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10.1 Introduction

This chapter considers techniques designed to allow one party (the verifier) to gain assur-
ances that the identity of another (the claimant) is as declared, thereby preventing imper-
sonation. The most common techniqueis by the verifier checking the correctness of ames-
sage (possibly in response to an earlier message) which demonstrates that the claimant is
in possession of a secret associated by design with the genuine party. Names for such tech-
niques include identification, entity authentication, and (less frequently) identity verifica-
tion. Related topics addressed elsewhere include message authentication (data origin au-
thentication) by symmetric techniques (Chapter 9) and digital signatures (Chapter 11), and
authenticated key establishment (Chapter 12).

A major difference between entity authentication and message authentication (as pro-
vided by digital signaturesor MACs) isthat message authenticationitself providesno time-
liness guarantees with respect to when a message was created, whereas entity authentica
tion involves corroboration of aclaimant’sidentity through actual communicationswith an
associated verifier during execution of the protocol itself (i.e., in real-time, while the ver-
ifying entity awaits). Conversaly, entity authentication typically involves no meaningful
message other than the claim of being a particular entity, whereas message authentication
does. Techniques which provide both entity authentication and key establishment are de-
ferred to Chapter 12; in some cases, key establishment is essentially message authentication
where the message is the key.
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Chapter outline

The remainder of §10.1 providesintroductory material. §10.2 discusses identification sch-
emes involving fixed passwords including Personal Identification Numbers (PINSs), and
providing so-called weak authentication; one-time password schemes are also considered.
§10.3 considers techniques providing so-called strong authentication, including challenge-
response protocols based on both symmetric and public-key techniques. It includesdiscus-
sion of time-variant parameters (TV Ps), which may be used in entity authentication proto-
cols and to provide uniqueness or timeliness guarantees in message authentication. §10.4
examines customized identification protocols based on or motivated by zero-knowledge
techniques. §10.5 considers attacks on identification protocols. §10.6 provides references
and further chapter notes.

10.1.1 Identification objectives and applications

10.1

10.2

Thegeneral setting for anidentification protocol involvesaprover or claimant A and averi-
fier B. Theverifier is presented with, or presumes beforehand, the purported identity of the
claimant. The goal is to corroborate that the identity of the claimant isindeed A4, i.e., to
provide entity authentication.

Definition Entity authentication isthe process whereby one party is assured (through ac-
quisition of corroborativeevidence) of theidentity of asecond party involvedin aprotocol,
and that the second has actually participated (i.e., is active at, or immediately prior to, the
time the evidence is acquired).

Remark (identificationterminology) Thetermsidentificationand entity authenticationare
used synonymously throughout this book. Distinction is made between weak, strong, and
zero-knowledge based authentication. Elsewherein theliterature, sometimesidentification
impliesonly a claimed or stated identity whereas entity authentication suggests a corrobo-
rated identity.

(i) Objectives of identification protocols

From the point of view of the verifier, the outcome of an entity authentication protocol is
either acceptance of the claimant’s identity as authentic (completion with acceptance), or
termination without acceptance (rejection). More specifically, the objectives of an identi-
fication protocol include the following.

1. Inthe case of honest parties A and B, A is able to successfully authenticate itself to
B, i.e., B will complete the protocol having accepted A’s identity.

2. (transferability) B cannot reuse an identification exchange with A so as to success-
fully impersonate A to athird party C.

3. (impersonation) The probability is negligible that any party C distinct from A, car-
rying out the protocol and playing the role of A, can cause B to complete and accept
A’sidentity. Here negligible typically means “is so small that it is not of practical
significance”; the precise definition depends on the application.

4. The previous points remain true even if: a (polynomially) large number of previous
authentications between A and B have been observed; the adversary C has partici-
pated in previous protocol executions with either or both A and B; and multiplein-
stances of the protocol, possibly initiated by C', may be run simultaneously.
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§10.1 Introduction 387

Theidea of zero-knowledge-based protocolsisthat protocol executions do not even reveal
any partial information which makes C’stask any easier whatsoever.

Anidentification (or entity authentication) protocol isa“rea-time” processin the sense
that it provides an assurance that the party being authenticated is operational at the time of
protocol execution—that party istaking part, having carried out some action since the start
of the protocol execution. |dentification protocols provide assurances only at the particu-
lar instant in time of successful protocol completion. If ongoing assurances are required,
additional measures may be necessary; see §10.5.

(ii) Basis of identification
Entity authentication techniques may be divided into three main categories, depending on
which of the following the security is based:

1. something known. Examplesinclude standard passwords (sometimes used to derive
asymmetric key), Personal |dentification Numbers (PINSs), and the secret or private
keys whose knowledge is demonstrated in challenge-response protocols.

2. something possessed. Thisis typically a physical accessory, resembling a passport
in function. Examples include magnetic-striped cards, chipcards (plastic cards the
size of credit cards, containing an embedded microprocessor or integrated circuit;
also called smart cardsor | C cards), and hand-hel d customi zed cal cul ators (password
generators) which provide time-variant passwords.

3. something inherent (to a human individual). This category includes methods which
make use of human physical characteristics and involuntary actions (biometrics),
such as handwritten signatures, fingerprints, voice, retina patterns, hand geome-
tries, and dynamic keyboarding characteristics. These techniques are typically non-
cryptographic and are not discussed further here.

(i) Applications of identification protocols

One of the primary purposes of identification is to facilitate access control to a resource,
when an access privilege is linked to a particular identity (e.g., local or remote access to
computer accounts; withdrawal sfrom automated cash dispensers; communications permis-
sions through a communications port; access to software applications; physical entry to re-
stricted areas or border crossings). A password scheme used to allow access to a user’s
computer account may be viewed asthe simplest instance of an access control matrix: each
resource hasalist of identitiesassociated with it (e.g., acomputer account which authorized
entities may access), and successful corroboration of an identity allows accessto the autho-
rized resources as listed for that entity. In many applications (e.g., cellular telephony) the
motivation for identification is to allow resource usage to be tracked to identified entities,
to facilitate appropriate billing. Identification is also typically an inherent requirement in
authenticated key establishment protocols (see Chapter 12).

10.1.2 Properties of identification protocols

| dentification protocols may have many properties. Properties of interest to usersinclude:

1. reciprocity of identification. Either one or both parties may corroborate their iden-
tities to the other, providing, respectively, unilateral or mutual identification. Some
techniques, such as fixed-password schemes, may be susceptible to an entity posing
asaverifier simply in order to capture a claimant’s password.

2. computational efficiency. The number of operations required to execute a protocol.
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388 Ch. 10 Identification and Entity Authentication

3. communication efficiency. Thisincludesthe number of passes (message exchanges)
and the bandwidth required (total number of bits transmitted).
More subtle propertiesinclude:

4. real-time involvement of a third party (if any). Examples of third partiesinclude an
on-line trusted third party to distribute common symmetric keys to communicating
entities for authentication purposes; and an on-line (untrusted) directory service for
distributing public-key certificates, supported by an off-line certification authority
(see Chapter 13).

5. nature of trust required in a third party (if any). Examples include trusting a third
party to correctly authenticate and bind an entity’s nameto a public key; and trusting
athird party with knowledge of an entity’s private key.

6. nature of security guarantees. Examplesinclude provable security and zero-know-
ledge properties (see §10.4.1).

7. storage of secrets. Thisincludes the location and method used (e.g., software only,
local disks, hardware tokens, etc.) to store critical keying material.

Relation between identification and signature schemes

Identification schemes are closely related to, but simpler than, digital signature schemes,
which involve avariable message and typically provide a non-repudiation feature allowing
disputes to be resolved by judges after the fact. For identification schemes, the semantics
of the message are essentialy fixed —a claimed identity at the current instant in time. The
claim is either corroborated or rejected immediately, with associated privileges or access
either granted or denied in real time. Identifications do not have “lifetimes’ as signatures
do' — disputes need not typically be resolved afterwards regarding a prior identification,
and attacks which may become feasible in the future do not affect the validity of a prior
identification. In some cases, identification schemes may also be converted to signature
schemes using a standard technique (see Note 10.30).

10.2 Passwords (weak authentication)

Conventional password schemesinvolve time-invariant passwords, which provide so-call-
ed weak authentication. The basic ideais as follows. A password, associated with each
user (entity), istypically astring of 6 to 10 or more characters the user is capable of com-
mitting to memory. This serves as a shared secret between the user and system. (Conven-
tional password schemes thusfall under the category of symmetric-key techniques provid-
ing unilateral authentication.) To gain accessto a system resource (e.g., computer account,
printer, or software application), the user enters a (userid, password) pair, and explicitly or
implicitly specifies a resource; here userid is a claim of identity, and password is the evi-
dence supporting the claim. The system checks that the password matches corresponding
datait holdsfor that userid, and that the stated identity is authorized to access the resource.
Demonstration of knowledge of this secret (by revealing the password itself) is accepted by
the system as corroboration of the entity’s identity.

Various password schemes are distinguished by the means by which information a-
lowing password verification is stored within the system, and the method of verification.
The collection of ideas presented in the following sections motivate the design decisions

1 Some identification techniques involve, as a by-product, the granting of tickets which provide time-limited
access to specified resources (see Chapter 13).
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§10.2 Passwords (weak authentication) 389

made in typical password schemes. A subsequent section summarizes the standard attacks
these designs counteract. Threats which must be guarded against include: password dis-
closure (outside of the system) and line eavesdropping (within the system), both of which
allow subsequent replay; and password guessing, including dictionary attacks.

10.2.1 Fixed password schemes: techniques

10.3

(i) Stored password files

The most obvious approach is for the system to store user passwords cleartext in a system
password file, which is both read- and write-protected (e.g., via operating system access
control privileges). Upon password entry by a user, the system compares the entered pass-
word to the password file entry for the corresponding userid; employing no secret keys or
cryptographic primitives such as encryption, thisis classified as a non-cryptographic tech-
nigue. A drawback of this method is that it provides no protection against privileged in-
siders or superusers (special userids which have full access privileges to system files and
resources). Storage of the password file on backup mediais also a security concern, since
the file contains cleartext passwords.

(ii) “Encrypted” password files

Rather than storing a cleartext user password in a(read- and write-protected) password file,
aone-way function of each user password is stored in place of the password itself (see Fig-
ure 10.1). To verify auser-entered password, the system computes the one-way function of
the entered password, and compares this to the stored entry for the stated userid. To pre-
clude attacks suggested in the preceding paragraph, the password file need now only be
write-protected.

Remark (one-way function vs. encryption) For the purpose of protecting password files,
the use of a one-way function is generally preferable to reversible encryption; reasons in-
cludethoserelated to export restrictions, and the need for keying material. However, in both
cases, for historical reasons, the resulting values are typically referred to as “encrypted”
passwords. Protecting passwords by either method before transmission over public com-
municationslines addresses the threat of compromise of the password itself, but al one does
not preclude disclosure or replay of the transmission (cf. Protocol 10.6).

(iii) Password rules

Since dictionary attacks (see §10.2.2(iii)) are successful against predictable passwords,
some systems impose “password rules’ to discourage or prevent users from using “weak”
passwords. Typical password rulesincludealower bound on the password length (e.g., 8 or
12 characters); arequirement for each password to contain at |east one character from each
of aset of categories (e.g., uppercase, numeric, non-alphanumeric); or checks that candi-
date passwords are not found in on-line or available dictionaries, and are not composed of
account-related information such as userids or substrings thereof.

Knowing which rules are in effect, an adversary may use amodified dictionary attack
strategy taking into account the rules, and targeting the weakest form of passwords which
nonetheless satisfy the rules. The objective of password rules is to increase the entropy
(rather than just the length) of user passwords beyond the reach of dictionary and exhaus-
tive search attacks. Entropy here refers to the uncertainty in a password (cf. §2.2.1); if all
passwords are equally probable, then the entropy is maximal and equals the base-2 loga-
rithm of the number of possible passwords.
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Claimant A Verifier (system) B

Password table

h(password 4)

A | h(password 4)

password, A

ACCEPT

password

h(password) no

REJECT

Figure 10.1: Use of one-way function for password-checking.

Another procedural techniqueintended to improve password security is password ag-
ing. A time period is defined limiting the lifetime of each particular password (e.g., 30 or
90 days). Thisrequiresthat passwords be changed periodically.

(iv) Slowing down the password mapping

To dlow down attackswhich involvetesting alarge number of trial passwords (see §10.2.2),
the password verification function (e.g., one-way function) may be made more computa-
tionally intensive, for example, by iterating asimpler function¢ > 1 times, with the output
of iteration ¢ used as the input for iteration ¢ + 1. The total number of iterations must be
restricted so as not to impose a noticeabl e or unreasonabledelay for legitimate users. Also,
theiterated function should be such that the iterated mapping does not result in afinal range
space whose entropy is significantly decimated.

(v) Salting passwords

To make dictionary attacks less effective, each password, upon initial entry, may be aug-
mented with a ¢-bit random string called a salt (it alters the “flavor” of the password; cf.
§10.2.3) before applying the one-way function. Both the hashed password and the salt are
recorded in the password file. When the user subsequently enters a password, the system
looks up the salt, and applies the one-way function to the entered password, as atered or
augmented by the salt. The difficulty of exhaustive search on any particular user’s pass-
word isunchanged by salting (sincethe salt isgivenin cleartext in the password fil€); how-
ever, salting increasesthe complexity of adictionary attack against alarge set of passwords
simultaneously, by requiring the dictionary to contain 2¢ variations of each trial password,
implying alarger memory requirement for storing an encrypted dictionary, and correspond-
ingly moretimefor its preparation. Note that with salting, two users who choose the same
password have different entries in the system password file. In some systems, it may be
appropriate to use an entity’s userid itself as salt.

(vi) Passphrases

To alow greater entropy without stepping beyond the memory capacity of human users,
passwords may be extended to passphrases; in this case, the user typesin a phrase or sen-
tencerather than ashort “word”. Thepassphraseishashed downto afixed-sizevalue, which
playsthe sameroleasapassword; here, itisimportant that the passphraseisnot simply trun-
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cated by the system, as passwordsarein some systems. Theideaisthat users can remember
phrases easier than random character sequences. If passwords resemble English text, then
since each character contains only about 1.5 bits of entropy (Fact 7.67), a passphrase pro-
vides greater security through increased entropy than a short password. One drawback is
the additional typing requirement.

