This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van
Oorschot, and S. Vanstone, CRC Press, 1996.
For further information, see www.cacr.math.uwaterloo.ca/hac

CRC Press has granted the following specific permissions for the electronic version of this
book:

Permission is granted to retrieve, print and store a single copy of this chapter for
personal use. This permission does not extend to binding multiple chapters of
the book, photocopying or producing copies for other than personal use of the
person creating the copy, or making electronic copies available for retrieval by
others without prior permission in writing from CRC Press.

Except where over-ridden by the specific permission above, the standard copyright notice
from CRC Press applies to this electronic version:

Neither this book nor any part may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, microfilming,
and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution,
for promotion, for creating new works, or for resale. Specific permission must be
obtained in writing from CRC Press for such copying.

©1997 by CRC Press, Inc.

Chapter

Public-Key Encryption

Contentsin Brief

81 Introduction. 283
82 RSA public-keyencryption 285
83 Rabinpublic-keyencryption L. 292
84 ElGamal public-keyencryption. 294
85 McEliece public-key encryption, 298
8.6 Knapsack public-key encryptiono 300
8.7 Probabilistic public-key encryption L. 306
88 Notesandfurtherreferences 312

8.1 Introduction

This chapter considers various techniques for public-key encryption, also referred to as
asymmetric encryption. As introduced previously (§1.8.1), in public-key encryption sys-
tems each entity A hasapublic key e and acorresponding private key d. In secure systems,
thetask of computing d given e iscomputationally infeasible. The public key definesan en-
cryption transformation E., while the private key defines the associated decryption trans-
formation D,. Any entity B wishing to send a message m to A obtains an authentic copy
of A’spublickey e, usesthe encryption transformation to obtain the ciphertext c = E.(m),
and transmits ¢ to A. To decrypt ¢, A applies the decryption transformation to obtain the
origina message m = Dy4(c).

The public key need not be kept secret, and, in fact, may be widely available—only its
authenticity is required to guarantee that A isindeed the only party who knows the corre-
sponding privatekey. A primary advantage of such systemsisthat providing authentic pub-
lic keysisgeneraly easier than distributing secret keys securely, as required in symmetric-
key systems.

The main objective of public-key encryption is to provide privacy or confidentiality.
Since A’sencryptiontransformationis public knowledge, public-key encryption alonedoes
not provide data origin authentication (Definition 9.76) or data integrity (Definition 9.75).
Such assurancesmust be provided through use of additional techniques(see§9.6), including
message authentication codes and digital signatures.

Public-key encryption schemes are typically substantially slower than symmetric-key
encryption algorithms such as DES (§7.4). For this reason, public-key encryption is most
commonly used in practice for the transport of keys subsequently used for bulk data en-
cryption by symmetric algorithms and other applications including data integrity and au-
thentication, and for encrypting small data items such as credit card numbers and PINs.

283

284 Ch. 8 Public-Key Encryption

Public-key decryption may also provide authentication guaranteesin entity authentication
and authenticated key establishment protocols.

Chapter outline

Theremainder of the chapter isorganized asfollows. §8.1.1 providesintroductory material.
TheRSA public-key encryption schemeispresentedin §8.2; rel ated security and implemen-
tation issues are also discussed. Rabin’s public-key encryption scheme, which is provably
as secure as factoring, is the topic of §8.3. §8.4 considersthe ElGamal encryption scheme;
related security and implementation issues are also discussed. The McEliece public-key
encryption scheme, based on error-correcting codes, is examined in §8.5. Although known
to beinsecure, the Merkle-Hellman knapsack public-key encryption schemeis presentedin
8.6 for historical reasons— it was the first concrete realization of a public-key encryption
scheme. Chor-Rivest encryption is also presented (§8.6.2) as an example of an as-yet un-
broken public-key encryption scheme based on the subset sum (knapsack) problem. §8.7
introduces the notion of probabilistic public-key encryption, designed to meet especialy
stringent security requirements. §8.8 concludes with Chapter notes and references.

The number-theoretic computational problems which form the security basis for the
public-key encryption schemes discussed in this chapter are listed in Table 8.1.

| public-key encryption scheme

computational problem |

RSA integer factorization problem (§3.2)
RSA problem (§3.3)
Rabin integer factorization problem (§3.2)
sguare roots modulo composite n (§3.5.2)
ElGamal discrete logarithm problem (§3.6)
Diffie-Hellman problem (§3.7)
generalized EIGamal generalized discrete logarithm problem (§3.6)
generalized Diffie-Hellman problem (§3.7)
McEliece linear code decoding problem
Merkle-Hellman knapsack subset sum problem (§3.10)
Chor-Rivest knapsack subset sum problem (§3.10)
Goldwasser-Micali probabilistic | quadratic residuosity problem (§3.4)
Blum-Goldwasser probabilistic | integer factorization problem (§3.2)
Rabin problem (§3.9.3)

Table 8.1: Public-key encryption schemes discussed in this chapter, and the related computational
problems upon which their security is based.

8.1.1 Basic principles

Objectives of adversary

The primary objective of an adversary who wishesto “attack” a public-key encryption sch-
emeisto systematically recover plaintext from ciphertext intended for some other entity A.
If thisis achieved, the encryption scheme is informally said to have been broken. A more
ambitious objectiveis key recovery —to recover A’s privatekey. If thisisachieved, the en-

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.2 RSA public-key encryption 285

cryption schemeisinformally said to have been completely broken since the adversary then
has the ability to decrypt all ciphertext sent to A.

Types of attacks

Since the encryption transformations are public knowledge, a passive adversary can al-
ways mount a chosen-plaintext attack on a public-key encryption scheme (cf. §1.13.1). A
stronger attack is a chosen-ciphertext attack where an adversary selects ciphertext of its
choice, and then obtains by some means (from the victim A) the corresponding plaintext
(cf. §1.13.1). Two kinds of these attacks are usually distinguished.

1. Inanindifferent chosen-ciphertext attack, the adversary is provided with decryptions
of any ciphertextsof itschoice, but these ciphertexts must be chosen prior to receiving
the (target) ciphertext c it actually wishes to decrypt.

2. Inanadaptivechosen-ciphertext attack, the adversary may use (or haveaccessto) A's
decryption machine (but not the private key itself) even after seeing the target cipher-
text c. The adversary may request decryptionsof ciphertext which may berelated to
both the target ciphertext, and to the decryptions obtained from previous queries; a
restriction is that it may not request the decryption of the target c itself.

Chosen-ciphertext attacks are of concern if the environment in which the public-key en-
cryption scheme isto be used is subject to such an attack being mounted; if not, the exis-
tence of achosen-ciphertext attack istypically viewed as a certificational weakness against
aparticular scheme, although apparently not directly exploitable.

Distributing public keys

The public-key encryption schemes described in this chapter assume that there is ameans
for the sender of a message to obtain an authentic copy of the intended receiver’s public
key. In the absence of such ameans, the encryption scheme is susceptible to an imperson-
ation attack, asoutlinedin §1.8.2. Therearemany techniquesin practiceby which authentic
public keys can be distributed, including exchanging keys over a trusted channel, using a
trusted public file, using an on-line trusted server, and using an off-line server and certifi-
cates. These and related methods are discussed in §13.4.

Message blocking

Some of the public-key encryption schemes described in this chapter assume that the mes-
sage to be encrypted is, at most, some fixed size (bitlength). Plaintext messages longer
than this maximum must be broken into blocks, each of the appropriate size. Specific tech-
niques for breaking up a message into blocks are not discussed in this book. The compo-
nent blocks can then be encrypted independently (cf. ECB modein §7.2.2(i)). To provide
protection against manipulation (e.g., re-ordering) of the blocks, the Cipher Block Chaining
(CBC) modemay beused (cf. §7.2.2(ii) and Example 9.84). Sincethe CFB and OFB modes
(cf.§7.2.2(iii) and §7.2.2(iv)) employ only single-block encryption (and not decryption) for
both message encryption and decryption, they cannot be used with public-key encryption
schemes.

8.2 RSA public-key encryption
The RSA cryptosystem, named after itsinventorsR. Rivest, A. Shamir, and L. Adleman, is
the most widely used public-key cryptosystem. It may be used to provide both secrecy and
digital signatures and its security is based on the intractability of the integer factorization

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

286

Ch. 8 Public-Key Encryption

problem (§3.2). This section describes the RSA encryption scheme, its security, and some
implementation issues; the RSA signature schemeis coveredin §11.3.1.

8.2.1 Description

8.1

8.2

8.3

Algorithm Key generation for RSA public-key encryption

SUMMARY: each entity creates an RSA public key and a corresponding private key.
Each entity A should do the following:

Generate two large random (and distinct) primesp and ¢, each roughly the same size.
Computen =pgand ¢ = (p — 1)(¢ — 1). (See Note 8.5.)

Select arandom integer e, 1 < e < ¢, such that ged(e, ¢) = 1.

Use the extended Euclidean algorithm (Algorithm 2.107) to compute the unique in-
tegerd, 1 < d < ¢, suchthated = 1 (mod ¢).

5. A’spublickey is(n,e); A'sprivatekey isd.

AwWDdPE

Definition Theintegerse and d in RSA key generation are called the encryption exponent
and the decryption exponent, respectively, while n is called the modulus.

Algorithm RSA public-key encryption

SUMMARY: B encryptsamessage m for A, which A decrypts.

1. Encryption. B should do the following:
(a) Obtain A’sauthentic public key (n,e).
(b) Represent the message as an integer m in theinterval [0, n — 1].
(c) Computec = m® mod n (e.g., using Algorithm 2.143).
(d) Send theciphertext cto A.

2. Decryption. To recover plaintext m from ¢, A should do the following:
(@) Usethe privatekey d to recover m = ¢ mod n.

Proof that decryption works. Sinceed = 1 (mod ¢), there exists an integer & such that
ed =1+ k. Now, if ged(m,p) = 1 then by Fermat’s theorem (Fact 2.127),

mP~' =1 (mod p).

Raising both sides of this congruenceto the power k(g — 1) and then multiplying both sides
by m yields

mitke-1(a-1) = (mod p).

On the other hand, if ged(m, p) = p, thenthislast congruenceisagain valid since each side
is congruent to 0 modulo p. Hence, in al cases

m*=m (mod p).
By the same argument,

m=m (mod q).
Finally, since p and ¢ are distinct primes, it follows that

m*=m (mod n),

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.2 RSA public-key encryption 287

8.4

8.5

and, hence,

cd=(m)*=m (mod n).

Example (RSA encryption with artificially small parameters)

Key generation. Entity A choosesthe primesp = 2357, ¢ = 2551, and computesn =
pg = 6012707and ¢ = (p—1)(¢—1) = 6007800. A choosese = 3674911 and, using the
extended Euclidean algorithm, findsd = 422191 such that ed = 1 (mod ¢). A’s public
key isthe pair (n = 6012707, e = 3674911), while A’s private key isd = 422191.
Encryption. To encrypt a message m = 5234673, B uses an agorithm for modular expo-
nentiation (e.g., Algorithm 2.143) to compute

¢ = m®modn = 5234673374911 ;m0d 6012707 = 3650502,

and sends thisto A.
Decryption. To decrypt ¢, A computes

¢ modn = 3650502%221°1 mod 6012707 = 5234673. 0

Note (universal exponent) The number A = lem(p — 1, g — 1), sometimes called the uni-
versal exponent of n, may be used instead of ¢ = (p — 1)(¢ — 1) in RSA key generation
(Algorithm 8.1). Observe that A is a proper divisor of ¢. Using A can result in a smaller
decryption exponent d, which may result in faster decryption (cf. Note 8.9). However, if p
and g arechosen at random, then ged(p— 1, ¢ — 1) isexpected to be small, and consequently
¢ and A will be roughly of the same size.

8.2.2 Security of RSA

8.6

Thissubsection discussesvarioussecurity issuesrelated to RSA encryption. Variousattacks
which have been studied in the literature are presented, as well as appropriate measuresto
counteract these threats.

(i) Relation to factoring

Thetask faced by apassive adversary isthat of recovering plaintext m from the correspond-
ing ciphertext ¢, given the public information (n, e) of the intended receiver A. Thisis
called the RSA problem (RSAP), which was introduced in §3.3. Thereis no efficient algo-
rithm known for this problem.

One possible approach which an adversary could employ to solving the RSA problem
is to first factor n, and then compute ¢ and d just as A did in Algorithm 8.1. Onced is
obtained, the adversary can decrypt any ciphertext intended for A.

On the other hand, if an adversary could somehow compute d, then it could subse-
quently factor n efficiently as follows. First notethat sinceed = 1 (mod ¢), thereisan
integer k suchthat ed — 1 = k¢. Hence, by Fact 2.126(i), a®®~! = 1 (mod n) for all
a € Z,. Leted — 1 = 2%, wheret isan odd integer. Then it can be shown that there
existsani € [1,s] suchthat a2 't # +1 (mod n) and a2t = 1 (mod n) for at least half
of al a € Z*; if a and i are such integers then ged(a® ¢ — 1,n) isanon-trivial factor
of n. Thus the adversary simply needs to repeatedly select random e € Z;, and check if
ani € [1,s] satisfying the above property exists; the expected number of trials before a
non-trivial factor of n isobtained is 2. This discussion establishes the following.

