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About the notes: These notes serve as written reference for the topics not covered by
the papers that are handed out during the lecture. The material contained therein
is thus a strict subset of what is relevant for the final exam.

These notes provide some basics for students not familiar with elementary number theory and
algebra, a description of the RSA public-key encryption system, and some important facts about
quadratic residues. Finally, the notes contain a short treatment of asymptotics and the concept
of a distinguisher.

1.1 Groups

A group is a mathematical structure 〈G; ∗〉 consisting of a non-empty set G and a binary
operation ∗ : G×G→ G and satisfying the following axioms:

(A1) The operation ∗ is associative, i.e., for any x, y, z ∈ G, x ∗ (y ∗ z) = (x ∗ y) ∗ z.

(A2) There exists a neutral element e for ∗, i.e., x ∗ e = e ∗ x = x for all x ∈ G.

(A3) Every element x ∈ G has an inverse x̂, i.e., x ∗ x̂ = x̂ ∗ x = e.

If ∗ is commutative, then G is called an abelian or commutative group. Often, ∗ is denoted by
+, inverses by −, and the neutral element by 0, in which case one speaks of an additive group.
Similarly, if the above are denoted by ·, −1, and 1, respectively, one speaks of a multiplicative
group.

Simple examples of groups are the integers with addition, i.e., 〈Z; +〉, the reals without zero
and with multiplication, i.e., 〈R \ {0}; ·〉, or the integers 0, . . . , n − 1 with addition modulo n,
i.e., 〈Zn,⊕n〉.

The order |G| of G is the number of elements in G. The order ord(x) of x ∈ G is the least
natural number k such that xk := x ∗ . . . ∗ x︸ ︷︷ ︸

k times

= e.1 An important theorem states that ord(x)

divides |G| for every x ∈ G. Consequently, x|G| = e.

Consider a finite group G. G is cyclic if there exists an element g ∈ G, called generator, such
that G = {g0, g1, . . . , gp−1}. In such a case, one says that g generates G, which is denoted by
G = 〈g〉.

1In particular, ord(e) = 1.



Two groups 〈G; ∗〉 and 〈H : ?〉 are called isomorphic, denoted by G ∼= H, if there exists a
bijection ψ : G→ H, called an isomorphism, such that for all x, y ∈ G

ψ(x ∗ y) = ψ(x) ? ψ(y).

Intuitively, this means that the groups G and H are “the same” up to relabeling the elements.2

An example of isomorphic groups is given in Section 1.4.

1.2 Inverses Modulo m and the Group Z∗m

Two numbers x, y ∈ Z are said to be congruent modulo m, denoted by

x ≡ y (mod m),

if m divides (x− y). A number y is an inverse modulo m of x if

x · y ≡ 1 (mod m).

If x and m are coprime, x has an inverse modulo m, and the extended Euclidean algorithm
(EEA) can be used to find an inverse modulo m of x, since computing the greatest common
divisor of x and m with the EEA yields numbers u, v ∈ Z such that

ux+ vm = gcd(x,m) = 1,

which implies that xu ≡ 1 (mod m), i.e., u is an inverse modulo m of x. Inverses y, y′ modulo
m of x are congruent modulo m, i.e., y ≡ y′ (mod m), as the reader can easily verify.

The above implies that 〈Z∗m;�m〉, where Z∗m := {x ∈ Z | 0 ≤ x < m, gcd(x,m) = 1} and where
�m is multiplication modulo m, is a group (the neutral element is 1).

If m = pq for two primes p and q, then |Z∗m| = (p− 1)(q − 1).3

1.3 The RSA Scheme

Pubic key encryption (PKE) schemes allow an entity Bob to create a key pair, consisting of
a public and a secret key, such that every entity Alice in possession of Bob’s public key may
encrypt messages such that only Bob, who has the secret key, can decrypt them.

In the RSA scheme, Bob generates a key pair as follows: He chooses two large random primes
p and q and computes m := pq. Moreover, he chooses a (not necessarily random) e such that
gcd(e, f) = 1 for f := |Z∗m| = (p− 1)(q − 1). The latter implies that e has an inverse d modulo
f and that therefore ed = kf + 1 for some k ∈ Z. Bob publishes (n, e) as the public key and
keeps d (which he computes using the EEA) as the secret key.

Alice encrypts a message x ∈ Z∗m by computing the ciphertext c := xe (in Z∗m). When Bob
obtains c, he computes

cd = xed = xkf+1 = (xf )k · x = x,

since xf = 1 in Z∗m.

In order for the RSA system to be secure, it must necessarily be hard to factor m, as an attacker
who knows p and q can easily compute the secret key d from these values. Note, however, that
the hardness of factoring is only known to imply the hardness of breaking RSA in restricted
models of computation (which is the relevant direction if the security of RSA is to be based
on factoring). Moreover, RSA as presented is deterministic, which is not sufficient for most
applications, and therefore needs to be randomized appropriately.

2Note that in general it may be difficult to efficiently compute group isomorphisms ψ.
3There is also a formula for general m, which is not discussed here.



1.4 The Chinese Remainder Theorem

Consider a system of r congruence relations

x ≡ a1 (mod m1)

...
...

x ≡ ar (mod mr),

where m1, . . . ,mr are pairwise disjoint moduli. In such a case, the Chinese Remainder Theorem
(CRT) states that there exists a unique solution x with 0 ≤ x < M :=

∏
imi.