10.2.2 Fixed password schemes: attacks

(i) Replay of fixed passwords

A weakness of schemes using fixed, reusable passwords (i.e., the basic scheme of §10.2),
is the possihility that an adversary learns a user’s password by observing it asit is typed
in (or from where it may be written down). A second security concern is that user-entered
passwords (or one-way hashesthereof) aretransmitted in cleartext over the communications
line between the user and the system, and are also available in cleartext temporarily during
system verification. An eavesdropping adversary may record thisdata, all owing subsequent
impersonation.

Fixed password schemes are thus of use when the password is transmitted over trusted
communicationslines safe from monitoring, but are not suitable in the case that passwords
are transmitted over open communications networks. For example, in Figure 10.1, the
claimant A may be auser logging in from homeover atel ephone modem, to aremote office
site B two (or two thousand) miles away; the cleartext password might then travel over an
unsecured telephonenetwork (including possibly awirel esslink), subject to eavesdropping.

In the case that remote identity verification is used for accessto alocal resource, e.g.,
an automated cash dispenser with on-line identity verification, the system response (ac-
cept/reject) must be protected in addition to the submitted password, and must include vari-
ability to prevent trivial replay of atime-invariant accept response.

(i) Exhaustive password search

A very naive attack involvesan adversary simply (randomly or systematically) trying pass-
words, one at atime, on the actual verifier, in hopethat the correct password isfound. This
may be countered by ensuring passwords are chosen from a sufficiently large space, limit-
ing the number of invalid (on-line) attempts allowed within fixed time periods, and slowing
down the password mapping or login-processitself asin §10.2.1(iv). Off-line attacks, in-
volving a (typically large) computation which does not require interacting with the actual
verifier until afinal stage, are of greater concern; these are now considered.

Given apassword file containing one-way hashes of user passwords, an adversary may
attempt to defeat the system by testing passwords one at atime, and comparing the one-way
hash of each to passwordsin the encrypted password file (see §10.2.1(ii)). Thisis theoreti-
cally possible since both the one-way mapping and the (guessed) plaintext are known. (This
could be precluded by keeping any or al of the details of the one-way mapping or the pass-
word file itself secret, but it is not considered prudent to base the security of the system on
the assumptionthat such detailsremain secret forever.) Thefeasibility of theattack depends
on the number of passwords that need be checked before a match is expected (which itself
depends on the number of possible passwords), and the time required to test each (see Ex-
ample10.4, Table 10.1, and Table 10.2). Thelatter depends on the password mapping used,
its implementation, the instruction execution time of the host processor, and the number of
processors available (note exhaustive search is parallelizable). The time required to actu-
ally comparetheimageof each trial password to all passwordsin apasswordfileistypically
negligible.
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10.4 Example (password entropy) Suppose passwords consist of strings of 7-bit ASCII char-

acters. Each has a numeric value in the range 0-127. (When 8-bit characters are used, val-
ues 128-255 composethe extended character set, generally inaccessible from standard key-
boards.) ASCII codes 0-31 are reserved for control characters; 32 is a space character; 33-
126 are keyboard-accessible printable characters; and 127 is a special character. Table 10.1
gives the number of distinct n-character passwords composed of typical combinations of

characters, indicating an upper bound on the security of such password spaces. O
—c 26 36 (lowercase | 62 (mixed case | 95 (keyboard
Jn | (lowercase) | aphanumeric) | aphanumeric) characters)
5 23.5 25.9 29.8 32.9
6 28.2 31.0 35.7 39.4
7 32.9 36.2 41.7 46.0
8 37.6 41.4 47.6 52.6
9 42.3 46.5 53.6 59.1
10 47.0 51.7 59.5 65.7

Table 10.1: Bitsize of password space for various character combinations. The number of n-
character passwords, given c choices per character, isc”. The table gives the base-2 logarithm
of this number of possible passwords.

—c 26 36 (lowercase | 62 (mixed case | 95 (keyboard
$n | (lowercase) | aphanumeric) alphanumeric) characters)
5 0.67 hr 3.4 hr 51 hr 430 hr

6 17 hr 120 hr 130 dy 4.7yr

7 19 dy 180 dy 22 yr 440 yr

8 1.3 yr 18 yr 1400 yr 42000 yr

9 34 yr 640 yr 86000 yr | 4.0 x 10° yr
10 890 yr 23000 yr 5.3 x10%yr | 3.8 x 108 yr

Table 10.2: Timerequired to search entire password space. ThetablegivesthetimeT (inhours,
days, or years) required to search or pre-compute over the entire specified spaces using a single
processor (cf. Table 10.1). T' = ¢™ - t - y, where ¢ isthe number of times the password mapping
isiterated, and y the time per iteration, for ¢ = 25, y = 1/(125 000) sec. (This approximates
the UNIX crypt command on a high-end PC performing DESat 1.0 Mbytes/s — see §10.2.3.)

(iii) Password-guessing and dictionary attacks

To improve upon the expected probability of success of an exhaustive search, rather than
searching through the space of al possible passwords, an adversary may search the spacein
order of decreasing (expected) probability. While ideally arbitrary strings of n characters
would be equiprobable as user-selected passwords, most (unrestricted) users select pass-
words from a small subset of the full password space (e.g., short passwords; dictionary
words; proper names; lowercase strings). Such weak passwordswith low entropy are easily
guessed; indeed, studiesindicate that alarge fraction of user-selected passwords are found
intypical (intermediate) dictionaries of only 150 000 words, while even alarge dictionary
of 250 000 words represents only atiny fraction of al possible n-character passwords (see
Table 10.1).

Passwords found in any on-line or available list of words may be uncovered by an ad-
versary who triesal wordsin thislist, using aso-called dictionary attack. Asidefrom tradi-
tional dictionaries as noted above, on-line dictionaries of words from foreign languages, or
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§10.2 Passwords (weak authentication) 393

on specialized topics such as music, film, etc. are available. For efficiency in repeated use
by an adversary, an “encrypted” (hashed) list of dictionary or high-probability passwords
may be created and stored on disk or tape; password images from system password files
may then be collected, ordered (using a sorting algorithm or conventional hashing), and
then compared to entriesin the encrypted dictionary. Dictionary-style attacks are not gen-
erally successful at finding a particular user’s password, but find many passwords in most
systems.

10.2.3 Case study — UNIX passwords

The UNIx? operating system providesawidely known, historically important example of a
fixed password system, implementing many of theideas of §10.2.1. A UNIX password file
contains a one-way function of user passwords computed as follows. each user password
servesasthekey to encrypt aknown plaintext (64 zero-hits). Thisyieldsaone-way function
of the key, since only the user (aside from the system, temporarily during password veri-
fication) knows the password. For the encryption algorithm, a minor modification of DES
(§7.4) is used, as described below; variations may appear in products outside of the USA.
The technique described relies on the conjectured property that DES is resistant to known-
plaintext attacks — given cleartext and the corresponding ciphertext, it remains difficult to
find the key.

The specific technique makes repeated use of DES, iterating the encipherment ¢t = 25
times (see Figure 10.2). In detail, a user password is truncated to its first 8 ASCII char-
acters. Each of these provides 7 bits for a 56-bit DES key (padded with 0-bits if less than
8 characters). The key is used to DES-encrypt the 64-hit constant 0, with the output fed
back asinput ¢ timesiteratively. The 64-hit result is repacked into 11 printable characters
(a64-bit output and 12 salt bitsyields 76 bits; 11 ASCII charactersalow 77). In addition,
anon-standard method of password salting is used, intended to simultaneously complicate
dictionary attacks and preclude use of off-the-shelf DES hardware for attacks:

1. password salting. UNIX password salting associates a 12-bit “random” salt (12 bits
taken from the system clock at time of password creation) with each user-selected
password. The 12 bitsare used to alter the standard expansion function E of the DES
mapping (see §7.4), providing one of 4096 variations. (The expansion E' creates a
48-bit block; immediately thereafter, the salt bits collectively determine one of 4096
permutations. Each bit isassociated with apre-determined pair fromthe 48-bit block,
e.g., bit Lwith block bits1 and 25, bit 2 with block bits 2 and 26, etc. If thesalt bitis1,
the block bits are swapped, and otherwise they are not.) Both the hashed password
and salt are recorded in the system password file. Security of any particular user’s
password is unchanged by salting, but a dictionary attack now requires 2'2 = 4096
variations of each trial password.

2. preventing use of off-the-shelf DES chips. Because the DES expansion permutation
E is dependent on the salt, standard DES chips can no longer be used to implement
the UNIX password algorithm. An adversary wishing to use hardware to speed up an
attack must build customized hardware rather than use commercially available chips.
This may deter adversarieswith modest resources.

Thevaluestoredfor agivenuseridinthewrite-protected passwordfile/ et ¢/ passwd
isthustheiterated encryption of O under that user’s password, using the salted modification
of DES. The constant 0 here could be replaced by other values, but typically is not. The
overall algorithm is called the UNIX crypt password algorithm.

2uNIx isatrademark of Bell Laboratories.
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I; =0---0
next input I;,
a 2<i<25
data 64 =t=
I;
truncate to 8 !
user ASCII chars; key K o | salt
password — ™|  Q.pad if 56 7 DES" =13
necessary
output
Yy O:
64
O25 12
Y £

repack 76 bits
into eleven
7-bit characters

“encrypted” password

/ et c/ passwd

Figure 10.2: uNix crypt password mapping. DES* indicates DES with the expansion mapping £
modified by a 12-bit salt.

10.5 Remark (performance advances) While the uNix crypt mapping with ¢ = 25 iterations

provided a reasonable measure of protection against exhaustive search when introduced in
the 1970s, for equivalent security in a system designed today a more computationally in-
tensive mapping would be provided, due to performance advances in both hardware and
software.

10.2.4 PINs and passkeys

(i) PINs

Personal identification numbers (PINs) fall under the category of fixed (time-invariant)
passwords. They are most often used in conjunction with “ something possessed”, typically
a physical token such as a plastic banking card with a magnetic stripe, or a chipcard. To
prove on€e's identity as the authorized user of the token, and gain access to the privileges
associated therewith, entry of the correct PIN is required when the tokenisused. This pro-
vides a second level of security if the token is lost or stolen. PINs may also serve as the
second level of security for entry to buildings which have an independent first level of se-
curity (e.g., asecurity guard or video camera).

For user convenience and historical reasons, PINs are typically short (relative to fixed
password schemes) and numeric, e.g., 4 to 8 digits. To prevent exhaustive search through
suchasmall key space(e.g., 10 000 valuesfor a4-digit numeric PIN), additional procedura
constraintsare necessary. For example, some automated cash dispenser machines accessed
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§10.2 Passwords (weak authentication) 395

by banking cards confiscate a card if three incorrect PINs are entered successively; for oth-
ers, incorrect entry of a number of successive PINs may cause the card to be “locked” or
deactivated, thereafter requiring alonger PIN (e.g., 8 digits) for reactivation following such
SuSspi cious circumstances.

Inan on-linesystem using PINs or reusable passwords, aclaimed identity accompanied
by a user-entered PIN may be verified by comparison to the PIN stored for that identity in
asystem database. An alternativeisto usethe PIN as akey for aMAC (see Chapter 9).

In an off-line system without accessto a central database, information facilitating PIN
verification must be stored onthetokenitself. If the PIN need not be user-selected, thismay
be done by defining the PIN to be afunction of a secret key and the identity associated with
the token; the PIN is then verifiable by any remote system knowing this master key.

Inan off-linesystem, it may also be desirableto allow the PIN to be user-selectable, to
facilitate PIN memorization by users. Inthiscase, the PIN may be encrypted under amaster
key and stored on the token, with the master key known to al off-line terminals that need
to be capable of verifying the token. A preferable design is to store a one-way function of
the PIN, user identity, and master key on the token.

(i) Two-stage authentication and password-derived keys

Human users have difficulty remembering secret keyswhich have sufficient entropy to pro-
vide adequate security. Two techniques which address this issue are now described.

When tokens are used with off-line PIN verification, a common technique is for the
PIN to serveto verify the user to the token, while the token contains additional independent
information allowing the token to authenticate itself to the system (as a valid token repre-
senting a legitimate user). The user is thereby indirectly authenticated to the system by a
two-stage process. Thisrequiresthe user have possession of the token but need remember
only ashort PIN, while alonger key (containing adequate entropy) provides cryptographic
security for authentication over an unsecured link.

A second techniqueis for a user password to be mapped by a one-way hash function
into a cryptographic key (e.g., a 56-bit DES key). Such password-derived keys are called
passkeys. The passkey is then used to secure a communications link between the user and
a system which also knows the user password. It should be ensured that the entropy of the
user’spasswordissufficiently largethat exhaustive search of the password spaceisnot more
efficient than exhaustive search of the passkey space (i.e., guessing passwordsis not easier
than guessing 56-bit DES keys); see Table 10.1 for guidance.

An alternativeto having passkeysremain fixed until the password is changedisto keep
arunning sequence number on the system side along with each user’s password, for use as
atime-variant salt communicated to the user in the clear and incremented after each use. A
fixed per-user salt could also be used in addition to a running sequence number.

Passkeys should be viewed as long-term keys, with use restricted to authentication and
key management (e.g., rather than also for bulk encryption of user data). A disadvantage of
using password-derived keysisthat storing each user’s password within the system requires
some mechanism to protect the confidentiality of the stored passwords.

10.2.5 One-time passwords (towards strong authentication)

A natural progression from fixed password schemes to challenge-response identification
protocols may be observed by considering one-time password schemes. As was noted in
§10.2.2, amajor security concern of fixed password schemes is eavesdropping and subse-
guent replay of the password. A partial solution is one-time passwords: each password is
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used only once. Such schemes are safe from passive adversaries who eavesdrop and later
attempt impersonation. Variations include:

1. sharedlistsof one-time passwords. The user and the system use asequenceor set of ¢
secret passwords, (each valid for asingle authentication), distributed as a pre-shared
list. A drawback is maintenance of the shared list. If the list is not used sequen-
tialy, the system may check the entered password against all remaining unused pass-
words. A variation involvesuse of a challenge-responsetable, whereby the user and
the system share atable of matching challenge-responsepairs, ideally with each pair
valid at most once; this non-cryptographic technique differs from the cryptographic
challenge-response of §10.3.