Fact Theproblemof computingthe RSA decryptionexponent d fromthepublickey (n, e),
and the problem of factoring n, are computationally equivalent.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

288

Ch. 8 Public-Key Encryption

When generating RSA keys, it is imperative that the primes p and ¢ be selected in such a
way that factoring n = pq is computationally infeasible; see Note 8.8 for more details.

(i) Small encryption exponent e

In order to improve the efficiency of encryption, it is desirable to select asmall encryption
exponent e (see Note 8.9) such ase = 3. A group of entitiesmay all have the same encryp-
tion exponent e, however, each entity in the group must have its own distinct modulus (cf.
§8.2.2(vi)). If an entity A wishesto send the same message m to three entities whose pub-
lic moduli are ny, n2, ng, and whose encryption exponentsare e = 3, then A would send
c; = m3 mod n;, fori = 1,2, 3. Since these moduli are most likely pairwise relatively
prime, an eavesdropper observing c1, ¢z, c3 can use Gauss's algorithm (Algorithm 2.121)
tofind asolution z, 0 < x < ninsngs, to the three congruences

x=c; (modnp)
x=co (mod ng)
x=cs (mod ng).

Sincem? < ningns, by the Chinese remainder theorem (Fact 2.120), it must be the case
that z = m?. Hence, by computing theinteger cuberoot of z, the eavesdropper can recover
the plaintext m.

Thus a small encryption exponent such as e = 3 should not be used if the same mes-
sage, or even the same message with known variations, is sent to many entities. Alter-
natively, to prevent against such an attack, a pseudorandomly generated bitstring of ap-
propriate length (taking into account Coppersmith’s attacks mentioned on pages 313-314)
should be appended to the plaintext message prior to encryption; the pseudorandom bit-
string should be independently generated for each encryption. This process is sometimes
referred to as salting the message.

Small encryption exponentsare also a problem for small messages m, becauseif m <
n'/e, then m can be recovered from the ciphertext ¢ = m¢ mod n simply by computing
the integer e root of ¢; salting plaintext messages also circumvents this problem.

(i) Forward search attack

If the message spaceis small or predictable, an adversary can decrypt a ciphertext ¢ by sim-
ply encrypting all possible plaintext messages until ¢ is obtained. Salting the message as
described above is one smple method of preventing such an attack.

(iv) Small decryption exponent d

Aswas the case with the encryption exponent e, it may seem desirableto select asmall de-
cryption exponent d in order to improvethe efficiency of decryption.! However, if ged(p —
1,q — 1) issmall, asistypicaly the case, and if d has up to approximately one-quarter as
many bits as the modulus n, then there is an efficient algorithm (referenced on page 313)
for computing d from the public information (n, e). This algorithm cannot be extended to
the case where d is approximately the same size as n. Hence, to avoid this attack, the de-
cryption exponent d should be roughly the same size as n.

(v) Multiplicative properties
Let m; and ms be two plaintext messages, and let ¢; and ¢ be their respective RSA en-
cryptions. Observe that

(mim2)¢ = mim§ = cico (mod n).

LIn this case, one would select d first and then compute e in Algorithm 8.1, rather than vice-versa.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.2 RSA public-key encryption 289

In other words, the ciphertext corresponding to the plaintext m = mims mod nisc =
c1c2 mod n; thisis sometimes referred to as the homomor phic property of RSA. This ob-
servation leads to the following adaptive chosen-ciphertext attack on RSA encryption.

Supposethat an active adversary wishesto decrypt aparticular ciphertextc = m® mod
n intended for A. Suppose also that A will decrypt arbitrary ciphertext for the adversary,
other than c itself. The adversary can conceal ¢ by selecting a random integer x € Z,,
and computing ¢ = cz® mod n. Upon presentation of ¢, A will compute for the adversary
m = (¢)? mod n. Since

m = ©¢ = cHz9)? = mz (mod n),

the adversary can then compute m = ! mod n.

This adaptive chosen-ciphertext attack should be circumventedin practiceby imposing
somestructural constraintson plaintext messages. |f aciphertext cisdecryptedto amessage
not possessing this structure, then ¢ is rejected by the decryptor as being fraudulent. Now,
if a plaintext message m has this (carefully chosen) structure, then with high probability
ma mod n will not for z € Z;. Thus the adaptive chosen-ciphertext attack described in
the previous paragraph will fail because A will not decrypt ¢ for the adversary. Note 8.63
provides a powerful technique for guarding against adaptive chosen-ciphertext and other
kinds of attacks.

(vi) Common modulus attack

The following discussion demonstrates why it is imperative for each entity to choose its
own RSA modulusn.

It is sometimes suggested that a central trusted authority should select a single RSA
modulus n, and then distribute a distinct encryption/decryption exponent pair (e;, d;) to
each entity inanetwork. However, asshownin (i) above, knowledgeof any (e;, d;) pair al-
lowsfor the factorization of the modulusn, and hence any entity could subsequently deter-
minethe decryption exponentsof all other entitiesin the network. Also, if asingle message
were encrypted and sent to two or more entitiesin the network, then there is a technique by
which an eavesdropper (any entity not in the network) could recover the message with high
probability using only publicly availableinformation.

(vii) Cycling attacks
Let c = m® mod n beaciphertext. Let k beapositiveinteger such that " =c (mod n);
since encryption is a permutation on the message space {0, 1, ... ,n — 1} such an integer
k must exist. For the same reason it must be the case that ¢ = m (mod n). This ob-
servation leadsto the following cycling attack on RSA encryption. An adversary computes
c® mod n, ¢ mod n, ¢’ mod n, ... until cisobtained for thefirst time. If " modn =
¢, then the previous number in the cycle, namely <" mod n, is equal to the plaintext m.
A generalized cycling attack is to find the smallest positive integer v such that f =
ged(c®” —c,n) > 1. If

' =c (mod p) and " Zc¢ (mod q) (8.2)
then f = p. Similarly, if
" #c¢ (modp) and ¢ =¢ (mod q) (8.2)

then f = ¢. In either case, n has been factored, and the adversary can recover d and then
m. On the other hand, if both

u

¢ =c (modp) ad ¢ =c (mod q), (8.3

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

290

Ch. 8 Public-Key Encryption

then f = nandc®” = ¢ (mod n). Infact, u must be the smallest positive integer k
for which c¢¢* = ¢ (mod n). In this case, the basic cycling attack has succeeded and so
m=c""" mod n canbe computed efficiently. Since (8.3) is expected to occur much less
frequently than (8.1) or (8.2), the generalized cycling attack usually terminates before the
cycling attack does. For this reason, the generalized cycling attack can be viewed as being
essentially an algorithm for factoring n.

Sincefactoring n isassumedto beintractable, these cycling attacksdo not pose athreat
to the security of RSA encryption.

(viii) Message concealing

A plaintext messagem, 0 < m < n — 1, inthe RSA public-key encryption schemeis said
to beunconcealedif it encryptstoitself; thatis, m® = m (mod n). Thereareawayssome
messages which are unconcealed (for examplem = 0, m = 1, and m = n — 1). Infact,
the number of unconceal ed messagesis exactly

[1+gedle—1,p—1)]-[1 +ged(e —1,q—1)].

Sincee — 1, p— 1 and ¢ — 1 aredl even, the number of unconcealed messagesis always at
least 9. If p and ¢ are random primes, and if e is chosen at random (or if e is chosen to be
asmall number suchase = 3 or e = 216 + 1 = 65537), then the proportion of messages
which are unconcealed by RSA encryption will, in general, be negligibly small, and hence
unconceal ed messages do not pose a threat to the security of RSA encryption in practice.

8.2.3 RSA encryption in practice

8.7

8.8

There are numerous ways of speeding up RSA encryption and decryption in software and
hardware implementations. Some of these techniques are covered in Chapter 14, includ-
ing fast modular multiplication (§14.3), fast modular exponentiation (§14.6), and the use
of the Chinese remainder theorem for faster decryption (Note 14.75). Even with theseim-
provements, RSA encryption/decryption is substantially slower than the commonly used
symmetric-key encryption algorithms such as DES (Chapter 7). In practice, RSA encryp-
tionis most commonly used for the transport of symmetric-key encryption algorithm keys
and for the encryption of small dataitems.

The RSA cryptosystem has been patented in the U.S. and Canada. Several standards
organizations have written, or are in the process of writing, standards that address the use
of the RSA cryptosystem for encryption, digital signatures, and key establishment. For dis-
cussion of patent and standards issues related to RSA, see Chapter 15.

Note (recommended size of modulus) Given thelatest progressin algorithmsfor factoring
integers(§3.2), a512-bit modulusn providesonly marginal security from concerted attack.
As of 1996, in order to foil the powerful quadratic sieve (§3.2.6) and number field sieve
(8§3.2.7) factoring algorithms, amodulus n of at least 768 bits is recommended. For long-
term security, 1024-bit or larger moduli should be used.

Note (selecting primes)
(i) As mentioned in §8.2.2(i), the primes p and ¢ should be selected so that factoring
n = pq is computationally infeasible. The major restriction on p and ¢ in order to
avoid the eliptic curve factoring algorithm (§3.2.4) is that p and ¢ should be about
the same bitlength, and sufficiently large. For example, if a1024-bit modulusn isto
be used, then each of p and ¢ should be about 512 bitsin length.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.2 RSA public-key encryption 291

(i)

(iii)

Another restriction on the primes p and q is that the difference p — ¢ should not be
too small. If p — g issmall, thenp ~ ¢ and hencep =~ /n. Thus, n could be
factored efficiently simply by trial division by all odd integers closeto v/n. If p and
q are chosen at random, then p — ¢ will be appropriately large with overwhelming
probability.

In addition to these restrictions, many authors have recommended that p and ¢ be
strong primes. A prime p is said to be a strong prime (cf. Definition 4.52) if the fol-
lowing three conditions are satisfied:

(8 p — 1 hasalarge primefactor, denoted r;
(b) p+ 1 hasalarge primefactor; and
() » — 1 hasalarge prime factor.

An algorithmfor generating strong primesis presented in §4.4.2. Thereason for con-
dition (a) isto foil Pollard’'s p — 1 factoring algorithm (§3.2.3) which is efficient only
if n has a prime factor p such that p — 1 is smooth. Condition (b) foilsthep + 1
factoring algorithm mentioned on page 125 in §3.12, which is efficient only if n has
a prime factor p such that p + 1 is smooth. Finally, condition (c) ensures that the
cycling attacks described in §8.2.2(vii) will fail.

If the primep is randomly chosen and is sufficiently large, thenbothp —1andp + 1
can be expected to have large primefactors. In any case, while strong primes protect
against thep — 1 and p+ 1 factoring al gorithms, they do not protect against their gen-
eralization, the elliptic curvefactoring algorithm (§3.2.4). The latter is successful in
factoring n if arandomly chosen number of the same size as p (more precisely, this
number is the order of arandomly selected elliptic curve defined over Z,) has only
small prime factors. Additionally, it has been shown that the chances of acycling at-
tack succeeding are negligibleif p and ¢ are randomly chosen (cf. §8.2.2(vii)). Thus,
strong primes offer little protection beyond that offered by random primes. Giventhe
current state of knowledge of factoring algorithms, thereis no compelling reason for
requiring the use of strong primesin RSA key generation. On the other hand, they
are no less secure than random primes, and require only minimal additional running
time to compute; thusthereislittle real additional cost in using them.

8.9 Note (small encryption exponents)

0]

(i)

If the encryption exponent e is chosen at random, then RSA encryption using the re-
peated square-and-multiply algorithm (Algorithm 2.143) takes k modular squarings
and an expected k/2 (less with optimizations) modular multiplications, where & is
the bitlength of the modulusn. Encryption can be sped up by selecting e to be small
and/or by selecting e with asmall number of 1'sin its binary representation.

The encryption exponent e = 3 is commonly used in practice; in this case, it is nec-
essary that neither p— 1 nor ¢ — 1 bedivisibleby 3. Thisresultsin avery fast encryp-
tion operation since encryption only requires 1 modular multiplicationand 1 modular
squaring. Another encryption exponent used in practiceise = 2'6 +1 = 65537.
This number has only two 1's in its binary representation, and so encryption using
the repeated square-and-multiply algorithm requires only 16 modular squarings and
1 modular multiplication. The encryption exponent e = 216 + 1 has the advantage
over e = 3inthat it resists the kind of attack discussed in §8.2.2(ii), sinceit isun-
likely the same messagewill be sent to 216 41 recipients. But see also Coppersmith’s
attacks mentioned on pages 313-314.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

292 Ch. 8 Public-Key Encryption

8.3 Rabin public-key encryption

A desirable property of any encryption scheme is a proof that breaking it is as difficult as
solving a computational problem that iswidely believed to be difficult, such asinteger fac-
torization or the discrete logarithm problem. While it iswidely believed that breaking the
RSA encryption schemeis as difficult as factoring the modulusn, no such equivalence has
been proven. The Rabin public-key encryption scheme was thefirst example of aprovably
secure public-key encryption scheme — the problem faced by a passive adversary of recov-
ering plaintext from some given ciphertext is computationally equivalent to factoring.

8.10 Algorithm Key generation for Rabin public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.

Each entity A should do the following:
1. Generatetwo largerandom (and distinct) primesp and ¢, each roughly the same size.
2. Computen = pq.
3. A’spublickey isn; A'sprivatekey is (p, q).

