \{1, \ldots, k\}$ of Bob's choice, he can learn b_c but none of the others, and Alice does not learn c.

Prove the equivalence of these three variants, by providing the following reductions:

- a) 1-out-of-k OT \Longrightarrow 1-out-of-2 OT
- b) 1-out-of-2 OT \Longrightarrow 1-out-of-k OT HINT: In your protocol, the sender should choose k random bits and invoke the 1-out-of-2 OT protocol k times.
- c) 1-out-of-2 \Longrightarrow Rabin OT
- d) Rabin OT \Longrightarrow 1-out-of-2 OT

HINT: Use Rabin OT to send sufficiently many random bits. In your protocol, the receiver might learn both bits, but with negligible probability only.

8.3 Multi-Party Computation with Oblivious Transfer

In the lecture, it was shown that 1-out-of-k oblivious string transfer (OST) can be used by two parties A and B to securely evaluate an arbitrary function $g: \mathcal{X} \times \mathcal{Y} \to \Omega$, where \mathcal{X} is A's input domain, \mathcal{Y} is B's input domain with $|\mathcal{Y}| = k$, and Ω is the output domain.

- a) Let \mathcal{Z} be a finite (and small) domain. Generalize the above protocol to the case of three parties A, B, and C, with inputs $x \in \mathcal{X}$, $y \in \mathcal{X}$, and $z \in \mathcal{Z}$, respectively, who wish to compute a function $f: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \to \Omega$.
 - HINT: Which function table should A send to B? Which entry should B choose, and what should he send to C?
- **b)** Is your protocol from **a)** secure against a passive adversary? If not, give an example of a function f where some party receives too much information by executing the protocol.
- c) Modify your protocol to make it secure against a passive adversary.