2. sequentially updated one-time passwords. Initially only a single secret password is
shared. During authentication using password 7, the user creates and transmitsto the
system anew password (password i + 1) encrypted under a key derived from pass-
word :. This method becomes difficult if communication failures occur.

3. one-time password sequences based on a one-way function. Lamport’s one-time
password scheme is described below. This method is more efficient (with respect to
bandwidth) than sequentially updated one-time passwords, and may be viewed as a
challenge-response protocol where the challengeisimplicitly defined by the current
position within the password sequence.

One-time passwords based on one-way functions (Lamport’s scheme)

In Lamport’sone-time password scheme, the user beginswith asecret w. A one-way func-
tion (OWF) H is used to definethe password sequence: w, H(w), H(H (w)), ..., H*(w).
The password for the i*® identification session, 1 < i < t, isdefined to bew; = H'~*(w).

10.6 Protocol Lamport's OWF-based one-time passwords

SUMMARY: A identifiesitself to B using one-time passwords from a sequence.
1. One-time setup.

() User A beginswith asecret w. Let H be aone-way function.

(b) A constant ¢ isfixed (e.g., t = 100 or 1000), defining the number of identifica-
tionsto be alowed. (The system is thereafter restarted with a new w, to avoid
replay attacks.)

(c) A transfers(theinitial shared secret) wy = H'(w), in amanner guaranteeing
its authenticity, to the system B. B initializesits counter for Atois = 1.

2. Protocol messages. Thei*? identification, 1 < i < t, proceeds as follows:
A= B: A i w; (= H (w)) (1)

Here A — B: X denotes A sending the message X to B.
3. Protocol actions. To identify itself for session 7, A doesthe following.

(@ A’sequipment computesw; = H'~%(w) (easily done either from w itself, or
from an appropriateintermediate val ue saved during the computation of H*(w)
initially), and transmits (1) to B.

(b) B checksthat i = i4, and that the received password w; satisfies: H(w;) =
w;_1. |f both checks succeed, B acceptsthe password, setsig <+ i4 + 1, and
saves w; for the next session verification.
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10.7

10.8

10.3

Note (pre-play attack) Protocol 10.6 and similar one-time password schemes including
that of Note 10.8 remain vulnerableto an active adversary who intercepts and traps (or im-
personates the system in order to extract) an as-yet unused one-time password, for the pur-
pose of subsequent impersonation. To prevent this, a password should be revealed only to
a party which itself is known to be authentic. Challenge-response techniques (see §10.3)
addressthis threat.

Note (alternative one-time password scheme) The following one-time-password alterna-
tiveto Protocol 10.6 issuitableif storing actual passwords on the system sideis acceptable
(cf. Figure 10.1; compare also to §10.3.2(iii)). The claimant A has a shared password P
with the system verifier B, to whichit sendsthe datapair: (r, H(r, P)). The verifier com-
putes the hash of the received value r and its local copy of P, and declares acceptance if
thismatchesthereceived hash value. To avoidreplay, r should be asequence number, time-
stamp, or other parameter which can be easily guaranteed to be accepted only once.

Challenge-response identification (strong
authentication)

The idea of cryptographic challenge-response protocols is that one entity (the claimant)
“proves’ itsidentity to another entity (the verifier) by demonstrating knowledge of a secret
known to be associated with that entity, without revealing the secret itself to the verifier dur-
ing the protocol.? Thisis done by providing a response to atime-variant challenge, where
the response depends on both the entity’s secret and the challenge. The challenge is typi-
cally a number chosen by one entity (randomly and secretly) at the outset of the protocol.
If the communications line is monitored, the response from one execution of the identifi-
cation protocol should not provide an adversary with useful information for a subsequent
identification, as subsequent challenges will differ.

Before considering challenge-response identification protocols based on symmetric-
key techniques (§10.3.2), public-key techniques (§10.3.3), and zero-knowledge concepts
(§10.4), background on time-variant parametersis first provided.

10.3.1 Background on time-variant parameters

10.9

Time-variant parameters may be used in identification protocols to counteract replay and
interleaving attacks (see §10.5), to provide uniqueness or timeliness guarantees, and to pre-
vent certain chosen-text attacks. They may similarly be used in authenticated key estab-
lishment protocols (Chapter 12), and to provide uniqueness guaranteesin conjunction with
message authentication (Chapter 9).

Time-variant parameterswhich serveto distinguish one protocol instance from another
are sometimes called nonces, unique numbers, or non-repeating values; definitions of these
terms havetraditionally been loose, as the specific propertiesrequired depend on the actual
usage and protocol.

Definition A nonceis avalue used no more than once for the same purpose. It typically
servesto prevent (undetectable) replay.

31n some mechanisms, the secret isknown to the verifier, and is used to verify the response; in others, the secret
need not actually be known by the verifier.
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The term nonce is most often used to refer to a“random” number in a challenge-response
protocol, but the required randomness properties vary. Three main classes of time-variant
parameters are discussed in turn below: random numbers, sequence numbers, and time-
stamps. Often, to ensure protocol security, the integrity of such parameters must be guar-
anteed (e.g., by cryptographically binding them with other data in a challenge-response
sequence). Thisis particularly true of protocolsin which the only requirement of atime-
variant parameter is uniqueness, e.g., as provided by a never-repeated sequential counter.*
Following are some miscellaneous points about time-variant parameters.

1. Verifiable timeliness may be provided through use of random numbersin challenge-
response mechanisms, timestamps in conjunction with distributed timeclocks, or se-
guence numbersin conjunction with the maintenance of pairwise (claimant, verifier)
state information.

2. To provide timeliness or uniqueness guarantees, the verifier in the protocol controls
the time-variant parameter, either directly (through choice of a random number) or
indirectly (through information maintained regarding a shared sequence, or logically
through a common time clock).

3. Touniquely identify a message or sequence of messages (protocol instance), nonces
drawn from a monotonically increasing sequence may be used (e.g., sequence or se-
rial numbers, and timestamps, if guaranteed to be increasing and unique), or random
numbers of sufficient size. Uniquenessis often required only within agiven key life-
time or time window.

4. Combinations of time-variant parameters may be used, e.g., random numbers con-
catenated to timestamps or sequence numbers. This may guaranteethat a pseudoran-
dom number is not duplicated.

(i) Random numbers

Random numbers may be used in challenge-response mechanisms, to provide uniqueness
andtimelinessassurances, and to precludecertainreplay and interleaving attacks (see §10.5,
including Remark 10.42). Random numbersmay also serveto provide unpredictability, for
example, to preclude chosen-text attacks.

The term random numbers, when used in the context of identification and authentica-
tion protocols, includes pseudorandom numbers which are unpredictable to an adversary
(see Remark 10.11); thisdiffersfrom randomnessin the traditional statistical sense. In pro-
tocol descriptions, “choose arandom number” is usually intended to mean “ pick a number
with uniform distribution from a specified sample space” or “ select from a uniform distri-
bution”.

Random numbers are used in challenge-response protocols as follows. One entity in-
cludes a (new) random number in an outgoing message. An incoming message subsequen-
tly received (e.g., the next protocol message of the same protocol instance), whose construc-
tion required knowledge of this nonce and to which this nonceisinseparably bound, isthen
deemed to be fresh (Remark 10.10) based on the reasoning that the random number links
the two messages. The non-tamperable binding is required to prevent appending a nonce
to an old message.

Random numbersused in this manner servetofix arelative point in timefor the parties
involved, analogousto ashared timeclock. The maximum allowabl e time between protocol
messages is typically constrained by a timeout period, enforced using local, independent
countdown timers.

4Such predictable parameters differ from sequence numbersin that they might not be bound to any stored state.
Without appropriate cryptographic binding, a potential concern then is a pre-play attack wherein an adversary
obtains the response before the time-variant parameter is legitimately sent (see Note 10.7).
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10.10

10.11

10.12

10.13

Remark (freshness) In the context of challenge-response protocols, fresh typically means
recent, in the sense of having originated subsequent to the beginning of the current protocol
instance. Notethat such freshnessalone doesnot rule out interleaving attacks using parallel
sessions (see §10.5).

Remark (birthday repetitionsin random numbers) In generating pseudorandom numbers
for use as time-variant parameters, it suffices if the probability of arepeated number is ac-
ceptably low and if numbersarenot intentionally reused. Thismay beachieved by selecting
the random value from a sufficiently large sample space, taking into account coincidences
arising fromthe birthday paradox. Thelatter may be addressed by either using alarger sam-
ple space, or by using a generati on process guaranteed to avoid repetition (e.g., abijection),
such as using the counter or OFB mode of a block cipher (§7.2.2).

Remark (disadvantagesof random numbers) Many protocolsinvolving random numbers
require the generation of cryptographically secure (i.e., unpredictable) random numbers.
If pseudorandom number generators are used, an initial seed with sufficient entropy is re-
quired. When random numbers are used in challenge-response mechanisms in place of
timestamps, typically the protocol involvesoneadditional message, and the challenger must
temporarily maintain state information, but only until the response is verified.

(i) Sequence numbers

A sequence number (serial number, or counter value) serves as a unique number identify-
ing a message, and is typically used to detect message replay. For stored files, sequence
numbers may serve as version numbersfor thefile in question. Sequence numbers are spe-
cificto aparticular pair of entities, and must explicitly or implicitly be associated with both
the originator and recipient of a message; distinct sequences are customarily necessary for
messages from A to B and from B to A.

Partiesfollow apre-defined policy for message numbering. A messageisaccepted only
if the sequence number therein has not been used previously (or not used previoudly within
a specified time period), and satisfies the agreed policy. The simplest policy is that a se-
guence number starts at zero, is incremented sequentially, and each successive message
has a number one greater than the previous one received. A less restrictive policy is that
seguence numbers need (only) be monotonically increasing; this allows for lost messages
due to non-malicious communicationserrors, but precludes detection of messages|ost due
to adversarial intervention.

Remark (disadvantagesof sequence numbers) Use of sequence numbersrequiresan over-
head as follows. each claimant must record and maintain long-term pairwise state infor-
mation for each possible verifier, sufficient to determine previously used and/or still valid
segquencenumbers. Special procedures(e.g., for resetting sequence numbers) may be neces-
sary following circumstances disrupting normal sequencing (e.g., system failures). Forced
delaysare not detectablein general. Asaconsequence of the overhead and synchronization
necessary, sequence numbers are most appropriate for smaller, closed groups.

(iii) Timestamps

Timestamps may be used to provide timeliness and uniqueness guarantees, to detect mes-
sage replay. They may also be used to implement time-limited access privileges, and to
detect forced delays.
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10.14

10.15

Timestamps function asfollows. The party originating a message obtains a timestamp
fromitslocal (host) clock, and cryptographically bindsit to a message. Upon receiving a
time-stamped message, the second party obtainsthe current time fromits own (host) clock,
and subtracts the timestamp received. The received message is valid provided:

1. thetimestamp differenceiswithin the acceptancewindow (afixed-sizetimeinterval,
e.g., 10 milliseconds or 20 seconds, selected to account for the maximum message
transit and processing time, plus clock skew); and

2. (optionally) no message with an identical timestamp has been previously received
from the same originator. This check may be made by the verifier maintaining alist
of all timestampsreceived from each source entity within the current acceptancewin-
dow. Another method is to record the latest (valid) timestamp used by each source
(in this case the verifier accepts only strictly increasing time values).

The security of timestamp-based verification relies on use of acommon timereference.
This requires that host clocks be available and both “loosely synchronized” and secured
from modification. Synchronizationis necessary to counter clock drift, and must be appro-
priate to accommodate the acceptance window used. The degree of clock skew allowed,
and the acceptance window, must be appropriately small to preclude message replay if the
above optional check is omitted. The timeclock must be secure to prevent adversarial re-
setting of a clock backwards so asto restore the validity of old messages, or setting a clock
forward to prepare a message for some future point in time (cf. Note 10.7).

Remark (disadvantages of timestamps) Timestamp-based protocols require that time-
clocks be both synchronized and secured. The preclusion of adversarial modification of
local timeclocks is difficult to guarantee in many distributed environments; in this case,
the security provided must be carefully re-evaluated. Maintaining lists of used timestamps
within the current window hasthe drawback of apotentially large storage requirement, and
corresponding verification overhead. Whiletechnical solutionsexist for synchronizingdis-
tributed clocks, if synchronization is accomplished via network protocols, such protocols
themselves must be secure, which typically requires authentication; thisleadsto acircular
security argument if such authentication isitself timestamp-based.

Remark (comparison of time-variant parameters) Timestampsin protocols offer the ad-
vantage of fewer messages (typically by one), and no requirement to maintain pairwise
long-term state information (cf. sequence numbers) or per-connection short-term state in-
formation (cf. random numbers). Minimizing stateinformationis particularly important for
serversin client-server applications. The main drawback of timestamps s the requirement
of maintaining secure, synchronized distributed timeclocks. Timestampsin protocols may
typically be replaced by arandom number challenge plus a return message.

10.3.2 Challenge-response by symmetric-key techniques

Challenge-response mechanisms based on symmetric-key techniques require the claimant
and the verifier to share asymmetric key. For closed systemswith asmall number of users,
each pair of users may share a key apriori; in larger systems employing symmetric-key
techniques, identification protocols often involve the use of a trusted on-line server with
which each party shares akey. The on-line server effectively acts like the hub of a spoked
whesl, providing acommon session key to two partieseach time onerequestsauthentication
with the other.
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10.16

Theapparent simplicity of thetechniques presented below andin §10.3.3ismideading.
The design of such techniquesisintricate and the security is brittle; those presented have
been carefully selected.

(i) Challenge-response based on symmetric-key encryption

Both the Kerberos protocol (Protocol 12.24) and the Needham-Schroeder shared-key pro-
tocol (Protocol 12.26) provide entity authentication based on symmetric encryption and in-
volve use of an on-linetrusted third party. These are discussed in Chapter 12, asthey addi-
tionally provide key establishment.

