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9.1 Introduction

Cryptographic hash functions play a fundamental role in modern cryptography. While re-
lated to conventional hash functions commonly used in non-cryptographic computer appli-
cations —in both cases, larger domains are mapped to smaller ranges — they differ in several
importantaspects. Our focus is restricted to cryptographic hash functions (hereafter, simply
hash functions), and in particular to their use for data integrity and message authentication.

Hash functions take a message as input and produce an output referredhasas a
code, hash-result, hash-value, or simplyhash. More precisely, a hash functidgnmaps bit-
strings of arbitrary finite length to strings of fixed length, salgits. For a domairD and
rangeR with h : D— R and|D| > |R|, the function is many-to-one, implying that the exis-
tence ofcollisions (pairs of inputs with identical output) is unavoidable. Indeed, restricting
h to a domain of-bit inputs ¢ > n), if h were “random” in the sense that all outputs were
essentially equiprobable, then aba@ét™ inputs would map to each output, and two ran-
domly chosen inputs would yield the same output with probaldlity (independent of).

The basic idea of cryptographic hash functions is that a hash-value serves as a compact rep-
resentative image (sometimes calledimprint, digital fingerprint, or message digest) of
an input string, and can be used as if it were uniquely identifiable with that string.

Hash functions are used for data integrity in conjunction with digital signature sch-
emes, where for several reasons a message is typically hashed first, and then the hash-value,
as a representative of the message, is signed in place of the original message (see Chap-
ter 11). A distinct class of hash functions, called message authentication codes (MACS),
allows message authentication by symmetric techniques. MAC algorithms may be viewed
as hash functions which take two functionally distinct inputs, a message and a secret key,
and produce a fixed-size (saybit) output, with the design intent that it be infeasible in
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practice to produce the same output without knowledge of the key. MACs can be used to
provide data integrity and symmetric data origin authentication, as well as identification in
symmetric-key schemes (see Chapter 10).

A typical usage of (unkeyed) hash functions for data integrity is as follows. The hash-
value corresponding to a particular messaggecomputed at timé&;. The integrity of this
hash-value (but not the message itself) is protected in some manner. At a subsequent time
T5, the following test is carried out to determine whether the message has been altered, i.e.,
whether a messageéis the same as the original message. The hash-valtesofomputed
and compared to the protected hash-value; if they are equal, one accepts that the inputs are
also equal, and thus that the message has not been altered. The problem of preserving the
integrity of a potentially large message is thus reduced to that of a small fixed-size hash-
value. Since the existence of collisions is guaranteed in many-to-one mappings, the unique
association between inputs and hash-values can, at best, be in the computational sense. A
hash-value should be uniquely identifiable with a single inpuiractice, and collisions
should becomputationally difficult to find (essentially never occurring in practice).

Chapter outline

Theremaindeof thischapte isorganizel asfollows. §9.2 providesaframewok including
standard definitions, a discussion of the desirable properties of hash functions and MACs,
ard corsideratian of one-wg functiors. §9.3 presents a generhmodé for iterated hash
functions, some general construction techniques, and a discussion of security objectives
and basic attacks (i.e., strategies an adversary may pursue to defeat the objectives of a hash
function). §9.4 considers hash functions based on block ciphers, and afamily of functions

based onthe M D4 algorithm §9.5 corsidersMA Cs, including those based on block ciphers

ard customizel MA Cs. §9.6 axamine various method of using hash functiorsto provide

data integrity. §9.7 presents advancd attak method. §9.8 provides chapte notes with
references.

9.2 Classification and framework

9.2.1 General classification

At the highest level, hash functions may be split into two clasgeleeyed hash functions,

whose specification dictates a single input parameter (a messagkgyathbash functions,

whose specification dictates two distinct inputs, a message and a secret key. To facilitate
discussion, a hash function is informally defined as follows.

9.1 Definition A hashfunction (in the unrestricted sense) is a functiowhich has, as a min-
imum, the following two properties:

1. compression — h maps an input: of arbitrary finite bitlength, to an outpét(x) of
fixed bitlengthn.
2. ease of computation — givenh and an input:, h(z) is easy to compute.
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As defined herehash function implies an unkeyed hash function. On occasion when
discussion is at a generic level, this term is abused somewhat to mean both unkeyed and
keyed hash functions; hopefully ambiguity is limited by context.

For actual use, a more goal-oriented classification of hash functions (bkeymold/s.
unkeyed) is necessary, based on further properties they provide and reflecting requirements
of specific applications. Of the numerous categories in stishctional classification, two
types of hash functions are considered in detail in this chapter:

1. modification detection codes (MDCs)
Also known asmanipulation detection codes, and less commonly amsessageintegri-
ty codes (MICs), the purpose of an MDC is (informally) to provide a representative
image orhash of a message, satisfying additional properties as refined below. The
erd god istofacilitatg in conjunction with additiond mechanisra (se2§9.6.4), data
integrity assurances as required by specific applications. MDCs are a subalass of
keyed hash functions, and themselves may ke further classified; the specific classes
of MDCs of primaly focusin this chapte are (cf. Definitions 9.3 an 9.4):
(i) one-way hash functions (OWHFs): for these, finding an input which hashes to
a pre-specified hash-value is difficult;
(ii) collision resistant hash functions (CRHFs): for these, finding any two inputs
having the same hash-value is difficult.

2. message authentication codes (MACSs)
The purpose of a MAC is (informally) to facilitate, without the use of any additional
mechanisms, assurances regarding both the source of a message and its integrity (see
§9.6.3. MACshawe two functionally distinct parametcs, a message inpit and a se-
cret key; they are a subclass of keyed hat functions (¢f. Definition 9.7).

Figure 9.1 illustrates this simplified clasdfication Additiond applicatiors of unkeyed
hash functions are noted in §9.2.6 Additiond applicatiors of keyed hash functiors in-
clude use in challenge-response identification protocols for computing responses which are
afunction of both a secrd key and achallenge message; and for key corfirmatian (Defini-
tion 12.7). Distinction should be mace betwe@& a MAC algorithm and the use of an MDC
with asecrd key includel as patt of its message input (see §9.5.2.

It is generally assumed that the algorithmic specification of a hash function is public
knowledge. Thus in the case of MDCs, given a message as input, anyone may compute the
hash-result; and in the case of MACs, given a message as input, anyone with knowledge of
the key may compute the hash-result.

9.2.2 Basic properties and definitions

To facilitate further definitions, three notential nraperties are listed (in additieasmof
computation andcompression as per Definition 9.1), for an unkeyel hash function A with
inputsz, =’ and outputg, v'.

1. preimage resistance — for essentially all pre-specified outputs, it is computationally
infeasible to find any input which hashes to that output, i.e., to find any preimage
suchthahk(z') = y when given any for which a corresponding inputis not knowr.

2. 2nd-preimageresistance — it is computationally infeasible to find any second input
which has the same output as any specified input, i.e., givierfind a 2nd-preimage
x’ # x such that(z) = h(z').

IThis acknowledges that an adversary may easily nrecomnute outputs for any small set of inputs, and thereby
invert the hash function trivially for such outpus (¢f. Remark 9.35).
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Figure 9.1: Smplified classification of cryptographic hash functions and applications.

3. collision resistance — it is computationally infeasible to find any two distinct inputs
x, ' which hash to the same output, i.e., such fhat) = h(z’). (Note that here
there is free choice of both inputs.)

Here and elsewhere, the terms “easy” and “computationally infeasible” (or “hard”) are
intentionally left without formal definition; it is intended they be interpreted relative to an
understood frame of reference. “Easy” might mean polynomial time and space; or more
practically, within a certain number of machine operations or time units — perhaps seconds
or milliseconds. A more specific definition of “computationally infeasible” might involve
super-polynomial effort; require effort far exceeding understood resources; specify a lower
bound on the number of operations or memory required in terms of a specified security pa-
rameter; or specify the probability that a property is violated be exponentially small. The
properties as defingd above howeve, suffice to allow practicd definitiors such as Defini-
tions9.3 and 9.4 bdow.

Note (alternateterminoloay) Alternate terms used in the literature are as follows: preim-
ageresistab= one-way (cf. Definition 9.9); 2nd-preimagresistane = weak collision re-
sistance; collision resistances strong coliision resistance.

For context, one motivation for each of the three major properties above is now given.
Consider a digital signature scheme wherein the signature is applied to the hashf{xalue
rather than the message Hereh should be an MDC with 2nd-preimage resistance, oth-
erwise, an adversay may observe the signature of some pattgn h(z), then find an
2’ such that(x) = h(z’), and claim thatd has signed’. If C is able to actually choose
the message whicH signs, therC' need only find a collision paifz, ') rather than the
harder tacsk of finding 2 sacond preimage:pin this case, collision resistance is also nec-
essry (cf. Remaik 9.93. Less obviowsisthe requiremenof preimage resistance for some
public-key signature schemes; consider RSA (Chapter 11), where fdv&g public key
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9.3

9.4

9.5

9.6

9.7

9.8

(e,n). C' may choose a random valyecomputez = y° mod n, and (depending on the
particular RSA signature verification process used) claimytligtd’s signature orx. This
(existential) forgery may be of concernifcan find a preimage such that.(z) = z, and
for which z is of practical use.

Definition A one-way hash function (OWHF) is a hash function & as per Definition 9.1
(i.e., offering ease of computation and compression) with the following additionai proper-
ties, as defined above: preimage resistance, 2nd-preimage resistance.

Definition A collisionresistant hash function (CRHF) isahas function h as per Defini-
tion 9.1 (i.e,, offering ea® of computatim and compressiojwith the followina additional
properties, as defined above 2nd-preimagresistance collision resistance (ci. Fad 9.18).

Although in practice a CRHF almost always has the additional property of nreimage re-
sistancefor technicreasos(cf. Note9.20) thispropery isnat mandatdiin Definition 9.4.

Note (alternateterminology for OWHF, CRHF) Alternate terms used in the literature are
as follows: OWHF= weak one-way hash function (but here preimage resistance is often
not explicitly considered); CRHE strong one-way hash function.

Example (hash function properties)

(i) A simple modulo-32 checksum (32-bit sum of all 32-bit words of a data string) is an
easily computed function which offers compression, but is not preimage resistant.
(i) Thefunction g(z) of Exampk 9.11 i5 preimage resistant but provides neithe com-
pression nor 2nd-preimage resistance.
(i) Exampk9.13 presentsafunction with preimage resistance and 2nd-preimagresis-
tance (but not compression). O

Definition A message authentication code (MAC) algorithm is a family of functiong,
parameterized by a secret kieywith the following properties:

1. ease of computation — for a known functionhy, given a valuek and an input,
hi(x) is easy to compute. This result is called MAC-value or MAC.

2. compression— hy, maps an input of arbitrary finite bitlength to an outpa, (z) of
fixed bitlengthn.
Furthermore, given a description of the function fantilyfor every fixed allowable
value ofk (unknown to an adversary), the following property holds:

3. computation-resistance— given zero or more text-MAC pai(s:;, hx(x;)), itis com-
putationally infeasible to compute any text-MAC péir; by (z)) for any new input
x # x; (including possibly fothy (x) = hy(z;) for somes).

If computation-resistance does not hold, a MAC algorithm is subjeditG forgery. While
computation-resistance implies the propertkef non-recovery (it must be computation-

ally infeasible to recovek, given one or more text-MAC paifg;, hi(z;)) for thatk), key
non-recovery does not imply computation-resistance (a key need not always actually be re-
covered to forge new MACS).

Remark (MAC resistance when key known) Definition 9.7 doesnat dictate whether MACs
need bepreimageand collision resistart for pariiesknowing thekey k (asFad 9.21implies
for parties without).
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(i) Objectives of adversaries vs. MDCs
The objective of an adversary who wishes to “attack” an MDC is as follows:

(a) to attack a OWHF: given a hash-valyefind a preimage: such thaty = h(z); or
given one such paifz, h(x)), find a second preimage such that.(z') = h(zx).
(b) to attack a CRHF: find any two inputs z’, such thak(z') = h(z).
A CRHF must be desgned to withstand standard birthday attads (see Faad 9.33).

(i) Objectives of adversaries vs. MACs
The corresponding objective of an adversary for a MAC algorithm is as follows:

(c) to attack a MAC: without prior knowledge of a keéycompute a new text-MAC pair
(x, hi(x)) for some text # z;, given one or more pairs;, hx(z;)).
Computation-resistance here should hold whether the #eXts which matching MACs
are available are given to the adversary, or may be freely chosen by the adversary. Similar
to the situation for signature schemes, the following attack scenarios thus exist for MACs,
for adversaries with increasing advantages:

1. known-text attack. One or more text-MAC pairée;, hy(;)) are available.

2. chosen-text attack. One or more text-MAC pairéz;, hy(z;)) are available for;
chosen by the adversary.

3. adaptive chosen-text attack. Thex; may be chosen by the adversary as above, now
allowing successive choices to be based on the results of prior queries.