8.11 Algorithm Rabin public-key encryption

SUMMARY: B encryptsamessage m for A, which A decrypts.

1. Encryption. B should do the following:
(8) Obtain A’sauthentic public key n.
(b) Represent the message as an integer m intherange {0,1,... ,n — 1}.
(c) Computec = m? mod n.
(d) Send the ciphertext cto A.

2. Decryption. To recover plaintext m from ¢, A should do the following:
(8) UseAlgorithm 3.44to find thefour squarerootsm;, ms, ms, and m4 of ¢ mod-

ulon.? (Seealso Note 8.12))

(b) The message sent was either my, mo, ms, or m4. A somehow (cf. Note 8.14)
decides which of theseism.

8.12 Note (finding squareroots of c modulon = pg whenp = ¢ = 3 (mod 4)) If pand q are
both chosento be = 3 (mod 4), then Algorithm 3.44 for computing the four square roots
of ¢ modulo n simplifies asfollows:

1. Usethe extended Euclidean algorithm (Algorithm 2.107) to find integers a and b sat-
isfying ap + bg = 1. Notethat a and b can be computed once and for all during the
key generation stage (Algorithm 8.10).

Compute r = ¢®+1)/4 mod p.

Compute s = ¢(9t1)/4 mod q.

Compute z = (aps + bgr) mod n.

Computey = (aps — bgr) mod n.

6. Thefour square roots of ¢ modulo n are z, —x mod n, y, and —y mod n.

ok

2Inthevery unlikely casethat ged(m, n) # 1, the ciphertext ¢ does not have four distinct square roots modulo
n, but rather only one or two.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.3 Rabin public-key encryption 293

8.13 Note (security of Rabin public-key encryption)

0]

(i)

(iii)

Thetask faced by a passive adversary isto recover plaintext m from the correspond-
ing ciphertext c. Thisisprecisely the SQROOT problem of §3.5.2. Recall (Fact 3.46)
that the problems of factoring n and computing square roots modulo n are computa-
tionally equivalent. Hence, assuming that factoring n is computationally intractable,
the Rabin public-key encryption scheme is provably secure against a passive adver-
sary.

While provably secure against a passive adversary, the Rabin public-key encryption
scheme succumbs to a chosen-ciphertext attack (but see Note 8.14(ii)). Such an at-
tack can be mounted asfollows. The adversary selectsarandom integer m € Z;, and
computesc = m? mod n. Theadversary then presentsc to A’s decryption machine,
which decrypts ¢ and returns some plaintext y. Since A does not know m, and m is
randomly chosen, the plaintext y is not necessarily the same as m. With probability
%, y # £m mod n, inwhich case gcd(m — y, n) isone of the primefactors of n. If
y = +m mod n, then the attack is repeated with a new m.?

The Rabin public-key encryption schemeis susceptible to attacks similar to those on
RSA described in §8.2.2(ii), §8.2.2(iii), and §8.2.2(v). Asisthe case with RSA, at-
tacks (i) and (iii) can be circumvented by salting the plaintext message, while attack
(v) can be avoided by adding appropriate redundancy prior to encryption.

8.14 Note (use of redundancy)

0]

(if)

A drawback of Rabin’s public-key scheme is that the receiver is faced with the task
of selecting the correct plaintext from among four possibilities. This ambiguity in
decryption can easily be overcome in practice by adding prespecified redundancy to
theoriginal plaintext prior to encryption. (For example, thelast 64 bits of themessage
may bereplicated.) Then, with high probability, exactly one of the four square roots
my, mo, mg, my Of alegitimate ciphertext ¢ will possess this redundancy, and the
receiver will select this as the intended plaintext. If none of the square roots of ¢
possesses this redundancy, then the receiver should reject ¢ as fraudulent.

If redundancy isused asabove, Rabin’sschemeisnolonger susceptibleto thechosen-
ciphertext attack of Note 8.13(ii). If an adversary selects a message m having there-
quired redundancy and gives c = m? mod n to A’s decryption machine, with very
high probability the machine will return the plaintext m itself to the adversary (since
the other three squarerootsof ¢ will most likely not contain therequired redundancy),
providing no new information. On the other hand, if the adversary selects amessage
m which does not contain the required redundancy, then with high probability none
of the four square roots of ¢ = m? mod n will possess the required redundancy. In
this case, the decryption machinewill fail to decrypt ¢ and thuswill not provideare-
sponse to the adversary. Note that the proof of equivalence of breaking the modified
scheme by a passive adversary to factoring is no longer valid. However, if the natu-
ral assumption is made that Rabin decryption is composed of two processes, thefirst
which findsthefour squarerootsof ¢ mod n, and the second which selectsthe distin-
guished square root as the plaintext, then the proof of equivalence holds. Hence, Ra-
bin public-key encryption, suitably modified by adding redundancy, is of great prac-
tical interest.

3This chosen-ciphertext attack is an execution of the constructive proof of the equivaence of factoring n and
the SQROQT problem (Fact 3.46), where A’s decryption machineis used instead of the hypothetical polynomial-
time algorithm for solving the SQROOT problem in the proof.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

294 Ch. 8 Public-Key Encryption

8.15 Example (Rabin public-key encryption with artificially small parameters)
Key generation. Entity A choosesthe primesp = 277, ¢ = 331, and computesn = pq =
91687. A'spublickey isn = 91687, while A’s privatekey is (p = 277, ¢ = 331).
Encryption. Suppose that the last six bits of original messages are required to be repli-
cated prior to encryption (cf. Note 8.14(i)). In order to encrypt the 10-bit message m =
1001111001, B replicates the last six bits of 7 to obtain the 16-bit message
m = 1001111001111001, which in decimal notation ism = 40569. B then computes

¢ = m?>modn = 405692 mod 91687 = 62111

and sends thisto A.
Decryption. To decrypt ¢, A uses Algorithm 3.44 and her knowledge of the factors of n to
compute the four square roots of ¢ mod n:

my = 69654, mo = 22033, ms = 40569, my4 = 51118,

whichin binary are

my = 10001000000010110, mo = 101011000010001,
ms3 = 1001111001111001, my4 = 1100011110101110.

Since only mg has the required redundancy, A decrypts ¢ to m3 and recovers the original
message m = 1001111001. O

8.16 Note (efficiency) Rabinencryptionisan extremely fast operationasit only involvesasin-
glemodular squaring. By comparison, RSA encryptionwith e = 3 takes one modular mul-
tiplication and one modular squaring. Rabin decryptionis slower than encryption, but com-
parable in speed to RSA decryption.

8.4 ElGamal public-key encryption

The ElGamal public-key encryption scheme can be viewed as Diffie-Hellman key agree-
ment (§12.6.1) inkey transfer mode(cf. Note8.23(i)). Itssecurity isbased ontheintractabil-
ity of the discretelogarithm problem (see §3.6) and the Diffie-Hellman problem (§3.7). The
basic EIGamal and generalized EIGamal encryption schemes are described in this section.

8.4.1 Basic ElGamal encryption

8.17 Algorithm Key generation for EIGamal public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:
1. Generate alarge random prime p and agenerator o of the multiplicative group Z;, of
the integers modulo p (using Algorithm 4.84).
2. Select arandominteger a, 1 < a < p — 2, and compute a® mod p (using Algo-
rithm 2.143).
3. A’spublickey is (p, a, a®); A’sprivatekey isa.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.4 ElGamal public-key encryption 295

8.18 Algorithm ElGamal public-key encryption

SUMMARY: B encryptsamessage m for A, which A decrypts.

1. Encryption. B should do the following;:
(8) Obtain A’sauthentic publickey (p, a, a®).
(b) Represent the message as an integer m intherange {0,1,... ,p —1}.
(c) Selectarandominteger k,1 <k <p— 2.
(d) Computey = o* mod pandé = m - (a®)* mod p.
(e) Send the ciphertextc = (v, 9) to A.

2. Decryption. To recover plaintext m from ¢, A should do the following:
(@ Uselghe private key a to compute v*~1~% mod p (note: yP~17% = 47 =

a~ew),

(b) Recover m by computing (y~%) - 6 mod p.

Proof that decryption works. The decryption of Algorithm 8.18 allows recovery of original
plaintext because

78 = o ®ma®® = m (mod p).

8.19 Example (ElGamal encryption with artificially small parameters)
Key generation. Entity A selects the prime p = 2357 and a generator o = 2 of Z55,. A
choosesthe private key a = 1751 and computes

a®mod p = 275! mod 2357 = 1185.

A'spublickey is (p = 2357, = 2, a® = 1185).
Encryption. To encrypt a message m = 2035, B selects arandom integer £ = 1520 and
computes

v = 2120 mod 2357 = 1430
and
§ = 2035-1185'2° mod 2357 = 697.

B sends~ = 1430 and § = 697 to A.
Decryption. To decrypt, A computes
AP7170 = 1430505 mod 2357 = 872,
and recovers m by computing
m = 872697 mod 2357 = 2035. U

8.20 Note (common system-wide parameters) All entities may elect to use the same prime p
and generator «, in which case p and o need not be published as part of the public key.
Thisresultsin public keys of smaller sizes. An additional advantage of having afixed base
« is that exponentiation can then be expedited via precomputations using the techniques
described in §14.6.3. A potentia disadvantage of common system-wide parametersis that
larger moduli p may be warranted (cf. Note 8.24).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

296

Ch. 8 Public-Key Encryption

8.21

8.22

8.23

8.24

Note (efficiency of ElIGamal encryption)

(i) Theencryption processrequirestwo modular exponentiations, namely o mod p and
(a®)¥ mod p. These exponentiations can be sped up by selecting random exponents
k having someadditional structure, for example, havinglow Hammingweights. Care
must be taken that the possible number of exponents is large enough to preclude a
search via a baby-step giant-step algorithm (cf. Note 3.59).

(i) A disadvantage of ElIGamal encryptionisthat there is message expansion by afactor
of 2. That is, the ciphertext is twice as long as the corresponding plaintext.

Remark (randomized encryption) ElGamal encryptionisone of many encryption schemes
which utilizes randomization in the encryption process. Others include McEliece encryp-
tion (§8.5), and Goldwasser-Micali (§8.7.1), and Blum-Goldwasser (§8.7.2) probabilistic
encryption. Deterministic encryption schemes such as RSA may also employ randomiza-
tionin order to circumvent some attacks (e.g., see §8.2.2(ii) and §8.2.2(iii)). Thefundamen-
tal idea behind randomized encryption (see Definition 7.3) techniquesis to use randomiza-
tion to increase the cryptographic security of an encryption process through one or more of
the following methods:

(i) increasing the effective size of the plaintext message space;
(i) precluding or decreasing the effectiveness of chosen-plaintext attacks by virtue of a
one-to-many mapping of plaintext to ciphertext; and
(iii) precluding or decreasing the effectivenessof statistical attacksby levelingtheapriori
probability distribution of inputs.

Note (security of EIGamal encryption)

(i) The problem of breaking the ElIGamal encryption scheme, i.e., recovering m given
p, a, a®, v, and ¢, is equivalent to solving the Diffie-Hellman problem (see §3.7). In
fact, the EIGamal encryption scheme can be viewed as simply comprising a Diffie-
Hellman key exchangeto determine a session key a®*, and then encrypting the mes-
sage by multiplication with that session key. For this reason, the security of the El-
Gamal encryption scheme is said to be based on the discrete logarithm problem in
Z,,, dthough such an equivalence has not been proven.

(i) Itiscritical that different random integers & be used to encrypt different messages.
Suppose the same k is used to encrypt two messages m; and mo and the resulting
ciphertext pairsare (y1, 1) and (2, d2). Then é1/d2 = mq/ma2, and mo could be
easily computed if m; were known.

Note (recommended parameter sizes) Given the latest progress on the discrete logarithm
problemin Z, (§3.6), a 512-bit modulus p provides only marginal security from concerted
attack. Asof 1996, amodulusp of at least 768 bits is recommended. For long-term secu-
rity, 1024-bit or larger moduli should be used. For common system-wide parameters (cf.
Note 8.20) even larger key sizes may be warranted. This is because the dominant stage
in the index-calculus algorithm (§3.6.5) for discrete logarithms in Z,; is the precomputa-
tion of a database of factor base logarithms, following which individual logarithms can be
computed relatively quickly. Thus computing the database of logarithmsfor one particular
modulus p will compromise the secrecy of al private keys derived using p.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.4 ElGamal public-key encryption 297

8.4.2 Generalized EIGamal encryption

8.25

8.26

8.27

The ElIGamal encryption scheme is typically described in the setting of the multiplicative
group Z;, but can be easily generalized to work in any finite cyclic group G.

Aswith EIGamal encryption, the security of the generalized ElGamal encryption sch-
eme is based on the intractability of the discrete logarithm problem in the group G. The
group G should be carefully chosen to satisfy the following two conditions:

1. for efficiency, the group operation in G should be relatively easy to apply; and
2. for security, the discrete logarithm problem in G should be computationally infeasi-
ble.
The following is alist of groups that appear to meet these two criteria, of which the first
three have received the most attention.
1. The multiplicative group Z,, of the integers modulo a prime p.
The multiplicative group F3.. of thefinite field o of characteristic two.
The group of pointson an elliptic curve over afinitefield.
The multiplicative group I, of thefinite field ¥, where ¢ = p™, p aprime.
The group of units Z;,, where n is a composite integer.
Thejacobian of ahyperelliptic curve defined over afinite field.
The class group of an imaginary quadratic number field.