Below, three simple techniques based on | SO/IEC 9798-2 are described. They assume
the prior existence of a shared secret key (and no further requirement for an on-line server).
In this case, two parties may carry out unilateral entity authentication in one pass using
timestamps or sequence numbers, or two passes using random numbers; mutual authen-
tication requires, respectively, two and three passes. The claimant corroboratesits identity
by demonstrating knowledge of the shared key by encrypting a challenge (and possibly ad-
ditional data) using the key. These techniques are similar to those givenin §12.3.1.

Remark (data integrity) When encipherment is used in entity authentication protocols,
data integrity must typically also be guaranteed to ensure security. For example, for mes-
sages spanning more than one block, the rearrangement of ciphertext blocks cannot be de-
tected in the ECB mode of block encryption, and even CBC encryption may provide only
apartial solution. Such data integrity should be provided through use of an accepted data
integrity mechanism (see §9.6; cf. Remark 12.19).

9798-2 mechanisms. Regarding notation: r 4 and ¢ 4, respectively, denote a random num-
ber and a timestamp, generated by A. (In these mechanisms, the timestamp ¢ 4 may be re-
placed by a sequence number n 4, providing slightly different guarantees.) Ex denotesa
symmetric encryption algorithm, with akey K shared by A and B; aternatively, distinct
keys K 4 g and K g 4 may be used for unidirectional communication. It isassumed that both
parties are aware of the claimed identity of the other, either by context or by additional (un-
secured) cleartext datafields. Optiona message fields are denoted by an asterisk (*), while
acomma (,) within the scope of Ex denotes concatenation.

1. unilateral authentication, timestamp-based:
A — B:Eg(ta,B*) (1)

Upon reception and decryption, B verifies that the timestamp is acceptable, and op-
tionally verifies the received identifier asits own. Theidentifier B here preventsan
adversary from re-using the message immediately on A, in the case that a single bi-
directional key K isused.

2. unilateral authentication, using random numbers:
To avoid reliance on timestamps, the timestamp may be replaced by arandom num-
ber, at the cost of an additional message:

A« B:rp (1)
A—)B:EK(TB,B*) (2)

B decrypts the received message and checks that the random number matches that
sent in (1). Optionally, B checks that the identifier in (2) is its own; this prevents
areflection attack in the case of a bi-directional key K. To prevent chosen-text at-
tacks on the encryption scheme E, A may (as below) embed an additional random
number in (2) or, alternately, the form of the challenges can be restricted; the critical
requirement is that they be non-repesting.
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3. mutual authentication, using random numbers:

A+ B:rp (1)
A — B: Ek(ra,rs,B*) (2)
A<+ B: EK(’I“B,’I“A) (3)

Upon reception of (2), B carriesout the checksas above and, in addition, recoversthe
decrypted 4 for inclusionin (3). Upon decrypting (3), A checks that both random
numbers match those used earlier. The second random number r 4 in (2) serves both
as a challenge and to prevent chosen-text attacks.

10.17 Remark (doublingunilateral authentication) While mutual authentication may be obtain-

ed by running any of the above unilateral authentication mechanisms twice (once in each
direction), such an ad-hoc combination suffersthe drawback that the two unilateral authen-
tications, not being linked, cannot logically be associated with a single protocol run.

(i) Challenge-response based on (keyed) one-way functions

The encryption algorithm in the above mechanisms may be replaced by a one-way or non-
reversiblefunction of the shared key and challenge, e.g., having propertiessimilartoaMAC
(Definition 9.7). This may be preferable in situations where encryption algorithms are oth-
erwise unavailable or undesirable (e.g., due to export restrictions or computational costs).
Themodificationsrequired to the 9798-2 mechanismsabove (yiel ding the analogous mech-
anisms of | SO/IEC 9798-4) are the following:
1. the encryption function E'x isreplaced by aMAC algorithm hg;
2. rather than decrypting and verifying that fields match, the recipient now indepen-
dently computesthe MAC value from known quantities, and acceptsif the computed
MAC matches the received MAC value; and
3. to enable independent MAC computation by the recipient, the additional cleartext
field ¢ , must be sent in message (1) of the one-pass mechanism. r 4 must be sent as
an additional cleartext field in message (2) of the three-pass mechanism.

The revised three-pass challenge-response mechanism based on aMAC hy, with ac-
tions as noted above, provides mutual identification. Essentially the same protocal, called
KID3, has messages as follows:

A<+ B: B (1)
A— B: ra, hg(ra,rs,B) (2)
A<+ B: hg(rp,ra,A) (3)

Note that the additional field A isincluded in message (3). The protocol SKID2, obtained
by omitting the third message, provides unilateral entity authentication.

(iii) Implementation using hand-held passcode generators

Answering a challenge in challenge-response protocols requires some type of computing
device and secure storage for long-term keying material (e.g., afile on atrusted local disk,
perhaps secured under alocal password-derivedkey). For additional security, adevicesuch
as a chipcard (and corresponding card reader) may be used for both the key storage and
response computation. In some cases, a less expensive option is a passcode generator.
Passcode generators are hand-held devices, resembling thin calculators in both size
and display, and which providetime-variant passwords or passcodes (see Figure 10.3). The
generator contains a device-specific secret key. When a user is presented with a challenge
(e.g., by asystemdisplaying it on acomputer terminal), the challengeiskeyed into the gen-
erator. The generator displays apasscode, computed as afunction of the secret key and the
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challenge; thismay beeither an asymmetric function, or asymmetric function (e.g., encryp-
tion or MAC as discussed above). The user returnsthe response (e.g., keysthe passcodein
at his terminal), which the system verifies by comparison to an independently computed
response, using the same information stored on the system side.

For further protection against misplaced generators, the response may also depend ona
user-entered PIN. Simpler passcode generatorsomit the user keypad, and use as an implicit
challenge a time value (with a typical granularity of one minute) defined by a timeclock
loosely synchronized automatically between the system and the passcode generator. A more
sophi sticated device combinesimplicit synchronization with explicit challenges, presenting
an explicit challenge only when synchronization is lost.

A drawback of systems using passcode generatorsis, as per §10.2.1(i), the requirement
to provide confidentiality for user passwords stored on the system side.

A (user) B (system)

secret database

A -
(login request)
passcode A PINA
generator SA
5A
user-entered
PN ot f | -

(optional) (challenge) A
challenge
generator

Y
(response)
display

REJECT

Figure 10.3: Functional diagram of a hand-held passcode generator. s 4 is A’suser-specific secret.
f isaone-way function. The (optional) PIN could alternatively be locally verified in the passcode
generator only, making y independent of it.

10.3.3 Challenge-response by public-key techniques

Public-key techniques may be used for challenge-response based identification, with a
claimant demonstrating knowledge of its private key in one of two ways (cf. §12.5):
1. the claimant decrypts a challenge encrypted under its public key;
2. the claimant digitally signs achallenge.
Ideally, the public-key pair used in such mechanisms should not be used for other pur-
poses, since combined usage may compromise security (Remark 10.40). A second caution
isthat the public-key system used should not be susceptible to chosen-ciphertext attacks,®

5Both chosen-ciphertext and chosen-plaintext attacks are of concern for challenge-response techniques based
on symmetric-key encryption.
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as an adversary may attempt to extract information by impersonating a verifier and choos-
ing strategic rather than random challenges. (See Notes 8.13 and 8.58 regarding the Ra-
bin/Williams and Blum-Gol dwasser schemes.)

Incorporating aself-generated random number or confounder (§10.5) into the dataover
which the response is computed may address both of these concerns. Such data may be
made available to the verifier in cleartext to allow verification.

() Challenge-response based on public-key decryption
Identification based on PK decryption and witness. Consider the following protocol:

A<+ B: h(r),B,Psa(r,B) (1)
A—-B: r (2)

B chooses arandom r, computes the witness z = h(r) (z demonstrates knowledge of r
without disclosing it — cf. §10.4.1), and computes the challenge e = P4 (r, B). Here Py
denotes the public-key encryption (e.g., RSA) agorithm of A, and h denotes a one-way
hash function. B sends (1) to A. A decryptse to recover ' and B’, computesz’ = h(r'),
and quitsif 2’ # z (implyingr’ # r) orif B’ isnot equal toitsown identifier B. Otherwise,
A sendsr = 7’ to B. B succeeds with (unilateral) entity authentication of A upon verify-
ing thereceived r agreeswith that sent earlier. The use of the witness precludes chosen-text
attacks.

Modified Needham-Schroeder PK protocol for identification. The modified Needham-Schr-
oeder public-key protocol of Note 12.39 provideskey transport of distinct keysky, ks from
Ato B and B to A, respectively, aswell as mutual authentication. If the key establishment
featureisnot required, k; and k, may beomitted. With P denoting the public-key encryp-
tion algorithm for B (e.g., RSA), the messages in the modified protocol for identification
arethen asfollows:

A— B: PB(Tl,A) (1)

A< B: Pyri,ra) (2)

A— B: T2 (3)

Verification actions are anal ogous to those of Note 12.39.

(i) Challenge-response based on digital signatures

X.509 mechanisms based on digital signatures. The ITU-T (formerly CCITT) X.509 two-
and three-way strong authentication protocols specify identification techniques based on
digital signatures and, respectively, timestamps and random number challenges. These are
described in §12.5.2, and optionally provide key establishment in addition to entity authen-
tication.

9798-3 mechanisms. Three challenge-response identification mechanisms based on signa-
turesare given below, analogousto thosein §10.3.2(i) based on symmetric-key encryption,
but, in this case, corresponding to techniques in ISO/IEC 9798-3. Regarding notation (cf.
9798-2 above): r 4 andt 4, respectively, denote arandom number and timestamp generated
by A. S 4 denotes A’s signature mechanism; if this mechanism provides message recovery,
some of the cleartext fields listed below are redundant and may be omitted. cert 4 denotes
the public-key certificate containing A’s signature public key. (In these mechanisms, if the
verifier has the authentic public key of the claimant a priori, certificates may be omitted;
otherwise, it is assumed that the verifier has appropriate information to verify the validity
of the public key contained in areceived certificate — see Chapter 13.) Remark 10.17 also
applies here.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§10.4 Customized and zero-knowledge identification protocols 405

1. unilateral authentication with timestamps:
A — B:certa,ta,B,Sa(ta,B) (1)

Upon reception, B verifiesthat the timestamp is acceptable, thereceived identifier B
isitsown, and (using A’s public key extracted from cert 4 after verifying the latter)
checksthat the signature over these two fieldsis correct.

2. unilateral authentication with random numbers. Reliance on timestamps may bere-
placed by arandom number, at the cost of an additional message:

A+ B:rp (1)
A — B:certa,ra,B,Sa(ra,rg,B) (2)

B verifiesthat the cleartext identifier isitsown, and using avalid signature public key
for A (e.g., fromcert 4), verifiesthat A’ssignatureisvalid over the cleartext random
number r 4, the same number rp as sent in (1), and this identifier. The signed r 4
explicitly prevents chosen-text attacks.

3. mutual authentication with random numbers:

A+ B:rp (1)
A — B:certa,ra,B,Sa(ra,rg,B) (2)
A< B:certg,A,Sp(rp,r4,4) (3)

Processing of (1) and (2) is as above; (3) is processed analogously to (2).

10.4 Customized and zero-knowledge identification
protocols

This section considers protocols specifically designed to achieve identification, which use
asymmetric techniques but do not rely on digital signatures or public-key encryption, and
which avoid use of block ciphers, sequence numbers, and timestamps. They are similar
in some regards to the challenge-response protocols of §10.3, but are based on the ideas
of interactive proof systems and zero-knowledge proofs (see §10.4.1), employing random
numbers not only as challenges, but also as commitments to prevent cheating.

10.4.1 Overview of zero-knowledge concepts

A disadvantage of ssmple password protocolsis that when aclaimant A (called aprover in
the context of zero-knowledge protocols) gives the verifier B her password, B can there-
after impersonate A. Challenge-response protocols improve on this. A responds to B’s
challenge to demonstrate knowledge of A’s secret in atime-variant manner, providing in-
formation not directly reusable by B. This might nonethelessreveal some partial informa-
tion about the claimant’s secret; an adversarial verifier might also be able to strategically
select challenges to obtain responses providing such information (see chosen-text attacks,
§10.5).

Zero-knowledge (ZK) protocols are designed to address these concerns, by alowing
aprover to demonstrate knowledge of a secret while revealing no information whatsoever
(beyond what the verifier was able to deduce prior to the protocol run) of useto the verifier
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10.18

10.19

in conveying this demonstration of knowledgeto others. The point isthat only asingle bit
of information need be conveyed — namely, that the prover actually does know the secret.

More generally, a zero-knowledge protocol allows a proof of the truth of an assertion,
while conveying no information whatsoever (this notion can be quantified in a rigorous
sense) about the assertion itself other than its actual truth. In this sense, a zero-knowledge
proof is similar to an answer obtained from a (trusted) oracle.

() Interactive proof systems and zero-knowledge protocols

The ZK protocol sto bediscussed areinstances of interactive proof systems, wherein aprov-
er and verifier exchange multiple messages (challenges and responses), typically dependent
on random numbers (ideally: the outcomesof fair coin tosses) which they may keep secret.
The prover’s objective is to convince (prove to) the verifier the truth of an assertion, e.g.,
claimed knowledge of a secret. The verifier either accepts or rejects the proof. The tradi-
tional mathematical notion of a proof, however, is altered to an interactive game wherein
proofs are probabilistic rather than absolute; a proof in this context need be correct only
with bounded probahility, albeit possibly arbitrarily close to 1. For this reason, an interac-
tive proof is sometimes called a proof by protocol.

Interactive proofs used for identification may be formulated as proofs of knowledge.
A possesses some secret s, and attempts to convince B it has knowledge of s by correctly
responding to queries (involving publicly known inputs and agreed upon functions) which
require knowledge of s to answer. Note that proving knowledge of s differsfrom proving
that such s exists — for example, proving knowledge of the prime factors of n differsfrom
proving that n is composite.

An interactive proof is said to be a proof of knowledge if it has both the properties of
completeness and soundness. Compl eteness may be viewed as the customary requirement
that a protocol functions properly given honest participants.

Definition (completeness property) An interactive proof (protocol) is complete if, given
an honest prover and an honest verifier, the protocol succeedswith overwhel ming probabil -
ity (i.e., the verifier accepts the prover’s claim). The definition of overwhelming depends
on the application, but generally implies that the probability of failure is not of practical
significance.