As a certificational checkpoint, MACs should withstand adaptive chosen-text attack regard-
less of whether such an attack may actually be mounted in a particular environment. Some
practical applications may limit the number of interactions allowed over a fixed period of
time, or may be designed so as to compute MACs only for inputs created within the appli-
cation itself; others may allow access to an unlimited number of text-MAC pairs, or allow
MAC verification of an unlimited number of messages and accept any with a correct MAC
for further processing.

(ili) Types of forgery (selective, existential)

When MAC forgery is possible (implying the MAC algorithm has been technically de-
feated), the severity of the practical consequences may differ depending on the degree of
control an adversary has over the vatufor which a MAC may be forged. This degree is
differentiated by the following classification of forgeries:

1. selective forgery — attacks whereby an adversary is able to produce a new text-MAC
pair for a text of his choice (or perhaps partially under his control). Note that here the
selected value is the text for which a MAC is forged, whereas in a chosen-text attack
the chosen value is the text of a text-MAC pair used for analytical purposes (e.g., to
forge a MAC on a distinct text).

2. exigtential forgery— attacks whereby an adversary is able to produce a new text-MAC
pair, but with no control over the value of that text.

Key recovery of the MAC key itself is the most damaging attack, and trivially allows se-
lective forgery. MAC forgery allows an adversary to have a forged text accepted as authen-
tic. The consequences may be severe even in the existential case. A classic example is the
replacement of a monetary amount known to be small by a number randomly distributed
betweer) and232 — 1. For this reason, messages whose integrity or authenticity is to be
verified are often constrained to have pre-determined structure or a high degree of verifiable
redundancy, in an attempt to preclude meaningful attacks.
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Analogously to MACs, attacks on MDC schemes (primarily 2nd-preimage and colli-
sion attacks) may be classified as selective or existential. If the message can be partially
controlled then the attadk may be classifi@l as partially selectiwe (e.g, see §9.7.1(iii)).

9.2.3 Hash properties required for specific applications

Because there may be costs associated with specific properties — e.g., CRHFs are in gen-
eral harder to construct than OWHFs and have hash-values roughly twice the bitlength — it
should be understood which properties are actually required for particular applications, and
why. Selected techniques whereby hash functions are used for data integrity, and the cor-
respondirg propertiesrequired thered by these applicatiors, are summarizeal in Table 9.1.

In general, an MDC should be a CRHF if an untrusted party has control over the exact
contert of hash function inputs (se2 Remak 9.93); a OWHF suffices otherwie, including
the case where there is only a single party involved (e.g., a store-and-retrieve application).
Control over precise format of inputs may be eliminated by introducing into the message
randomization that is uncontrollable by one or both parties. Note, however, that data in-
tegrity techniques based on a shared secret key typically involve mutual trust and do not
address non-repudiation; in this case, collision resistance may or may not be a requirement.

Hash properties required: Preimage| 2nd- Collision | Details
Integrity application| resistant | preimage| resistant

MDC + asymmetric signhature yes yes yess page 324
MDC + authentic channel yes yes page 364
MDC + symmetric encryption page 365
hash for one-way password filef  yes page 389
MAC (key unknown to attacker yes yes yes page 326
MAC (key known to attacker) yes page 325

Table 9.1: Resistance properties required for specified data integrity applications.
tResistance required if attacker is able to mount a chosen message attack.
iResistance required in rare case of multi-cast authentication (see page 378).

9.2.4 One-way functions and compression functions

9.9

9.10

Relatal to Definition 9.3 of a OWHF is the following, which is unrestrictive with repect
to a compression property.

Definition A one-way function (OWF) is a functiory such that for each in the domain of
f, itis easy to computé(z); but for essentially alf in the range off, it is computationally
infeasible to find any: such thaty = f(x).

Remark (OWF vs. domain-restricted OWHF) A OWE ac defined here differs from a
OWHF with doman restricted to fixed-size inputs in tha Definition 9.9 does not require
2nd-preimage resistance. Many one-way functions are, in fact, non-compressing, in which
case most image elements have unique preimagcs, and for these 2nd-preimage resistance
holds vacuowsly — making the differen@ minor (but see Exampk 9.11).
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9.11 Example (one-way functions and modular squaring) The squaring of integers modulo a
primep, e.g.,f(z) = 22 — 1 mod p, behaves in many ways like a random mapping. How-
eve, f(z) isnotaOWF becasefinding sauaerootsmodub primesiseasy (§3.5.1. Onthe
othe hand g(x) = x2 mod n is a OWF (Definition 9.9) for appropria¢ randomy chosen
primesp andg wheren = pq and the factorization ai is unknown, as finding a preimage
(i.e, computingasquaeroct mod n) iscomputationaly equivalento factoring (Faa 3.46)
and thus intractable. Nonetheless, finding a 2nd-preimage, and, therefore, collisions, is triv-
ial (givenz, —z yields a collision), and thug fits neither the definition of a OWHF nor a
CRHF with domain restricted to fixed-size inputs. O

9.12 Remark (candidateone-way functions) There are, in fact, no known instances of functions
which are provably one-way (with no assumptions); indeed, despite known hash function
constructions which are provably as securéN&complete problems, there is no assur-
ance the latter are difficult. All instances of “one-way functions” to date should thus more
properly be qualified as “conjectured” or “candidate” one-way functions. (It thus remains
possible, although widely believed most unlikely, that one-way functions do not exist.) A
proof of existence would establi$h# NP, while non-existence would have devastating
cryptographic consequences (see page 377), although not directly implyrngP.

Hash functiors are often used in applicatiors (cf. §9.2.6 which require the one-way
property, but not compression. It is, therefore, useful to distinguish three classes of func-
tions (based on the relative size of inputs and outputs):

1. (general) hash functions. Thesearefunctionsasper Definition 9.1, typically with ad-
ditional one-way properties, which compress arbitrary-length inputdtib outputs.

2. compression functions (fixed-size hash functiors). These are functiors as per Defi-
nition 9.1, typically with additional one-way properties but with domain restricted
i0 fixed-size inputs — i.e., compressingbit inputs ton-bit outputs;n > n.

3. non-compressing one-way functions. These are fixed-size hash functions as above,
except thah = m. These includene-way permutations, and can be more explicitly
described as computationally non-invertible functions.

9.13 Example (DESbased OWF) A one-way function can be constructed from DES or any
block ciphe E which behave esentially as arandaon function (see Remak 9.14), as fol-
lows: f(z) = Ex(x)®z, for any fixed known key;. The one-way nature of this construc-
tion can be proven under the assumption tfias a random permutation. An intuitive ar-
gument follows. For any choice gf finding anyz (and keyk) such thatE, (x)®x = y is
difficult because for any chosen Ej(z) will be essentially random (for any key) and
thus so will By, (z)®z; hence, this will equal with no better than random chance. By
similar reasoning, if one attempts to use decryption and choosesthea probability that
E;'(x®y) = z is no better than random chance. Thifs) appears to be a OWF. While
f(z) is not a OWHF (it handles only fixed-length inputs), it can be extended to yield one
(see Algorithm 9.41). ]

9.14 Remark (block ciphers and random functions) Regarding random functions and their
properties, see§2.1.6 If ablock ciphe behave asarandan function, then encryption and
decryption would be equivalent to looking up values in a large table of random numbers;
for a fixed input, the mapping from a key to an output would behave as a random mapping.
However, block ciphers such as DES are bijections, and thus at best exhibit behavior more
like random permutations than random functions.
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9.15

9.16

9.17

Example (one-wayness wir.t. two inputs) Considerf(x, k) = Ej(z), whereE repre-
sents DES. This is not a one-way function of the joint infaut:), because given any func-
tion valuey = f(z, k), one can choose any kéy and computer’ = E,;l(y) yielding

a preimaggz’,k’). Similarly, f(z, k) is not a one-way function af if k is known, as
giveny = f(z, k) andk, decryption ofy usingk yieldsz. (However, a “black-box” which
computesf (x, k) for fixed, externally-unknowh is a one-way function af.) In contrast,
f(z, k) is a one-way function of; giveny = f(z, k) andz, it is not known how to find

a preimagek in less than abow® operations. (This latter concept is utilized in one-time
digital signatue scheme —see §11.6.2) O

Example (OWF - multiplication of large primes) For appropriate choices of primgsind

q, f(p,q) = pq is a one-way function: givenandgq, computing: = pq is easy, but given

n, findingp andg, i.e.,integer factorization, is difficult. RSA and many other cryptographic
systems rely on this property (see Chapter 3, Chapter 8). Note that contrary to many one-
way functions, this functiorf does not have properties resembling a “random” funcfion.

Example (OWF - exponentiation in finite fields) For most choices of appropriately large
primesp and any element € Z, of sufficiently large multiplicative order (e.g., a gen-
erator),f(z) = o® mod p is a one-way function. (For examplemust not be such that
all the prime divisors op — 1 are small, otherwise the discrete log problem is feasible by
the Pohlig-Hellman algorithm of §3.6.4) f(z) iseasiy computel given «, x, and p using

the square-and-multigl technigwe (Algorithm 2.143, but for most choices p it is difficult,
given(y, p, «), to find anz in the range < = < p — 2 such thak* mod p = y, due to

the apparenintractabiliy of the discree logarithm problem (§3.6). Of course, for specfic
values off (z) the function can be inverted trivially. For example, the respective preimages
of 1 and—1 are known to b® and(p — 1)/2, and by computing (z) for any small set of
values forz (e.g.,x = 1,2,... ,10), these are also known. However, fssentially all y

in the range, the preimage gfs difficult to find. d

9.2.5 Relationships between properties

9.18

9.19

In this section several relationships between the hash function properties stated in the pre-
ceding section are examined.

Fact Collision resistance implies 2nd-preimage resistance of hash functions.

Justification. Suppose: has collision resistance. Fix an input. If ~ does not have 2nd-
preimage resistance, then it is feasible to find a distinct impsuch that.(z;) = h(z;),

in which casgz;, ;) is a pair of distinct inputs hashing to the same output, contradicting
collision resistance.

Remark (one-way vs. preimage and 2nd-preimage resistant) While the term “one-way”

is generally taken to mean preimage resistant, in the hash function literature it is some-
times also used to imply that a function is 2nd-preimage resistant or computationally non-
invertible. Computationally non-invertibleis a more explicit term for preimage resistance
when preimages are unique, e.g., for one-way permutations. In the case that two or more
preimages exist, a function fails to be computationally non-invertible if any one can be
found.) This causes ambiguity as 2nd-preimage resistance does not guarantee preimage-
resistana2 (Note 9.20), nor does preimagp resistane guarante 2nd-preimag resistance
(Exampk9.11); seealso Remak 9.10 An attemp isthus mack to avoid unqualfied use of

the term “one-way”.
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9.20 Note (collision resistance does not guarantee preimage resistance) Let g be a hash func-
tion which is collision resistant and maps arbitrary-length inputs it outputs. Consider
the functionh defined as (here and elsewhgtalenotes concatenation):

h(z) = 1 || =, if z has bitlength n
700 || g(z), otherwise.

Thenh is an(n + 1)-bit hash function which is collision resistant but not preimage resis-
tant. As asimpler example, the identity function on fixed-length inputs is collision and 2nd-
preimage resistant (preimages are unique) but not preimage resistant. While such patholog-
ical examples illustrate that collision resistance does not guarantee the difficulty of finding
preimages of specific (or even most) hash outputs, for most CRHFs arising in practice it
nonetheless appears reasonable to assume that collision resistance does indeed imply preim-
age resistance.

9.21 Fact (implications of MAC properties) Let hy, be a keyed hash function which is a MAC
algorithm per Definition 9.7 (and thus has the propery of computation-resistanceThen
hi is, against chosen-text attack by an adversary without knowledge of the ki¢ypoth
2nd-preimage resistant and collision resistant; and (ii) preimage resistant (with respect to
the hash-input).

Justification. For (i), note that computation-resistance implies hash-results should not even
be computable by those without secret KeyFor (ii), by way of contradiction, assume

h were not preimage resistant. Then recovery of the preimdge a randomly selected
hash-outpuy violates computation-resistance.

9.2.6 Other hash function properties and applications

Most unkeyed hash functions commonly found in practice were originally designed for the
purpcse of providing dataintegiity (se2§9.6), induding digital fingerpinting of messages

in conjunction with digital signatures (59.6.4. The majority of these are, in fact, MDCs
designed to have preimage, 2nd-preimage, or collision resistance properties. Because one-
way functions are a fundamental cryptographic primitive, many of these MDCs, which typ-
ically exhibit behavior informally equated with one-wayness and randomness, have been
proposed for use in various applications distinct from data integrity, including, as discussed
below:

1. confirmation of knowledge
2. key derivation
3. pseudorandom number generation

Hash functions used for confirmation of knowledge facilitate commitment to data values,
or demonstrate possession of data, without revealing such data itself (until possibly a later
point in time); verification is possible by parties in possession of the data. This resembles
the use of MACs where one also essentially demonstrates knowledge of a secret (but with
the demonstration bound to a specific message). The property of hash functions required
is preimage resistance (see also partial-preimage resistance below). Specific examples in-
clude use in password verification using unencrypted password-image files (Chapter 10);
symmetric-key digital signatures (Chapter 11); key confirmation in authenticated key es-
tablishment protocols (Chapter 12); and document-dating or timestamping by hash-code
registration (Chapter 13).