No ok owd

Algorithm Key generation for generalized EIGamal public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:
1. Select an appropriatecyclic group G of order n, with generator . (Itisassumed here
that G iswritten multiplicatively.)
2. Select arandominteger a, 1 < a < n — 1, and compute the group element «“.
3. A’spublickey is («, a®), together with adescription of how to multiply elementsin
G, A'sprivatekey isa.

Algorithm Generalized EIGamal public-key encryption

SUMMARY: B encryptsamessage m for A, which A decrypts.

1. Encryption. B should do the following:
(a) Obtain A’sauthentic public key («, a®).
(b) Represent the message as an element m of the group G.
(c) Selectarandominteger k,1 <k <n — 1.
(d) Computey = of and§ = m - (a®).
(€) Send the ciphertextc = (v,) to A.

2. Decryption. To recover plaintext m from ¢, A should do the following:

(8) Usethe private key a to compute~“ and then computey—.
(b) Recover m by computing (y~%) - 6.

Note (common system-wide parameters) All entities may elect to use the same cyclic
group G and generator «, in which case « and the description of multiplicationin G need
not be published as part of the public key (cf. Note 8.20).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

298

Ch. 8 Public-Key Encryption

8.28

Example (EIGamal encryption using the multiplicative group of Fom, with artificially
small parameters)

Key generation. Entity A selectsthegroup G to bethemultiplicativegroup of thefinitefield
[Fo4, whose elements are represented by the polynomials over IF, of degreelessthan 4, and
where multiplication is performed modulo the irreducible polynomial f(z) = z* + = + 1
(cf. Example 2.231). For convenience, afield element azz® + axz? + a1z + ag isrepre-
sented by the binary string (asazaiap). Thegroup G has order n = 15 and a generator is
a = (0010).

A chooses the private key @ = 7 and computes a® = o = (1011). A’s public key is
a® = (1011) (together with o = (0010) and the polynomia f(z) which defines the mul-
tiplication in G, if these parameters are not common to al entities).

Encryption. To encrypt amessagem = (1100), B selects arandom integer £ = 11 and
computesy = a!! = (1110), (a®)'* = (0100),and § = m - («*)*! = (0101). B sends
v = (1110) and § = (0101) to A.

Decryption. To decrypt, A computesy2 = (0100), (y*)~! = (1101) and finally recovers
m by computingm = (y~%) - § = (1100). O

8.5 McEliece public-key encryption

8.29

The McEliece public-key encryption scheme is based on error-correcting codes. Theidea
behind this schemeisto first select a particular code for which an efficient decoding algo-
rithm is known, and then to disguise the code as a general linear code (see Note 12.36).
Since the problem of decoding an arbitrary linear code is NP-hard (Definition 2.73), a de-
scription of the original code can serve as the private key, while a description of the trans-
formed code serves as the public key.

The McEliece encryption scheme (when used with Goppa codes) has resisted crypt-
analysis to date. It is also notable as being the first public-key encryption scheme to use
randomization in the encryption process. Although very efficient, the McEliece encryption
scheme has received little attention in practice because of the very large public keys (see
Remark 8.33).

Algorithm Key generation for McEliece public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.
1. Integersk, n, and ¢ are fixed as common system parameters.
2. Each entity A should perform steps 3 —7.

3. Chooseak x n generator matrix G for abinary (n, k)-linear code which can correct
t errors, and for which an efficient decoding algorithmis known. (See Note 12.36.)
Select arandom & x k binary non-singular matrix S.

Select arandom n x n permutation matrix P.

Computethe k x n matrix G = SGP.

A'spublickey is (G, t); A'sprivatekey is (S, G, P).

No o s

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.5 McEliece public-key encryption 299

8.30 Algorithm McEliece public-key encryption

SUMMARY: B encryptsamessage m for A, which A decrypts.

1. Encryption. B should do the following:
() Obtain A’sauthentic public key (G, t).
(b) Represent the message as a binary string m of length k.
(c) Choose arandom binary error vector z of length n having at most ¢ 1's.
(d) Compute the binary vector ¢ = mG + z.
(e) Sendthe ciphertext cto A.

2. Decryption. To recover plaintext m from ¢, A should do the following:
(a) Computec = cP~!, where P! istheinverse of the matrix P.
(b) Use the decoding algorithm for the code generated by G to decodec to m.
(c) Computem = mS—1.

Proof that decryption works. Since
¢ =cP ' = (mG+2)P" = (mSGP +2)P~' = (mS)G + 2P,

and zP~! isavector with at most ¢ 1’s, the decoding algorithm for the code generated by
G correctscto m = m.S. Finally, mS—! = m, and, hence, decryption works.

A special type of error-correcting code, called a Goppa code, may be used in step 3 of
the key generation. For each irreducible polynomial g(z) of degreet over Faom , thereexists
a binary Goppa code of length n = 2™ and dimension k > n — mt capable of correcting
any pattern of ¢ or fewer errors. Furthermore, efficient decoding algorithms are known for
such codes.

8.31 Note (security of McEliece encryption) There are two basic kinds of attacks known.

(i) Fromthe publicinformation, an adversary may try to computethe key G or akey G’
for aGoppa code equivalent to the one with generator matrix G. Thereisno efficient
method known for accomplishing this.

(i) Anadversary may try torecover the plaintextm directly given someciphertextc. The
adversary picks k columnsat random from G.IfG k» cx and z;, denotetherestriction
of G, c and z, respectively, to these k columns, then (c + z;) = mGy. If 2, = 0 and
if G is non-singular, then m can be recovered by solving the system of equations
cx = mGy. Since the probability that z;, = 0, i.e., the selected £ bits were not in
error,isonly (";*)/(}), the probability of this attack succeeding is negligibly small.

8.32 Note (recommended parameter sizes) The original parameters suggested by McEliece
weren = 1024,t = 50, and &k > 524. Based on the security analysis (Note 8.31), an
optimum choice of parameters for the Goppa code which maximizes the adversary’swork
factor appearsto ben = 1024, t = 38, and k > 644.

8.33 Remark (McElieceencryptionin practice) Although the encryption and decryption oper-
ations are relatively fast, the McEliece scheme suffers from the drawback that the public
key isvery large. A (lesssignificant) drawback isthat there is message expansion by afac-
tor of n/k. For therecommended parametersn = 1024, ¢t = 38, k > 644, thepublickey is
about 2'? bitsin size, while the message expansion factor is about 1.6. For these reasons,
the scheme receiveslittle attention in practice.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

300

Ch. 8 Public-Key Encryption

8.6 Knapsack public-key encryption

Knapsack public-key encryption schemes are based on the subset sum problem, which is
NP-complete (see §2.3.3 and §3.10). The basic idea is to select an instance of the subset
sum problemthat is easy to solve, and then to disguiseit as an instance of the general subset
sum problem which is hopefully difficult to solve. The original knapsack set can serve as
the private key, while the transformed knapsack set serves as the public key.

The Merkle-Hellman knapsack encryption scheme (§8.6.1) is important for historical
reasons, as it was the first concrete realization of a public-key encryption scheme. Many
variations have subsequently been proposed but most, including the original, have been
demonstrated to be insecure (see Note 8.40), a notable exception being the Chor-Rivest
knapsack scheme (§8.6.2).

8.6.1 Merkle-Hellman knapsack encryption

8.34

8.35

8.36

The Merkle-Hellman knapsack encryption scheme attemptsto disguise an easily solved in-
stance of the subset sum problem, called asuperincreasing subset sum problem, by modular
multiplication and a permutation. It is however not recommended for use (see Note 8.40).

Definition A superincreasing sequenceisasequence (b1, bz, . . . , b,) of positiveintegers
with the property that b; > Z;;ll b; foreachi, 2 <i <n.
Algorithm 8.35 efficiently solves the subset sum problem for superincreasing sequences.

Algorithm Solving a superincreasing subset sum problem

INPUT: asuperincreasing sequence (b1, b, . . . , by,) and an integer s which isthe sum of a
subset of the b;.
OUTPUT: (z1, 22, ... ,x,) Wherez; € {0,1}, suchthat > | z;b; = s.
1. i¢n.
2. Whilei > 1 dothefollowing:
2.1 If s > b; then z;+-1 and s+s — b;. Otherwise x;+-0.
2.2 i1 — 1.
3. Return((z1, z2, ... ,2n)).

Algorithm Key generation for basic Merkle-Hellman knapsack encryption

SUMMARY: each entity creates a public key and a corresponding private key.
1. Aninteger n isfixed asacommon system parameter.
2. Each entity A should perform steps 3 —7.
3. Choose a superincreasing sequence (b1, ba, . . . , by,) and modulus M such that M >
by +by+ -+ by.
Select arandominteger W, 1 < W < M — 1, such that ged(W, M) = 1.
Select arandom permutation 7 of theintegers {1,2,... ,n}.
Compute a; = Wby;y mod M fori =1,2,... ,n.
A'spublickey is (a1, as,... ,a,); A'sprivatekey is (m, M, W, (b1, ba, ... ,bn)).

No oks

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.6 Knapsack public-key encryption 301

8.37 Algorithm Basic Merkle-Hellman knapsack public-key encryption

SUMMARY: B encryptsamessage m for A, which A decrypts.

1. Encryption. B should do the following;:
(8) Obtain A’sauthentic publickey (a1, as, ... ,an).
(b) Represent the message m asabinary string of length n, m = myms - - - my,.
(c) Computetheinteger ¢ = miay + moas + - - - + mpay,.
(d) Send theciphertext cto A.

2. Decryption. To recover plaintext m from ¢, A should do the following:
(@ Computed = W~'cmod M.
(b) By solving a superincreasing subset sum problem (Algorithm 8.35), find inte-

gersriy,ro,... , Ty, Ti € {0, 1}, suchthat d = r1by + roby + - -+ + 7,5

(c) Themessage bitsarem; = rr¢;y,i =1,2,... ,n.

Proof that decryption works. The decryption of Algorithm 8.37 allows recovery of original
plaintext because

d

Wle = W*IZmiai = Zmibﬂ(i) (mod M).
i=1 i=1

Since0 < d < M,d =", mibr(;y mod M, and hencethe solution of the superincreas-
ing subset sum problemin step (b) of thedecryption givesthe messagebits, after application
of the permutation 7.

8.38 Example (basic Merkle-Hellman knapsack encryptionwith artificially small parameters)
Key generation. Let n = 6. Entity A choosesthe superincreasing sequence (12,17, 33, 74,
157,316), M = 737, W = 635, and the permutation = of {1,2,3,4,5,6} defined by
m(1) =3,7(2) =6,7(3) =1,7(4) = 2, n(5) = 5,and 7(6) = 4. A’spublickey isthe
knapsack set (319, 196, 250, 477, 200, 559), while A’sprivatekey is (7w, M, W, (12,17, 33,
74,157, 316)).

Encryption. To encrypt the message m = 101101, B computes

c = 31942504477+ 559 = 1605

and sendsthisto A.
Decryption. To decrypt, A computesd = W !¢ mod M = 136, and solves the superin-
creasing subset sum problem

136 = 12ry + 17ry + 33r3 + 7414 + 15775 + 31676

toget136 =12+ 17433 +74. Hence,ry = 1,ro =1,r3=1,ry = 1,r5 = 0,16 = 0,
and application of the permutation 7 yields the message bitsm; = r3 = 1, ms = rg = 0,
mg=ri=1,mg=rs=1,ms =175 =0,mg =74 = 1. [l

Multiple-iterated Merkle-Hellman knapsack encryption

One variation of the basic Merkle-Hellman scheme involves disguising the easy superin-
creasing sequence by a series of modular multiplications. The key generation for this vari-
ationisasfollows.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

302

Ch. 8 Public-Key Encryption

8.39 Algorithm Key generation for multiple-iterated Merkle-Hellman knapsack encryption

SUMMARY: each entity creates a public key and a corresponding private key.

1.

2
3.
4

Integersn and ¢ are fixed as common system parameters.

. Each entity A should perform steps 3—6.

Choose a superincreasing sequence (ag‘” , ag0> al)).

. For j from 1 to ¢ do the following:

4.1 Chooseamodulus M; with M; > a{/™" + o™ + ... 4+ a¥ 7.
4.2 Select arandominteger W;, 1 < W; < M, — 1, such that gcd(W;, M;) = 1.
4.3 Computea”) = a¥ VW, mod M; fori =1,2,... ,n.

5. Select arandom permutation 7 of theintegers {1,2,... ,n}.

A’spublickeyis(ay,aq,... ,a,), wherea; = aff()i) fori=1,2,... ,n; A'sprivate
keyis(m, My,... , My, W1, ... ,Wt,ago),ago),... ,ag))).

Encryptionis performed in the same way asin the basic Merkle-Hellman scheme (Al-
gorithm 8.37). Decryption is performed by successively computing d; = ijldjﬂ mod
M;forj=t,t—1,...,1,whered, 1 = c. Finaly, the superincreasing subset sum prob-

(0)

lemd; = r1a§°> +r2a§0) +---+rpay’ issolvedfor r;, and the message bits are recovered
after application of the permutation .