Definition (soundnessproperty) Aninteractive proof (protocol) issound if thereexistsan
expected polynomial-time algorithm A with the following property: if a dishonest prover
(impersonating A) can with non-negligible probability successfully execute the protocol
with B, then M can be used to extract from this prover knowledge (essentially equivalent
to A’s secret) which with overwhelming probability allows successful subsequent protocol
executions.

An alternate explanation of the condition in Definition 10.19 isasfollows: the prover’s se-
cret s together with public data satisfies some polynomial-time predicate, and another so-
[ution of this predicate (possibly the same) can be extracted, allowing successful execution
of subsequent protocol instances.

Since any party capable of impersonating A must know the equivalent of A’s secret
knowledge (M canbeusedto extractit fromthisparty in polynomial time), soundnessguar-
antees that the protocol doesindeed provide a proof of knowledge — knowledge equivalent
to that being queried is required to succeed. Soundness thus prevents a dishonest prover
from convincing an honest verifier (but does does not by itself guarantee that acquiring the
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10.20

10.21

10.22

10.23

prover’'s secret is difficult; see Remark 10.23). A standard method to establish the sound-
ness of a particular protocol isto assumethe existence of adishonest prover capable of suc-
cessfully executing the protocol, and show how thisallows oneto computethereal prover’s
Secret.

While an interactive proof of knowledge (or protocol based thereon) must be sound
to be of cryptographic use, the main property of zero-knowledge protocols is the zero-
knowledge aspect itself. For what follows, defineatranscript (or view) to bethe collection
of messages resulting from protocol execution.

Definition (zero-knowledge property) A protocol which is a proof of knowledge has the
zero-knowledgeproperty if it issimulatablein the following sense: there exists an expected
polynomial-time algorithm (simulator) which can produce, upon input of the assertion(s)
to be proven but without interacting with thereal prover, transcriptsindistinguishablefrom
those resulting from interaction with the real prover.

The zero-knowledge property implies that a prover executing the protocol (even when in-
teracting with amaliciousverifier) doesnot release any information (about its secret knowl-
edge, other than that the particular assertion itself is true) not otherwise computable in
polynomial time from public information alone. Thus, participation does not increase the
chances of subsequent impersonation.

Remark (simulated ZK protocols and protocol observers) Consider an observer C' who
witnesses a zero-knowledge interactive proof (ZKIP) involving a prover A convincing a
verifier B (B # () of some knowledge A has. The “proof” to B does not provide any
guaranteesto C'. (Indeed, A and B might have a prior agreement, conspiring against C,
on the challenges to be issued.) Similarly, a recorded ZKIP conveys no guarantees upon
playback. Thisisfundamental to theideaof the zero-knowledge property and the condition
that proofsbe simulatable by averifier alone. Interactive proofsconvey knowledge only to
(interactive) verifiers able to select their own random challenges.

Definition (computational vs. perfect zero-knowledge) A protocol is computationally
zero-knowledgeif an observer restricted to probabilistic polynomial-timetests cannot dis-
tinguish real from simulated transcripts. For perfect zero-knowledge, the probability dis-
tributions of the transcripts must be identical. By convention, when not further qualified,
zero-knowl edge means computational zero-knowledge.

In the case of computational zero-knowledge, real and simulated transcripts are said
to be polynomially indistinguishabl e (indi stingui shabl e using pol ynomial -time algorithms).
Any information extracted by a verifier through interaction with a prover provides no ad-
vantage to the verifier within polynomial time.

Remark (ZK property and soundnessvs. security) The zero-knowledge property (Defini-
tion 10.20) does not guarantee that a protocol is secure (i.e., that the probability of it being
easily defeated isnegligible). Similarly, the soundness property (Definition 10.19) does not
guarantee that a protocol is secure. Neither property has much value unless the underlying
problem faced by an adversary is computationally hard.

(i) Comments on zero-knowledge vs. other asymmetric protocols

The following observations may be made regarding zero-knowledge (ZK) techniques, as
compared with other public-key (PK) techniques.
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1. no degradation with usage: protocols proven to have the ZK property do not suffer
degradation of security with repeated use, and resist chosen-text attacks. Thisis per-
haps the most appealing practical feature of ZK techniques.

A ZK technique which is not provably secure may or may not be viewed as more
desirablethan aPK techniquewhichisprovably secure (e.g., asdifficult asfactoring).

2. encryption avoided: many ZK techniques avoid use of explicit encryption algo-
rithms. This may offer political advantages (e.g., with respect to export controls).

3. efficiency: while some ZK-based techniques are extremely efficient (see §10.4.5),
protocols which formally have the zero-knowledge property typically have higher
communications and/or computational overheads than PK protocols which do not.
The computational efficiency of the more practical ZK-based schemes arises from
their nature as interactive proofs, rather than their zero-knowledge aspect.

4. unproven assumptions. many ZK protocols (“proofsof knowledge”) themselvesrely
on the same unproven assumptions as PK techniques (e.g., the intractability of fac-
toring or quadratic residuosity).

5. ZK-based vs. ZK: although supported by prudent underlying principles, many tech-
niques based on zero-knowledge conceptsfall short of formally being zero-knowled-
ge and/or formally sound in practice, due to parameter selection for reasons of ef-
ficiency, or for other technical reasons (cf. Notes 10.33 and 10.38). In fact, many
such concepts are asymptotic, and do not apply directly to practical protocols (Re-
mark 10.34).

(iii) Example of zero-knowledge proof: Fiat-Shamir identification protocol

The general idea of a zero-knowledge (ZK) proof isillustrated by the basic version of the
Fiat-Shamir protocol. The basic versionis presented herefor historical and illustrative pur-
poses (Protocol 10.24). In practice, one would use a more efficient variation, such as Pro-
tocol 10.26, with multiple“questions’ per iteration rather than as here, where B posesonly
asingle one-bit challenge per iteration.

The objectiveisfor A to identify itself by proving knowledge of a secret s (associated
with A through authentic public data) to any verifier B, without revealing any information
about s not known or computable by B prior to execution of the protocol (see Note 10.25).
The security relies on the difficulty of extracting square roots modulo large composite in-
tegers n of unknown factorization, which is equivalent to that of factoring n (Fact 3.46).

Protocol Fiat-Shamir identification protocol (basic version)

SUMMARY: A proves knowledge of s to B in t executions of a 3-pass protocol.

1. One-time setup.
(8) A trusted center T' selectsand publishesan RSA-likemodulusn = pq but keeps
primes p and ¢ secret.
(b) Each claimant A selects a secret s coprimeton, 1 < s < n — 1, computes
v = s mod n, and registers v with T asits public key.5
2. Protocol messages. Each of ¢ rounds has three messages with form as follows.
A—=B: z=72modn (1)
A+ B: ec{0,1} (2)
A—B: y=r-scmodn (3)

STechnically, T' should verify the condition ged(s,n) = 1 or equivalently gcd(v,n) = 1, for thisto be a
sound proof of knowledge; and B should stop with failure if ged(y, n) # 1, where y is A’sresponse in the third
message. But either condition failing would allow the factorization of n, violating the assumption that n. cannot
be factored.
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3. Protocol actions. The following steps areiterated ¢ times (sequentially and indepen-
dently). B acceptsthe proof if all ¢ rounds succeed.
() A chooses arandom (commitment) », 1 < r < n — 1, and sends (the witness)
2z = r2 mod n to B.
(b) B randomly selectsa(challenge) bite =0 ore = 1, and sendse to A.
(c) A computes and sendsto B (the response) y, either y = r (if e = 0) ory =
rs mod n (if e = 1).
(d) B rejectsthe proof if 4 = 0, and otherwise accepts upon verifying y? = z - v°
(mod n). (Dependingone, y? = z or y? = v mod n, sincev = s mod n.
Note that checking for y = 0 precludesthe caser = 0.)

Protocol 10.24 may be explained and informally justified asfollows. Thechallenge (or
exam) e requiresthat A be capable of answering two questions, one of which demonstrates
her knowledge of the secret s, and the other an easy question (for honest provers) to prevent
cheating. An adversary impersonating A might try to cheat by selecting any r and setting
x = r? /v, then answering the challenge e = 1 with a“correct” answer y = r; but would
be unable to answer the exam e = 0 which requires knowing a square root of z mod n.
A prover A knowing s can answer both questions, but otherwise can at best answer one
of the two questions, and so has probability only 1/2 of escaping detection. To decrease
the probability of cheating arbitrarily to an acceptably small value of 2t (e.g., t = 20 or
t = 40), the protocol isiterated ¢ times, with B accepting A’sidentity only if all ¢ questions
(over t rounds) are successfully answered.

Note (secretinformationrevealedby A) Theresponsey = r isindependent of A’ssecret s,
whiletheresponsey = rs mod n aso providesno information about s becausetherandom
r isunknownto B. Information pairs (x, y) extracted from A could equally well be smu-
lated by averifier B alone by choosing y randomly, then defining « = 2 or y2 /v mod n.
Whilethisis not the method by which A would construct such pairs, such pairs (z, y) have
a probability distribution which is indistinguishable from those A would produce; this es-
tablishes the zero-knowledge property. Despite the ability to simulate proofs, B is unable
to impersonate A because B cannot predict the real-time challenges.

Asaminor technical point, however, the protocol doesreveal abit of information: the
answer y = rs provides supporting evidence that v is indeed a square modulo n, and the
soundness of the protocol alows one to conclude, after ¢ successful iterations, that thisis
indeed the case.

(iv) General structure of zero-knowledge protocols

Protocol 10.24 illustrates the general structure of alarge class of three-move zero-know!-
edge protocaols:

A — B: witness
A<+ B: challenge
A — B: response

The prover claiming to be A selects a random element from a pre-defined set as its secret
commitment (providing hidden randomization or “ private coin tosses’), and from this com-
putes an associated (public) witness. This provides initial randomness for variation from
other protocol runs, and essentially definesa set of questionsall of which the prover claims
to be able to answer, thereby a priori constraining her forthcoming response. By protocol
design, only the legitimate party A, with knowledge of A’s secret, is truly capable of an-
swering al the questions, and the answer to any one of these provides no information about
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A’slong-term secret. B’s subsequent challenge selects one of these questions. A provides
its response, which B checks for correctness. The protocol isiterated, if necessary, toim-
prove the bound limiting the probability of successful cheating.

Zero-knowledge interactive protocols thus combine the ideas of cut-and-choose pro-
tocols (this terminology results from the standard method by which two children share a
piece of cake: one cuts, the other chooses) and challenge-response protocols. A responds
to at most one challenge (question) for a given witness, and should not reuse any witness,
in many protocols, security (possibly of long-term keying material) may be compromised
if either of these conditionsis violated.

10.4.2 Feige-Fiat-Shamir identification protocol

The basic version of the Fiat-Shamir protocol is presented as Protocol 10.24. This can be
generalized, and the Feige-Fiat-Shamir (FSS) identification protocol (Protocol 10.26) is a
minor variation of such a generalization. The FFS protocol involves an entity identifying
itself by proving knowledge of a secret using a zero-knowledge proof; the protocol reveals
no partial information whatsoever regarding the secret identification value(s) of A (cf. Def-
inition 10.20). It requires limited computation (a small fraction of that required by RSA —
see §10.4.5), and is thus well-suited for applications with low-power processors (e.g., 8-bit
chipcard microprocessors).

10.26 Protocol Feige-Fiat-Shamir identification protocol

SUMMARY: A provesitsidentity to B in ¢ executions of a 3-pass protocol.
1. Sdection of system parameters. A trusted center 7' publishes the common modulus
n = pq for all users, after selecting two secret primes p and ¢ each congruent to
3 mod 4, and such that n is computationally infeasible to factor. (Consequently, n
is a Blum integer per §2.4.6, and —1 is a quadratic non-residue mod n with Jacobi
symbol +1.) Integers k and ¢ are defined as security parameters (see Note 10.28).
2. Selection of per-entity secrets. Each entity A does the following.

@

(b)

(©

Select k& random integers sq, s2, ... ,s; intherangel < s; < n —1,and k
random bits by, . .. , bg. (For technical reasons, ged(s;, n) = 1 isrequired, but
isalmost surely guaranteed asiits failure allows factorization of n.)
Computev; = (—1)% - (s?)~! mod n for 1 < i < k. (Thisallows v; to range
over al integers coprimeto n with Jacobi symbol +1, atechnical condition re-
quired to provethat no secret informationis“leaked”; by choice of n, precisely
one signed choice for v; has a squareroot.)

A identifies itself by non-cryptographic means (e.g., photo id) to 7', which
thereafter registers A’s publickey (vy, ... ,vg; n), whileonly A knowsits pri-
vate key (s1, ..., sx) and n. (To guarantee the bounded probability of attack
specified per Note 10.28, T' may confirm that each v; indeed does have Jacobi
symbol +1 relative to n.) This completes the one-time set-up phase.

3. Protocol messages. Each of ¢ rounds has three messages with form as follows.

A— B: x(==4r?modn) (1)
A« B: (e1,...,ex), e,€{0,1} (2)
A— B: y(=r~Hej=15j modn) (3)

4. Protocol actions. Thefollowing steps are executed ¢ times; B accepts A’sidentity if
all t rounds succeed. Assume B has A’sauthentic publickey (vy, ... ,vg;n); other-
wise, a certificate may be sent in message (1), and used as in Protocol 10.36.
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(@) A choosesarandominteger r, 1 < r < n — 1, and arandom bit b; computes
z = (—1)° -2 mod n; and sends x (the witness) to B.

(b) B sendsto A (the challenge,) arandom k-bit vector (eq, ... ,eg).

(c) A computesand sendsto B (theresponse): y = r - Hle s? mod n (the prod-
uct of r and those s; specified by the challenge).

(d) B computes z = 3?2 - Hle v;? mod n, and verifiesthat = = +x and z # 0.
(The latter precludes an adversary succeeding by choosing » = 0.)

10.27 Example (Feige-Fiat-Shamir protocol with artificially small parameters)

1. Thetrusted center T' selects the primesp = 683, ¢ = 811, and publishesn = pg =
553913. Integersk = 3 and ¢t = 1 are defined as security parameters.
2. Entity A doesthefollowing.

