
ETH Zurich, Department of Computer Science
SS 2017

Dr. Martin Hirt
Chen-Da Liu Zhang

Cryptographic Protocols

Solution to Exercise 2

2.1 Complexity Theory

a) Let us denote ε(n) the failure probability of A for an input of size n. Since the failure
probability of A is negligible, we have that ∀c ∈ N ∃n0 : ∀n ≥ n0 : ε(n) ≤ 1

nc . For

the algorithm A′ that invokes A polynomially many times (say less than nc
′

times
for some c′), the failure probability of A′ is bounded by nc

′ · ε(n). Hence, we have

that ∀c ∈ N ∃n0 : ∀n ≥ n0 : ε′(n) ≤ nc
′
ε(n) ≤ nc′

nc = 1
nc−c′ . This means, that

∀d ∈ N ∃n0 : ∀n ≥ n0 : ε′(n) ≤ 1
nd and A′ has negligible failure probability.

b) Recall that a function f : N → R+ is negligible if it decreases (to 0) faster than the
inverse of every polynomial, i.e., if

∀c ∈ N : ∃n0 : ∀n ≥ n0 : f(n) ≤ 1

nc
.

The negation of this definition is

∃c ∈ N : ∀n0 : ∃n ≥ n0 : f(n) >
1

nc
,

which is not the same as a noticeable function (the function can be lower bounded by
the inverse of some polynomial):

∃c ∈ N : ∃n0 : ∀n ≥ n0 : f(n) ≥ 1

nc
.

It is not hard to obtain a function that is both not negligible and not noticeable. For
example, we can take a noticeable function and a negligible function and interleave
them. Let

f(n) =

{
2−n, for n even
n−2, for n odd

Such a function is not negligible, because for odd integers, the function is only poly-
nomially small. It is also not noticeable, because for even numbers, it is exponentially
small.

c) A non-deterministic Turing machine can simply non-deterministically run the verifier
on all possible witness strings. Observe that this requires only polynomially many
steps, because it can non-deterministically choose the next character in the proof
string in each step, and the length of the proof string is required to be polynomially
bounded. If any proof is valid, some path will accept and the non-determinism will
choose this path. If no proof is valid, the string is not in the language and it will
reject.

Observe that the converse is also true. Suppose there is a non-deterministic Turing
machine accepting a given language L. This means that there must be at least one



accepting path, where it starts at some state S, travels through polynomially many
states, and ends in a halting state H: (S, . . . ,H). The polynomially long string
describing this path is the witness supplied to the verifier. The verifier can then
deterministically simulate the Turing machine, following only the accepting path, and
verifying that it accepts at the end. If the Turing machine rejects the input, there is
no accepting path, and the verifier will always reject.

2.2 Identification Protocols

a) Eve can eavesdrop the key k from the insecure channel and impersonate Alice by
sending the key k to Bob.

b) Eve cannot compute the key k from the pair (v, c), but she can execute a replay attack
as follows: Eve stores (v, c) and at a later time impersonates Alice by sending (v, c)
to Bob. Bob will verify that c is the encryption of v with key k and identify Eve as
Alice.

c) Alice and Bob can use the following protocol:

1. Bob chooses a random v, encrypts v with k, and sends the cyphertext c to Alice.

2. Alice decrypts the cyphertext, and sends v to Bob.

In this case Eve cannot reply the previous attack, since she cannot decrypt the cypher-
text that Bob sends to Alice.

d) Let m = pq be an RSA modulus (which may, e.g., have been generated by a trusted
third party). At the conference meeting, Alice chooses a random x ∈ Z∗m (her secret
key), computes z := x2 in Z∗m (her public key), and hands z to Bob.

For Alice to identify herself to Bob, the Fiat-Shamir protocol is invoked, where Alice
proves to Bob that she knows x. The protocol is invoked many times and Bob accepts
if and only if he accepts in all invocations.

1. The completeness and soundness properties of the Fiat-Shamir protocol guarantee
that Alice always succeeds in authenticating herself, whereas Eve (almost) always
fails to do so.

2. Due to the zero-knowledge property of the Fiat-Shamir protocol, the messages
sent to Bob do not reveal any information beyond the fact that Alice knows her
secret key. This means that Eve also does not get any information.

3. Advantages: With the Fiat-Shamir protocol, Eve cannot use the transcript of the
interaction at a later time to prove to anybody that Alice tried to authenticate
herself, since she could have generated it herself. Moreover, if one accepts a
cheating probability of ≤ 2−80, then the parties need to perform 80 multiplications
each, which is much less than the number of multiplication typically needed to
compute a signature.
Disadvantage: Needs more communication and interaction as the Fiat-Shamir
protocol needs to be repeated multiple times to get a low cheating probability.

2.3 Graph (Non-)Isomorphism

a) The GNI protocol from the lecture is not zero-knowledge because Vic could cheat by
sending Peggy an arbitrary graph K and learn if K is isomorphic to G0 or G1.

b) The protocol is honest-verifier zero-knowledge, since in the case where the verifier
follows the protocol, he chooses one bit b at random, and receives a bit c = b.

c) Let the three graphs be (G0,G1,G2). The verifier permutes each graph randomly gen-
erating Hi with Hi

∼= Gi for i ∈ {0, 1, 2}, and chooses a shift uniformly at random
s ∈ {0, 1, 2}. Let Ki := H(i+s)mod 3, for i ∈ {0, 1, 2}. The verifier sends (K0,K1,K2)



to the prover, and the prover has to tell what s the verifier has chosen. If the prover
succeeds, the verifier accepts. Otherwise, he rejects.

Completeness: If the three graphs G0,G1,G2 are not all isomorphic, the prover can
tell which shift s the verifier has chosen.

Soundness: Assume that all graphs are isomorphic. In this case, the prover cannot
tell which shift s the verifier has chosen. Hence, he cannot succeed with probability
higher than one third.

Honest-Verifier Zero-Knowledge: Intuitively, the above protocol is honest-
verifier zero-knowledge because a cheating verifier chooses a random shift s, and then
receives s′ = s from the prover.


