Cryptographic Protocols

Spring 2017

Lecture 1: Introduction, Interactive Proofs

Cryptographic Protocols

- Interactive Proofs and Zero-Knowledge Protocols
 Proving without Showing
- 2. Secure Multi-Party Computation
 Computing without Knowing
- 3. Broadcast

Agreeing without Trusting

4. Secure E-Voting no buzzword here ...

Formal and Non-Formal Proofs

Non-Formal Proof

- ullet Lemma: $orall n, d \in \mathbb{N}: \exists a: a, a+d, \ldots, a+(n-1)d$ are prime
- ullet Proof: Consider the hyperbolic plane ho with zero-free points lpha . . .
- Verification: ???

Formal Proof

- Class of statements: For given n,d: $\exists a$: a,..,a+(n-1)d are prime
- Statement: (n,d), e.g. (3,12)Read: For n=3 and d=12, there exists an a such that \dots
- Proof: a, e.g. 5

Read: For a=5, the numbers a,..,a+(n-1)d are prime

• Verification: Given (n,d) and a, check that a,..,a+(n-1)d are prime Read: Check that 5,17,29 are prime

A Formal Proof System

Proof System for a Class of Statements

- A statement (from the class) is a string (over a finite alphabet).
- A semantics that defines which statements are true.
- A proof is a string.
- Verification algorithm: (statement, proof) → {accept, reject}.

Example: n is Non-Prime

- \bullet Statement: a number n (sequence of digits), e.g. "399800021".
- Proof: a factor f, e.g. "19997".
- Verification: Check whether f divides n.

Requirements for a Proof System

- Soundness: Only true statements have proofs.
- Completeness: Every true statement has a proof.
- •

Proof System: Sudoku has Solution

Good Proof System

- Statement: 9-by-9 Matrix $\mathcal Z$ over $\{1,\ldots,9,\bot\}$.
- Proof: 9-by-9 Matrix \mathcal{X} over $\{1, \dots, 9\}$.
- Verification:

Stupid Proof System

- Statement: 9-by-9 Matrix $\mathcal Z$ over $\{1,\ldots,9,\bot\}$.
- Proof: "" (empty string)
- Verification: Travel through possible \mathcal{X} , check if \mathcal{X} is solution for \mathcal{Z} .

→ This is not a proof!

Two Types of Proofs

Proofs of Statements:

- \bullet Sudoku ${\mathcal Z}$ has a solution ${\mathcal X}.$
- z is a square modulo m, i.e. $\exists x : z = x^2 \pmod{m}$.
- ullet The graphs \mathcal{G}_0 and \mathcal{G}_1 are isomorphic.
- The graphs \mathcal{G}_0 and \mathcal{G}_1 are non-isomorphic.

Proofs of Knowledge:

- \bullet I know a solution ${\mathcal X}$ of Sudoku ${\mathcal Z}.$
- I know a value x such that $z = x^2 \pmod{m}$.
- I know an isomorphism π from \mathcal{G}_0 to \mathcal{G}_1 .
- I know a anti-isomorphism between \mathcal{G}_0 and \mathcal{G}_1 ????

Often: Proof of knowledge → Proof of statement (knowledge exists)

Static Proofs vs. Interactive Proofs **Static Proof Prover P Verifier V** knows statement s, knows statement sproof p $p \longrightarrow (s,p) \to \{\text{accept}, \text{reject}\}$ **Interactive Proof Verifier V** Prover P knows statement s, knows statement \boldsymbol{s} proof p m_1 m_2 . . .

 $\qquad \qquad \blacktriangleright \quad (s,m_1,\ldots,m_\ell) \to \{\text{accept},\text{reject}\}$

Graph Isomorphism – One Round of the Protocol

Setting: Given two graphs \mathcal{G}_0 and \mathcal{G}_1 . **Goal:** Prove that \mathcal{G}_0 and \mathcal{G}_1 are isomorphic.

Peggy

Vic

knows \mathcal{G}_0 , \mathcal{G}_1 , σ s.t. $\mathcal{G}_1=\sigma\mathcal{G}_0\sigma^{-1}$ knows \mathcal{G}_0 and \mathcal{G}_1

pick random permutation $\boldsymbol{\pi}$

$$\mathcal{T} = \pi \mathcal{G}_0 \pi^{-1}$$

$$\stackrel{c}{\longleftarrow} c \in_R \{0, 1\}$$

$$c = 0 : \rho = \pi$$

$$c = 1 : \rho = \pi \sigma^{-1}$$

$$c = 0 : \mathcal{T} \stackrel{?}{=} \rho \mathcal{G}_0 \rho^{-1}$$

$$c = 1 : \mathcal{T} \stackrel{?}{=} \rho \mathcal{G}_1 \rho^{-1}$$

Interactive Proofs: Requirements

- Completeness: If the statement is true [resp., the prover knows the claimed information], then the correct verifier will always accept the proof by the correct prover.
- Soundness: If the statement is false [resp., the prover does not know
 the claimed information], then the correct verifier will accept the proof
 only with negligible probability, independent of the prover's strategy.

Desired Property:

• Zero-Knowledge: As long as the prover follows the protocol, the verifier learns nothing but the fact that the statement is true [resp., that the prover knows the claimed information].

Graph-NON-Isomorphism - One Round of the Protocol

Setting: Given two graphs \mathcal{G}_0 and \mathcal{G}_1 .

Goal: Prove that \mathcal{G}_0 and \mathcal{G}_1 are *not* isomorphic.

Peggy

Vic

knows \mathcal{G}_0 and \mathcal{G}_1

knows \mathcal{G}_0 and \mathcal{G}_1

$$\begin{aligned} &\text{if } \mathcal{T} \sim \mathcal{G}_0 \text{: } c = 0, \\ &\text{if } \mathcal{T} \sim \mathcal{G}_1 \text{: } c = 1 \end{aligned}$$

Peggy

Vic

knows x s.t. $x^2 = z \pmod{m}$

Setting: m is an RSA-Modulus.

Fiat-Shamir - One Round of the Protocol

Goal: Prove knowledge of a square root of a given $z \in \mathbb{Z}_m^*$.

knows $z \in \mathbb{Z}_m^*$

$$k \in_R \mathbb{Z}_m^*$$

$$t = k^2$$

$$r = k \cdot x^c$$