(a) Selects3randomintegerss; = 157, so = 43215, s3 = 4646, and 3 bitsb; = 1,
by =0,b3 = 1.
(b) Computesv; = 441845, v, = 338402, and vs = 124423.
(c) A’spublickey is (441845, 338402, 124423; 553913) and private key is (157,
43215, 4646).
3. See Protocol 10.26 for a summary of the messages exchanged.
4. (a) Achoosesr =1279,b = 1, computesz = 25898, and sendsthisto B.
(b) B sendsto A the 3-hit vector (0,0, 1).
(c) A computesand sendsto B y = r - s3 mod n = 403104.
(d) Bcomputesz = y?-v3 mod n = 25898 and accepts A’sidentity sincez = +x
and z #£ 0. O

10.28 Note (security of Feige-Fiat-Shamir identification protocol)

(i) probability of forgery. Protocol 10.26 is provably secure against chosen message at-
tack in the following sense: provided that factoring n is difficult, the best attack has
aprobability 2% of successful impersonation.

(i) security assumptionrequired. Thesecurity reliesonthedifficulty of extracting square
rootsmodul o large compositeintegersn of unknown factorization. Thisisequivalent
to that of factoring n (see Fact 3.46).

(iii) zero-knowledgeand soundness. Theprotocaol is, relativeto atrusted server, a (sound)
zero-knowledge proof of knowledge provided & = O(loglogn) and ¢t = ©(logn).
See Remark 10.34 regarding the practical significance of such constraints. A simplis-
tic view for fixed k is that the verifier, interested in soundness, favorslarger ¢ (more
iterations) for a decreased probability of fraud; while the prover, interested in zero-
knowledge, favors smaller ¢.

(iv) parameter selection. Choosing k and ¢ such that k¢t = 20 alowsalin amillion
chance of impersonation, which sufficesin the case that an identification attempt re-
quires a personal appearance by awould-beimpersonator (see §10.5). Computation,
memory, and communication can betraded off; 1 < k < 18 wasoriginally suggested
asappropriate. Specific parameter choicesmight be, for security 2720: k = 5,¢ = 4;
for2730: k = 6,t = 5.

(v) security trade-off. Both computation and communication may be reduced by trading
off security parameters to yield a single iteration (¢ = 1), holding the product kt
constant and increasing & while decreasing ¢; however, in this case the protocol is no
longer a zero-knowledge proof of knowledge.
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10.29 Note (modificationsto Feige-Fiat-Shamir)

(i)
(i)
(iii)

(iv)

Asanalternativeto step 1 of Protocol 10.26, each user may pick itsown such modulus
n. T is still needed to associate each user with its modulus.

The communi cation complexity can bereduced if A sends B (e.g., 128 bits of) ahash
value h(x) instead of = in message (1), with B’s verification modified accordingly.
The scheme can be madeidentity-based asfollows (cf. §13.4.3). T assignsadisting-
uished identifying string 4 to each party A (e.g., A’s name, address, or other infor-
mation which a verifier may wish to corroborate). A’spublicvauesv;, 1 <i < k
are then derived by both T" and other parties B asv; = f(Ia,¢) using an appropri-
ate function f. Then the trusted center, knowing the factorization of n, computes a
squareroot s; of each v; and givestheseto A.

Asan exampleof f, consider, for arandomly chosen but knownvauec, f(14,i) =
I4 + i+ cmodn. Sinceasquareroot of f; = f(Ia,t) isrequired, any f; with
Jacobi symbol —1 mod n may be multiplied by a fixed number with Jacobi symbol
—1. A non-residue f; with Jacobi 4+1 may be either discarded (A must then indicate
to B, e.g., in message (3), which values : allow computation of the v;); or mapped
to aresidue viamultiplication by —1, again with an indication to B of thisto allow
computation of v;. Notethat both casesfor dealing with anon-residue f; with Jacobi
+1 reveal some (non-useful) information.

The parallel version of the protocol, in which each of three messages contains the
respective datafor all ¢ rounds simultaneoudly, can be shown to be secure (it releases
no “transferable information”), but for technical reasons loses the zero-knowledge
property. Such parallel execution (as opposed to sequential iteration) in interactive
proofsallowsthe probability of error (forgery) to be decreased without increasing the
number of rounds.

10.30 Note (convertingidentificationto signature scheme) Thefollowing general technique may
be used to convert an identification schemeinvol ving awitness-chall enge-response sequen-
ce to a signature scheme: replace the random challenge e of the verifier by the one-way
hashe = h(z||m), of the concatenation of the witness = and the message m to be signed (h
essentially playstheroleof verifier). Asthisconvertsaninteractiveidentification schemeto
anon-interactivesignature scheme, the bitsize of the challengee must typically beincreased
to preclude off-line attacks on the hash function.

10.4.3 GQ identification protocol

The Guillou-Quisquater (GQ) identification scheme (Protocol 10.31) is an extension of the
Fiat-Shamir protocal. It allows areduction in both the number of messages exchanged and
memory requirements for user secrets and, like Fiat-Shamir, is suitable for applicationsin
which the claimant has limited power and memory. It involves three messages between a
claimant A whose identity isto be corroborated, and a verifier B.

10.31 Protocol GQ identification protocol

SUMMARY: A provesitsidentity (viaknowledge of s 4) to B in a 3-pass protocol.

1.

Selection of system parameters.
(8 Anauthority T', trusted by all partieswith respect to binding identitiesto public
keys, selects secret random RSA-like primes p and ¢ yielding amodulusn =
pq. (Asfor RSA, it must be computationally infeasible to factor n.)
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(b) T definesapublicexponentv > 3withged(v, ¢) = 1where¢ = (p—1)(g—1),
and computesits private exponent s = v~ ! mod ¢. (See Note 10.33.)
(c) System parameters (v, n) are made available (with guaranteed authenticity) for
all users.
2. Slection of per-user parameters.
(a) Each entity A is given auniqueidentity 74, from which (the redundant iden-
tity) Ja = f(Ia), satisfying 1l < J4 < n, isderived using a known redun-
dancy function f. (See Note 10.35. Assuming that factoring n is difficult im-
pliesged(Ja, ¢) = 1.)
(b) T givesto A the secret (accreditation data) s 4 = (J4)~° mod n.
3. Protocol messages. Each of ¢ rounds has three messages as follows (often ¢t = 1).

A—B: Iy, z=r"modn (1)
A<+ B: e(wherel <e<wv) (2)
A—B: y=r-ss°modn (3)
4. Protocol actions. A provesitsidentity to B by t executions of the following; B ac-
cepts the identity only if all ¢ executions are successful.
(a) A selects arandom secret integer » (the commitment), 1 < » < n — 1, and
computes (the witness) = r¥ mod n.
(b) A sendsto B the pair of integers (14, ).
() B sdlectsand sendsto A arandom integer e (the challenge), 1 < e < v.
(d) A computesand sendsto B (theresponse) y = r - s4¢ mod n.
(e) B receivesy, constructs.J4 from 14 using f (see above), computesz = J4° -
y¥ mod n, and accepts A's proof of identity if both z = z and z # 0. (The
latter precludes an adversary succeeding by choosing r = 0.)

10.32 Example (GQ identification protocol with artificially small parametersand ¢ = 1)
1. (&) Theauthority T' selects primesp = 569, ¢ = 739, and computesn = pq =
420491.
(b) T computes¢p = (p — 1)(qg — 1) = 419184, selectsv = 54955, and computes
s = v~ mod ¢ = 233875.
(c) System parameters (54955, 420491) are made availablefor all users.
2. (a) Supposethat A’sredundant identity is.JJ4 = 34579.
(b) T givesto A the accreditation datas4 = (J4)~° mod n = 403154.
3. See Protocol 10.31 for a summary of the messages exchanged.
4. (@) A sdectsr = 65446 and computesz = ¥ mod n = 89525.
(b) A sendsto B the pair (4, 89525).
(c) B sendsto A therandom challenge e = 38980.
(d) Asendsy =r-s4° mod n = 83551 to B.
() Bcomputesz = J4°-y¥ mod n = 89525 and accepts A’sidentity sincez = x
and z #£ 0. O

10.33 Note (security of GQ identification protocol)
(i) probability of forgery. In Protocol 10.31, v determines the security level (cf. Fiat-
Shamir wherev = 2 but thereare many rounds); somevaluessuchasv = 2'6+1 may
offer computational advantages. A fraudulent claimant can defeat the protocol with
alinwv chanceby guessing e correctly apriori (and thenformingz = J4° - y¥ asthe
verifier would). The recommended bitlength of v thus depends on the environment
under which attacks could be mounted (see §10.5).
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(i) security assumption required. Extracting v** roots modulo the composite integer n
(i.e., solvingthe RSA problem—§3.3) appears necessary to defeat the protocol; thisis
no harder than factoring n (Fact 3.30), and appears computationally intractablewith-
out knowing the factors of n.

(i) soundness. In practice, GQ with ¢ = 1 and a k-bit prime v is often suggested. For
generalized parameters (n, v, t), the probability of forgery isv—*. If v is constant,
then technically for soundness, ¢ must grow asymptotically faster than log log n. (For
soundness, v~ = O(e~**) must be smaller than inverse-polynomial in log n; only
polynomia security is provided if for a constant ¢, v! = O((logn)¢). See dso Re-
mark 10.34.)

(iv) zero-knowledge property. In opposition to the soundness requirement, for GQ to be
zero-knowledge apparently requires tv = O((logn)©) for constant ¢, imposing an
upper bound on ¢t asymptotically: for v constant, t must be no larger than polynomial
inlogn.

10.34 Remark (asymptotic concepts vs. practical protocols) The asymptotic conditions for
soundness specified in Note 10.33 have little meaning in practice, e.g., because big-O nota-
tionisnot applicable oncefixed values are assigned to parameters. Indeed, zero-knowledge
isatheoretical concept; while complexity-theoretic definitions offer guidancein selecting
practical security parameters, their significance diminishes when parameters are fixed. Re-
garding Note 10.33, if ¢ = 1 is viewed as the instantiation of a non-constant parameter
(e.g., the iterated logarithm of n), then ¢ = 1 will suffice for all practical purposes; con-
sider n = 1024,t = [lg*n] = 1.

10.35 Note (redundancy function for identity-based GQ)

(i) Theprotocol asgivenisan identity-based version (cf. Note 10.29), where A’s public
key isreconstructed from identifier 74 sent in message (1). Alternatively, a certified
public key may be used, distributed in a certificate as per Protocol 10.36.

(if) Oneexample of the redundancy function f isthe redundancy mapping of the prepro-
cessing stage of 1SO/IEC 9796 (see §11.3.5). A second exampleisasingle function
value of f asin Note 10.29, for an appropriate values.

(iii) The purpose of the redundancy is to preclude an adversary computing fal se accredi-
tation data corresponding to a plausible identity; thiswould be equivalent to forging
a certificate in certificate-based schemes.

10.4.4 Schnorr identification protocol

The Schnorr identification protocol is an aternative to the Fiat-Shamir and GQ protocols.
Its security is based on the intractability of the discrete logarithm problem. The design al-
lows pre-computation, reducing the real-time computation for the claimant to one multi-
plication modulo a prime g; it is thus particularly suitable for claimants of limited com-
putational ability. A further important computational efficiency results from the use of a
subgroup of order ¢ of the multiplicative group of integers modulo p, where¢|(p — 1); this
also reduces the required number of transmitted bits. Finally, the protocol was designed to
require only three passes, and a low communications bandwidth (e.g., compared to Fiat-
Shamir).

Thebasicideaisthat A provesknowledgeof asecret a (without revealing it) in atime-
variant manner (depending on a challenge e), identifying A through the association of «
with the public key v via A’s authenticated certificate.
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10.36 Protocol Schnorr identification protocol

SUMMARY: A provesitsidentity to B in a 3-pass protocol.
1. Selection of system parameters.

(a) A suitable prime p is selected such that p — 1 is divisible by another prime q.
(Discrete logarithms modulo p must be computationally infeasible — see §3.6;
eg., p ~ 21024 4 > 2160

(b) Anelement 3ischosen, 1 < 8 < p — 1, having multiplicative order q. (For
example, for o agenerator mod p, 3 = a?~1/4 mod p; see Note 4.81.)

(c) Each party obtainsan authentic copy of the system parameters(p, g, 3) and the
verification function (public key) of the trusted party 7', allowing verification
of T"s signatures S(m) on messages m. (St involves a suitable known hash
function prior to signing, and may be any signature mechanism.)

(d) A parametert (e.g., t > 40), 2¢ < g, ischosen (defining a security level 2¢).

2. Selection of per-user parameters.

(a) Each claimant A isgiven auniqueidentity I 4.

(b) A choosesaprivatekey a,0 < a < ¢ — 1, and computesv = S~ mod p.

(c) Aidentifiesitself by conventional means (e.g., passport) to 7', transfersv to T'
with integrity, and obtains a certificate cert4 = (Ia, v, Sr(Ia,v)) fromT
binding 4 with v.

3. Protocol messages. The protocol involves three messages.

A— B: certy, z =" modp (1)
A+ B: e(wherel<e<2'<gq) (2)
A—B: y=ae+rmodgqg (3)

4. Protocol actions. A identifiesitself to verifier B asfollows.
(8 A choosesarandomr (thecommitment),1 < r < ¢g— 1, computes(thewitness)
x = " mod p, and sends (1) to B.
(b) B authenticates A’s public key v by verifying T"s signature on cert 4, then
sendsto A a(never previously used) random e (the challenge), 1 < e < 2¢.
(¢) A checks1 < e < 2! and sends B (theresponse) y = ae + r mod g.
(d) B computesz = 3Yv¢ mod p, and accepts A’s identity provided z = .

10.37 Example (Schnorr identification protocol with artificially small parameters)

1. (&) Theprimep = 48731 isselected, wherep— 1 isdivisibleby theprimeq = 443.
(b) A generator mod 48731 isa = 6; (3 is computed as P~ 1)/4 mod p = 11444,
(c) The system parametersare (48731,443,11444).
(d) The parameter t = 8 is chosen.

2. (b) A choosesaprivatekey a = 357 and computesv = 8~ mod p = 7355.

