Cryptographic Protocols Solution to Exercise 6

6.1 One-Way Homomorphism Zero-Knowledge Proofs of Knowledge

The protocols are instantiations of the proof of knowledge of a pre-image of a one-way group homomorphism. That is, for each scenario, one needs to provide a suitable homomorphism ϕ between two groups, u and ℓ (for each z), as well as a challenge space $\mathcal C$ such that the preconditions of the theorem are satisfied.

a) Let $\phi: \mathbb{Z}_m^* \times \mathbb{Z}_m^* \to \mathbb{Z}_m^*, (x,y) \mapsto x^{e_1}y^{e_2}$. Then, ϕ is a homomorphism since

$$\phi((x,y)\cdot(x',y')) = \phi((xx',yy')) = (xx')^{e_1}(yy')^{e_2} = x^{e_1}y^{e_2}x'^{e_1}y'^{e_2}$$
$$= \phi(x,y)\cdot\phi(x',y').$$

Let $C \subseteq \{0, \ldots, e_1 + e_2 - 1\}$ be polynomially bounded. For $z \in \mathbb{Z}_m^*$, let u := (z, z) and $\ell := e_1 + e_2$. Then,

- 1. ℓ is prime, and thus $gcd(c_1 c_2, \ell) = 1$ for all $c_1, c_2 \in \mathcal{C}$, and
- 2. $\phi(u) = \phi(z, z) = z^{e_1} z^{e_2} = z^{e_1 + e_2} = z^{\ell}$.
- **b)** Let $\phi: \mathbb{Z}_q^4 \to H^2, (x_1, x_2, x_3, x_4) \mapsto (z_1, z_2) = (h_1^{x_3} h_2^{x_1}, h_1^{x_2} h_2^{x_4} h_3^{x_1})$. Clearly, ϕ is a homomorphism since

$$\phi((x_1, x_2, x_3, x_4) + (x'_1, x'_2, x'_3, x'_4))$$

$$= (h_1^{x_3 + x'_3} h_2^{x_1 + x'_1}, h_1^{x_2 + x'_2} h_2^{x_4 + x'_4} h_3^{x_1 + x'_1})$$

$$= (h_1^{x_3} h_2^{x_1} \cdot h_1^{x'_3} h_2^{x'_1}, h_1^{x_2} h_2^{x_4} h_3^{x_1} \cdot h_1^{x'_2} h_2^{x'_4} h_3^{x'_1})$$

$$= (h_1^{x_3} h_2^{x_1}, h_1^{x_2} h_2^{x_4} h_3^{x_1}) \cdot (h_1^{x'_3} h_2^{x'_1}, h_1^{x'_2} h_2^{x'_4} h_3^{x'_1})$$

$$= \phi((x_1, x_2, x_3, x_4)) \cdot \phi((x'_1, x'_2, x'_3, x'_4)).$$

Let $C \subseteq \mathbb{Z}_q$. For $z \in H^2$, let u := (0, 0, 0, 0) and $\ell := q$. Then,

- 1. ℓ is prime, and thus $gcd(c_1 c_2, \ell) = 1$ for all $c_1, c_2 \in \mathcal{C}$, and
- 2. $\phi(u) = \phi(0,0,0,0) = (1,1) = z^q = z^\ell$.

6.2 Perfectly Binding/Hiding Commitments

We consider perfectly correct commitment schemes with a non-interactive COMMIT phase. Such a commitment scheme can be characterized by a function $C: \mathcal{X} \times \mathcal{R} \to \mathcal{B}$ that maps a value $x \in \mathcal{X}$ and a randomness string r from some randomness space \mathcal{R} to a blob b = C(x,r) in some blob space \mathcal{B} . The OPEN phase simply consists of the prover's sending (x,r) to the verifier, who checks that C(x,r) = b.

In the following, denote by $\mathcal{B}_x := \operatorname{im} C(x, \cdot)$ for $x \in \mathcal{X}$.