In general, use of hash functions for purposes other than which they were originally de-
signed requires caution, as such applications may require additional properties (see below)
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9.22

these functiors were not designed to provide see Remak 9.22 Unkeyed hash functions
having properties associated with one-way functions have nonetheless been proposed for a
wide range of applications, including as noted above:

o key derivation — to compute sequences of new keys from prior keys (Chapter 13). A
primary example is key derivation in point-of-sale (POS) terminals; here an impor-
tant requirementis that the compromise of currently active keys must not compromise
the security of previous transaction keys. A second example is in the generation of
one-time password sequences based on one-way functions (Chapter 10).

e pseudorandom number generation — to generate sequences of numbers which have
various properties of randomness. (A pseudorandomnumber generator can be used to
construct a symmetric-key block cipher, among other things.) Due to the difficulty of
producing cryptographically strong pseudorandom numbers (see Chapter 5), MDCs
should not be used for this purpose unless the randomness requirements are clearly
understood, and the MDC is verified to satisfy these.

For the applications immediately above, rather than hash functions, the cryptographic prim-
itive which is needed may bepseudorandomfunction (or keyed pseudorandom function).

Remark (use of MDCs) Many MDCs used in practice may appear to satisfy additional
requirements beyond those for which they were originally designed. Nonetheless, the use
of arbitrary hash functions cannot be recommended for any applications without careful
analysis precisely identifying both the critical properties required by the application and
thase provided by the functionin question (cf. §9.5.2.

Additional properties of one-way hash functions

Additional properties of one-way hash functions called for by the above-mentioned appli-
cations include the following.

1. non-correlation. Input bits and output bits should not be correlated. Related to this,
an avalanche property similar to that of good block ciphers is desirable whereby every
input bit affects every output bit. (This rules out hash functions for which preimage
resistance fails to imply 2nd-preimage resistance simply due to the function effec-
tively ignoring a subset of input bits.)

2. near-collisionresistance. It should be hard to find any two inputsz’ such thah(z)
andh(z') differ in only a small number of bits.

3. partial-preimageresistance or local one-wayness. It should be as difficult to recover
any substring as to recover the entire input. Moreover, even if part of the input is
known, it should be difficult to find the remainder (e.g.t ihput bits remain un-
known, it should take on averagé ! hash operations to find these bits.)

Partial preimage resistance is an implicit requirement in some of the proposed applications
of §9.5.2 One exampk where nea-collision resistane is necessaris when only half of
the output bits of a hash function are used.

Many of these properties can be summarized as requirements that there be neither lo-
cal nor global statistical weaknesses; the hash function should not be weaker with respect
to some parts of its input or output than others, and all bits should be equally hard. Some
of these may be calleckrtificational properties — properties which intuitively appear de-
sirable, although they cannot be shown to be directly necessary.
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9.3 Basic constructions and general results

9.3.1 General model for iterated hash functions

Most unkeyed hash functiorisare designed as iterative processes which hash arhitrary-

iength inpu's by processng successve fixed-size blocks of the input, asillu strated in Fig-
ure9.2

(a) high-level view (b) detailed view

original input
arbitrary length input hash function h

preprocessing

v
append padding bits
v
append length block

iterated
compression
function

fixed length

output
P formatted
Y inputz = z1z2- - -+
optional output iterated processing
transformation -
compression
function f
v
output H; .
> f
A4
Hy
A4
g

Y
output h(z) = g(Hy)

Figure 9.2: General model for an iterated hash function.

A hash inpute of arbitrary finite length is divided into fixed-lengthbit blocksz;. This
preprocessing typically involves appending extra hiegd@ling) as necessary to attain an
overall bitlength which is a multiple of the blocklengthand often includes (for security
reasos —e.g., see Algorithm 9.26) a block or partid block indicating the bitlengh of the
unpadded input. Each bloak then serves as input to an internal fixed-size hash function
£, thecompression function of h, which computes a new intermediate result of bitlength
for some fixedn, as a function of the previousbit intermediate result and the next input
blockz;. Letting H; denote the partial result after staigéhe general process for an iterated
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hash function with input = x5 . . . z; can be modeled as follows:
Hy=1V; H; = f(Hi-1,7:), 1<i<t h(z) = g(Hy). (9.1)

H;_4 serves as the-bit chaining variable between stagé — 1 and stage, andH is a
pre-defined starting value omitializing value (IV). An optional output transformation
(se= Figure 9.2) isusd in afinal stgp to map the n-bit chainirg variabke to an m-bit result
g(H¢); g is often the identity mapping(H;) = H;.

Particular hash functions are distinguished by the nature of the preprocessing, com-
pression function, and output transformation.

9.3.2 General constructions and extensions

9.23

9.24

9.25

To begin, an example demonstrating an insecure construction is given. Several secure gen-
eral constructions are then discussed.

Example (insecure trivial extension of OWHF to CRHF) In the case that an iterated
OWHF h yielding n-bit hash-values is not collision resistant (e.g., whe®& birthday
collision attack is feashle — see §9.7.1) 0ne might propase constructing from » a CRHF
using as output the concatenation of the last twlait chaining variables, so thatteéblock
message has hash-vallg_, || H; rather thanH,. This is insecure as the final message
block z; can be held fixed along with;, reducing the problem to finding a collision on
H,;_, for h. O

Extending compression functions to hash functions

Fad 9.24 statesan important relationship betwea collisi on resistat compresson functions

and collision resistant hash functions. Not only can the former be extended to the latter, but
this can be dore efficiently using Merkle's meta-methd of Algorithm 9.25 (also called the
Merkle-Damgird construction). This reduces the problem of finding such a hash function
to that of finding such a compression function.

Fact (extending compression functions) Any compression functiorf which is collision
resistant can be extended to a collision resistant hash funkt{taking arbitrary length
inputs).

Algorithm Merkle’s meta-method for hashing

INPUT: compression functiopi which is collision resistant.
OUTPUT: unkeyed hash functignwhich is collision resistant.

1. Supposg maps(n + r)-bit inputs ton-bit outputs (for concreteness, consides
128 andr = 512). Construct a hash functionfrom f, yielding n-bit hash-values,
as follows.

2. Break an input: of bitlengthb into blocksz;x, . . . x; each of bitlengthr, padding
out the last blocke; with 0-bits if necessary.

3. Define an extra final block;. 1, the length-block, to hold the right-justified binary
representation df (presume that < 27).

4. Letting 0’ represent the bitstring of 0's, define then-bit hash-value ofr to be
h(z) = Hyy1 = f(H; || x+41) computed from:
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The proof that the resulting functidnis collision resistant follows by a simple argu-
ment that a collision fokh would imply a collision forf for some stagé The inclusion of
the length-block, which effectively encodes all messages such that no encoded input is the
tail end of any other encoded input, is necessary for this reasoning. Adding such a length-
block is sometimes called Merkle-Daiagf strengthening{D-strengthening), which is
now stated separately for future reference.

9.26 Algorithm MD-strengthening

Before hashing a message= ziz- ... z; (Wherez; is a block of bitlength- appropriate
for the relevant compression function) of bitlengthappend a final length-block 1,
containing the (say) right-justified binary representatiob. frhis presumes < 2".)

Cascading hash functions

9.27 Fact (cascading hash functions) If either hy or hy is a collision resistant hash function,
thenh(z) = hi(x) || ho(z) is a collision resistant hash function.

If both hy and hy in Fad 9.27 ar2 n-bit hash functiors, then h produce 2n-bit out-
puts; mapping this back down to anbit output by ann-bit collision-resistant hash func-
tion (h; andh, are candidates) would leave the overall mapping collision-resistahf. If
andh. are independent, then finding a collision forequires finding a collision for both
simultaneously (i.e., on the same input), which one could hope would require the product of
the efforts to attack them individually. This provides a simple yet powerful way to (almost
surely) increase strength using only available components.

9.3.3 Formatting and initialization details

9.28 Note (datarepresentation) As hash-values depend on exact bitstrings, different data rep-
resentations (e.g., ASCIl vs. EBCDIC) must be converted to a common format before com-
puting hash-values.

(i) Padding and length-blocks

For block-by-block hashing methods, extra bits are usually appended to a hash input string
before hashing, to pad it out to a number of bits which make it a multiple of the relevant
block size. The padding bits need not be transmitted/stored themselves, provided the sender
and recipient agree on a convention.

9.29 Algorithm Padding Method 1

INPUT: datax; bitlengthn giving blocksize of data input to processing stage.
OUTPUT: padded dat&’, with bitlength a multiple ofa.

1. Append taz as few (possibly zero) 0-bits as necessary to obtain a stfimghose
bitlength is a multiple of:.

9.30 Algorithm Padding Method 2

INPUT: dataz; bitlengthn giving blocksize of data input to processing stage.
OUTPUT: padded dat&’, with bitlength a multiple ofa.

1. Append tar a single 1-bit.
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2. Then append as few (possibly zero) 0-bits as necessary to obtain az$twhgse
bitlength is a multiple of:.

9.31 Remark (ambiguous padding) Padding Method 1 ismbiguous — trailing 0-bits of the
original data cannot be distinguished from those added during padding. Such methods are
acceptable if the length of the data (before padding) is known by the recipient by other
means. Padding Method 2 is not ambiguous — each paddedstdiogesponds to a unique
unpadded string. When the bitlength of the original datais already a multiple of:,
Padding Method 2 results in the creation of an extra block.

9.32 Remark (appended length blocks) Appending a logical length-block prior to hashing
prevents collision and pseudo-collision attacks which find second messages of different
length including trivial collisions for randam IV 5 (Exampk 9.96), long-message attacks
(Fad 9.37), ard fixed-poin attacls (page 374). This further justifies the use of MD-
strenghering (Algorithm 9.26).

Trailing length-blocks and padding are often combined. For Padding Method 2, a len-
gth field of pre-specified bitlength may replace the finab 0-bits padded if padding would
otherwise cause or more redundant such bits. By pre-agreed convention, the length field
typically specifies the bitlength of the original message. (If used instead to specify the num-
ber of padding bits appended, deletion of leading blocks cannot be detected.)

(i) IVs

Whether the IV is fixed, is randomly chosen per hash function computation, or is a function
ofthe data input, the same IV must be used to generate and verify a hash-value. If notknown
apriori by the verifier, it must be transferred along with the message. In the latter case, this
generally should be done with guaranteed integrity (to cut down on the degree of freedom

afforded to adversaries, in line with the principle that hash functions should be defined with
a fixed or a small set of allowable 1Vs).

9.3.4 Security objectives and basic attacks

As a framework for evaluating the computational security of hash functions, the ckjectives
of hath the hash function designer and an advesary should be undestood Based on Defi-
nitions 9.3 9.4, antl 9.7, these are summarizel in Table 9.2, ard discussed below.

| Hash type| Design goal | Ideal strength | Adversary's goal |
OWHF preimage resistance; 2" produce preimage;
2nd-preimage resistance 2" find 2nd input, same image
CRHF collision resistance on/2 produce any collision
MAC key non-recovery; 2 deduce MAC key;
computation resistance| Py = max(27*,27") | produce new (msg, MAC)

Table 9.2: Design objectives for n-bit hash functions (¢-bit MAC key). Py denotes the probability
of forgery by correctly guessing a MAC.

Given a specific hash function, it is desirable to be able to prove a lower bound on the com-

plexity of attacking it under specified scenarios, with as few or weak a set of assumptions as
possible. However, such results are scarce. Typically the best guidance available regarding
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9.33

9.34

the security of a particular hash function is the complexity of the (most efficient) applicable
known attack, which gives aupper bound on security. An attack abmplexity 2¢ is one
which requires approximateB/ operations, each being an appropriate unit of work (e.g.,
one execution of the compression function or one encryption of an underlying cipher). The
storage complexity of an attack (i.e., storage required) should also be considered.

(i) Attacks on the bitsize of an MDC

Given a fixed messagewith n-bit hashi(z), a naive method for finding an input colliding

with z is to pick a random bitstring’ (of bounded bitlength) and checkiif{z’) = h(x).

The cost may be as little as one compression function evaluation, and memory is negligi-
ble. Assuming the hash-code approximates a uniform random variable, the probability of a
matdis 27". Theimplication of thisis Fad 9.33 which aso indicates the effort required

to find collisions if z may itself be chose freely. Definition 9.34 is motivated by the de-

sign goal that the best possible attack should require no less than such levels of effort, i.e.,
essentially brute force.