3. See Protocol 10.36 for a summary of the messages exchanged.

4. (@) Achoosesr =274 and sendsz = 8" mod p = 37123 to B.
(b) B sendsto A the random challengee = 129.
(c) A sends B the number y = ae + r mod g = 255.
(d) B computes z = fYv°¢ mod p = 37123 and accept’s A’sidentity since z = z.

O
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10.38 Note (security of Schnorr identification protocol)

0]

(if)

(iii)

probability of forgery. In Protocol 10.36, t must be sufficiently large to make the
probability 2~ of correctly guessing the challenge e negligible. ¢t = 40, g > 2%t =
280 was originally suggested in the case that a response is required within seconds
(see §10.5); larger ¢ may be necessary to preclude time-memory trade-offs, and ¢ >
2160 jsrecommended to preclude other off-linediscrete log attacks. Correctly guess-
ing e alows an adversary to impersonate A by choosing any y, sending x = gYv°¢
modp to B in (1), then sending y in (3).

soundness. It can be shown that the protocol is a proof of knowledge of a, i.e., any
party completing the protocol as A must be capable of computing a. Informally, the
protocol reveals“ no useful information” about o because z isarandomnumber, and y
is perturbed by the random number r. (However, this does not provethat adversarial
discovery of a isdifficult.)

zero-knowledge property. The protocol is not zero-knowledge for large e, because
throughinteraction, B obtainsthesolution (z, y, e) totheequationz = $Yv¢ mod p,
which B itself might not be able to compute (e.g., if e were chosen to depend on z).

10.39 Note (reducing transmission bandwidth) The number of bits transmitted in the protocol
can be reduced by replacing x in message (1) by ¢ pre-specified bits of = (e.g., the least
significant ¢ bits), and having B comparethisto ¢ corresponding bits of 2.

10.4.5 Comparison: Fiat-Shamir, GQ, and Schnorr

The protocols of Feige-Fiat-Shamir, Guillou-Quisguater, and Schnorr all provide solutions
to the identification problem. Each has relative advantages and disadvantages with respect
to various performance criteria and for specific applications. To compare the protocols, a
typical set of selected parameters must be chosen for each providing comparabl e estimated
security levels. The protocols may then be compared based on the following criteria

1.
2.

3.

4.

communications: number of messages exchanged, and total bits transferred,;
computations. number of modular multiplications for each of prover and verifier
(noting on-line and off-line computations);

memory: storage requirementsfor secret keys (and signature size, in the case of sig-
nature schemes);

security guarantees:. comparisons should consider security against forgery by guess-
ing (soundness), possible disclosure of secret information (zero-knowledge prop-
erty), and status regarding provabl e security; and

trust required in third party: variations of the protocols may require different trust
assumptionsin the trusted party involved.

The number of criteriaand potential parameter choices precludes a comparison which
is both definitive and concise. The following general comments may, however, be made.

1.

computational efficiency. Fiat-Shamir requires between one and two orders of mag-
nitude fewer full modular multiplications (steps) by the prover than an RSA private-
key operation (cf. §10.3.3). When kt = 20 and n is 512 bits, Fiat-Shamir uses from
about 11 to about 30 steps (k = 20, ¢ = 1; and k = 1, t = 20); GQ requires about
60 steps (for t = 1, m = 20 = log,(v)), or somewhat fewer if v haslow Hamming
weight; and full exponentiation in unoptimized RSA takes 768 steps.
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2.

off-line computations. Schnorr identification has the advantage of requiring only a
single on-line modular multiplication by the claimant, provided exponentiation may
be done as a precomputation. (Such atrade-off of on-line for off-line computationis
possible in some applications; in others, the total computation must be considered.)
However, significant computationisrequired by theverifier compared to Fiat-Shamir
and GQ.

bandwidth and memory for secrets. GQ allows the simultaneous reduction of both
memory (parameter k) and transmission bandwidth (parameter t) withk = ¢t = 1,
by introducing the public exponent v > 2 with the intention that the probability of
successful cheating becomesv—*; thissimultaneousreductionisnot possiblein Fiat-
Shamir, which requires k user secretsand ¢ iterationsfor an estimated security (prob-
ability of cheating) of 2~ . Regarding other tradeoffs, see Note 10.28.

security assumptions. The protocols require the assumptions that the following un-
derlying problems are intractable, for a composite (RSA) integer n: Fiat-Shamir —
extracting square roots mod n; GQ — extracting v** rootsmod n (i.e., the RSA prob-
lem); Schnorr identification — computing discrete logs modulo a prime p.

10.5 Attacks on identification protocols

The methods an adversary may employ in an attempt to defeat identification protocolsare a
subset of those discussed in Chapter 12 for authenticated key establishment, and the types
of adversariesmay be similarly classified (e.g., passive vs. active, insider vs. outsider); for
a discussion of attacks on simple password schemes, see §10.2.2. Identification is, how-
ever, less complex than authenticated key establishment, as there is no issue of an adver-
sary learning a previous session key, or forcing an old key to be reused. For conciseness,
the following definitions are made:

1.
2.

impersonation: a deception whereby one entity purportsto be another.

replay attack: animpersonation or other deceptioninvolving use of informationfrom
a single previous protocol execution, on the same or a different verifier. For stored
files, the analogue of areplay attack is arestore attack, whereby afile isreplaced by
an earlier version.

interleaving attack: an impersonation or other deception involving selective combi-
nation of information from one or more previousor simultaneously ongoing protocol
executions(parallel sessions), including possible origination of one or more protocol
executions by an adversary itself.

reflection attack: an interleaving attack involving sending information from an on-
going protocol execution back to the originator of such information.

. forceddelay: aforced delay occurswhen an adversary interceptsamessage (typically

containing a sequence number), and relays it at some later point in time. Note the
delayed messageis not areplay.

. chosen-text attack: an attack on a challenge-response protocol wherein an adver-

sary strategically chooses challenges in an attempt to extract information about the
claimant’slong-term key.

Chosen-text attacks are sometimesreferred to as using the claimant asan oracle, i.e.,
to obtain information not computable from knowledge of a claimant’s public key
alone. The attack may involve chosen-plaintext if the claimant is required to sign,
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10.40

10.41

10.42

encrypt, or MAC the challenge, or chosen-ciphertext if the requirement is to decrypt
achallenge.

Potential threatsto identification protocol sincludeimpersonation by any of thefollow-
ing attacks: replay, interleaving, reflection, or forced delay. Impersonationis also trivial if
an adversary isableto discover an entity’slong-term (secret or private) keying material, for
example, using a chosen-text attack. This may be possible in protocolswhich are not zero-
knowledge, because the claimant uses its private key to compute its response, and thus a
response may reveal partial information. In the case of an active adversary, attacks may in-
volvethe adversary itself initiating one or more new protocol runs, and creating, injecting,
or otherwise altering new or previous messages. Table 10.3 summarizes counter-measures
for these attacks.

| Typeof attack | Principlesto avoid attack |

replay use of challenge-responsetechniques; use of nonces, embed tar-
get identity in response

interleaving linking together all messages from a protocol run (e.g., using
chained nonces)

reflection embed identifier of target party in challenge responses; construct
protocols with each message of different form (avoid message
symmetries); use of uni-directional keys

chosen-text use of zero-knowledge techniques; embed in each challengere-
sponse a self-chosen random number (confounder)

forced delay combined use of random numberswith short responsetime-outs;
timestamps plus appropriate additional techniques

Table 10.3: |dentification protocol attacks and counter-measures.

Remark (useof keysfor multiple purposes) Cautionis advised if any cryptographickey is
used for more than one purpose. For example, using an RSA key for both entity authenti-
cation and signatures may compromise security by allowing a chosen-text attack. Suppose
authentication here consists of B challenging A with arandom number » g RSA-encrypted
under A’s public key, and A isrequired to respond with the decrypted random number. I
B challenges A with rg = h(x), A’s response to this authentication request may (unwit-
tingly) provideto B its RSA signature on the hash value of the (unknownto A) message x.
See also Example 9.88, where a DES key used for both CBC encryption and CBC-MAC
leads to a security flaw; and Remark 13.32.

Remark (adversary acting “ asawir€”) In any identification protocol between A and B,
anadversary C' may step into the communicationspath and simply relay (without changing)
the messages between legitimates parties A and B, itself acting as a part of the communi-
cationslink. Typically in practice, thisis not considered atrue “attack”, in the sense that it
does not alter the aliveness assurance delivered by the protocol; however, in some special
applications, thismay be a concern (see Remark 10.42).

Remark (grandmaster postal-chess problem) Identification protocols do not provide as-
surances about the physical location of the authenticated party. Therefore, Remark 10.41
notwithstanding, a concern may arise in the special case that the following is possible: an
adversary C attemptsto impersonate B, is challenged (to proveitis B) by A, andisableto
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relay (in real time, without detection or noticeable delay, and pretending to be A) the chal-
lenge ontotherea B, get aproper response from B, and pass this response along back to
A. Inthis case, additional measures are necessary to prevent a challenged entity from elic-
iting aid in computing responses. Thisis related to the so-called grandmaster postal-chess
problem, whereby an amateur’s chess rating may unfairly be improved by engaging in two
simultaneous chess gameswith distinct grandmasters, playing black in one game and white
in the second, and using the grandmaster’s moves from each game in the other. Either two
draws, or awin and aloss, are guaranteed, both of which will improve the amateur’srating.

For further discussion of protocol attacks including specific examples of flawed entity
authentication protocols, see §12.9.

(i) Maintaining authenticity

| dentification protocols provide assurances corroborating the identity of an entity only at
agiveningtant in time. If the continuity of such an assurance is required, additional tech-
niques are necessary to counteract active adversaries. For example, if identification is car-
ried out at the beginning of a communications session to grant communications permis-
sions, apotential threat is an adversary who “cutsin” on the communicationsline immedi-
ately after the successful identification of the legitimate party. Approachesto prevent this
include:

1. performing re-authentication periodically, or for each discrete resource requested
(e.g., eachfile access). A remaining threat hereis an adversary who “steps out” ev-
ery timere-authenticationis performed, allowing the legitimate party to perform this
task, before re-entering.

2. tying theidentification processto an ongoing integrity service. Inthiscase, theiden-
tification processshould beintegrated with akey establishment mechanism, such that
aby-product of successful identification isasession key appropriatefor usein a sub-
sequent ongoing integrity mechanism.

(i) Security level required for on-line vs. off-line attacks

The security level required for identification protocols depends on the environment and the
specific application at hand. The probability of success of “guessing attacks’ should be
considered, and distinguished from the amount of computation required to mount on-line
or off-line attacks (using the best techniques known). Some illustrative notes follow (see
also Note 10.28).

1. Local attacks. Selecting security parameterswhich limit the probability of successful
impersonation of a guessing attack (an adversary simply guesses alegitimate party’s
secret) to a1 in 229 chance (20 bits of security) may suffice if, for each attempted
impersonation, alocal appearanceisrequired by thewoul d-beimpersonator and there
isapenalty for failed attempts. Depending on the potential loss resulting relative to
the penalty, 10 to 30 bits or more of security may be required.

2. Remote attacks. A higher level of security isrequired in environmentswhere unlim-
ited identification attempts, each involving minimal computational effort, are pos-
sible by remote electronic communications, by an anonymous claimant interacting
with an on-line system, with no penaltiesfor failed attempts. 20 to 40 bits of security
or more may be called for here, unless the number of interactions may be somehow
limited.

3. Off-line or non-interactive attacks. Selecting security parameters such that an attack
requires 24° computationsin real-time (during a protocol execution) may be accept-
able, but a bound of 259 to 28° computations (the latter should be adequate in all
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cases) may be called for if the computations can be carried out off-line, and the at-
tack is verifiable (i.e., the adversary can confirm, before interacting with the on-line
system, that his probability of successful impersonation is near 1; or can recover a
long-term secret by off-line computations subsequent to an interaction).

|

10.6 Notes and further references

§10.1

§10.2

§10.3

Davies and Price [308] and Ford [414] provide extensive discussion of authentication and
identification; see also the former for biometric techniques, as well as Everett [380]. The
comprehensivesurvey on login protocolshby de Wal effe and Quisquater [319] ishighly rec-
ommended. Crépeau and Goutier provide a lucid concise summary of user identification
techniques with Brassard [192]. For standardized entity authentication mechanisms, see
ISO/IEC 9798 [598, 599, 600, 601, 602].

See the §9.2 notes on page 377 for historical discussion of using aone-way function (one-
way cipher) for “encrypted” password files. Morrisand Thompson [907] introduce the no-
tion of password salting in their 1979 report on UNIX passwords; in one study of 3289 user
passwords unconstrained by password rules, 86% fell within an easily-searched subset of
passwords. Feldmeier and Karn[391] give an update 10 years|ater, indicating 30% of pass-
wordsthey encounteredfell to their attack using aprecomputed encrypted dictionary, sorted
on tapes by salt values. See also Klein [680] and Lomas et al. [771]. Password salting is
related to randomized encryption; theideaof padding plaintext with random bits before en-
cryption may also be used to prevent forward search attacks on public-key encryption with
small plaintext spaces. Password rulesand procedures have been published by the U.S. De-
partments of Commerce [399] and Defense [334].

Methodsfor computing password-derived keys (§10.2.4) are specified in the Kerberos Au-
thentication Service [1041] and PKCS#5 [1072]. A concern related to password-derived
keys is that known plaintext allows password-guessing attacks; protocols specifically de-
signed to prevent such attacks are mentioned in Chapter 12 notes on §12.6. The idea
of chaining one-time passwords by a one-way function (Protocol 10.6) is due to Lam-
port [739]; for related practical applications, see RFC 1938 [1047]. Davies and Price
[308, p.176] note a questionnaire-based identification technique related to fixed challenge-
response tables, wherein the user is challenged by a random subset of previously answered
guestions.

Needham and Schroeder [923] stimulated much early work inthe areaof authentication pro-
tocolsinthelate 1970s, and Needham was again involved with Burrows and Abadi [227] in
the BAN logic work which stimulated considerable interest in protocol analysis beginning
in the late 1980s; see Chapter 12 notes for further discussion.