- a) Let $x \neq x'$. Perfectly binding means that $\mathcal{B}_x \cap \mathcal{B}_{x'} = \emptyset$, whereas perfectly hiding means that C(x,R) and C(x',R) are identically distributed random variables for $R \in_R \mathcal{R}$. This requires in particular that $\mathcal{B}_x = \mathcal{B}_{x'}$, which contradicts $\mathcal{B}_x \cap \mathcal{B}_{x'} = \emptyset$.
- b) Subtasks b) and c) are discussed simultaneously in c).

- c) Note that in all cases, the combined scheme is a string commitment $C(x,(r_1,r_2))$.
 - 1. HIDING: The computational hiding property of C_B cannot be broken by additionally adding the blob of the perfectly hiding scheme C_H .¹
 BINDING: As C_B is perfectly binding, this is also true for the combined scheme $(C_H(x, r_1), C_B(x, r_2))$, since $C(x, (r_1, r_2)) = C(x', (r'_1, r'_2))$ implies that $C(x, r_1) = C(x', r_2)$.
 - 2. HIDING: Clearly, the scheme is perfectly hiding as $C_H(C_B(x, r_1), r_2)$ perfectly hides $C_B(x, r_1)$ and thereby x.

 BINDING: Assume for contradiction one could efficiently come up with $x \neq x'$, (r_1, r_2) , and (r'_1, r'_2) such that $C(x, (r_1, r_2)) = C(x', (r'_1, r'_2))$. Then, by the fact that C_B is perfectly binding, $y := C_B(x, r_1) \neq C_B(x', r'_1) =: y'$, one can efficiently come up with $y \neq y'$, r_2 , and r'_2 such that $C_H(y, r_2) = C_H(y', r'_2)$, which breaks the (computational) binding property of C_H .
 - 3. HIDING: Clearly, the scheme is perfectly hiding as $C_H(x, r_1)$ perfectly hides x. BINDING: Assume for contradiction one could efficiently come up with $x \neq x'$, (r_1, r_2) , and (r'_1, r'_2) such that $C(x, (r_1, r_2)) = C(x', (r'_1, r'_2))$. Then, by the fact that C_B is perfectly binding, $y := C_H(x, r_1) = C_H(x', r'_1) =: y'$, one can efficiently come up with $x \neq x'$, r_1 , and r'_1 such that $C_H(x, r_1) = y = C_H(x', r'_1)$, which breaks the (computational) binding property of C_H .

6.3 Graph Coloring

The protocol is a proof of statement, it shows that \mathcal{G} has a 3-coloring. Let $V = \{1, \dots, n\}$, and the 3-coloring be defined as a function $f: V \to \{1, 2, 3\}$.

Reggy Vic

knows a 3-coloring f for $\mathcal{G} \coloneqq (V, E)$ choose a random permutation of the colors π let $f' = \pi \circ f$ $\forall i \in V, \text{ commit to } f'(i) \text{ as } C_i$ $\underbrace{C_1, \dots, C_n}_{(i,j)} \qquad \text{let } (i,j) \in_R E$ open colors of vertices i and j $\overset{d_i, d_j}{\longrightarrow} \text{ check if } f'(i), f'(j) \in \{1, 2, 3\}$ and $f'(i) \neq f'(j)$

COMPLETENESS: It is easily verified that if G has a 3-coloring, then Vic always accepts. Peggy can answer all the Vic's queries correctly such that Vic is convinced as long as the commitment scheme is binding.

Soundness: The scheme has soundness $\frac{1}{|E|}$: if \mathcal{G} does not have a 3-coloring, a cheating prover must commit to a coloring that has at least one edge whose vertices have the same color, or to colors that are not in $\{1,2,3\}$. Hence, with probability $\frac{1}{|E|}$, the verifier catches him, assuming the commitments are perfectly binding. When doing n|E| sequential repetitions of the protocol, the soundness error is down to $(1-\frac{1}{|E|})^{n|E|} \leq e^{-n}$.

ZERO-KNOWLEDGE: The protocol is c-simulatable: Given (i, j), choose random colors σ_i, σ_j , and compute the commitments C_i, C_j . Since |E| is polynomially large the protocol is zero-knowledge., assuming that the commitments are perfectly hiding.

¹Formally, this would have to be proved via a reduction.