Fact (basic hash attacks) For ann-bit hash functiorh, one may expect a guessing attack
to find a preimage or second preimage witkfirhashing operations. For an adversary able
to chomse messages, a birthday attad (see §9.7.1) allows colli ding pairs of messges z, z’
with h(z) = h(z') to be found in abow2™/? operations, and negligible memory.

Definition An n-bit unkeyed hash function hadeal security if both: (1) given a hash
output, producing each of a preimage and a 2nd-preimage requires approxifiaiphr-
ations; and (2) producing a collision requires approxima2&ly operations.

(i) Attacks on the MAC key space

An attempt may be made to determine a MAC key using exhaustive search. With a sin-
gle known text-MAC pair, an attacker may compute thbit MAC on that text under all
possible keys, and then check which of the computed MAC-values agrees with that of the
known pair. For a-bit key space this requir@$ MAC operations, after which one expects
1+ 2t—" candidate keys remain. Assuming the MAC behaves as a random mapping, it can
be shown that one can expect to reduce this to a unique key by testing the candidate keys us-
ing just overt/n text-MAC pairs. Ideally, a MAC key (or information of cryptographically
equivalent value) would not be recoverable in fewer thlaoperations.

As a probabilistic attack on the MAC key space distinct from key recovery, note that
for at-bit key and a fixed input, a randomly guessed key will yield a corredti{) MAC
with probability~ 27t for t < n.

(iii) Attacks on the bitsize of a MAC

MAC forgery involves producing any inpuatand the corresponding correct MAC without
having obtained the latter from anyone with knowledge of the key. Faerbiht MAC al-
gorithm, either guessing a MAC for a given input, or guessing a preimage for a given MAC
output, has probability of success ab@ut', as for an MDC. A difference here, however,

is that guessed MAC-values cannot be verified off-line without known text-MAC pairs —
either knowledge of the key, or a “black-box” which provides MACs for given inputs (i.e.,

a chosen-text scenario) is required. Since recovering the MAC key trivially allows forgery,
an attack on the-bit key space (see above) must be also be considered here. Ideally, an ad-
versary would be unable to produce new (correct) text-MAC Hairg) with probability
significantly better thamax(27t,27"), i.e., the better of guessing a key or a MAC-value.
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(iv) Attacks using precomputations, multiple targets, and long messages

9.35 Remark (precomputationof hashvalues) For both preimage and second preimage attacks,
an opponentwho precomputes a large number of hash function input-output pairs may trade
off precomputation plus storage for subsequent attack time. For example, for a 64-bit hash
value, if one randomly selecgs$® inputs, then computes their hash values and stores (hash
value, input) pairs indexed by hash value, this precomputatian(®°) time and space
allows an adversary to increase the probability of finding a preimage (per one subsequent
hash function computation) fro1 54 to 2—24. Similarly, the probability of finding a sec-
ond preimage increases#tdimes its original value (when no stored pairs are known) if
input-output pairs of a OWHF are precomputed and tabulated.

9.36 Remark (effect of parallel targetsfor OWHFs) In a basic attack, an adversary seeks a sec-
ond preimage for one fixed target (the image computed from a first preimage). If there are
targets and the goal is to find a second preimage for any one ofithibesn the probability
of success increasesitdimes the original probability. One implication is that when using
hash functions in conjunction with keyed primitives such as digital signatures, repeated use
of the keyed primitive may weaken the security of the combined mechanism in the follow-
ing sense. I signed messages are available, the probability of a hash collision increases
r-fold (=f. Remak 9.35), ard colliding messagsyield equivalen signatureswhich an op-
ponent could not itself compute off-line.

Fad 9.37 reflecsarelated attad strategy of potentid concenwhen using iterated hash
functions on long messages.

9.37 Fact (long-messageattack for 2nd-preimage) Let h be an iterated-bit hash function with
compresson function f (asin equatio (9.1), without MD-strengthening)Let = be ames-
sage consisting dfblocks. Then a 2nd-preimage fofz) can be found in timé2™ /s) + s
operations off, and in space (s -+ lg(s)) bits, for anys in the rangd < s < min(t, 2"/?).

Justification. The idea is to use a hirthday attack on the intermediate hash-results; a sketch
for the choices = t follows. Computeh(x), storing(H;, ) for each of the intermediate
hash-result#l; corresponding to theinput blocksz; in a table such that they may be later
indexed by value. Compufe(z) for random choices, checking for a collision involving

h(z) in the table, until one is found; approximatély/s valuesz will be required, by the
birthday paradox. Identify the indgXrom the table responsible for the collision; the input
ZTj41Tj42 .- Tt then collides withe.

9.38 Note (implication of long messages) Fad 9.37 implies that for “long” messages, a 2nd-
preimage is generally easier to find than a preimage (the latter takes é&'hogestrations),
becoming moreso with the length ef Fort > 2"/2, computation is minimized by choos-
ing s = 2/2 in which case a 2nd-preimage costs aliitf€ executions off (comparable
to the difficulty of finding a collision).

9.3.5 Bitsizes required for practical security

Suppose that a hash function produedst hash-values, and as a representative benchmark
assume thax®® (but not fewer) operations is acceptably beyond computational feastbility.
Then the following statements may be made regarding

2Circa 1996240 simple operations is quite feasible, &itf is considered quite reachable by those with suf-
ficient motivation (possibly using parallelization or customized machines).
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1. For a OWHFn > 80 is required. Exhaustive off-line attacks require at st
operationsthis may be reducel with precomputatio (Remak 9.35).

2. For aCRHF, n > 160 isrequired Birthday attacls are applicabk (Fad 9.33.

3. For a MAC,n > 64 along with a MAC key of 64-80 bits is sufficient for most ap-
plicatiors and environmens (c¢f. Table 9.1). If asingle MAC key remairs in use,
off-line attacks may be possible given one or more text-MAC pairs; but for a proper
MAC algorithm, preimage and 2nd-preimage resistance (as well as collision resis-
tance) should follow directly from lack of knowledge of the key, and thus security
with respect to such attacks should depend on the keysize rathe.titam attacks
requiring on-line queries, additional controls may be used to limit the number of such
queries, constrain the format of MAC inputs, or prevent disclosure of MAC outputs
for random (chosen-text) inputs. Given special controls, values as smat-a? or
40 may be acceptable; but caution is advised, since even with one-time MAC keys,
the chance any randomly guessed MAC being corrextfs and the relevant factors
are the total number of trials a system is subject to over its lifetime, and the conse-
quences of a single successful forgery.

These guidelines may be relaxed somewhat if a lower threshold of computational infeasi-
bility is assumed (e.g2%* instead o28%). However, an additional consideration to be taken
into account is that for both a CRHF and a OWHF, not only can off-line attacks be carried
out, but these can typically be parallelized. Key search attacks against MACs may also be
parallelized.

9.4 Unkeyed hash functions (MDCs)

A move from general properties and constructions to specific hash functions is now made,
and in this section the subclass of unkeyed hash functions known as modification detection
codes (MDCs) is considered. From a structural viewpoint, these may be categorized based
on the nature of the operations comprising their internal compression functions. From this
viewpoint, the three broadest categories of iterated hash functions studied to date are hash
functionsbased on block ciphers, customized hash functions, and hash functionisased on

modular arithmetic. Customized hash functions are those designed specifically for hashing,
with speed in mind and independent of other system subcomponents (e.g., block cipher or
modular multiplication subcomponents which may already be present for non-hashing pur-
|poses).

Table 9.3 sumrnarizes the conjecturel security of a subset of the MDCs subsequently
discussed in inis section. Similar to the case of block ciphers for encryption (e.g. 8- or 12-
round DES vs. 16-round DES), security of MDCs often comes at the expense of speed, and
tradeoffs are typically made. In the particular case of block-cipher-based MDCs, a provably
secue schene of Merkle (see page 378) with rate 0.276 (see Definition 9.40) is known but
little-used, while MDC-2 is widely believed to be (but not provably) secure, has+&ts,
and receives much greater attention in practice.

9.4.1 Hash functions based on block ciphers

A practical motivation for constructing hash functions from block ciphers is that if an effi-
cient implementation of a block cipher is already available within a system (either in hard-
ware or software), then using it as the central component for a hash function may provide
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9.39

| [Hash function | n | m | Preimage Collision | Comments

Matyas-Meyer-Oseds| n | n PR 27/2 | for keylength=n
MDC-2 (with DES}) | 64 | 128 | 2-282 2.2% | rate 0.5
MDC-4 (with DES) 64 | 128 | 2109 4-2%% | rate 0.25

Merkle (with DES) 106 | 128 2112 256 rate 0.276
MD4 512 | 128 | 2128 220 Remaik 9.50
MD5 512 | 128 | 2128 204 Remark 9.52
RIPEMD-128 512 | 128 | 2128 204 -

SHA-1, RIPEMD-160| 512 | 160 | 260 280 -

2The same strength is conjectured for Davies-Meyer and Miyaguchi-Preneel hash functions.
bStrength could be increased using a cipher with keylength equal to cipher blocklength.

Table 9.3: Upper bounds on strength of selected hash functions. n-bit message blocks are processed
to produce m-hit hash-values. Number of cipher or compression function operations currently be-
lieved necessary to find preimages and collisions are specified, assuming no underlying weaknesses
for block ciphers (figures for MDC-2 and MDC-4 account for DES complementation and weak key
properties). Regarding rate, se Definition 9.40.

the latter functionality at little additional cost. The (not always well-founded) hope is that
a good block cipher may serve as a building block for the creation of a hash function with
properties suitable for various applications.

Constructions for hash functions have been given which are “provably secure” assum-
ing certain ideal properties of the underlying block cipher. However, block ciphers do
nat possess the properties of randam functiors (for examplegthey are invertible — see Re-
mark 9.14). Moreove. in practie block ciphess typically exhibit additiona regularities
or weaknesss (se2 §9.7.4). For example for a block ciphe E, doule encryption using
an encrypt-decrypt (E-D) cascade with kdys, K> results in the identity mapping when
K, = K,. In summary, while various necessary conditions are known, it is unclear ex-
actly what requirements of a block cipher are sufficient to construct a secure hash function,
and properties adequate for a block cipher (e.g., resistance to chosen-text attack) may not
guarantee a good hash function.

In the constructions which foll ow, Definition 9.39 is used.

Definition An (n,r) block cipher is a block cipher defining an invertible function from
n-bit plaintexts ton-bit ciphertexts using an-bit key. If E is such a cipher, theR (z)
denotes the encryption afunder keyk.

Discussion of hash functions constructed frarbit block ciphers is divided between
those producingingle-length (n-bit) anddouble-length (2n-bit) hash-values, where single
and double are relative to the size of the hlock cipher output. Under the assumption that
computations 024 operations are infeasibfethe objective of single-length hash functions
is to provide a OWHF for ciphers of blocklength near= 64, or to provide CRHFs for
cipher blocklengths near = 128. The motivation for double-length hash functions is that
manyn-bit block ciphers exist of size approximately= 64, and single-length hash-codes
of this size are nat collision resistat. For such ciphers, the goal is to obtain hash-codes of
bitlength2n which are CRHFs.

In the simplest case, the size of the key used in such hash functions is approximately
the same as the blocklength of the cipher (iehits). In other cases, hash functions use

3The discusson her is easly alteral for a more corservative bound e.g., 289 operatios as used in §9.3.5.
Here264 is more convenient for discussion, due to the omnipresence of 64-bit block ciphers.

©1997 CRC Press LLC



Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:10 22 March 2017

9.40

larger (e.g., double-length) keys. Another characteristic to be noted in such hash functions
is the number of block cipher operations required to produce a hash output of blocklength
equal to that of the cipher, motivating the following definition.

Definition Leth be an iterated hash function constructed from a block cipher, with com-
pression functiorf which performss block encryptions to process each succesait
message block. Then thateof his1/s.

Thehash functiorsdiscussed in thissection are summariza in Table 9.4. The Matyas-
Meyer-Oseas and MDC-2 algorithms are the basis, respectively, cf the two generic hash
functions in ISO standard 10118-2, each allowing use ofrahit block cipherE and pro-
viding hash-codes of bitlength < n andm < 2n, respectively.

| Hash function | (n,k,m) | Rate]
Matyas-Meyer-Oseas (n, k,n) 1
Davies-Meyer (n,k,n) k/n
Miyaguchi-Preneel (n,k,n) 1
MDC-2 (with DES) | (64,56,128) | 1/2
MDC-4 (with DES) | (64,56,128) | 1/4

Table 9.4: Summary of selected hash functions based on n-bit block ciphers. k& = key bitsize (ap-
proximate); function yields m-bit hash-values.

() Single-length MDCs of rate 1
The first three schems describe below, and illustrated in Figure 9.3, are closel related

single-length hash functions based on block ciphers. These make use of the following pre-
defined components:

1. a generia-bit block cipherEx parametrized by a symmetric kdy,

2. afunctiong which maps:-bit inputs to keyds suitable forE (if keys for £ are also
of lengthn, g might be the identity function); and

3. afixed (usually:-bit) initial value I'V, suitable for use wittE.

