
ETH Zurich, Department of Computer Science
SS 2017

Dr. Martin Hirt
Chen-Da Liu Zhang

Cryptographic Protocols

Solution to Exercise 7

7.1 Homomorphic Commitments

Note that a blob committing to 0 is a quadratic residue, and, since t is a quadratic non-
residue (with

(
t
m

)
= +1), a blob committing to 1 is a quadratic non-residue b (with(

b
m

)
= +1). Thus, the scheme is of type B, where the computational hiding property

relies on the QR assumption, which states that modulo an RSA prime m it is hard to
distinguish quadratic residues from quadratic non-residues (with

(
b
m

)
= +1).

a) Denote by b0 = r20t
x0 and b1 = r21t

x1 two blobs to bits x0 and x1, respectively. By
multiplying b0 and b1, one obtains

b = b0 · b1 = r20 · r21 · tx0+x1 .

This is a commitment to x0 ⊕ x1: If x0 = x1 (i.e., x0 ⊕ x1 = 0), then b is a quadratic
residue (with randomness r0r1 if x0 = x1 = 0 and r0r1t if x0 = x1 = 1). If x0 6= x1
(i.e., x0 ⊕ x1 = 1), then b is a quadratic non-residue (with

(
b
m

)
= +1), where the

randomness is r0r1.

b) Let b = r2tx be the blob to x. By multiplying b by t one obtains

b′ = b · t = r2 · tx+1.

If x = 0, b′ is a quadratic non-residue and thus a commitment to 1. If x = 1, b′ is a
quadratic residue and thus a commitment to 0. The randomness for b′ is r.

c) If all binary operations could be implemented in such a fashion, the BCC protocol
would become substantially simpler: At the beginning, Peggy would commit to the
satisfying input, and then Vic would evaluate the circuit on the blobs. In the end,
Peggy would prove that the resulting blob b is indeed a commitment to one by proving
that bt is a quadratic residue using the Fiat-Shamir protocol.

d) As shown in a), if x0 = x1, b0 · b1 is a quadratic residue, a fact that Peggy can prove
using the Fiat-Shamir protocol. Moreover, if x0 6= x1, then b := b0 · b1 is a quadratic
non-residue (with

(
b
m

)
= +1) and thus b0 · b1 · t is a quadratic residue, which, again,

can be proved using the Fiat-Shamir protocol.

7.2 Permuted Truth Tables

a) Peggy chooses a random permuted truth table for the gate function and commits
to its elements. Vic chooses a random challenge bit c and sends it to Peggy. If
c = 0, then Peggy opens the whole table and Vic checks if it is a permutation of the
AND gate function table. If c = 1, Peggy takes the blobs (d1, d2, d3) from the row
corresponding to the triple (b1, b2, b3) and proves (using the ZK protocol for equality)
that ∀i ∈ {1, 2, 3} di and ci are commitments of the same value.



Note that the commitments used in the above construction are of type B (i.e., perfectly
binding). We show that the above protocol is a zero-knowledge proof of the statement
“the committed values (b1, b2, b3) corresponding to the commitments (c1, c2, c3) satisfy
the AND relation.”

Completeness: Follows immediately from the completeness of the protocol for blob
equality.

Soundness: Assume that b1 ∧ b2 6= b3. If Peggy commits to a valid permuted truth
table in the first step, Peggy cannot answer the challenge c = 1 as there is no row
in this table with with commitments corresponding to b1, b2, b3. If Peggy commits to
an invalid table, then she cannot answer the challenge c = 0, as the commitment is
binding. Hence, the cheating probability of Peggy for each round is approximately
1/2 (the “approximately” stems from the fact that, in case c = 1, Peggy might still be
able, with some small probability, to cheat in the equality proof).

Zero-Knowledge: We prove the (computational) zero-knowledge property only in-
formally. We need to show that there exists an efficient simulation S producing a
transcript which is (computationally) indistinguishable from the transcript resulting
from a real protocol execution between the prover P and (a possibly dishonest) veri-
fier V ′.

The simulator S can produce a transcript as follows: First, S computes a valid per-
muted truth table and commits to it. If V ′ sends the challenge c = 0, the simulator
opens the committed table. If V ′ sends c = 1, S uses the simulator S′ for the blob
equality protocol to compute a transcript of a proof of equality for ci = di (i = 1 . . . 3),
where the di’s are commitments corresponding to a randomly chosen row of the per-
muted truth table. Note that, by the computational hiding property of the commit-
ments, the transcript produced by S′ is computationally indistinguishable from the
real interaction even if the di’s are commitments to different values than those in
the ci’s.

b) If Peggy knows the input to the circuit, then she can compute (by evaluating the
circuit in a gate-by-gate manner, similar to the AND gate) the bits on the wires.
She commits to all those bits and sends the blobs to Vic. Subsequently, she uses the
protocol from a) for each gate to prove that the committed values are consistent with
the circuit. To convince Vic that the output of the circuit is in fact 1, Peggy and Vic
use a fixed commitment of 1, i.e., a commitment that is hard-coded into the protocol.

c) In the BCC protocol from the lecture, when processing the circuit, Peggy blinds every
wire using a random bit. In the protocol from b), this is not necessary, but we need
the additional zero-knowledge proofs of equality of committed values.

7.3 Sudoku

In the following we use a commitment scheme of Type B.

The following protocol is a possible solution for this task:

Phase 1: Peggy commits to every cell of the Sudoku solution. Peggy additionally com-
mits for every row, column and subgrid, to the numbers {1, . . . , n} uniformly at
random.

Phase 2: Vic chooses a challenge uniformly at random c ∈R {0, 1}.
Phase 3: If c = 0 Peggy opens all additional commitments (rows, columns, subgrids)

and also the preprinted values of the Sudoku solution. Vic checks that in each
additional row, column and subgrid the numbers from {1, . . . , n} appear, and also
checks that the preprinted values of the Sudoku solution are consistent. And if c = 1,



Peggy proves (using the ZK proof for equality) that the blobs between each row (resp.
column, subgrid) in the Sudoku solution and the additionally committed row (resp.
column, subgrid) are commitments to equal values.

Completeness: If Peggy knows the Sudoku solution, she can answer both challenges, so
completeness follows directly.

Proof of Knowledge: The protocol is 2-extractable. Let the triples (t, c, r), (t, c′, r′)
be two triples of messages accepted by Vic with 0 = c 6= c′ = 1. Here the message t is the
set of blobs that Peggy commits to (the Sudoku solution and the additionally committed
rows, columns and subgrids). From the first triple, we obtain r, the decommitment to
open all preprinted values in the Sudoku solution and all additionally committed rows,
columns and subgrids. From the second triple, we obtain r′, the zero knowledge equality
proofs between the blobs corresponding to rows/columns/subgrids of the Sudoku solution
and the additionally committed rows/columns/subgrids. Since the commitments are of
type B, we can recover the original values of the Sudoku solution with overwhelming
probability.

Zero-Knowledge: The simulator S can produce a transcript as follows: First, S com-
mits to a fake Sudoku solution with valid preprinted values, and also for each row, column
and subgrid, S commits to the numbers {1, . . . , n} uniformly at random. If V ′ sends the
challenge c = 0, the simulator opens the preprinted values and the additionally commit-
ted rows, columns and subgrids. If V ′ sends c = 1, S uses the simulator S′ for the blob
equality protocol to compute a transcript of the corresponding equality proofs. Note that,
by the computational hiding property of the commitments, the transcript produced by S′

is computationally indistinguishable from the real interaction.


