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Solution to Exercise 3

3.1 Definition of Interactive Proofs

a) As an extreme example, the “halting problem” is known to be undecidable and there-
fore not in IP. There are also decidable problems that are not in IP. For example,
some problems related to the game of Go are EXPSPACE-complete.

b) Consider an interactive proof (P, V ) for a language L, where P and V are probabilistic.
We want to construct a deterministic P̂ so that (P̂ , V ) is an interactive proof that
accepts the same language.

In the random experiment between the probabilistic P and the probabilistic V , denote
by pacc,x the probability that V accepts x. Moreover, let pacc,xr be the probability that
V accepts if P ’s randomness is fixed to r and pr that r is chosen as P ’s randomness.

On input x, P̂ does as follows: It runs the protocol (P, V ) with all possible random
inputs for both Peggy and Vic and computes for each fixed randomness r of Peggy,
the set of fixed randomness s of Vic that are accepted in the protocol (P, V ).1 Then,
P̂ chooses to run P with the randomness r′ that maximizes pacc,xr′ . Note that pacc,xr′ is

the probability that V accepts in an interaction with P̂ . Observe that

p ≤ pacc,x =
∑
r

pacc,xr pr ≤
∑
r

pacc,xr′ pr = pacc,xr′

∑
r

pr = pacc,xr′ .

Thus, if x ∈ L, the probability that P̂ convinces V is at least p. Conversely, since V
is such that it accepts a proof for a word x /∈ L with probability at most q no matter
which prover it interacts with, (P̂ , V ) is trivially sound.

Given the considerations in b), the prover’s algorithm is assumed to be deterministic for
the remainder of this task.

c) If both P and V are deterministic, for every x there is but a single transcript between
P and V . Since (P, V ) is an interactive proof, this transcript is accepted by V if and
only if x ∈ L. Thus, the transcript serves as an efficiently verifiable witness if x ∈ L
and if x /∈ L, no transcript can convince V . Thus, L ∈ NP.

d) Let (P, V ) be an interactive-proof protocol with q = 0, i.e., V never accepts some
x /∈ L. The situation is similar to that in c): If x ∈ L, the fact that p > q = 0 implies
that there exists an accepting transcript between P and V , which is a witness for x.
If x /∈ L, q = 0 implies that no such transcript exists. Thus, L ∈ NP.

e) For n ≥ 1 we define the protocol (P ′, V ′) as follows: For input x, the protocol (P, V )
is repeated sequentially n times. V ′ accepts x if and only if V accepted x at least
p∗ · n times. We show now that for n large enough (P ′, V ′) meets the definition of an
interactive proof with parameters p′, q′. To do that, let us fix p∗ = p+q

2 , and ε = p−q
2 .

For i = 1, . . . , n, let Xi be the random variable that is 1 if V accepts x in the ith round
and 0 otherwise, and set X := 1

n

∑
Xi and µ := E[X]. Note that µ = P[Xi = 1] for

any i.

1Recall that the prover’s algorithm need not be efficient.



Consider now x ∈ L. In that case µ = P[Xi = 1] ≥ p∗ + ε. Hence,

P[V ′ rejects x] ≤ P[
∑

Xi ≤ p∗n]

= P[
∑

Xi ≤ (p∗ + ε)n− εn]

= P[X ≤ (p∗ + ε)− ε]
≤ P[X ≤ µ− ε]

≤ e−2nε2 .

Consider now x /∈ L. In that case µ = P[Xi = 1] ≤ p∗ − ε. Hence,

P[V ′ accepts x] ≤ P[
∑

Xi ≥ p∗n]

= P[
∑

Xi ≥ (p∗ − ε)n+ εn]

= P[X ≥ (p∗ − ε) + ε]

≤ P[X ≥ µ+ ε]

≤ e−2nε2 .

