Cryptographic Protocols

Spring 2017

Part 2

Polynomial, Negligible, Noticeable

Function $f: \mathbb{N} \to \mathbb{R}$

- f is polynomial \Leftrightarrow $\exists c \ \exists n_0 \forall n \geq n_0 : \ f(n) \leq n^c$
- $\Leftrightarrow \forall c \exists n_0 \forall n \ge n_0 : f(n) \le \frac{1}{n^c}$
- $\Leftrightarrow \exists c \exists n_0 \forall n \geq n_0 : f(n) \geq \frac{1}{n^c}$ • f is noticeable

Implications

- $poly \times poly = poly$
- poly × negligible = negligible (cannot be amplified)
- poly × noticeable = "large enough" (can be amplified)

P, NP, PSPACE, etc

Running Time of a fixed given TM (aka algorithm)

- for input x: number of steps s(x)
- for *n*-bit input: $t(n) := \max\{s(x) : x \in L, |x| \le n\}$ (worst-case)
- TM is polynomial iff t(n) is a polynomial function

Complexity Classes

- $P = \{L : \exists \text{ polytime TM that accepts } L\}$
- NP = $\{L : \exists \text{ non-det. polytime TM that accepts } L\}$ (German script) $NP = \{L : \exists \text{ poly TM s.t. } (x \in L \Leftrightarrow \exists w : TM(x, w) = 1)\} \text{ (Engl. scribe)}$ → Thm 1.8: These two definitions are equivalent!
- NP-hard = $\{L : \forall L' \in NP : L' \text{ can be reduced to L} \}$
- NP-Complete = NP \cap NP-hard
- PSPACE = $\{L : \exists \mathsf{TM} \mathsf{ that} \mathsf{ accepts} L \mathsf{ with} \mathsf{ poly} \mathsf{ memory} (\mathsf{in} \mathsf{ any} \mathsf{ time})\}$

Interactive Proofs of Statements

Def: TM accepts language L iff $x \in L \Leftrightarrow TM(x)$ outputs 1

Def: An interactive proof for language L is a pair (P,V) of int. programs s.t.

i) $\forall x$: running time of V is polynomial in |x|

ii) $\forall x \in L : \Pr((P \Leftrightarrow V) \rightarrow \text{``accept"}) \geq 3/4$ [p = 3/4]

iii) $\forall x \notin L, \forall P' : Pr((P' \Leftrightarrow V) \rightarrow \text{``accept''}) \leq 1/2$ [q = 1/2]

Remarks

- \bullet Constants p,q are arbitrary, could be $p=1-2^{-|x|}$ and $q=2^{-|x|}$
- \bullet However: only NP-languages have proofs with $q={\rm 0}$
- \bullet If iii) holds only for poly P' \rightarrow interactive argument
- Probabilistic P is not more powerful than deterministic P

Examples: Sudoku, GI, GNI, Fiat-Shamir,

Zero-Knowledge

Idea: Protocol (P,V) has transcript T, Simulator S outputs similar T'.

Def: (P,V) is zero-knowledge (ZK) $\Leftrightarrow \forall V' \exists S$:

- i) Transcript T of (P ↔ V') and output T' of S are indistinguishable,
- ii) Running time of S is polynomially bounded in running time of V'.

Def: (P,V) is black-box zero-knowledge (BB-ZK) $\Leftrightarrow \exists S \forall V'$:

- i) Transcript T of $(P \Leftrightarrow V')$ and output T' of S in $(S \Leftrightarrow V')$ are indist.,
- ii) Running time of S is polynomially bounded.

Def: (P,V) is honest-verifier zero-knowledge (HVZK) if S exists for V' = V.

Types of ZK: perfect, statistical, computational.

c-Simulatability

Definition: A three-move protocol (round) with challenge space C is c-simulatable if for any value $c \in C$ one can efficiently generate a triple (t,c,r) with the same distribution as occurring in the protocol (conditioned on the challenge being c).

Formally: The cond. distribution $P_{TR\mid C}$ is efficiently samplable.

Lemma: A 3-move *c*-simulatable protocol is HVZK. (assumption: challenge is efficiently samplable)

Lemma: A sequence of HVZK protocols is a HVZK protocol.

Lemma: A sequence of ZK protocols is a ZK protocol.

Lemma: HVZK round with c uniform from C, |C| small, is ZK.