Matyas-Meyer-Oseas Davies-Meyer Miyaguchi-Preneel

xT; Hifl ZTq

=
|
.

Hi—l Tq
—»E—»« E —>»e F

Figure 9.3: Three single-length, rate-one MDCs based on block ciphers.
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9.41 Algorithm Matyas-Meyer-Oseas hash

INPUT: bitstringz.
OUTPUT:n-bit hash-code of.

1. Inputz is divided inton-bit blocks and padded, if necessary, to complete last block.
Denote the padded message consistingrebit blocks: z1z- . . . ;. A constant-
bit initial value I'V must be pre-specified.

2. The output igf; defined by: Hy = IV; H; = Eyg,_,)(%i)®xi, 1 <0 <t

9.42 Algorithm Davies-Meyer hash

INPUT: bitstringz.
OUTPUT:n-bit hash-code of.

1. Inputz is divided intok-bit blocks wherek is the keysize, and padded, if necessary,
to complete last block. Denote the padded message consistikglnfblocks: x; z2
. x¢. A constant-bit initial value I'V must be pre-specified.
2. The outputisH; defined by: Hy = IV; H; = E,,(H;_1)®H;_1, 1 <i < t.

9.43 Algorithm Miyaguchi-Preneel hash

Thisscheneisidenticd tothat of Algorithm9.41, exceptheoutpu H;_; fromthe previous
stage is also XORed to that of the current stage. More preciHelg redefined as:H, =
IV; H, = Eg(Hi_l)(mi)@mi@Hifh 1 <3<t

9.44 Remark (dual schemes) The Davies-Meyer hash may be viewed as the ‘dual’ of the Mat-
yas-Meyer-Oseas hash, in the sense thand H; ; play reversed roles. When DES is
used as the block cipher in Davies-Meyer, the input is processed in 56-bit blocks (yield-
ing rate56,/64 < 1), whereas Matyas-Meyer-Oseas and Miyaguchi-Preneel process 64-bit
blocks.

9.45 Remark (black-box security) Aside from heurstic argumans as given in Exampk 9.13,
it appeas tha all three of Algorithms9.41, 9.42 ard 9.43 vield hash functions which are
provably secure under an appropriate “black-box” model (e.g., assuiiiag the required
randomness properties, and that attacks may not make use of any special properties or in-
ternal details ofF)). “Secure” here means that finding preimages and collisions (in fact,
pseudo-preimageand pseudo-collsions — see §9.7.2) require on the order of 2" and 27/2
n-bit block cipher operations, respectively. Due to their single-length nature, none of these
three is collision resistant for underlying ciphers of relatively small blocklength (e.g., DES,
which yields 64-bit hash-codes).

Several double-length hash functions based on block ciphers are considered next.

(ii) Double-length MDCs: MDC-2 and MDC-4

MDC-2 and MDC-4 are manipulation detection codes requiring 2 and 4, respectively, block
cipher operations per block of hash input. They employ a combination of either 2 or 4 itera-
tions of the Matyas-Meyer-Oseas (single-length) scheme to produce a double-length hash.
When used as originally specified, using DES as the underlying block cipher, they produce
128-hit hash-codes. The general construction, however, can be used with other block ci-
phers. MDC-2 and MDC-4 make use of the following pre-specified components:
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1. DES as the block ciphdtx of bitlengthn = 64 parameterized by 56-bit key K;
2. two functiongy andg which map64-bit valuesU to suitable56-bit DES keys as fol-
lows. ForU = ujus . . . uge, delete every eighth bit starting witly, and set the 2nd
and 3rd bits to ‘10’ forg, and ‘01’ forg:
g(U) = ux 10 U4U5UUTUYULQ - - - UGS -
§(U) = ux 01 U4U5UUTUYULQ - - - UGS -
(The resulting values are guaranteed not to be weak or semi-weak DES keys, as all
such keys have bit 2 :Nbit 3; see page 375. Also, this guarantees the security require-
mert thet g(IV) # g(IV').)
MDC-2 is specified in Algorithm 9.46 end ill ustratel in Figure 9.4.

X
inl i in2
in3 Y Y in4
H; > 9 4>+ E E +<7 G | H, .
Y Y
M )
o= LN
Y \
A|B C| D
‘ l
Y v y $
A|D C| B
outl out2
Y \
H; H;

Figure 9.4: Compression function of MDC-2 hash function. E = DES.

9.46 Algorithm MDC-2 hash function (DES-based)

INPUT: stringzx of bitlengthr = 64¢ for ¢ > 2.
OUTPUT: 128-bit hash-code of.

1. Partitionz into 64-bit blocksz;: © = 12 . .. 2.

2. Choose the 64-bit non-secret constdiits IV (the same constants must be used for
MDC verification) from a set of recommended prescribed values. A default set of
prescribed values is (in hexadecimally’ = 0x5252525252525252, IV =

0x2525252525252525.
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3. Let|| denote concatenation, anyf, CF the left and righB2-bit halves ofC;. The
outputish(z) = H, || H: defined as follows (fot < i < ¢):

—~R
H() = IV; ki = g(Hi,l); Cl = Eki (a:i)@xi; Hi = CZL || Cl
~  ~ o~ ~ ~ =L
Ho=1V; ki=g(Hi1); Ci=Eg(m)on; H=C | G,

n Algorithm 9.46, paddirg may be necessarto med the bitlength constrain on the
inpu x. In this case, an unambiguos paddirg methal may be used (sze Remak 9.31),
possbly including MD-strengthenig (s2e Remarik 9.32).
MDC-4 (se2Algorithm 9.47 ard Figure 9.5) iscorstructed using the MDC-2 compres-
sion function. One iteration of the MIDC-4 compression function consists of two sequential
executions of the MDC-2 compression function, where:
1. the two 64-bit data inputs to the first MDC-2 compression are both the same next
64-bit message block;
2. the keys for the first MDC-2 compression are derived from the outputs (chaining vari-
ables) of the previous MDC-4 compression;
3. the keys for the second MDC-2 compression are derived from the outputs (chaining
variables) of the first MDC-2 compression; and
4. the two 64-bit data inputs for the second MDC-2 compression are the outputs (chain-
ing variables) from the opposite sides of the previous MDC-4 compression.

9.47 Algorithm MDC-4 hash function (DES-based)

INPUT: stringz of bitlengthr = 64¢ for t > 2. (See MDC-2 above regarding padding.)
OUTPUT: 128-bit hash-code of.

1. Asin step 1 of MDC-2 above.
2. Asin step 2 of MDC-2 above.

3. With notation as in MDC-2, the outputigz) = G; || G, defined as follows (for
1< <)

Go=1V; Go=1V;
ki =9(Gi—1); C; = Ey,(x;)®x;;  H; = C’iL [l aR
ki =3(Gis1);  Ci= B (z;)®s; H=C" || C;®
ji=g(H); Di=E;(Gi)eGi1; Gi=DE | D;
Ji=§(H); Di=FE;(Gi)@G,iy; Gi=D; || D,

9.4.2 Customized hash functions based on MD4

Customized hash functions are those which are specifically designed “from scratch” for the
explicit purpose of hashing, with optimized performance in mind, and without being con-
strained to reusing existing system components such as block ciphers or modular arithmetic.
Those having received the greatest attention in practice are based on the MD4 hash function.
Number 4 in a series of hash functioiddssage Digest algorithms), MD4 was de-
signed specifically for software implementation on 32-bit machines. Security concerns mo-
tivated the design of MD5 shortly thereafter, as a more conservative variation of MD4.
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9.48

in1Y Yin2
Gi—1 in3 in4 G/!:/l
- > MDC-2 compression function [ ~
outl |H; H, |out2
I e
inly Y in2
in3 in4
> MDC-2 compression function
outl out2
Y Y

Figure 9.5: Compression function of MDC-4 hash function

Other important subsequent variants include the Secure Hash Algorithm (SHA-1), the hash
function RIPEMD, and its strengthened variants RIPEMD-128 and RIPEMD-160. Param-
etess for these hash functions are summarizel n Table 9.5. “Rounds x Steps per round”

refers to operations performed on input blocks wiiiin iive corresponding compression func-
tion. Table 9.6 specifies test vectos for a subset of these hash functiors.

Notation for description of MD4-family algorithms

Table 9.7 cefines the notatian for the descriptian of MD4-family algorithns describd be-
low. Note 9.48 addresses the implementatio isaue of convertirg strings of bytesto words
in an unambiguous manner.

Note (little-endian vs. big-endian) For interoperable implementations involving byte-to-
word conversions on different processors (e.g., converting between 32-bitwords and groups
of four 8-bit bytes), an unambiguous convention must be specified. Consider a stream of
bytes B; with increasing memory addressgso be interpreted as a 32-bit word with nu-
merical valuel¥. In little-endian architectures, the byte with the lowest memory address
(B,) is the least significant bytelV = 22¢B, + 2'°B; + 28B, + B;. In big-endian
architectures, the byte with the lowest addreBs)(is the most significant bytelV =

224B; 4+ 2By + 28 B3 + B,.

(i) MD4
MD4 (Algorithm 9.49) is a 128-ht hash function. The origind MD4 design gods were

that breaking it should require roughly brute-force effort: finding distinct messages with
the same hash-value should take alfdtoperations, and finding a message yielding a
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| Name | Bitlength | Roundsx Steps per round Relative speed
MD4 128 3 x 16 1.00
MD5 128 4 x 16 0.68
RIPEMD-128 128 4 x 16 twice (in parallel) 0.39
SHA-1 160 4 x 20 0.28
RIPEMD-160 160 5 x 16 twice (in parallel) 0.24

Table 9.5: Summary of selected hash functions based on MDA4.

| Name | String | Hash value (as a hex byte string) |
MD4 31d6cfe0d16ae931b73¢59d7e0c089c0
“a” bde52ch31de33e46245e05fbdbd6fb24
“abc” a448017aaf21d8525fc10ae87aa6729d
“abcdefghijkimnopqgrstuvwxyz”| d79elc308aa5bbcdeea8ed63df412da9
MD5 d41d8cd98f00b204€9800998ecf8427¢e
“a” 0cc175b9c0f1b6a831c399e269772661
“abc” 900150983cd24fb0d6963f7d28e17{72
“abcdefghijkimnopqrstuvwxyz”| ¢3fcd3d76192e4007dfb496cca67el3b
SHA-1 da39a3ee5e6b4b0d3255bfef95601890afd807/09
“a’ 86f7e437faaba7fcel5d1ddch9eaeaecal377667p8
“abc” a9993e364706816aba3e25717850c26c9cd0d89d
“abcdefghijkimnopqgrstuvwxyz”| 32d10c7b8cf96570ca04ce37f2a19d84240d3a89
RIPEMD-160 | “ 9c1185a5¢5e9fc54612808977ee8f548b2258d31
“‘a’ 0bdc9d2d256b3ee9daae347be6f4dc835a467ffe
“abc” 8eb208f7e05d987a9b044a8e98c6b087f15a0hfc
“abcdefghijkimnopgrstuvwxyz”| f71¢27109c692c1b56bbdceb5b9d2865b3708dbc
Table 9.6: Test vectors for selected hash functions.
| Notation | Meaning |
U, U, W variables representing 32-bit quantities
0x67452301 hexadecimal 32-bit integer (least significant byte: 01)
+ addition modul®3?
[ bitwise complement
U< 8 result of rotatingu left throughs positions
U bitwise AND
uV v bitwise inclusive-OR
udv bitwise exclusive-OR
fu,v,w) uv V Tw
g(u, v, w) uv V uw V vw
h(u, v, w) uPvPw
(X1,...,X;) < | simultaneous assignmer{ty; < Y;),
(Y1,....Y)) where(Y7, ... ,Y;) is evaluated prior to any assignmerjts

Table 9.7: Notation for MD4-family algorithms.
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pre-specified hash-value ab@it® operations. Itis now known that MD4 fails to meet this
god (Remak 9.50. Nonethelss afull description of MD4 isincluded as Algorithm 9.49

for historical and cryptanalytic reference. It also serves as a convenient reference for de-
scribing, and allowing comparsons betweenothea hash functiorsin this family.

9.49 Algorithm MD4 hash function

INPUT: bitstring = of arbitrar bitlength » > 0_ (For notation see Table 9.7.)
OUTPUT: 128-hit hash-coce of z. (See Table 9.6 for test vectoss.)

1. Definition of constants. Define four 32-bit initial chaining values (IVs):
h1 = 0x67452301h, = Oxefcdab89h; = 0x98badcfeh, = 0x10325476.
Define additive 32-bit constants:
ylj] =0,0 < j < 15;

y[j] = 0x5a82799916 < j < 31; (constant = square-root of 2)

y[j] = Ox6ed9ebal3d2 < j < 47; (constant = square-root of 3)

Define order for accessing source words (each list contains 0 through 15):
2[0..15] = [0,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15],

2[16..31] = [0,4,8,12,1,5,9,13,2,6,10,14,3, 7,11, 15],

2[32..47] = [0, 8,4,12,2,10,6,14,1,9,5,13,3,11, 7, 15].