8.40 Note (insecurity of Merkle-Hellman knapsack encryption)

0]

(if)

A polynomial-time algorithm for breaking the basic Merkle-Hellman scheme is
known. Given the public knapsack set, thisalgorithm finds a pair of integersU’, M’
such that U’ /M’ iscloseto U/M (where W and M are part of the private key, and
U = W~ mod M) and such that the integers b, = U’a; mod M, 1 < i < n, form
asuperincreasing sequence. This sequence can then be used by an adversary in place
of (b1, ba,... ,by,) to decrypt messages.

Themost powerful general attack known on knapsack encryption schemesisthetech-
nique discussed in §3.10.2 which reduces the subset sum problem to the problem of
finding a short vector in alattice. It istypicaly successful if the density (see Defi-
nition 3.104) of the knapsack set isless than 0.9408. Thisis significant because the
density of aMerkle-Hellman knapsack set must be less than 1, since otherwise there
will in general be many subsets of the knapsack set with the same sum, in which case
some ciphertextswill not be uniquely decipherable. Moreover, sinceeachiterationin
the multiple-iterated scheme lowers the density, this attack will succeed if the knap-
sack set has been iterated a sufficient number of times.

Similar techniques have since been used to break most knapsacks schemes that have
been proposed, including the multiple-iterated Merkle-Hellman scheme. The most promi-
nent knapsack scheme that has resisted such attacks to date is the Chor-Rivest scheme (but
see Note 8.44).

8.6.2 Chor-Rivest knapsack encryption

The Chor-Rivest scheme is the only known knapsack public-key encryption scheme that
does not use some form of modular multiplication to disguise an easy subset sum problem.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.6 Knapsack public-key encryption 303

8.41 Algorithm Key generation for Chor-Rivest public-key encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:

1. Select afinitefield F, of characteristic p, where ¢ = p", p > h, and for which the
discrete logarithm problem is feasible (see Note 8.45(ii)).

2. Select arandom monic irreducible polynomial f(x) of degree h over Z, (using Al-
gorithm 4.70). The elements of IF,, will be represented as polynomialsin Z,|[z] of
degree less than h, with multiplication performed modulo f(x).

3. Select arandom primitive element g(x) of thefield IF, (using Algorithm 4.80).

4. For eachgroundfield element i € Z,, find the discretelogarithma; = log,,,,) (z +1)
of thefield element (z + ¢) to the base g(z).

5. Select arandom permutation 7 on the set of integers {0,1,2,... ,p — 1}.

6. Select arandominteger d, 0 < d < p" — 2.

7. Compute ¢; = (ar(jy + d) mod (p" —1),0<i<p—1.

8. A’spublickeyis((co,c1,...,cp—1),p, h); A'sprivatekey is (f(z), g(z),,d).

8.42 Algorithm Chor-Rivest public-key encryption

SUMMARY: B encryptsamessage m for A, which A decrypts.
1. Encryption. B should do the following;:

(a) Obtain A’sauthentic publickey ((co,c1,... ,¢p—1),p, h).

(b) Represent the message m as a binary string of length [lg (7) |, where (7) isa
binomial coefficient (Definition 2.17).

(c) Consider m as the binary representation of an integer. Transform this integer
into abinary vector M = (My, My, ... ,M,_1) of length p having exactly h
lI'sasfollows:

i. Setl<h.

ii. For i from 1 to p do the following: .
If m > (P7°) thenset M;_14-1, mm — (P77), 11— 1. Otherwise,
set M;_14-0. (Note: () =1forn>0; (}) =0forli>1)

(d) Computec = f;ol M;c; mod (p — 1).

(e) Send the ciphertext cto A.

2. Decryption. To recover plaintext m from ¢, A should do the following:

(@ Computer = (c — hd) mod (p" — 1).

(b) Computeu(z) = g(z)” mod f(x) (using Algorithm 2.227).

(c) Compute s(z) = u(z) + f(z), amonic polynomial of degree h over Z,.

(d) Factor s(z) into linear factorsover Z,,: s(z) = H;.L:l(x +t;), wheret; € Z,
(cf. Note 8.45(iv)).

(e) Compute a binary vector M = (Mo, Ma, ... ,M,_1) asfollows. The com-
ponents of M that are 1 have indices 7=1(¢;), 1 < j < h. The remaining
componentsare 0.

(f) The message m is recovered from M asfollows:

i. Set m<«0,l<h.

ii. For i from 1 top do thefollowing:
If M;_1 = 1thenset m«m + (P") and I« — 1.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

304

Ch. 8 Public-Key Encryption

8.43

Proof that decryption works. Observe that

u(z) = g(z)" mod f(z)
= g(z)o M = g(a)Eio Mic=hd (mod f(a))

= gla)OH Mo = g2 Mier - (mod f(x)
= [Tl@=o1" = [J@+a@)™ (mod f()).
=0 =0

Since [, ' (z + 7(i))™: and s(x) are monic polynomials of degree h and are congruent
modulo f(z), it must be the case that

p—1
s(x) = u(z) + f(z) = H(m + (i) M.
=0
Hence, the h rootsof s(x) al lieinZ,, and applying =~ to theserootsgivesthe coordinates
of M that are 1.

Example (Chor-Rivest public-key encryption with artificially small parameters)
Key generation. Entity A doesthe following:

1. Sdlectsp = 7and h = 4.

2. Selects theirreducible polynomia f(z) = z* + 32% + 522 + 6x + 2 of degree 4
over Z;. Theelements of thefinitefield F,« are represented as polynomialsin Z[z]
of degreeless than 4, with multiplication performed modulo f ().

Selects the random primitive element g(z) = 323 + 322 + 6.
4. Computes the following discrete logarithms:

w

= logy () () = 1028

a1 = logg(,)(z +1) = 1935

az = logy(,) (z +2) = 2054

az = logy(,) (= +3) = 1008
as = logy(,)(z +4) = 379

as = logy(,)(z +5) = 1780

ag = logy(,) (= + 6) = 223.
5. Selectstherandompermutationon{0,1,2,3,4,5,6} definedby 7(0) = 6, 7(1) =
4,7(2)=0,7(3) =2,7(4) =1, n(5) =5, 7(6) = 3.
6. Selectsthe random integer d = 1702.
7. Computes

co = (ag + d) mod 2400 = 1925
= (a4 + d) mod 2400 = 2081
= (ap + d) mod 2400 = 330
= (a2 + d) mod 2400 = 1356
= (a1 + d) mod 2400 = 1237
= (a5 + d) mod 2400 = 1082
= (a3 + d) mod 2400 = 310.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.6 Knapsack public-key encryption 305

8. A’spublickey is ((co, c1,¢2,c3,c4,¢5,¢6),p = 7, h = 4), while A’s private key is
(f(z), g(z),m,d).
Encryption. To encrypt amessage m = 22 for A, B doesthe following:
(8) Obtainsauthentic A’s public key.
(b) Representsm asabinary string of length 5: m = 10110. (Notethat |1g (7) | = 5.)
(c) Usesthe method outlined in step 1(c) of Algorithm 8.42 to transform m to the binary
vector M = (1,0,1,1,0,0,1) of length 7.
(d) Computesc = (cp + ¢2 + ¢3 + ¢g) mod 2400 = 1521.
(e) Sendsc = 1521 to A.
Decryption. To decrypt the ciphertext ¢ = 1521, A doesthe following:
(8 Computesr = (¢ — hd) mod 2400 = 1913.
(b) Computesu(z) = g(x)**!3 mod f(z) = 23 + 322 + 22 + 5.
(c) Computes s(x) = u(z) + f(z) = x* + 423 + 22 + .
(d) Fectorss(z) = xz(x +2)(x +3)(x +6) (S0t1 =0, t2 = 2,t3 = 3, ts = 6).
(e) Thecomponentsof M that are1 haveindicest—1(0) = 2,77 1(2) = 3,7~ 1(3) = 6,
and 7~1(6) = 0. Hence, M = (1,0,1,1,0,0,1).
(f) Usesthemethod outlinedin step 2(f) of Algorithm 8.42to transform M to theinteger
m = 22, thus recovering the original plaintext. O

8.44 Note (security of Chor-Rivest encryption)

(i) Whentheparametersof the system arecarefully chosen (see Note 8.45 and page 318),
there is no feasible attack known on the Chor-Rivest encryption scheme. In partic-
ular, the density of the knapsack set (co, c1, ... ,cp—1) 1S p/lg(max¢;), which is
large enough to thwart the low-density attacks on the general subset sum problem
(§3.10.2).

(i) It isknown that the system isinsecureif portions of the private key are revealed, for
example, if g(x) and d in some representation of IF, are known, or if f(x) isknown,
orif wisknown.

8.45 Note (implementation)

(i) Although the Chor-Rivest scheme has been described only for the case p a prime, it
extendsto the case wherethe basefield Z,, isreplaced by afield of prime power order.

(i) Inorder to makethe discretelogarithm problemfeasiblein step 1 of Algorithm 8.41,
the parameters p and h may be chosen so that ¢ = p" — 1 has only small factors. In
this case, the Pohlig-Hellman algorithm (§3.6.4) can be used to efficiently compute
discrete logarithmsin the finite field IF,,.

(iii) In practice, the recommended size of the parametersare p ~ 200 and h =~ 25. One
particular choice of parametersoriginally suggestedisp = 197 and h = 24; in this
case, the largest prime factor of 197%* — 1 is10316017, and the density of the knap-
sack setisabout 1.077. Other parameter setsoriginally suggested are {p = 211, h =
24}, {p = 35, h = 24} (basefield F3s), and {p = 28, h = 25} (basefield Fys).

(iv) Encryptionisavery fast operation. Decryption is much slower, the bottleneck being
the computation of u(z) in step 2b. Therootsof s(z) in step 2d can be found simply
by trying al possibilitiesin Z,,.

(v) A mgor drawback of the Chor-Rivest scheme is that the public key is fairly large,
namely, about (ph - 1g p) bits. For the parametersp = 197 and h = 24, thisis about
36000 bits.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

306

Ch. 8 Public-Key Encryption

(vi) Thergis message expansion by afactor of Igp™/1g (}). For p = 197 and h = 24,
thisis 1.797.

8.7 Probabilistic public-key encryption

8.46

8.47

A minimal security requirement of an encryption schemeisthat it must be difficult, in es-
sentially all cases, for a passive adversary to recover plaintext from the corresponding ci-
phertext. However, in somesituations, it may be desirableto impose morestringent security
requirements.

The RSA, Rabin, and knapsack encryption schemes are deterministic in the sense that
under afixed public key, aparticular plaintext m is alwaysencrypted to the same ciphertext
c. A deterministic scheme has some or al of the following drawbacks.

1. The schemeis not secure for all probability distributions of the message space. For
example, in RSA themessages0 and 1 alwaysget encrypted to themselves, and hence
are easy to detect.

2. It is sometimes easy to compute partial information about the plaintext from the ci-
phertext. For example, in RSA if ¢ = m* mod n isthe ciphertext corresponding to

G RCRG

since e is odd, and hence an adversary can easily gain one bit of information about
m, namely the Jacobi symbol (Z2).
3. Itiseasy to detect when the same message is sent twice.

Of course, any deterministic encryption scheme can be converted into a randomized
scheme by requiring that a portion of each plaintext consist of a randomly generated bit-
string of a pre-specified length [. If the parameter [is chosen to be sufficiently large for the
purpose at hand, then, in practice, the attacks listed above are thwarted. However, the re-
sulting randomized encryption schemeisgenerally not provably secure against the different
kinds of attacks that one could conceive.

Probabilistic encryption utilizes randomnessto attain a provable and very strong level
of security. There are two strong notions of security that one can strive to achieve.

Definition A public-key encryption schemeissaid to be polynomially secureif no passive
adversary can, in expected polynomial time, select two plaintext messages m; and mo and
then correctly distinguish between encryptionsof m, and ms with probability significantly
greater than 1.

Definition A public-key encryption scheme is said to be semantically secure if, for all
probability distributionsover the message space, whatever apassive adversary can compute
in expected polynomial time about the plaintext given the ciphertext, it can also compute
in expected polynomial time without the ciphertext.

Intuitively, apublic-key encryption schemeis semantically secureif the ciphertext does
not leak any partial information whatsoever about the plaintext that can be computed in
expected polynomial time.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.7 Probabilistic public-key encryption 307

8.48 Remark (perfect secrecy vs. semantic security) In Shannon’s theory (see §1.13.3(i)), an
encryption scheme has perfect secrecy if a passive adversary, even with infinite computa-
tional resources, can learn nothing about the plaintext from the ciphertext, except possibly
itslength. Thelimitation of this notion isthat perfect secrecy cannot be achieved unlessthe
key is at least as long as the message. By contrast, the notion of semantic security can be
viewed as a polynomially bounded version of perfect secrecy — a passive adversary with
polynomially bounded computational resources can learn nothing about the plaintext from
the ciphertext. It is then conceivable that there exist semantically secure encryption sch-
emes where the keys are much shorter that the messages.

Although Definition 8.47 appears to be stronger than Definition 8.46, the next result
asserts that they are, in fact, equivalent.