Gong [501] provides an overview of both time variant parameters and message replay;
see also Neuman and Stubblebine [925], and the annexes of parts of ISO/IEC 9798 (e.g.,
[600]). For security argumentsagainst the use of timestamps and a discussion of implemen-
tation difficulties, see Bellovin and Merritt [103]; Gaarder and Snekkenes[433]; Diffie, van
Oorschot, and Wiener [348]; and Gong [500], who considers postdated timestamps. See
also §12.3 notes. Lam and Beth [734] note that timestamp-based protocol s are appropriate
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§10.4

for connectionlessinteractionswhereas chall enge-response suits connecti on-oriented com-
munications, and suggest challenge-response techniques be used to securely synchronize
timeclocks with applications themsel ves using timestamp-based authentication.

ISO/IEC 9798 [598] parts 2 through 5 specify entity authentication protocols respectively
based on symmetric encryption [599], digital signatures [600], keyed one-way functions
[601], and zero-knowledgetechniques[602]; a subset of these are presented in this chapter.
FIPS 196 [407] is a subset of 9798-3 containing the unilateral and mutual authentication
protocols involving challenge-response with random numbers.

Severa partsof 9798 wereinfluenced by the SKID2 and SK1D3 (Secret Key | Dentification)
protocolsfrom the RACE/RIPE project [178], which |eave the keyed hash function unspec-
ified but recommend RIPE-MA C with 64-bit random-number challenges. Diffie [342, 345]
notesthat two-pass challenge-responseidentification based on encryption and random chal -
lenges has been used since the 1950sin military Identification Friend or Foe (IFF) systems
to distinguish friendly from hostile aircraft. Mao and Boyd [781] discuss the danger of im-
properly using encryption in authentication protocols, specifically the CBC mode without
an integrity mechanism (cf. Remark 10.16). Stubblebineand Gligor [1179] discuss attacks
involving this same mode; see also the much earlier paper by Akl [20].

Daviesand Price[308] give aconcisediscussion of password generators. Theidentification
techniquein §10.3.3(i) based on public-key decryption and witnessis derived from a Dan-
ish contribution to the 4th Working Draft of |SO/IEC 9798-5, specifying a protocol called
COMSET and motivated in part by Brandt et al. [188], and related to ideas noted earlier by
Blum et al. [163].

A refreshingly non-mathematical introduction to zero-knowledge proofs is provided by
Quisguater, Guillou, and Berson [1020], who document the secret of Ali Baba's legendary
cave, and its rediscovery by Mick Ali. Mitropoulos and Meijer [883] give an exception-
ally readable and comprehensive survey (circa 1990) of interactive proofsand zero knowl-
edge, with afocusonidentification. Other overviewsinclude Johnson[641]; Stinson[1178,
Ch.13]; and Brassard, Chaum, and Crépeau [193] (or [192]) for a discussion of minimum
disclosure proofs, based on hit commitment and the primitive of a blob. Brassard and
Crépeau [195] provide auser-friendly discussion of various definitions of zero-knowledge,
while Goldreich and Oren [475] examine properties and rel ationshi ps between various def-
initions of ZK proof systems.

Rabin[1022] employedtheideaof cut-and-chooseprotocolsfor cryptographic applications
as early as 1978. While Babai (with Moran) [60, 61] independently devel oped a theory of
randomized interactive proofs known as Arthur-Merlin gamesin an attempt to “formalize
the notion of efficient provability by overwhelming statistical evidence”, interactive proof
systems and the notion of zero-knowledge (ZK) proofs were formalized in 1985 by Gold-
wasser, Micali, and Rackoff [481] in the context of an interactive proof of membership of
astring x in alanguage £; they showed that the languages of quadratic-residues and of
guadratic non-residues each have ZK interactive proof (ZKIP) systems revealing only a
singlebit of knowledge, namely, that € £. Goldreich, Micali, and Wigderson [473, 474]
provelikewisefor graph non-isomorphism (known not to bein NP) and graphisomorphism,
and that assuming the existence of secure encryption schemes, every languagein NP hasa
ZKIP; see d'so Chaum [244], and Brassard and Crépeau [194].

Motivated by cryptographic applications and identification in particular, Feige, Fiat, and
Shamir [383] adapted the concepts of interactive proofs of membership to interactive proofs
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of knowledge, including reformulated definitions for completeness, soundness, and zero-
knowledge; while proofs of membership reveal one bit of set membership information,
proofsof knowledgerevea only one bit about the prover’sstate of knowledge. The defini-
tionsgiven in §10.4.1 are based on these. These authors refine the original scheme of Fiat
and Shamir [395] to yield that of Protocol 10.26; both may be converted to identity-based
schemes (Note 10.29) in the sense of Shamir [1115]. The Fiat-Shamir scheme is related
to (but more efficient than) an earlier protocol for proving quadratic residuosity (presented
at Eurocrypt’ 84, but unpublished) by Fischer, Micali, and Rackoff [412]. The Fiat-Shamir
protocol as per Protocol 10.24 includes an improvement noted by Desmedt et al. [340] to
avoid inversesin the derivation of user secrets; this optimization may also be made to Pro-
tocol 10.26.

Related to definitions in §10.4.1, Bellare and Goldreich [87] noted that Goldwasser, Mi-
cali, and Rackoff [481] did not formally propose a definition for a proof of knowledge, and
suggested that the formal definitions of Feige, Fiat, and Shamir [383] and Tompaand Woll
[1194] were unsatisfactory for some applications. To address these issues they proposed
a new definition, having some common aspects with that of Feige and Shamir [384], but
offering additional advantages.

Micali and Shamir [868] provide preliminary notes on reducing computation in the Fiat-
Shamir protocol by choosing the publickeysv;, 1 < i < k to bethefirst & prime numbers;
each user then has an independent modulus n. A modification of Fiat-Shamir identifica-
tion by Ong and Schnorr [957] decreases computational complexity, signature size, and the
number of communicationsrequired, condensing ¢ Fiat-Shamir iterationsinto oneiteration
while leaving each user with k private keys (cf. the £ = 1 extension below); for computa-
tional efficiency, they suggest using as secret keys (not too) small integers.

The idea of generalizing Fiat-Shamir identification in other ways, including “replacing
square roots by cubic or higher roots’, was suggested in the original paper; using higher
roots allows users to reduce their number of private keys k, including to the limiting case
k = 1. Guillou and Quisguater [524] proposed a specific formulation of thisideaof “using
deep cointosses’ as the GQ scheme (Protocol 10.31); apparently independently, Ohta and
Okamoto [945, 944] proposed a similar formulation, including security analysis.

The Ohta-Okamoto (OO) version of thisextended Fiat-Shamir scheme differsfrom the GQ
version (Protocol 10.31) asfollows: (1) in OO, rather than T computing s 4 from identity
14, A choosesits own secret s 4 € Z,, and publishes 4 = s4” mod n; and (2) the verifi-
cationrelationz = J4°-y¥ (mod n) becomesy? = z-1,°. OOismoregeneral inthat, as
originaly proposed, it avoidsthe GQ (RSA) constraint that ged (v, ¢(n)) = 1. Subsequent
analysis by Burmester and Desmedt [221] suggests that additional care may be required
when v isnot prime. While the OO version precludes an identity-based variation, afurther
subsequent version of extended Fiat-Shamir (GQ variation) by Okamoto [949] (“ Scheme
3" of 5 protocolstherein) is provably as secure as factoring, only dightly less efficient, and
is amenable to an identity-based variation.

Thezero-knowledgeinteractive protocol sof Chaum et al. [248, 249] for proving possession
of discrete logarithms, provided abasis for Protocol 10.36 which is due to Schnorr [1097,
1098]. Schnorr also proposed a preprocessing scheme to reduce real -time computation, but
see de Rooij [314] regarding its security. The Schnorr identification and signature schemes
must not both be used with the same parameters 3, p [1098] (cf. Remark 10.40). Schnorr’s
protocol is related to the log-based identification scheme of Beth [123] also proven to be
zero-knowledge. Burmester et al. [223] analyze(cf. Note 10.33) ageneralizedidentification
protocol encompassing all the well-known variations related to Fiat-Shamir and including
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those of both Chaum et a. and Beth noted above. Van de Graaf and Peralta[1200] give a
ZK interactive protocol for proving that a Blum integer is a Blum integer.

Brickell and McCurley [207] propose a modification of Schnorr’sidentification scheme, in
which g is kept secret and exponent computations are reduced modulo p — 1 rather than g;
it has provable security if factoring p — 1 is difficult, and moreover security equivalent to
that of Schnorr’s scheme otherwise; a drawback is that almost 4 times as much computa-
tionisrequired by the claimant. Another variant of Schnorr’sschemeby Girault [458, 461]
wasthefirst identity-based i dentification scheme based on discretelogs; it usesacomposite
modulus, and features the user choosing its own secret key, which remains unknown to the
trusted party (cf. implicitly-certified public keys, §12.6.2). A further variation of Schnorr’s
identification protocol by Okamoto [949] (“ Scheme 1) usestwo elements 3, and (32, of or-
der ¢, andisprovably secure, assuming the computational infeasibility of computing the Z,,
discrete logarithm log s, 32 of 3» relative to 3y; it does, however, involve some additional
computation.

Aside from the above protocols based on the computational intractability of the standard
number-theoretic problems (factoring and discrete logarithms), a number of very efficient
identification protocols have more recently been proposed based on NP-hard problems.
Shamir [1116] proposed a zero-knowledge identification protocol based on the NP-hard
permuted kernel problem: given an m x n matrix A over Z,, p prime (and relatively
small, eg., p = 251), and an n-vector V, find a permutation = on {1, ... ,n} such that
Vz € ker(A), where ker(A) is the kernel of A consisting of all n-vectors W such that
AW =10...0] mod p. Patarin and Chauvaud [966] discuss attacks on the permuted ker-
nel problem which are feasible for the smallest of parameter choices originally suggested,
whileearlier |essefficient attacksare presented by Baritaud et al. [ 73] and Georgiades[447].
Stern [1176] proposed a practical zero-knowledge identification scheme based on the NP-
hard syndrome decoding problem, following an earlier less practical scheme of Stern[1174]
based on intractable problems in coding theory. Stern [1175] proposed another practi-
cal identification scheme based on an NP-hard combinatorial constrained linear equations
problem, offering avery short key length, which is of particular interest in specific applica-
tions. Pointcheval [983] proposed another such scheme based on the NP-hard perceptrons
problem: given an m x n matrix M with entries +1, find an n-vector y with entries +1
such that My > 0.

Goldreich and Krawczyk [469] pursue the fact that the original definition of ZK of Gold-
wasser, Micali, and Rackoff is ot closed under sequential composition (thiswas noted ear-
lier by D. Simon), establishing theimportance of the stronger definitions of ZK formulated
subsequently (e.g., auxiliary-input zero-knowledge — see Goldreich and Oren [475]), for
which closure under sequential composition has been proven. They prove that even these
strong formulations of ZK are not, however, closed under parallel composition (thus moti-
vating the definition of weaker notions of zero-knowledge), and that 3-passinteractive ZK
proofs of membership that are black-box simulation ZK exist only for languagesin BPP
(Definition 2.77); whilethe definition of “ black-box simulation ZK” ismorerestrictive than
the original definition of ZK, all knownZK protocolsare ZK by thisdefinition also. Conse-
guently, protocolsthat are (formally) ZK are less practical than their corresponding 3-pass
parallel versions.

Asareplacement for the security requirement of zero knowledge in many protocols, Feige
and Shamir [384] proposed witness indistinguishability and the related notion of witness
hiding protocols. Unlike zero knowledge, witness indistinguishability is preserved under
arbitrary composition of protocols.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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Methods have been proposed to reduce the communication complexity of essentialy all
customized identification protocols, including the use of hash valuesin thefirst message (cf.
Note 10.29; Note 10.39). Girault and Stern [462] examine the security implications of the
length of such hash values, notethat collision-resistance of the hash function sufficesfor the
typically claimed security levels, and examine further optimizations of the communication
complexity of such protocols, including use of r-collision resistant hash functions.

Blum, Feldman, and Micali [163] introduced the idea of non-interactive (or more clearly:
mono-directional) ZK proofs, separating the notions of interactive proof systems and zero-
knowledge protocoals; here the prover and verifier share arandom string, and communica
tion is restricted to one-way (or the prover may simply publish a proof, for verification at
somefuturetime). De Santis, Micali, and Persiano [317] improvetheseresultsemployinga
weaker complexity assumption; Blum et al. [162] provide asummary and further improve-
ments. While the technique of Remark 10.30, due to Fiat and Shamir [395], allows a zero-
knowledgeidentification schemeto be converted to a signature scheme, the latter cannot be
asound zero-knowl edge signature scheme because the very simulatability of theidentifica-
tion which establishes the ZK property would allow signature forgery (e.g., see Okamoto
[949)).

A further flavor of zero-knowledge (cf. Definition 10.22) is statistical (or almost perfect)
zero-knowledge; here the probability distributions of the transcripts must be statistically
indistinguishable (indistinguishable by an examiner with unlimited computing power but
given only polynomially many samples). Pursuing other characterizations, interactive pro-
tocolsin which the assurance a verifier obtainsis based on some unproven assumption may
be distinguished as arguments (see Brassard and Crépeau [195]), with proofsthen required
to be free of any unproven assumptions, although possibly probabilistic.

For performance comparisons and tradeoffs for the Fiat-Shamir, Guillou-Quisguater, and
Schnorr schemes, see Fiat and Shamir [395], Schnorr [1098], Okamoto [949], and Lim and
Lee[768], among others. For an overview of chipcard technology and the use thereof for
identification, see Guillou, Ugon, and Quisquater [527]; an earlier paper on chipcardsis by
Guillou and Ugon [526]. Knobloch [681] describesapreliminary chipcard implementation
of the Fiat-Shamir protocol.

Bauspiess and Knobloch [ 78] discussissuesrelated to Remark 10.41, including taking over
acommunicationsline after entity authentication hascompleted. Bengio et al. [113] discuss
implementation issues related to identification schemes such as the Fiat-Shamir protocol,
including Remark 10.42. Classes of replay attacks are discussed in severa papers, e.g.,
see Syverson [1182] and the | SO/IEC 10181-2 authentication framework [610]. For further
referenceson theanalysisof entity authentication protocol sand attacks, seethe §12.9 notes.
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