Finally define the number of bit positions for left shifts (rotates):

s[0..15) = [3,7,11,19,3,7,11,19,3,7,11,19,3,7,11,19],

s[16..31] = [3,5,9,13,3,5,9,13,3,5,9,13,3,5,9,13],

5[32..47] = [3,9,11,15,3,9,11,15,3,9,11,15,3,9, 11, 15].

2. Preprocessing. Pad x such that its bitlengh isamultiple of 512, asfollows. Append
a single 1-bit, then append- 1 (> 0) 0-bits for the smallest resulting in a bitlength
64 less than a multiple of 512. Finally append the 64-bit representatiomofl 264,
as two 32-bit words with least significant word first. (Regarding converting between
streansof bytesand 32-bit words, the conventimislittle-endian see Note9.48) Let
m be the numbe of 512-bit blocks in the resulting string (b + 7 + 64 = 512m =
32-16m). The formatted input consists db6m 32-bit words:zgx1 . .. T16m—_1. INi-
tialize: (Hl, Hy, Hs, H4) — (hl, ho, hs, h4)

3. Processing. For eachi from 0 to m — 1, copy thei*® block of 16 32-bit words into
temporary storageX [j] < x5, 0 < j < 15, then process these as below in
three 16-step rounds before updating the chaining variables:

(initialize working variables) (A4, B, C, D) < (Hy, Ho, H3, Hy).

(Round 1) For j from 0 to 15 do the following:

t « (A+ f(B,C, D)+ X[z[j]] + y[j]). (A, B,C, D) + (D,t + s[j], B,C).
(Round 2) For j from 16 to 31 do the foll owing:

t « (A+g(B,C,D)+X[[j]] +ylj)). (4, B,C, D) « (D,t > s[j], B,C).
(Round 3) For j from 32 to 47 do the following:

t < (A+h(B,C,D)+ X|[z[j]] + ylj]), (A, B,C, D) < (D,t + slj], B, C).
(updatechainingvalues) (Hq, Hy, Hs, Hy) < (H1+A,Hy+ B, Hs+C,H,+ D).

4. Completion. The final hash-value is the concatenati®f:| | Hz|| Hs|| H4
(with first and last bytes the low- and high-order bytesfaf H,, respectively).

9.50 Remark (MD4 collisions) Collisions have been found for MD4 2t° compression func-
tion computatiors (cf. Table 9.3). For thisreason, MD4 is no longe recommendeéfor use
as a collision-resistaiit niasii ruinction. While its utility as a one-way function has not been
studied in light of this result, it is prudent to expect a preimage attack on MD4 requiring
fewer thar2'28 operations will be found.
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(i) MD5

MDE (Algorithm9.51) wasdesigned asastrengthend version of MD4, prior to actua MD4

collisions being found. It has enjoyed widespread use in practice. It has also now been

found to have weaknas:s (Remark 9.52).

The changes made to obtain MD5 from MD4 are as follows:

. addition of a fourth round of 16 steps, and a Round 4 function

. replacement of the Round 2 function by a new function

. modification of the access order for message words in Rounds 2 and 3

. modification of the shift amounts (such that shifts differ in distinct rounds)

. use of unique additive constants in each of#hkel6 steps, based on the integer part
of 232 . sin(4) for stepj (requiring overall, 256 bytes of storage)

. addition of output from the previous step into each of the 64 steps.

a b wnN Bk

»

9.51 Algorithm MD5 hash function

INPUT: bitstring = of arbitray bitlengh & > 0. {For notation, see Tale 9.7.)
OUTPUT: 128-hit hash-coce of ;. (See Table 9.6 for test vectos.)
MDS5 is obtained from MD4 by making the tollowing changes.

1. Notation. Replace the Round 2 function byj(u, v, w) v Vv .

Define a Round 4 functiont(u, v, w) e (u V ).

2. Definition of constants. Redefine unique additive constants:
y[4] = first 32 bits of binary valuebs(sin(j+1)), 0 < j < 63, wherej is in radians
and “abs” denotes absolute value. Redefine access order for words in Rounds 2 and
3, and define for Round 4:
2[16..31] = [1,6,11,0,5,10,15,4,9, 14,3, 8,13,2,7,12],
2[32..47] = [5,8,11,14,1,4,7,10,13,0,3,6,9,12, 15, 2],
2[48..63] = [0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9].
Redefine number of bit positions for left shifts (rotates):
s[0..15) = [7,12,17,22,7,12,17,22,7,12,17, 22,7, 12,17, 22],
s[16..31] = [5,9, 14,20, 5,9, 14,20, 5,9, 14, 20, 5, 9, 14, 20],
s[32..47] = [4,11,16,23,4,11,16,23, 4,11, 16,23, 4,11, 16, 23],
s[48..63] = [6,10, 15,21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21].
. Preprocessing. As in MD4.
4. Processing. In each of Rounds 1, 2, and 3, replad® “ (¢t + s[j])" by “B «+
B + (t < s[j])". Also, immediately following Round 3 add:
(Round 4) For j from 48 to 63 do the following:
t < (A+k(B,C,D)+X[z[j]]+ylj]), (4, B,C, D) + (D, B+(t < s[j]), B, C).
5. Completion. As in MD4.

w

9.52 Remark (MD5 compression function collisions) While no collisions for MD5 have yet
been found (cf. Table 9.3), collisions hawe been found for the MD5 compresson function.
More specifically, these are called collisions for randan V. (See §9.7.2 ard in particular
Definition 9.97 and Note 9.98))
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(iii) SHA-1
The Secure Hash Algorithm (SHA-1), based on MD4, was proposed by the U.S. National

Institute for Standards and Technology (NIST) for certain U.S. federal government appli-
cations. The main differences of SHA-1 from MD4 are as follows:

1. The hash-value is 160 bits, and five (vs. four) 32-bit chaining variables are used.

2. The compression function has four rounds instead of three, using the MD4 step func-
tions f, g, andh as follows: f in the first,g in the third, and: in both the second and
fourth rounds. Each round has 20 steps instead of 16.

3. Within the compression function, each 16-word message block is expanded to an 80-
word block, by a process whereby each of the last 64 of the 80 words is the XOR of
4 words from earlier positions in the expanded block. These 80 words are then input
one-word-per-step to the 80 steps.

4. The core step is modified as follows: the only rotate used is a constant 5-bit rotate;
the fifth working variable is added into each step result; message words from the ex-
panded message block are accessed sequentiallyy dpdated as3 rotated left
30 bits, rather than simpli3.

5. SHA-1 uses four non-zero additive constants, whereas MD4 used three constants
only two of which were non-zero.

The byte ordering used for converting between streams of bytes and 32-bit words in the
official SHA-1 specificatia is big-endian (see Note 9.48); this differsfrom MD4 which is
little-endian.

9.53 Algorithm Secure Hash Algorithm — revised (SHA-1)

INPUT: bitstring z of bitlength b > 0. (For notation, see Tale 9.7.)
OUTPUT: 160-hit hash-coce of z. (See Table 9.6 for test vectos.)
SHA-1 is defined (with reference to MD4) by making the following changes.

1. Notation. As in MD4.

2. Definition of constants. Define a fifth IV to match those in MD45 = 0xc3d2e1f0.
Define per-round integer additive constanjs:= 0x5a827999y, = Ox6ed9ebal,
y3 = 0x8flbbcdcy, = Oxca62c1d6. (No order for accessing source words, or spec-
ification of bit positions for left shifts is required.)

3. Overall preprocessing. Pad as in MD4, except the final two 32-bit words specifying
the bitlengthb is appended with most significant word preceding least significant.
As in MD4, the formatted input id6m 32-bit words: zgx; ... x16m—1. Initialize
chaining variables(H;, Hy, Hs, Hy, H5) < (h1, ha, hs, ha, hs).

4. Processing. For eachi from 0 to m — 1, copy thei*® block of sixteen 32-bit words
into temporary storageX [j] <— z16i45, 0 < j < 15, and process these as below in
four 20-step rounds before updating the chaining variables:

(expand 16-word block into 80-word block; 1&t; denoteX [5])

for j from 16 to 79, X (( X; 30X, 30X, 140X, _16 ) ~1).
(initialize working variables) (4, B,C, D, E) < (Hy, Ha, Hs, Hy, Hs).
(Round 1) For j from 0 to 19 do the following:

t <+ (A< 5)+ f(B,C,D)+ E + X; + 1),

(A,B,C,D,E) < (t,A,B <+ 30,C, D).

(Round 2) For j from 20 to 39 do the following:

t < ((A+5)+h(B,C,D)+E+ X, +y2),

(A,B,C,D,E) + (t,A,B < 30,C, D).
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(Round 3) For j from 40 to 59 do the following:
+— ((A+5)+¢g(B,C,D)+ E + X; +y3),
(A,B,C,D,E) < (t,A,B + 30,C, D).
(Round 4) For j from 60 to 79 do the following:
+— ((A+5)+h(B,C,D)+ E+ X, + ya),
(A,B,C,D,E) + (t,A,B < 30,C, D).
(update chaining values)
(Hl,HQ, H3,H4, H5) < (H1 + A,HQ + B,H3 + C, Hy + D, Hs + E)
5. Completion. The hash-value isH: ||H || Hs||Hy|| Hs
(with first and last bytes the high- and low-order bytesiaf Hs, respectively).

9.54 Remark (security of SHA-1) Compared to 128-bit hash functions, the 160-bit hash-value
of SHA-1 provides increased security against brute-force attacks. SHA-1 and RIPEMD-
160 (see §9.4.2(iv)) presently appea to be of comparal# strength both are considered
stronge than MD5 (Remak 9.52). In SHA-1, a significart effect of the exparsion of 16-
word message blocks to 80 words in the compression function is that any two distinct 16-
word blocks yield 80-word values which differ in a larger number of bit positions, signif-
icantly expanding the number of bit differences among message words input to the com-
pression function. The redundancy added by this preprocessing evidently adds strength.

(iv) RIPEMD-160

RIPEMD-160 (Algorithm 9.55) is a hash function based on MD4, taking into account
knowledge gained in the analysis of MD4, MD5, and RIPEMD. The overall RIPEMD-160
compression function maps 21-word inputs (5-word chaining variable plus 16-word mes-
sage block, with 32-bit words) to 5-word outputs. Each input block is processed in parallel
by distinct versions (th&ft line andright line) of the compression function. The 160-bit
outputs of the separate lines are combined to give a single 160-bit output.

| Notation | Definition ]

flu,v,w) | udvdw
glu,v,w) | uvVaw
h(u,v,w) | (uVv)dw
k(u,v,w) | vwVvw

l(u,v,w) | ud(vVw)

Table 9.8: RIPEMD-160 round function definitions.

The RIPEMD-160 compression function differs from MD4 in the numher of wards of
chainirg variable the numbe of rounds, the round functiors therrselves (Table 9.8), the:
order in which the input words are accessed, and the amounts by which resuits are rotated.
The left and and right computation lines differ from each other in these last two items, in
their additive constants, and in the order in which the round functions are applied. This de-
sign is intended to improve resistance against known attack strategies. Each of the parallel
lines uses the same IV as SHA-1. When writing the IV as a bitstring, little-endian ordering
isused for RIPEMD-160 asin MD4 (vs. big-endianin SHA-1; see Note 9.48).
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9.55 Algorithm RIPEMD-160 hash function

INPUT: bitstringz of bitlengthd > 0.
OUTPUT: 160-bit hash-coce of . (See Table 9.6 for test vectos.)
RIPEMD-160 is defined (with reference to MD4) by making the following changes.
1. Notation. See Table 9.7, with MD4 rourd functiors f, g, h reddined per Table 9.8
(which also defines the new round functidns).
2. Definition of congtants. Define a fifth IV: hs = 0xc3d2e1f0. In addition:
(a) Use the MD4 additive constants for the left line, renamedj] = 0,0 < j <
15; yr.[j] = 0x5a82799916 < j < 31; yr[j] = Ox6ed9ebald2 < j < 47.
Define two further constants (square roots of 5y7)fj] = 0x8f1lbbcdc48 <
7 <63; yr[j] = 0xa953fddepd < j < 79.
(b) Define five new additive constants for the right line (cube roots of 2,3,5,7):
yr[j] = 0x50a28bef) < j < 15; yg[j] = 0x5c4dd12416 < j < 31;

yr[j] = 0x6d703ef332 < j < 4T; yrlj] = Ox7a6d76e%8 < j < 63;
mJ]—n RA(7<79

JILLJ |

(c) SeeTable9.9for corstantsfor step j of the compresson fundtion: zz[j], zr|[J]
specify the access order for source words in the left and right lings}, sr[j]
the number of bit positions for rotates (see below).