8.49 Fact A public-key encryption schemeis semantically secureif and only if it is polynomi-
ally secure.

8.7.1 Goldwasser-Micali probabilistic encryption

The Goldwasser-Micali schemeis a probabilistic public-key system which is semantically
secure assuming the intractability of the quadratic residuosity problem (see §3.4).

8.50 Algorithm Key generation for Goldwasser-Micali probabilistic encryption

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:
1. Select two large random (and distinct) primes p and ¢, each roughly the same size.
2. Computen = pq.
3. Selectay € Z,, suchthat y isaquadratic non-residue modulo n and the Jacobi sym-
bol (£) =1 (y is a pseudosquare modulo n); see Remark 8.54.
4. A'spublickeyis(n,y); A'sprivatekey isthe pair (p, q).

8.51 Algorithm Goldwasser-Micali probabilistic public-key encryption

SUMMARY: B encryptsamessage m for A, which A decrypts.
1. Encryption. B should do the following;:
(a) Obtain A’sauthentic public key (n,y).
(b) Represent the message m asabinary string m = myms - - - m; of length ¢.
(c) Forifrom1ltotdo:
i. Pickanz € Z;, at random.
ii. If m; =1 thenset ¢;<+yz? mod n; otherwise set ;<2 mod n.
(d) Sendthet-tuplec = (c1,co,...,ct) o A.
2. Decryption. To recover plaintext m from ¢, A should do the following:
(a) Forifrom1ltotdo:
i. Compute the Legendre symbol e; = (%) (using Algorithm 2.149).
ii. If e; = 1 then set m,;<—0; otherwise set m;«1.
(b) The decrypted messageism = mims - - - my.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

308

Ch. 8 Public-Key Encryption

8.52

8.53

8.54

Proof that decryption works. If a message bit m; is 0, then ¢; = 22 mod n is a quadratic
residue modulo n. If a message bit m; is 1, then since y is a pseudosguare modulo n,
¢; = yz? mod n isaso apseudosquare modulo n. By Fact 2.137, ¢; is aquadratic residue
modulo n if and only if ¢; isaquadratic residue modulo p, or equivalently (%) = 1. Since
A knows p, she can compute this Legendre symbol and hence recover the message bit m;;.

Note (security of Goldwasser-Micali probabilistic encryption) Since z is selected at ran-
domfromZ. , 2 mod n isarandom quadratic residue modulo n, and yz? mod n isaran-
dom pseudosquare modulo n. Hence, an eavesdropper sees random quadratic residues and
pseudosguares modulo n. Assuming that the quadratic residuosity problem is difficult, the
eavesdropper can do no better that guess each message bit. More formally, if the quadratic
residuosity problemis hard, then the Goldwasser-Micali probabilistic encryption schemeis
semantically secure.

Note (message expansion) A major disadvantage of the Goldwasser-Micali schemeisthe
message expansion by afactor of 1gn bits. Some message expansion is unavoidablein a
probabilistic encryption scheme because there are many ciphertexts corresponding to each
plaintext. Algorithm 8.56isamajor improvement of the Goldwasser-Micali schemein that
the plaintext is only expanded by a constant factor.

Remark (finding pseudosquares) A pseudosquare y modulo n can be found as follows.
First find a quadratic non-residue a modulo p and a quadratic non-residue b modulo ¢ (see
Remark 2.151). Then use Gauss's algorithm (Algorithm 2.121) to compute the integer y,
0 <y < n-—1, satisfying the simultaneous congruencesy = a (mod p),y = b (mod q).
Sincey (= a (mod p)) is a quadratic non-residue modulo p, it is also a quadratic non-
residue modulon (Fact 2.137). Also, by the propertiesof the L egendre and Jacobi symbols

(§2.4.5), (¥) = (%) (%) = (—1)(—~1) = 1. Hence, y is a pseudosguare modulo n.

8.7.2 Blum-Goldwasser probabilistic encryption

8.55

The Blum-Goldwasser probabilistic public-key encryption scheme is the most efficient
probabilistic encryption scheme known and is comparable to the RSA encryption scheme,
both in terms of speed and message expansion. It is semantically secure (Definition 8.47)
assuming the intractability of the integer factorization problem. It is, however, vulnerable
to a chosen-ciphertext attack (see Note 8.58(iii)). The scheme uses the Blum-Blum-Shub
generator (§5.5.2) to generate a pseudorandom bit sequence which isthen XORed with the
plaintext. The resulting bit sequence, together with an encryption of the random seed used,
istransmitted to the receiver who uses his trapdoor information to recover the seed and sub-
sequently reconstruct the pseudorandom bit sequence and the plaintext.

Algorithm Key generation for Blum-Goldwasser probabilistic encryption

SUMMARY: each entity creates a public key and a corresponding private key.
Each entity A should do the following:
1. Select two large random (and distinct) primes p, ¢, each congruent to 3 modulo 4.
2. Computen = pq.
3. Usethe extended Euclidean algorithm (Algorithm 2.107) to compute integers a and
b such that ap + bqg = 1.
4. A'spublickeyisn; A'sprivatekey is (p, ¢, a,b).

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.7 Probabilistic public-key encryption 309

8.56 Algorithm Blum-Goldwasser probabilistic public-key encryption

SUMMARY: B encryptsamessage m for A, which A decrypts.
1. Encryption. B should do the following;:
(8) Obtain A’sauthentic public key n.
(b) Letk = |lgn] andh = |lgk|. Represent the message m asastringm =
myms - - - my Of length ¢, where each m; isabinary string of length h.
(c) Select as a seed z, arandom quadratic residue modulo n. (This can be done
by selecting arandom integer r € Z; and setting x¢<+r> mod n.)
(d) Forifrom1 tot do thefollowing:
i. Computez; = zZ_; mod n.
ii. Let p; bethe h least significant bits of z;.
iii. Computec; = p; ® m;.
() Computez;1 = =7 mod n.
(f) Send theciphertextc = (c1,ca,. .. ,ct, Te41) tO A.
2. Decryption. To recover plaintext m from ¢, A should do the following:
(@) Computed; = ((p+ 1)/4)*** mod (p — 1).
(b) Computeds = ((g + 1)/4)"*! mod (g — 1).
(©) Computeu = z*; mod p.
(d) Computev = xfj_l mod gq.
(e) Computezy = vap + ubg mod n.
(f) Forfrom1 tot do thefollowing:
i. Computex; = x?_; mod n.
ii. Let p; bethe h least significant bits of ;.
iii. Computem; = p; @ ¢;.

Proof that decryption works. Since x; isaquadratic residue modulon, itisalso aquadratic
residue modulo p; hence, z{? "2 = 1 (mod p). Observe that

xgjl)/‘l = (xf)(p-irl)/‘l = m£p+1)/2 = mgpfl)/%;t = z; (mod p).
Similarly, x§p+1)/4 = ;-1 (mod p) and so
xﬁﬂ{’f”/“f = x¢—1 (mod p).
Repeating this argument yields
u = a:fjrl = a:g(ffl)/‘l)tﬂ = zp (mod p).
Analogously,
v = mf_’il = z0 (mod q).

Finally, since ap + bg = 1, vap + ubg = x¢ (mod p) and vap + ubg = xo (mod gq).
Hence, ¢ = vap + ubg mod n, and A recoversthe same random seed that B used in the
encryption, and consequently also recoversthe original plaintext.

8.57 Example (Blum-Goldwasser probabilistic encryption with artificially small parameters)

Key generation. Entity A selectstheprimesp = 499, ¢ = 547, each congruent to 3 modulo
4, and computesn = pq = 272953. Using the extended Euclidean a gorithm, A computes

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

310

Ch. 8 Public-Key Encryption

theintegersa = —57, b = 52 satisfyingap + bqg = 1. A’spublickey isn = 272953, while
A’sprivatekey is (p, ¢, a, b).

Encryption. The parameters k and h have the values 18 and 4, respectively. B represents
the message m as a string mymomsmgyms (t = 5) wherem; = 1001, my = 1100, mz =

0001,

my = 0000, ms = 1100. B then selects arandom quadratic residue zo = 159201

(= 3992 mod n), and computes:

| i|:vi:1:?_1m0dn| Di |Ci:pi@mi
1 180539 1011 0010
2 193932 1100 0000
3 245613 1101 1100
4 130286 1110 1110
5 40632 1000 0100

and zg = 22 mod n = 139680. B sendsthe ciphertext

to A.

¢ = (0010, 0000,1100,1110,0100, 139680)

Decryption. To decrypt ¢, A computes

dy = ((p+1)/4)° mod (p — 1) = 463
dy = ((g +1)/4)% mod (¢ — 1) = 337

u = 23% mod p =20
v =223 mod ¢ =24
o = vap + ubg mod n = 159201.

Finally, A uses xq to construct the z; and p; just as B did for encryption, and recoversthe
plaintext m; by XORing the p; with the ciphertext blocksc;. O

8.58 Note (security of Blum-Goldwasser probabilistic encryption)

0]

(i)
(iii)

Observefirst that n is a Blum integer (Definition 2.156). An eavesdropper sees the
quadratic residue x;+1. Assuming that factoring n is difficult, the h least significant
bits of the principal square root x; of z;+; modulo n are simultaneously secure (see
Definition 3.82 and Fact 3.89). Thusthe eavesdropper can do no better than to guess
the pseudorandom bits p;, 1 < ¢ < t. Moreformally, if the integer factorization
problem is hard, then the Blum-Goldwasser probabilistic encryption scheme is se-
mantically secure. Note, however, that for a modulus n of a fixed bitlength (e.g.,
1024 bits), this statement is no longer true, and the scheme should only be consid-
ered computationally secure.

Asof 1996, the modulusn should be at least 1024 bitsin length if long-term security
isdesired (cf. Note 8.7). If n isa1025-bit integer, then £ = 1024 and h = 10.

As with the Rabin encryption scheme (Algorithm 8.11), the Blum-Goldwasser sch-
emeisalso vulnerableto achosen-ciphertext attack that recoversthe privatekey from
thepublickey. Itisfor thisreason that the Blum-Gol dwasser scheme hasnot received
much attention in practice.

8.59 Note (efficiency of Blum-Goldwasser probabilistic encryption)

0]

Unlike Goldwasser-Micali encryption, the ciphertext in Blum-Goldwasser encryp-
tionisonly longer than the plaintext by a constant number of bits, namely & + 1 (the
sizein bits of theinteger x:41).

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.7 Probabilistic public-key encryption 311

(i) The encryption process is quite efficient — it takes only 1 modular multiplication
to encrypt h bits of plaintext. By comparison, the RSA encryption process (Algo-
rithm 8.3) requires 1 modular exponentiation (m¢ mod n) to encrypt k bits of plain-
text. Assuming that the parameter e israndomly chosen and assuming that an (unop-
timized) modular exponentiation takes 3k /2 modular multiplications, this translates
to an encryption ratefor RSA of 2/3 bits per modular multiplication. If one chooses
aspecia valuefor e, suchase = 3 (see Note 8.9), then RSA encryptionisfaster than
Blum-Goldwasser encryption.

(iii) Blum-Goldwasser decryption (step 2 of Algorithm 8.56) isalso quiteefficient, requir-
ing 1 exponentiationmodulo p — 1 (step 2a), 1 exponentiation modulo g — 1 (step 2b),
1 exponentiation modulo p (step 2¢), 1 exponentiation modulo ¢ (step 2d), and ¢ mul-
tiplications modulo n (step 2f) to decrypt At ciphertext bits. (The time to perform
step 2eisnegligible.) By comparison, RSA decryption (step 2 of Algorithm 8.3) re-
quires 1 exponentiation modulo n (which can be accomplished by doing 1 exponen-
tiation modulo p and 1 exponentiation modulo ¢) to decrypt & ciphertext hits. Thus,
for short messages (< k bits), Blum-Goldwasser decryption is dightly slower than
RSA decryption, while for longer messages, Blum-Goldwasser is faster.

8.7.3 Plaintext-aware encryption

8.60

8.61

8.62

8.63

While semantic security (Definition 8.47) is a strong security requirement for public-key
encryption schemes, there are other measures of security.

Definition A public-key encryption schemeis said to be non-malleableif given acipher-
text, it iscomputationally infeasible to generate a different ciphertext such that the respec-
tive plaintexts are related in a known manner.

Fact If apublic-key encryption scheme is non-malleable, it is also semantically secure.

Another notion of security isthat of being plaintext-aware. In Definition 8.62, valid ci-
phertext means those ciphertext which are the encryptions of |egitimate plaintext messages
(e.g. messages containing pre-specified forms of redundancy).

Definition A public-key encryption schemeissaid to be plaintext-awareif it is computa-
tionally infeasible for an adversary to produce avalid ciphertext without knowledge of the
corresponding plaintext.

In the “random oracle model”, the property of being plaintext-aware is a strong one
— coupled with semantic security, it can be shown to imply that the encryption schemeis
non-malleable and also secure against adaptive chosen-ciphertext attacks. Note 8.63 gives
one method of transforming any &-bit to k-bit trapdoor one-way permutation (such asRSA)
into an encryption schemethat is plaintext-aware and semantically secure.