Concerning the number n of repetitions, note that if for example p′ = 1− δ and q′ = δ
for δ > 0, then completeness and soundness are satisfied if e−2nε

2 ≤ δ. This is the case
if and only if n ≥ 1

2ε
−2 ln(δ−1). This means that δ can be made negligible, whereas ε

needs to be noticeable (asymptotically in the length of the input to P and V ) in order
for n to be polynomial.2

3.2 Geometric Zero-Knowledge

a) Given two angles α and β, the angle α ± β can be constructed as follows: Open the
compass to an arbitrary angle. Draw a circle around the endpoints of both angles with
the resulting radius, which results in four new points pα, p

′
α, pβ, p

′
β. Open the compass

to the distance between pα and p′α. Draw a circle around, say, pβ with the resulting
radius and create the line ` through pβ and p′β as well as the intersection points qβ
and q′β of the circle and `. Then, create a line through the endpoint of β and qβ or q′β,
depending on whether α+ β or α− β is to be constructed.

b) A possible protocol for this task is the following one:

Peggy Vic

knows angles α, β
s.t. β = 3α

knows angle β

choose random angle κ
create τ := 3κ -τ

� c
choose random c ∈R {0, 1}

create ρ := κ+ cα -ρ
check 3ρ

?
= τ + cβ

c) Completeness: One can easily verify that if Peggy is honest and knows α, Vic will
always accept.

Proof of Knowledge: Here we show that if Peggy knows how to answer both
challenges, she actually can compute the trisection α. Assume Peggy knows successful

2See the the lecture notes, Section 1.1.6, for definitions of negligible, noticeable, and polynomial.



answers ρ, ρ′ to both challenges c = 0 and c′ = 1 for the same first message τ . In that
case,

3ρ = τ and 3ρ′ = τ + β.

Thus, 3ρ′ − 3ρ = β = 3α, and, therefore, Peggy may compute the angle α as ρ′ − ρ.

d) Zero-Knowledge: The protocol is c-simulatable: for a given challenge c ∈ {0, 1},
choose a uniform random angle ρ and set τ := 3ρ − cβ, which is easily checked to
result in the correct distribution. Moreover, the size of the challenge space is clearly
polynomial.

Therefore, as discussed in the lecture, the protocol is perfectly zero-knowledge.

3.3 The “Complement” of Fiat-Shamir: Proof of Quadratic Non-Residuosity

Let m = pq. In the following, denote by QRm the set of quadratic residues and by QNRm

the set of quadratic non-residues in Z∗m. Observe that if a ∈ QRm, then a · b ∈ QRm if
and only if b ∈ QRm.

a) The protocol works as follows:

Peggy Vic

knows a knows a

� y
choose b ∈R {0, 1}, ρ ∈R Z∗m
compute y := ab · ρ2

b′ := 0 if y ∈ QRn

b′ := 1 otherwise -b′
b′

?
= b

Note that Peggy must determine whether y is a quadratic residue, which, however, is
of no concern since the prover is permitted to be unbounded.

b) The protocol is a proof of the statement that a is a quadratic non-residue modulo m.
It is not a proof of knowledge.

Completeness: If a is a quadratic non-residue, then a · ρ2 is a quadratic non-residue
(Section 1.1.5 of the lecture notes), and, obviously, ρ2 is a quadratic residue. Thus,
the unbounded Peggy is able to determine the bit b of Vic correctly.

Soundness: Assume a is a quadratic residue. Then, both a · ρ2 and ρ2 are uni-
form random elements of QRm. Therefore, a cheating prover P ′’s view is statistically
independent of Vic’s bit b, which causes Vic to reject with probability at least 1/2.

c) The view of the honest verifier V can be simulated easily by choosing a random bit b
and a random ρ ∈ Z∗m and setting y := abρ2 and b′ := b.

d) The protocol is not zero-knowledge. A dishonest Vic V ′ can use the interaction with
Peggy to find out whether or not some arbitrary number a′ ∈ Z∗m is a quadratic residue
modulo m (by setting y = a′).