3. Preprocessing. As in MD4, with addition of a fifth chaining variabldd; < hs.
4. Processing. For eachi from 0 to m — 1, copy thei*® block of sixteen 32-bit words
into temporary storageX [j] <— z16i+5, 0 < j < 15. Then:

(a) Execute five 16-step rounds of the left line as follows:

(AL,BL, CL,DL, EL) — (Hl, H,, Hs, H4,H5).

(left Round 1) For j from 0 to 15 do the following:

t « (AL + f(Br,CL, Dr) + X[z1[j]] + yLlj]),
(AL7BL7CL7-DL7EL) (EL7EL+(t<_78L[ ]) BL70L<_710 DL)
(left Round 2) For 5 from 16 to 31 do the following:

t « (AL +9(Br,Cr, D1) + X[z [5]] + yLlj]),
(AL,BL,CL,DL,EL) (EL EL+(t(—’$L[ ]) Bp,Cr + 10, DL)
(left Round 3) For j from 32 to 47 do the following:

t < (Ar +h(Br,Cr, Dr) + X[z [j]] + y[5]),
(AL7BL7CL7-DL7EL) (EL7EL+(t<_78L[ ]) BL70L<_710 DL)
(left Round 4) For 5 from 48 to 63 do the following:

t « (AL +k(Br,Cr, Dr) + X[z.[j]] +yol5]),
(AL,BL,CL,DL,EL) (EL EL+(t(—’$L[ ]) Bp,Cr + 10, DL)
(left Round 5) For 5 from 64 to 79 do the following:

t < (AL +1(Br,Cr, Dr) + X[z [5]] + ye[5]),
(AL7BL7CL7-DL7EL) (EL7EL+(t<_78L[ ]) BL70L<_710 DL)

(b) Execute in parallel with the above five rounds an analogous right line with
(AR, Br,Cr, Dr, Er), yrljl, zrlj], srlj] replacing the corresponding quan-
tities with subscripL; and the order of the round functions reversed so that their
orderis:l, k, h, g, andf. Start by initializing the right line working variables:
(AR, BR, CR, _DR, ER) <~ (Hl, HQ, H3, H4, H5)

(c) After executing both the left and right lines above, update the chaining values
as follows:t «+ Hy, Hy < Hs + Cp + DR, Hy < H3 + Dy, + Eg, H3 <
Hy+FEp+ Ag, Hy < Hs+ Ap + Br, Hs < t+ B + Cg.

5. Completion. The final hash-value is the concatenatidh:| | Hz||Hs||H4||Hs
(with first and last bytes the low- and high-order bytesiaf Hs, respectively).
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Variable [ Value |

2z 0..15] [[ O, 1, 2, 3, 4, 5, 6, 7, 8, 09,10,11,12, 13, 14, 15]
2 [16..31] | [ 7. 4,13, 1,10, 6,15, 3,12, 0, 9, 5 2,14, 11, 8]
2,[32..47] | [ 3,10,14, 4, 9,15, 8, 1, 2, 7, 0, 6,13, 11, 5,12]
2 [48..63] | [ 1, 9,11,10, 0, 8,12, 4,13, 3, 7,15,14, 5 6, 2]
2, [64..79] | [ 4, 0, 5, 9, 7,12, 2,10,14, 1, 3, 8,11, 6,15, 13]
zr[ 0..15] | [ 5,14, 7, 0, 9, 2,11, 4,13, 6,15, 8, 1,10, 3,12]
zr[16..31] | [ 6,11, 3, 7, 0,13, 5,10,14,15, 8,12, 4, 9, 1, 2]
zr[32..47] | [15, 5, 1, 3, 7,14, 6, 9,11, 8,12, 2,10, 0, 4,13]
zr[48..63] | [ 8, 6, 4, 1, 3,11,15, 0, 5,12, 2,13, 9, 7,10, 14]
zr[64..79] | [12,15,10, 4, 1, 5, 8, 7, 6, 2,13,14, 0, 3, 9, 11]
st[ O0..15] | [11,14,15,12, 5, 8, 7, 9,11,13,14, 15, 6, 7, 9, 8]
sy [16..31] | [ 7, 6, 8,13,11, 9, 7,15, 7,12,15, 9,11, 7,13, 12]
sp[32..47] | [11,13, 6, 7,14, 9,13,15,14, 8,13, 6, 5,12, 7, 5]
s;[48..63] | [11,12,14,15,14,15, 9, 8, 9,14, 5 6, 8, 6, 5, 12]
s, [64..79] | [ 9,15, 5,11, 6, 8,613,12, 5,12,13, 14,11, 8, 5, 6]
sg[ 0..15] | [ 8, 9, 9, 11,13,15,15, 5, 7, 7, 8, 11,14, 14,12, 6]
sr[16..31] | [ 9,13,15, 7,12, 8, 9,11, 7, 7,12, 7, 6,15, 13, 11]
sr[32..47] | [ 9, 7,15,11, 8, 6, 6,614,12,13, 5,14,613,13, 7, 5]
sr[48..63] | [15, 5, 8,11,14,14, 6,14, 6, 9,12, 9,12, 5 15 8]
sr[64..79] | [ 8, 5,12, 9,12, 5,14, 6, 8,13, 6, 5, 15,13, 11, 11]

Table 9.9: RIPEMD-160 word-access orders and rotate counts (¢f. Algorithm 9.55).

9.4.3 Hash functions based on modular arithmetic

The basic idea of hash functions based on modular arithmetic is to construct an iterated
hash function using mod/ arithmetic as the basis of a compression function. Two moti-
vating factors are re-use of existing software or hardware (in public-key systems) for mod-
ular arithmetic, and scalability to match required security levels. Significant disadvantages,
howeve, include sped (e.g, relative to the customized hash functiors cf §9.4.2, ard an
embarrassing history of insecure proposals.

MASH

MASH-1 (Modular Arithmetic Secure Hash, algorithm1) is a hash function based on mod-

ular arithmetic. It has been proposed for inclusion in a draft ISO/IEC standard. MASH-1
involves use of an RSA-like modulug, whose bitlength affects the security/ should

be difficult to factor, and fol/ of unknown factorization, the security is based in part on

the difficulty of extractirg modula roots (§3.5.2). The hitlength of M also determinesthe
blocksize for processing messages, and the size of the hash-result (e.g., a 1025-bit modulus
yields a 1024-bit hash-result). As a recent proposal, its security remains open to question
(page 381). Techniques for reducing the size of the final hash-result have also been pro-
posed, but their security is again undetermined as yet.
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9.56 Algorithm MASH-1 (version of Nov. 1995)

INPUT: dataz of bitlength0 < b < 2"/2,
OUTPUT:n-bit hash ofz (n is approximately the bitlength of the modulis).

1. Systemsetup and constant definitions. Fix an RSA-like modulud/ = pq of bitlength
m, wherep andq are randomly chosen secret primes such that the factorization of
M is intractable. Define the bitlengthof the hash-result to be the largest multiple
of 16 less thann (i.e.,n = 16n’ < m). Hy = 0 is defined as an IV, and an-
bit integer constanti = 0xf0...0. “v” denotes bitwise inclusive-OR&" denotes
bitwise exclusive-OR.

2. Padding, blocking, and MD-strengthening. Padx with 0-bits, if necessary, to obtain
a string of bitlengtht-n/2 for the smallest possibte> 1. Divide the padded textinto
(n/2)-bit blocksz, . .. , z:, and append a final block.; containing the/2)-bit
representation af.

3. Expansion. Expand each; to ann-bit blocky; by partitioning it into (4-bit) nibbles
and inserting four 1-bits preceding each, excepyfqr wherein the inserted nibble
is 1010 (notl111).

4. Compression functionprocessing. Forl < ¢ < t+1, map twon-bitinputs (H;_1, ;)
to onen-bit output as follows:H; < ((((H;—1®y;) V A)? mod M) - n)®H;_1.
Here- n denotes keeping the rightmaosbits of them-bit result to its left.

5. Completion. The hash is the-bit block Hy 1.

MASH-2 is defined as per MASH-1 with the exponent 2 used for squaring in the
compression function processing stage (step 4) replacecwit® + 1.

9.5 Keyed hash functions (MACs)

Keyed hash functions whose specific purpose is message authentication are called message
authentication code (MAC) algorithms. Compared to the large number of MDC algorithms,
prior to 1995 relatively few MAC algorithms had been proposed, presumably because the
original proposals, which were widely adopted in practice, were adequate. Many of these
are for historical reasons block-cipher based. Those with relatively short MAC bitlengths
(e.g., 32-bits for MAA) or short keys (e.qg., 56 bits for MACs based on DES-CBC) may still
offer adequate security, depending on the computational resources available to adversaries,
and the particular environment of application.

Manv iteratad MA Cs can be described as iterated hash functions (see Figure 9.2, and
equatian (9.1) onpage 333). Inthiscase, the MAC key isgeneraly paii of iihe ouipu irais
formationg; it may also be an input to the compression function in the first iteration, and
be invalved in the compression functigrat every stage.

Fad 9.57 isageneraresult giving an uppe bourd on the security of MACs.

9.57 Fact (birthday attack on MACs) Let h be a MAC algorithm based on an iterated com-
pression function, which hasbits of internal chaining variable, and is deterministic (i.e.,
them-bit result is fully determined by the message). Then MAC forgery is possible using
0O(2"/?) known text-MAC pairs plus a numbeiof chosen text-MAC pairs which (depend-
ing onh) is betweerl and aboug™ ™.

©1997 CRC Press LLC


http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch9&iName=master.img-562.png&w=394&h=2
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch9&iName=master.img-562.png&w=394&h=2

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:10 22 March 2017

9.5.1 MACs based on block ciphers

CBC-based MACs

The most commonly used MAC algorithm based on a block cipher makes use of cipher-
block-chainimg (§7.2.4ii)). When DES is used as the block ciphe E, n = 64 in wha fol-

lows, and the MAC key is a 56-bit DES key.

9.58 Algorithm CBC-MAC

INPUT: datazx; specification of block cipheF; secret MAC keyk for E.
OUTPUT:n-bit MAC on z (n is the blocklength of).

1. Padding and blocking. Pal x if necessar(e.g, usiny Algorithm 9.30). Divide the
padded text intm-bit blocks denoted:, . .. , ;.

2. CBC processing. Letting Ej, denote encryption using with key k, compute the
block H; as follows: Hy < Ej(z1); H; + Ex(H;—1®x;),2 < i < t. (Thisis
standard cipher-block-chainingl = 0, discarding ciphertext blocks; = H;.)

3. Optional process to increase strength of MAC. Using a second secret kéy # k,
optionally computeH; < E;,'(H). H: + Ex(H). (This amounts to using two-
key triple-encryptia on the last blocl see Remak 9.59)

4. Completion. The MAC is then-bit block H;.

optional

Figure 9.6: CBC-based MAC algorithm.

For CBC-MAC withn = 64 = m, Fad 9.57 applieswithv = 1.
9.59 Remark (CBC-MAC strengthening) The optional process reduces the threat of exhaus-

tive key search and prevens chosen-tex existentid forgen’ (Exampk 9.62), without im-
pacting the efficiency of the intermediate stages as would using two-key triple-encryption
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throughout. Alternatives to combat such forgery include prepending the input with a length
block before the MAC computation; or using k&yto encrypt the lengtin yielding K’ =
Ex(m), before usings” as the key to MAC the message.

9.60 Remark (truncated MAC outputs) Exhaustive attack may, depending on the unicity dis-
tance of the MAC, be precluded (information-theoretically) by using lessnHzts of the
final output as then-bit MAC. (This must be traded off against an increase in the proba-
bility of randomly guessing the MAQ~™.) Form = 32 andE = DES, an exhaustive
attack reduces the key space to al@¥dtpossibilities. However, even fen < n, a second
text-MAC pair almost certainly determines a unique MAC key.

9.61 Remark (CBC-MAC IV)While arandom IV in CBC encryption serves to preventa code-
book attack on the first ciphertext block, this is not a concern in a MAC algorithm.