Note (Bellare-Rogaway plaintext-awareencryption) Let f beak-hit to k-bit trapdoor one-
way permutation (such as RSA). Let ko and k; be parameters such that 20 and 2% steps
each represent infeasible amounts of work (e.g., ko = k1 = 128). The length of the plain-
text m isfixedtoben = k — kg — k; (e.g., for k = 1024, n = 768). Let G : {0, 1}*0 —
{0,1}"** and H : {0,1}"*t% — {0,1}*° be random functions. Then the encryption
function, as depicted in Figure 8.1, is

E(m) = f({m0* @ G(r)} || {r ® H(m0" & G(r))}),

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

312

Ch. 8 Public-Key Encryption

where m0*1 denotesm concatenated with a string of 0’s of bitlength &1, r is arandom bi-
nary string of bitlength ko, and || denotes concatenation.

mo¥1 ‘ r

n+ ki ko

Y Y

O—©

3 &
® -

Y Y
mo* & G(r) r @ Hmo" & G(r)) |

n+ ko + k1

m plaintext
¥ r random bit string
E(m) ciphertext
E(m)

Figure 8.1: Bellare-Rogaway plaintext-aware encryption scheme.

Under the assumption that G and H are random functions, the encryption scheme E of
Note 8.63 can be proven to be plaintext-aware and semantically secure. In practice, G and
H can be derived from a cryptographic hash function such as the Secure Hash Algorithm
(§9.4.2(iii)). In this case, the encryption scheme can no longer be proven to be plaintext-
aware because the random function assumption is not true; however, such ascheme appears
to provides greater security assurances than those designed using ad hoc techniques.

8.8 Notes and further references

§8.1

§8.2

For an introductionto public-key cryptography and public-key encryptionin particular, see
§1.8. A particularly readableintroductionisthe survey by Diffie [343]. Historical noteson
public-key cryptography are given in the notes to §1.8 on page 47. A comparison of the
features of public-key and symmetric-key encryptionisgivenin §1.8.4; see also §13.2.5.
Other recent proposalsfor public-key encryption schemesinclude those based on finite au-
tomata (Renji [1032]); hidden field equations (Patarin [965]); and isomorphism of polyno-
mials (Patarin [965]).

The RSA cryptosystemwasinventedin 1977 by Rivest, Shamir, and Adleman [1060]. Kal-
iski and Robshaw [655] provide an overview of the major attacks on RSA encryption and

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.8 Notes and further references 313

signatures, and the practical methods of counteracting these threats.

The computational equivalence of computing the decryption exponent d and factoring n
(§8.2.2(i)) was shown by Rivest, Shamir and Adleman [1060], based on earlier work by
Miller [876].

Theattack on RSA with small encryption exponent (§8.2.2(ii)) isdiscussed by Hastad [544],
who showed more generally that sending the encryptions of morethan e(e + 1)/2 linearly
related messages (messages of the form (a;m + b;), where the ¢, and b; are known) en-
ables an eavesdropper to recover the messages provided that the moduli n; satisfy n; >
2(e+D)(e4+2)/4 (¢ 1)(e+1), Hastad also showed that sending threelinearly related messages
using the Rabin public-key encryption scheme (Algorithm 8.11) isinsecure.

The attack on RSA with small decryption exponent d (§8.2.2(iv)) is due to Wiener [1240].
Wiener showed that his attack can be avoided if the encryption exponent e is chosen to be
at least 50% longer than the modulus . In this case, d should be at least 160 bitsin length
to avoid the square-root discrete logarithm algorithms such as Pollard’srho algorithm (Al-
gorithm 3.60) and the parallelized variant of van Oorschot and Wiener [1207].

The adaptive chosen-ciphertext attack on RSA encryption (§8.2.2(v)) is due to Davida
[302]. See also therelated discussion in Denning [327]. Desmedt and Odlyzko [341] de-
scribed an indifferent chosen-ciphertext attack in which the adversary has to obtain the
plaintext correspondingto about L,, [% , %] carefully chosen-ciphertext, subsequent to which
it can decrypt all further ciphertext in Ln[%, %] time without having to use the authorized
user’s decryption machine.

The common modulus attacks on RSA (§8.2.2(vi)) are due to Del aurentis [320] and Sim-
mons[1137].

The cycling attack (§8.2.2(vii)) was proposed by Simmonsand Norris[1151]. Shortly after,
Rivest [1052] showed that the cycling attack is extremely unlikely to succeed if the primes
p and ¢ are chosen so that: (i) p — 1 and ¢ — 1 have large prime factors p’ and ¢’, respec-
tively; and (ii) p’ — 1 and ¢’ — 1 have large prime factors p” and ¢, respectively. Maurer
[818] showed that condition (ii) is unnecessary. Williams and Schmid [1249] proposed the
generalized cycling attack and showed that this attack isreally afactoring a gorithm. Rivest
[1051] provided heuristic evidence that if the primesp and ¢ are selected at random, each
having the same bitlength, then the expected time before the generalized cycling attack suc-
ceedsisat least p'/3.

The note on message concealing (§8.2.2(viii)) isdueto Blakley and Borosh [150], who also
extended this work to all composite integers n and determined the number of deranging
exponentsfor afixed n, i.e., exponents e for which the number of unconcealed messagesis
the minimum possible. For further work see Smith and Palmer [1158].

Suppose that two or more plaintext messages which have a (known) polynomial relation-
ship (e.g. m1 and my might be linearly related: m; = ams + b) are encrypted with the
same small encryption exponent (e.g. e = 3 or e = 216 + 1). Coppersmith et al. [277]
presented a new class of attacks on RSA which enable a passive adversary to recover such
plaintext from the corresponding ciphertext. Thisattack isof practical significance because
various cryptographic protocol s have been proposed which require the encryption of poly-
nomially related messages. Examplesinclude the key distribution protocol of Tatebayashi,
Matsuzaki, and Newman [1188], and the verifiable signature scheme of Franklin and Reiter
[421]. Notethat these attacks are different from those of §8.2.2(ii) and §8.2.2(vi) where the
same plaintext is encrypted under different public keys.

Coppersmith [274] presented an efficient algorithm for finding aroot of apolynomial of de-
greek over Z,,, wheren isan RSA-like modulus, provided that therethereisaroot smaller

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

314

Ch. 8 Public-Key Encryption

than n'/*. The algorithm yielded the following two attacks on RSA with small encryption
exponents. If e = 3 andif an adversary knowsaciphertext c and morethan 2/3 of the plain-
text m correspondingto ¢, thenthe adversary can efficiently recover therest of m. Suppose
now that messages are padded with random bitstrings and encrypted with exponent e = 3.
If an adversary knows two ciphertexts ¢; and ¢o which correspond to two encryptions of
the same message m (with different padding), then the adversary can efficiently recovery
m, provided that the padding is less than 1/9 of the length of n. The latter attack suggests
that caution must be exercised when using random padding in conjunction with asmall en-
cryption exponent.

Let n = pq beak-bit RSA modulus, wherep and q are k/2-bit primes. Coppersmith [273]
showed how n can befactored in polynomial timeif the high order /4 bitsof p areknown.
Thisimproves an agorithm of Rivest and Shamir [1058], which requires knowledge of the
high order & /3 bitsof p. For related theoretical work, see Maurer [814]. Oneimplication of
Coppersmith’sresult is that the method of Vanstone and Zuccherato [1214] for generating
RSA moduli having a predetermined set of bitsisinsecure.

A trapdoor in the RSA cryptosystem was proposed by Anderson [26] whereby a hardware
device generates the RSA modulusn = pq in such away that the hardware manufacturer
can easily factor n, but factoring n remains difficult for all other parties. However, Kaliski
[652] subsequently showed how to efficiently detect such trapdoors and, in some cases, to
actually factor the modulus.

Theargumentsand recommendationsabout the use of strong primesin RSA key generation
(Note 8.8) are taken from the detailed article by Rivest [1051].

Shamir [1117] proposed a variant of the RSA encryption scheme called unbalanced RSA,
which makesit possible to enhance security by increasing the modulus size (e.g. from 500
bitsto 5000 bits) without any deterioration in performance. In thisvariant, the public mod-
ulusn isthe product of two primes p and ¢, where one prime (say q) is significantly larger
in size than the other; plaintext messages m are in the interval [0,p — 1]. For concrete-
ness, consider the situation where p is a 500-bit prime, and ¢ is a 4500-bit prime. Fac-
toring such a 5000-hit modulus n is well beyond the reach of the special-purpose dlliptic
curvefactoring algorithm of §3.2.4 (whose running time depends on the size of the smallest
prime factor of n) and general-purposefactoring algorithms such as the number field sieve
of §3.2.7. Shamir recommends that the encryption exponent e be in the interval [20, 100],
which makes the encryption time with a 5000-bit modulus comparable to the decryption
time with a 500-bit modulus. Decryption of the ciphertext ¢ (= m® mod n) is accom-
plished by computing m; = ¢ mod p, whered; = d mod (p — 1). Since0 < m < p,
my isinfact equal to m. Decryptionin unbalanced RSA thusonly involves one exponenti-
ation modul o a500-bit prime, and takesthe sametime asdecryptionin ordinary RSA with a
500-hit modulus. This optimization does not apply to the RSA signature scheme (§11.3.1),
since the verifier does not know the factor p of the public modulusn.

A permutation polynomial of Z,, isapolynomia f(x) € Z,[x] which induces a permuta-
tion of Z,, upon substitution of the elementsof Z,,; that is, { f(a)|a € Z,} = Z,. INRSA
encryption the permutation polynomial z¢ of Z,, isused, whereged(e, ¢) = 1. Muller and
Nobauer [910] suggested replacing the polynomial z¢ by the so-called Dickson polynomi-
alsto create a modified RSA encryption scheme called the Dickson scheme. The Dickson
schemewas further studied by Muller and Nobauer [909]. Other suitable classes of permu-
tation polynomialswere investigated by Lidl and Miller [763]. Smith and Lennon [1161]
proposed an analogue of the RSA cryptosystem called LUC which is based on Lucas se-
guences. Due to the relationships between Dickson polynomials and the Lucas sequences,

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.8 Notes and further references 315

§8.3

the LUC cryptosystem is closely related to the Dickson scheme. Bleichenbacher, Bosma,
and Lenstra[154] presented a chosen-message attack on the LUC signature scheme, under-
mining the primary advantage claimed for LUC over RSA. Pinch [976, 977] extended the
attacks on RSA with small encryption exponent (§8.2.2(ii)) and small decryption exponent
(§8.2.2(iv)) to the LUC system.

An analogue of the RSA cryptosystem which uses special kinds of élliptic curvesover Z,,,
wheren is acompositeinteger, was proposed by Koyamaet al. [708]. Demytko [321] pre-
sented an analogue where there is very little restriction on the types of eliptic curves that
can beused. A new cryptosystem based on elliptic curvesover Z,, in which the messageis
heldintheexponent instead of the group element was proposed by Vanstoneand Zuccherato
[1213]. The security of all these schemesis based on the difficulty of factoring n. Kuro-
sawa, Okada, and Tsujii [721] showed that the encryption schemes of Koyama et al. and
Demytko are vulnerable to low exponent attacks (cf. §8.2.2(ii)); Pinch [977] demonstrated
that the attack on RSA with small decryption exponent d (§8.2.2(iv)) also extends to these
schemes. Kaliski [649] presented a chosen-ciphertext attack on the Demytko encryption
scheme (and also a chosen-message attack on the corresponding signature scheme), and
concluded that the present benefits of elliptic curve cryptosystems based on a composite
modulus do not seem significant.

The Rabin public-key encryption scheme (Algorithm 8.11) was proposed in 1979 by Ra-
bin [1023]. In Rabin’s paper, the encryption function was defined to be E(m) = m(m +
b) mod n, where b and n comprise the public key. The security of this scheme is equiv-
alent to the security of the scheme described in Algorithm 8.11 with encryption function
E(m) = m? mod n. A related digital signature schemeis described in §11.3.4. Schwenk
and Eisfeld [1104] consider public-key encryption and signature schemes whose security
relies on the intractability of factoring polynomialsover Z,,.

Williams [1246] presented a public-key encryption scheme similar in spirit to Rabin’s but
using composite integersn = pg with primesp = 3 (mod 8) and ¢ = 7 (mod 8).
Williams' scheme also has the property that breaking it (that is, recovering plaintext from
some given ciphertext) is equivalent to factoring n, but hasthe advantage over Rabin’ssch-
emethat thereis an easy procedurefor identifying the intended message from the four roots
of aquadratic polynomial. Therestrictionsontheformsof the primesp and ¢ wereremoved
later by Williams [1248]. A simpler and more efficient scheme also having the properties
of provable security and unique decryption was presented by Kurosawa, 1to, and Takeuchi
[720]. Aswith Rabin, all these schemes are vulnerable to a chosen-ciphertext attack (but
see Note 8.14).

It is not the case that all public-key encryption schemes for which the decryption problem
is provably as difficult as recovering the private key from the public key must succumb to
a chosen-ciphertext attack. Goldwasser, Micali, and Rivest [484] were the first to observe
this, and presented a digital signature scheme provably secure against an adaptive chosen-
ciphertext attack (see §11.6.4). Naor and Yung [921] proposed thefirst concrete public-key
encryption scheme that is semantically secure against indifferent chosen-ciphertext attack.
The Naor-Yung scheme usestwo independent keys of aprobabilistic public-encryptionsch-
emethat is secure against a passive adversary (for example, the Goldwasser-Micali scheme
of Algorithm 8.51) to encrypt the plaintext, and then both encryptions are sent along with
a non-interactive zero-knowledge proof that the same message was encrypted with both
keys. Following this work, Rackoff and Simon [1029] gave the first concrete construction
for apublic-key encryption schemethat is semantically secure against an adaptive chosen-

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

316

Ch. 8 Public-Key Encryption

§8.4

ciphertext attack. Unfortunately, these schemesare all impractical because of the degree of
message expansion.