To find the solution, let Mi := M/mi for i = 1, . . . , r. Then, for all i, gcd(Mi,mi) = 1 and
Mj ≡ 0 (mod mi) for j 6= i. The former implies that Mi has an inverse Ni modulo mi. That
is,

MiNi ≡ 1 (mod mi)

and thus
aiMiNi ≡ ai (mod mi),

while still
ajMjNj ≡ 0 (mod mi),

for j 6= i. Thus,

RM

(
r∑

i=1

aiMiNi

)
satisfies all relations above, where Rn(x) denotes the (unique) remainder when dividing x by
n. The reader can prove the uniqueness of the above solution as an exercise.

An important consequence of the CRT is that for m = pq, 〈Z∗m;�m〉 is isomorphic to 〈Z∗p ×
Z∗q ;�p,q〉, where �p,q is the component-wise multiplication modulo p resp. q, via the isomor-
phism

ψ : Z∗m → Z∗p × Z∗p, x 7→ (Rp(x), Rq(x)),

which the reader should verify.4 Put simply, instead of computing on integers modulo m,
one can compute on pairs of integers modulo p on the first component and modulo q on the
second.

1.5 Quadratic Residues

Let m ∈ N \ {0}. A (integer) number a is called a quadratic residue modulo m if there exists a
(integer) number r, called a square root modulo m of a, such that

r2 ≡ a (mod m).

Otherwise, a is a quadratic non-residue.

For a prime p, one defines the Legendre symbol

(
a

p

)
:=


1 if a is a quadratic residue modulo p,

0 if a is divisible by p,

−1 if a is a quadratic non-residue modulo p.

4This means showing that ψ satisfies the isomorphism property above and that it is a bijection; the latter can
be shown using the CRT.



Multiplying two quadratic residues or two quadratic non-residues results in a quadratic residue.
Multiplying a quadratic residue and a quadratic non-residue results in a quadratic non-residue.
In other words, the Legendre symbol satisfies(

a · b
p

)
=

(
a

p

)
·
(
b

p

)
.

One can show that in Z∗p, which has order |Z∗p| = p−1, there are exactly p−1
2 quadratic residues

and p−1
2 quadratic non-residues. That is, a number a either has two square roots r and r′,

which are in fact related by r ≡ −r′ (mod p), or none.

Euler proved that (
a

p

)
= a

p−1
2 ,

which is known as Euler’s criterion. The reader may look up a proof of it on the internet as an
exercise.

Consider now m = pq for two primes p and q, and let a ∈ Z∗m. Recall the isomorphism ψ
between Z∗m and Z∗p × Z∗q from above. The isomorphism property implies that

r2 = a⇐⇒ ψ(r2) = ψ(a)⇐⇒ (Rp(r
2), Rq(r

2)) = (Rp(a), Rq(a)).

That is, r is a square root of a in Z∗m if and only if Rp(r) is a square root of Rp(a) in Z∗p and
Rq(r) is a square root of Rq(a) in Z∗q . Since a number in Z∗p resp. Z∗q has two or no square roots,
every number in Z∗m has either four square roots or none.

1.6 Polynomial, Negligible, and Noticeable Functions

A function f : N → R+ is polynomial if it can be upper bounded by some polynomial, i.e.,
if

∃c ∈ N : ∃n0 : ∀n ≥ n0 : f(n) ≤ nc.

An algorithm is called efficient if its running time grows polynomially in the input length.

A function f : N → R+ is negligible if it decreases (to 0) faster than the inverse of every
polynomial, i.e., if

∀c ∈ N : ∃n0 : ∀n ≥ n0 : f(n) ≤ 1

nc
.

A function f : N→ R+ is noticeable if it can be lower bounded by the inverse of some polynomial,
i.e., if

∃c ∈ N : ∃n0 : ∀n ≥ n0 : f(n) ≥ 1

nc
.

Note that noticeable is not the negation of negligible.

In general, one can also consider other efficiency and negligibility notions, provided they satisfy
certain natural conditions. For example, if an efficient algorithm with negligible probability of
breaking a scheme is repeated “efficiently” many times, it should still have negligible probability
of doing so. The reader may check that the above standard notions satisfy this.



1.7 Distinguishing Advantage

A central concept in cryptography is that of a distinguisher. It is used to measure how different
two distributions are.5

A distinguisher is a probabilistic algorithm D that takes an input x from some domain X and
outputs a bit, denoted by D(x). The distinguishing advantage of D on two random variables
X and Y , distributed over X according to PX and PY , respectively, is given by

∆D(X,Y ) := |P[D(X) = 1]− P[D(Y ) = 1]|.

Distributions PX and PY are identical if and only if ∆D(X,Y ) = 0. The distinguishing advan-
tage satisfies the triangle inequality, i.e.,

∆D(X,Z) ≤ ∆D(X,Y ) + ∆D(Y, Z)

for any random variables X, Y , and Z, which the reader may prove as an exercise.

Two families {Xk}k∈N and {Yk}k∈N of random variables Xk and Yk, indexed by k ∈ N, are
(statistically) indistinguishable if ∆D(Xk, Yk) is a negligible function of k for all distinguishersD.
They are computationally indistinguishable if ∆D(Xk, Yk) is negligible for efficient distinguishers
D only.

5More generally, a distinguisher also captures how differently two (even interactive) “systems” behave. We
will not consider this general case in this course, however.