9.62 Example (existential forgery of CBC-MAC) While CBC-MAC is secure for messages of
a fixed numbet of blocks, additional measures (beyond simply adding a trailing length-
block) are required if variable length messages are allowed, otherwise (adaptive chosen-
text) existential forgery is possible as follows. Assumeds ann-bit block, and letLb
denote thes-bit binary representation @ Let (z1, M7) be a known text-MAC pair, and
request the MACM,, for the one-block message = M;; thenMs = Ej(Ek(z1))
is also the MAC for the 2-block message; || L0). As a less trivial example, given two
known text-MAC pairs(zy, H1), (z2, H2) for one-block messages, z2, and request-
ing the MAC M on a chosen 2-block third message ||z) for a third text-MAC pair
((z1]|2), M), thenH; = Ey(z;), M = E,(H:1$z), and the MAC for the new 2-block
messageX = z||(H1®2z®H2) is known — it isM also. Moreover, MD-strengthening
(Algorithm 9.26) does not address the prodem assume paddng by Algorithm 9.29 re-
place the third message above by the 3-block messadlel 64||z), note

H] = Ey(Ex(2;)®164), M3 = Ex(Ey(Ex(Eg(21)L164)®2)®1192),
and M is also the MAC for the new 3-block messa§je= (z2|| L64||H]®H,Dz). O

9.63 Example (RIPE-MAC) RIPE-MAC is a variant of CBC-MAC. Two versions RIPE-
MAC1 and RIPE-MACS3, both producing 64-bit MACs, differ in their internal encryption
function E being either sinale DES or two-key triple-DES, respectively, requiring a 56-
or 112-bit key k (cf. Remaik 9.59. Difference from Algorithm 9.58 are as follows: the
compression funciioi uses a inoii-invertible chaining best described as CBC with data feed-
forward: H;, < E(H;_1®z;)®z;; ater paddng using Algorithm 9.30 a find 64-hit
length-blok (giving bitlengt of origind inpuf) is appendepthe optiond process of Al-
gorithm 9.58 is mandatay with final output block encrypted using key &’ derived by com-
plementing alternating nibbles &f for k = kg ... kg3 a 56-bit DES key with parity bits
krkis ... kes, k' = k @ OxfOfOfOfOfOfOfOfO. O

9.5.2 Constructing MACs from MDCs

A common suggestion is to construct a MAC algorithm from an MDC algorithm, by simply
including a secret ke¥ as part of the MDC input. A concern with this approach is that
implicit but unverified assumptions are often made about the properties that MDCs have;
in particular, while most MDCs are designed to provide one-wayness or collision resistance,
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the requiremerg of a MA C algorithm differ (Definition 9.7). E:ven in the cas that a one-

way hash function precludes recovery of a secret key used as a partial message input (cf.
partial-preimage resistance, page 331), this does not guarantee the infeasibility of producing
MACs for new inputs. The following examples suggest that construction of a MAC from

a hash function requires careful analysis.

9.64 Example (secret prefix method) Consider amessage= x;z- . ..z and aniterated MDC
h with compression functiorf, with definition: Hy = IV, H; = f(H;—1,%;); h(z) =
H;. (1) Suppose one attempts to usas a MAC algorithm by prepending a secret key
so that the proposed MAC anis M = h(k||z). Then, extending the messagédy an
arbitrary single blocky, one may deduc!’ = h(k||x|ly) as f(M,y) without knowing
the secret key: (the original MAC M serves as chaining variable). This is true even for
hash functions whose preprocessing pads inputs with length indicators (e.g., MD5); in this
case, the padding/length-bloelkfor the original message would appear as part of the
extended messagel|z||y, but a forged MAC on the latter may nonetheless be deduced. (2)
For similar reasons, itis insecure to use an MDC to constructa MAC algorithm by using the
secret MAC keyk as IV. If k comprises the entire first block, then for efficienty V, k)
may be precomputed, illustrating that an adversary need only fiddreot necessarily:)
such thatf (IV, k) = f(IV, k'); this is equivalent to using a secret IV. O

9.65 Example (secret suffix method) An alternative proposal is to use a secret key as a suffix,
i.e, then-bit MAConzisM = h(z||k). Inthiscase abirthday attadk applies (§9.7.1).
An adversary free to choose the messager a prefix thereof) may, in Q(/2) operations,
find a pair of messages =’ for whichh(z) = h(z’). (This can be done off-line, and does
not require knowledge o¥; the assumption here is thatis the size of both the chaining
variable and the final output.) Obtaining a MAXZ on z by legitimate means then allows
an adversary to produce a correct text-MAC air, M) for a new message. Note that
this method essentially hashes and then encrypts the hash-value in the final iteration; in this
weak form of MAC, the MAC-value depends only on the last chaining value, and the key
is used in only one step. O

The above examples suggest that a MAC key should be involved at both the start and
the end of MAC compuations, leadng to Exampe 9.66

9.66 Example (envelope method with padding) For a keyk and MDCh, compute the MAC
on amessage as: hi(x) = h(k||p|| x || k). Herep is a string used to pakito the length
of one block, to ensure that the internal computation involves at least two iterations. For
example, ifh is MD5 andk is 128 bits,p is a 384-bit pad string. O

Dueto both acertificationd attadk agairst the MA C construction of Exampk9.66 and
theoretich suppot for that of Exampk 9.67 (see page 382), the latta construction is fa-
vored.

9.67 Example (hash-based MAC) For a keyk and MDCh, compute the MAC on a message
z as HMAC(z) = h(k||p1 || (k|| p2 || z)), wherep,, p2 are distinct strings of sufficient
length to padk out to a full block for the compression function. The overall construction is
quite efficient despite two calls tg since the outer execution processes only (e.@. jsf
MD5) a two-block input, independent of the lengthaof O

Additional suggestions for achieving MAC-like functionality by combining MDCs and
encryption are discussed in §9.6.5.
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9.5.3 Customized MACs

Two algorithms designed for the specific purpose of message authentication are discussed
in this section: MAA and MD5-MAC.

Message Authenticator Algorithm (MAA)

The Message Authenticator Algorithm (MAA), dating from 1983, is a customized MAC
algorithm for 32-bit machines, involving 32-bit operations throughout. It is specified as
Algorithm 9.68 and illustrated in Figure 9.7. The main loop consiss of two parallé inter-
dependent streams of computation. Messages are processed in 4-byte blocks using 8 bytes
of chaining variable. The execution time (excluding key expansion) is proportional to mes-
sage length; as a rough guideline, MAA is twice as slow as MD4.

9.68 Algorithm Message Authenticator Algorithm (MAA)

INPUT: dataz of bitlength32j, 1 < j < 10%; secret 64-bit MAC key? = Z[1]..Z[8].
OUTPUT: 32-bit MAC onzx.

1. Message-independent key expansion. Expand key? to six 32-bit quantitie(, Y, V,
W, S, T (X,Y are initial values¥, W are main loop variabless, T' are appended
to the message) as follows.

1.1 First replace any bytes 0x00 or Oxffihas follows. P < 0; for i from 1 to 8
(P < 2P;if Z[i] = 0x00 or Oxffthen P «— P + 1; Z[i] < Z[i] CR P)).

1.2 LetJ andK be the first 4 bytes and last 4 bytesfhfand computé:

X + J* (mod23? — 1)@J* (mod232 — 2)

Y + [K® (mod23? — 1)@ K® (mod23% — 2)](1 + P)? (mod232 — 2)
V <« J¢ (mod23? — 1)@J¢ (mod23? — 2)

W« K7 (mod2?? — 1)@ K" (mod23? — 2)

S <+ J8 (mod23? — 1)®J® (mod232 — 2)

T + K° (mod23? — 1)@ K?® (mod23? — 2)

1.3 Process the 3 resulting pais, Y), (V, W), (S, T) to remove any bytes 0x00,
0xff as for Z earlier. Define the AND-OR constantd: = 0x02040801B =
0x00804021C = Oxbfef7fdf, D = Ox7dfefbff.

2. Initialization and preprocessing. Initialize the rotating vectors < V', and the chain-
ing variables:H; < X, Hs < Y. Append the key-derived blockss T to x, and
let z; ...z, denote the resulting augmented segment of 32-bit blocks. (The final 2
blocks of the segment thus involve key-derived secrets.)

3. Block processing. Process each 32-bit bloak (for ¢ from 1 tot) as follows.

v (v 1), U+ (valW)

t1 (Hl@arl) X1 (((HQ@QZL) + U) OR A) AND C)

to < (HQ@Q%) X9 (((Hl@arz) + U) OR B) AND D)

Hy <+ t1, Hy <+ to

where x; denotes special multiplication m@? — i as noted above (= 1 or 2);

“+” is addition mod232; and “~ 1” denotes rotation left one bit. (Each combined
AND-OR operation on a 32-bit quantity sets 4 bits to 1, and 4 to 0, precluding O-
multipliers.)

4. Completion. The resulting MAC is:H = H1®Hs.

4In 1SO 8731-2, a well-defined but unconventional definition of multiplication 2i&d— 2 is specified, pro-
ducing 32-bit results which in some cases 2t — 1 or 232 — 2; for this reason, specifying e.gI® here may
be ambiguous; the standard should be consulted for exact details.
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message x key (J,K)
[from message z]

key expansion

x;

i=1 e i=1
Y Y Y '
H, - "U - Ho
i>1 fj i>1
B —=oR| (OR[=—1
delay | i<—i+1 i<—1i+1 | delay
A A

Figure 9.7: The Message Authenticator Algorithm (MAA).

Since the relatively complex key expansion stage is independent of the message, a one-
time computation suffices for a fixed key. The mixing of various operations (arithmetic mod
232 _ 4 fori = 0,1 and2; XOR; and nonlinear AND-OR computations) is intended to
strengthen the algorithm against arithmetic cryptanalytic attacks.

MD5-MAC

A more corservative approat (cf. Exampk 9.66) to building a MAC from an MDC isto
arrange that the MAC compression function itself depené,omplying the secret key be
involved in all intervening iterations; this provides additional protection in the case that
weakness of the underlyirg hash function becorreknowr. Algorithm 9.69is such atech-
nigue, constructed using MD5. It provides performance close to that of MD5 (5-20% slower
in software).
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9.69 Algorithm MD5-MAC

INPUT: bitstringz of arbitrary bitlengthb > 0; key & of bitlength< 128.
OUTPUT: 64-bit MAC-value ofz.
MD5-MA C is obtainal from MD5 (Algorithm 9.51) by the following changs.

1. Congtants. The constant®/; andT; are as diéned ir Exampk 9.70
2. Key expansion.
(a) If kis shorter than 128 bits, concatenat® itself a sufficient number of times,
and redefiné to be the leftmost 128 bits.
(b) LetMD5 denote MD5 with both padding and appended length omitted. Expand
k into three 16-byte subkey&,, K, and K> as follows: fori from 0 to 2,
K; «+ MD5(k || U; || k).
(c) Partition each o, and K into four 32-bit substringg;[i], 0 < ¢ < 3.
. Ky replaces the four 32-bitV’s of MD5 (i.e., h; = Ky[i]).
. K1i] is addedmod 232 to each constant];] used in Round of MD5.
5. K, isused to construct the following 512-bit block, which is appended to the padded
inputz subsequent to the regular padding and length block as defined by MD5:
K| KeT| K@ T || K2 & To.
6. The MAC-value is the leftmost 64 bits of the 128-bit output from hashing this padded
and extended input string using MD5 with the above modifications.

AW

9.70 Example (MD5-MAC constants/test vectors) The 16-byte constani§ and three test vec-
tors (x, MD5-MAC(x)) for key k = 00112233445566778899aabbccddeef f are
given below. (Thél; themselves are derived using MD5 on pre-defined constants.) With
subscripts ifll; taken mod 3, the 96-byte constablg Uy, Us are defined:

Us=T| Tz+1 | Ti | Ti || Tiga || Tigo-
TO: 7 ef 45 ac 29 Of 43 cd 45 7e 1b 55 1c 80 11 34
T1: bl 77 ce 96 2e 72 8e 7c 5f 5a ab Oa 36 43 be 18
T2: 9d 21 b4 21 bc 87 b9 4d a2 9d 27 bd c¢7 5b d7 c3
", 1f 1ef 2375cc0e0844f 98e7e811a34da8)
("abc", e8013c11f 7209d1328c0caal4f d012a6)
(" abcdef ghi j kl mopgr st uvwxyz", 9172867eb60017884c6f a8c088ebe7c9)D

9.5.4 MACs for stream ciphers

Providing data origin authentication and data integrity guarantees for stream ciphers is par-
ticularly important due to the fact that bit manipulations in additive stream-ciphers may di-
rectly result in predictabé modificatiors of the underlyirg plaintex (e.g, Exampk 9.83.
While iteratad hash functions proces messge data a block at atime (89.3.1), MACs de-
signed for use with stream ciphers process messages either one bit or one symbol (block) at
a time, and those which may be implemented using linear feedback shift registers (LFSRS)
are desirable for reasons of efficiency.

Onesuch MA C techniqueAlgorithm 9.72 below, isbased on cyclic redundang codes
(cf. Exampk 9.80). In this case, the polynomid division may be implementd using an
LFSR. The foliowing definition is of use in what follows.
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9.73

9.74

Definition A (b, m) hash-family H is a collection of hash functions mappibgit mes-
sages tan-bit hash-values. Ab, m) hash-family iss-balanced if for all message3 +# 0
and allm-bit hash-values, prob, (h(B) = c)) < ¢, where the probability is over all ran-
domly selected functions € H.

Algorithm CRC-based MAC

INPUT: b-bit message3; shared key (see below) between MAC source and verifier.
OUTPUT:m-bit MAC-value onB (e.g.,m = 64).

1. