Cryptographic Protocols

Spring 2017

Part 3

Distinguishing Advantage

Setting: Random variables X and Y, distributions P_X and P_Y

Distinguisher

- $\bullet \ \, {\sf Algorithm} \, \, A \ \, {\sf to} \, \, {\sf distinguish} \, \, X \ \, {\sf from} \, \, Y \\$
- Goal: on input $x \leftarrow X$, output "X"; on input $y \leftarrow Y$, output "Y"

Advantage: $\Delta_A(X,Y) := \left| \Pr_X[A(x) = X^*] - \Pr_Y[A(y) = X^*] \right|$

Asymptotics

- \bullet Families of random variables $\{X_n\}_{n\in\mathbb{N}}$ and $\{Y_n\}_{n\in\mathbb{N}}$
- $\Delta_A(X_n, Y_n) := | \Pr_{X_n}[A(x) = X'] \Pr_{Y_n}[A(y) = X'] |$

Indistinguishability Levels

- Perfect: $P_X = P_Y$, i.e. $\forall A : \Delta_A(X_n, Y_n) = 0$
- Statistical: $\forall A: \Delta_A(X_n, Y_n) = \text{negligible in } n$
- Computational: \forall polytime $A: \Delta_A(X_n, Y_n) =$ negligible in n

Schnorr - One Round of the Protocol

Setting: Cyclic group $H = \langle h \rangle$, |H| = q prime.

Goal: Prove knowledge of the discrete logarithm of a given $z \in H$.

Proofs of Knowledge

Let $Q(\cdot, \cdot)$ be a binary predicate and let a string z be given. Consider the problem of proving knowledge of a secret x such that Q(z,x)= true.

Definition: A protocol (P,V) is a **proof of knowledge for** $Q(\cdot, \cdot)$ if there exists an efficient program (knowledge extractor) K, which can interact with any program P' for which V accepts with non-negligible probability, and outputs a valid secret x.

Note: K can rewind P' (restart with same randomness).

2-Extractability

r = k + cx

Definition: A three-move protocol (round) with challenge space C is **2-extractable** if from any two triples (t, c, r) and (t, c', r') with $c \neq c'$ accepted by Vic one can efficiently compute an x with Q(z,x) = true.

Theorem: An interactive protocol consisting of s 2-extractable rounds with challenge space C is a proof of knowledge $Q(\cdot,\cdot)$ if $1/|C|^s$ is negligible.

Proof: Knowledge extractor K:

- 1. Execute the protocol between P' and V.
- 2. Rewind P' and execute the protocol again (same randomness for P').
- 3a. If V accepts in both executions, identify first round with different challenges c and c' (but same t). Use 2-extractability to compute an x, and output it (and stop).
- 3b. Otherwise, go back to Step 1.

Witness Hiding POKs

Definition: A POK (P,V) is witness-hiding (WH) if there exists no efficient algorithm which, after interacting arbitrarily with P (possibly in many protocol instantiations), can make V accept with non-negligible probability.

For predicate $Q(\cdot,\cdot)$ and value z, let $\mathcal{W}_z=\{x:Q(z,x)=\text{true}\}$ be the set of witnesses for z. Consider a setting where $|\mathcal{W}_z| \geq 1$.

Definition: A POK (P,V) is witness-independent (WI) if for any verifier V' the transcript is independent of which witness the prover is using in the proof.

Theorem: If one can generate a pair (x, z) with x uniform in \mathcal{W}_z and it is computationally infeasible to find a triple (z, x, x') with $x \neq x'$ and $x, x' \in \mathcal{W}_z$, then every witness-independent POK for $Q(\cdot, \cdot)$ is witness-hiding.