Damgard [297] proposed simple and efficient methods for making public-key encryption
schemes secure against indifferent chosen-ciphertext attacks. Zheng and Seberry [1269]
noted that Damgard’s schemes are insecure against an adaptive chosen-ciphertext attack,
and proposed three practical schemes intended to resist such an attack. The Damgard and
Zheng-Seberry schemes were not proven to achieve their claimed levels of security. Bel-
lare and Rogaway [93] later proved that one of the Zheng-Seberry schemesis provably se-
cure against adaptive chosen-ciphertext attacks for their random oracle model. Lim and
Lee [766] proposed another method for making public-key schemes secure against adap-
tive chosen-ciphertext attacks; this scheme was broken by Frankel and Yung [419].

The EIGamal cryptosystem wasinvented by ElGamal [368]. Haber and L enstra (see Ruep-
pel et al. [1083]) raised the possibility of a trapdoor in discrete logarithm cryptosystems
whereby a modulus p is generated (e.g., by a hardware manufacturer) that is intentionally
“weak”; cf. Note 4.58. Here, a“weak” primep isonefor which the discrete logarithm prob-
lemin Z, isrelatively easy. For example, p — 1 may contain only small prime factors, in
which case the Pohlig-Hellman algorithm (§3.6.4) would be especially effective. Another
exampleisaprime p for which the number field sieve for discrete logarithms (page 128) is
especialy well-suited. However, Gordon [509] subsequently showed how such trapdoors
can beeasily detected. Gordon also showed that the probability of arandomly chosen prime
possessing such atrapdoor is negligibly small.

Rivest and Sherman [1061] gave an overview and unified framework for randomized en-
cryption, including comments on chosen-plaintext and chosen-ciphertext attacks.

Elliptic curveswerefirst proposed for usein public-key cryptography by Koblitz [695] and
Miller [878]. Recent work on the security and implementation of elliptic curve systems
is reported by Menezes [840]. Menezes, Okamoto, and Vanstone [843] showed that if the
eliptic curve belongsto a special family called supersingular curves, then the discrete log-
arithm problem in the elliptic curve group can be reduced in expected polynomial time to
the discrete logarithm problem in a small extension of the underlying finitefield. Hence, if
asupersingular elliptic curveis desired in practice, then it should be carefully chosen.

A modification of ElGamal encryption employing the group of unitsZ;,, wheren isacom-
positeinteger, was proposed by McCurley [825]; the scheme has the property that breaking
itisprovably at least as difficult asfactoring the modulusn (cf. Fact 3.80). If acryptanalyst
somehow learnsthe factors of n, thenin order to recover plaintext from ciphertext it is still
left with the task of solving the Diffie-Hellman problem (§3.7) modulo the factors of n.

Hyperelliptic curve cryptosystems were proposed by Koblitz [696] but little research has
since been done regarding their security and practicality.

The possibility of using the class group of an imaginary quadratic number field in public-
key cryptography was suggested by Buchmann and Williams [218], however, the attrac-
tiveness of this choice was greatly diminished after the invention of a subexponential-time
algorithm for computing discrete logarithmsin these groups by McCurley [826].

Smith and Skinner [1162] proposed anal ogues of the Diffie-Hellman key exchange (called
LUCDIF) and ElGamal encryption and digital signature schemes (called LUCELG) which
use Lucas sequences modulo a prime p instead of modular exponentiation. Shortly there-
after, Laih, Tu, and Tai [733] and Bleichenbacher, Bosma, and Lenstra [154] showed that
the anal ogue of the discrete logarithm problem for Lucas functions polytime reducesto the

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.8 Notes and further references 317

§8.5

§8.6

discrete logarithm problem in the multiplicative group of the finite field IF,.. Since there
are subexponential-timeal gorithmsknown for the discretelogarithm problemin thesefields
(cf. §3.6), LUCDIF and LUCEL G appear not to offer any advantagesover the original sch-
emes.

The McEliece encryption scheme (Algorithm 8.30) was introduced in 1978 by McEliece
[828]. For information on Goppa codes and their decoding algorithms, see MacWilliams
and Sloane [778]. The problem of decoding an arbitrary linear code was shown to be NP-
hard by Berlekamp, McEliece, and van Tilborg[120]. The security of the McEliece scheme
hasbeen studied by Adamsand Meijer [6], Leeand Brickell [742], van Tilburg[1212], Gib-
son [451], and by Chabaud [235]. Gibson showed that there are, in fact, many trapdoorsto
agiven McEliece encryption transformation, any of which may be used for decryption; this
iscontrary to theresults of Adamsand Meijer. However, Gibson notesthat there are proba-
bly sufficiently few trapdoorsthat finding one by brute forceis computationally infeasible.
The cryptanalytic attack reported by Korzhik and Turkin [707] has not been published in
its entirety, and is not believed to be an effective attack.

The strength of the McEliece encryption scheme can be severely weakened if the Goppa
codeisreplaced with another type of error-correcting code. For example, Gabidulin, Para-
monov, and Tretjakov [435] proposed a modification which uses maximum-rank-distance
(MRD) codesin place of Goppacodes. This scheme, and amodification of it by Gabidulin
[434], were subsequently shown to be insecure by Gibson [452, 453].

Thebasic and multiple-iterated M erkle-Hellman knapsack encryption schemes (§8.6.1) we-
reintroduced by Merkle and Hellman [857]. An elementary overview of knapsack systems
is given by Odlyzko [941].

Thefirst polynomial-timeattack onthe basic Merkle-Hellman scheme (cf. Note 8.40(i)) was
devised by Shamir [1114] in 1982. The attack makes use of H. Lenstra’salgorithm for inte-
ger programming which runsin polynomial time when the number of variablesisfixed, but
isinefficientin practice. Lagarias[723] improved the practicality of the attack by reducing
the main portion of the procedure to a problem of finding an unusually good simultane-
ous diophanti ne approximation; the latter can be solved by the more efficient L3-lattice ba-
sisreduction algorithm (§3.10.1). Thefirst attack on the multiple-iterated Merkle-Hellman
scheme was by Brickell [200]. For surveys of the cryptanalysis of knapsack schemes, see
Brickell [201] and Brickell and Odlyzko [209]. Orton[960] proposed amodification to the
multiple-iterated Merkle-Hellman scheme that permits a knapsack density approaching 1,
thus avoiding currently known attacks. The high density also allows for afast digital sig-
nature scheme.

Shamir [1109] proposed afast signature scheme based on the knapsack problem, later bro-
ken by Odlyzko [939] using the L3-lattice basis reduction algorithm.

The Merkle-Hellman knapsack schemeillustrates the limitations of using an NP-complete
problem to design a secure public-key encryption scheme. Firstly, Brassard [190] showed
that under reasonable assumptions, the problem faced by the cryptanalyst cannot be NP-
hard unlessNP=co-NP, which would be avery surprising result in computational complex-
ity theory. Secondly, complexity theory is concerned primarily with asymptotic complex-
ity of aproblem. By contrast, in practice oneworkswith aproblem instance of afixed size.
Thirdly, NP-completenessis ameasure of the wor st-case complexity of aproblem. By con-
trast, cryptographic security should depend on the average-case complexity of the problem
(or even better, the problem should be intractable for essentially all instances), since the

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

318

Ch. 8 Public-Key Encryption

§8.7

cryptanalyst’stask shouldbe hardfor virtually all instancesand not merely intheworst case.
There are many NP-complete problemsthat are known to have polynomial-time average-
case algorithms, for example, the graph coloring problem; see Wilf [1243]. Another inter-
esting example is provided by Even and Yacobi [379] who describe a symmetric-key en-
cryption scheme based on the subset sum problem for which breaking the scheme (under a
chosen-plaintext attack) is an NP-hard problem, yet an algorithm exists which solves most
instances in polynomial time.

The Chor-Rivest knapsack scheme (Algorithm 8.42) was proposed by Chor and Rivest
[261]. Recently, Schnorr and Horner [1100] introduced new agorithms for lattice ba
sis reduction that are improvements on the L3-lattice basis reduction agorithm (Algo-
rithm 3.101), and used these to break the Chor-Rivest scheme with parameters {p =
103, h = 12}. Since the density of such knapsack setsis 1.271, the attack demonstrated
that subset sum problems with density greater than 1 can be solved via lattice basis re-
duction. Schnorr and Horner also reported some success solving Chor-Rivest subset sum
problems with parameters {p = 151,h = 16}. It remains to be seen whether the tech-
niques of Schnorr and Horner can be successfully applied to the recommended parameter
case {p = 197, h = 24}.

Depending on the choi ce of parameters, the computation of discretelogarithmsin the Chor-
Rivest key generation stage (step 4 of Algorithm 8.41) may be aformidable task. A mod-
ified version of the scheme which does not require the computation of discrete logarithms
in afield was proposed by H. Lenstra[758]. This modified schemeis called the powerline
system and is not a knapsack system. It was proven to be at least as secure as the original
Chor-Rivest scheme, and is comparablein terms of encryption and decryption speeds.

Quand Vanstone[1013] showed how the Merkle-Hellman knapsack schemescan beviewed
as special cases of certain knapsack-like encryption schemes arising from subset factoriza-
tions of finite groups. They also proposed an efficient public-key encryption scheme based
on subset factorizations of the additive group Z,, of integers modulo n. Blackburn, Mur-
phy, and Stern [143] showed that a simplified variant which uses subset factorizations of
the n-dimensional vector space Z:; over Z isinsecure.

Thenotion of probabilistic public-key encryptionwas conceived by Goldwasser and Micali
[479], who aso introduced the notions of polynomia and semantic security. The equiva-
lence of these two notions (Fact 8.49) was proven by Goldwasser and Micali [479] and Mi-
cali, Rackoff, and Sloan [865]. Polynomial security was also studied by Yao [1258], who
referred to it as polynomial-time indistinguishability.

The Goldwasser-Micali scheme (Algorithm 8.51) can be described in a genera setting by
using the notion of atrapdoor predicate. Briefly, atrapdoor predicateisaBoolean function
B : {0,1}* — {0,1} such that given abit v it is easy to choose an x at random satisfy-
ing B(z) = v. Moreover, given a bitstring , computing B(z) correctly with probability
significantly greater than % is difficult; however, if certain trapdoor information is known,
thenitiseasy to compute B(z). If entity A’spublic key isatrapdoor predicate B, then any
other entity encrypts amessage bit m; by randomly selecting an z; such that B(z;) = m;,
andthen sendsz; to A. Since A knowsthetrapdoor information, she can compute B(z;) to
recover m;, but an adversary can do no better than guess the value of m;. Goldwasser and
Micali [479] proved that if trapdoor predicates exist, then this probabilistic encryption sch-
emeispolynomially secure. Goldreich and Levin [471] simplified thework of Yao [1258],
and showed how any trapdoor length-preserving permutation f can be used to obtain atrap-
door predicate, which in turn can be used to construct a probabilistic public-key encryption

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§8.8 Notes and further references 319

scheme.

The Blum-Goldwasser scheme (Algorithm 8.56) was proposed by Blum and Goldwasser
[164]. The version given here follows the presentation of Brassard [192]. Two probabilis-
tic public-key encryption schemes, one whose breaking is equivalent to solving the RSA
problem (§3.3), and the other whose breaking is equivalent to factoring integers, were pro-
posed by Alexi et a. [23]. The scheme based on RSA isasfollows. Let h = |lglgn],
where (n, e) is entity A’'s RSA public key. To encrypt an h-bit message m for A, choose
arandomy € Z; such that the h least significant bits of y equal m, and compute the ci-
phertext ¢ = y© mod n. A can recover m by computingy = ¢* mod n, and extracting the
h least significant hits of y. While both the schemes proposed by Alexi et al. are more ef-
ficient than the Goldwasser-Micali scheme, they suffer from large message expansion and
are consequently not as efficient as the Blum-Goldwasser scheme.

Theideaof non-malleablecryptography (Definition 8.60) wasintroduced by Dolev, Dwork,
and Naor [357], who also observed Fact 8.61. The paper gives the example of two con-
tract bidders who encrypt their bids. It should not be possible for one bidder A to see the
encrypted bid of the other bidder B and somehow be able to offer a bid that was dightly
lower, even if A may not know what the resulting bid actually is at that time. Bellare and
Rogaway [95] introduced the notion of plaintext-aware encryption (Definition 8.62). They
presented the scheme described in Note 8.63, building upon earlier work of Johnson et al.
[639]. Rigorousdefinitionsand security proofswere provided, aswell as a concreteinstan-
tiation of the plaintext-aware encryption scheme using RSA as the trapdoor permutation,
and constructing therandom functionsG and H from the SHA-1 hash function (§9.4.2(iii)).
Johnson and Matyas [640] presented some enhancementsto the plaintext-aware encryption
scheme. Bellare and Rogaway [93] presented various techniques for deriving appropriate
random functions from standard cryptographic hash functions.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

