Cryptographic Protocols Exercise 7

7.1 Homomorphic Commitments

Consider the following bit-commitment scheme based on the quadratic residuosity assumption: For an RSA modulus m = pq and a quadratic non-residue t, Peggy commits to $x \in \{0,1\}$ by choosing $r \in_R \mathbb{Z}_m^*$ and computing the blob $b = r^2t^x$. To open the commitment, Peggy sends r and x to Vic, who checks that $b \stackrel{?}{=} r^2t^x$.

- a) Show that this commitment scheme is homomorphic, i.e., show that from two blobs b_0 and b_1 for two bits x_0 and x_1 , a blob b for the bit $x_0 \oplus x_1$ can be computed. Also show how Peggy can compute the randomness r (given r_0 and r_1), such that she can open b using r.
- b) Show that from a blob b for bit x, one can compute a blob b' corresponding to a commitment to 1-x. Again, show how Peggy can compute the randomness r' of blob b'.
- c) Why would it be interesting for the BCC protocol if one could perform *all* binary operations on these blobs?
- d) Assume two blobs b_0 and b_1 for x_0 and x_1 are given. How could Peggy prove to Vic in zero-knowledge that $x_0 = x_1$? What about $x_0 \neq x_1$?

7.2 Permuted Truth Tables

In their protocol, which we discussed in the lecture, Brassard, Chaum, and Crépeau use "permuted" truth tables of binary logical operations.

X	у	$x \wedge y$
1	1	1
1	0	0
0	1	0
0	0	0

truth table

X	у	$x \wedge y$
1	0	0
0	0	0
0	1	0
1	1	1

"permuted" truth table

In this exercise we consider an alternative way of processing gates in a circuit:

a) Assume that a commitment scheme of type B is given along with a protocol that allows to prove in zero-knowledge that two blobs are commitments to equal values. Let c_1 , c_2 , and c_3 be blobs for the bits b_1 , b_2 , and b_3 , respectively. Construct a zero-knowledge protocol which allows Peggy to convince Vic that $b_3 = b_1 \wedge b_2$. Show that your protocol is complete, sound, and zero-knowledge.

HINT: Use an approach based on "permuted" truth tables.

 $^{^{1}}$ For technical reasons, one would need to require that t has Jacobi symbol 1.

- **b)** Show how Peggy can use the above construction to prove for an arbitrary circuit that she knows an input that evaluates to a given output.
- c) Discuss the difference between the process from b) and the one described in the BCC protocol.

7.3 Sudoku

An instance of the general Sudoku problem consists of an $n \times n$ grid with subgrids of size $k \times k$ for $n = k^2$. Some cells are already preprinted with values in the range $\{1, \ldots, n\}$. The goal is to fill the remaining cells with numbers from the same range such that each number appears exactly once in each row, column, and subgrid. For n = 9 and k = 3, one recovers the classical Sudoku that is typically found in newspapers.

In the lecture we saw a proof that a given Sudoku has a solution. However, this protocol is not 2-extractable (why?), and it is not clear whether it is a proof of knowledge.

The goal of this task is to design a zero-knowledge protocol that allows Peggy to prove that she *knows* a solution of a given Sudoku. For that, assume that a commitment scheme of type B is given along with a protocol that allows to prove in zero-knowledge that two blobs are commitments to equal values.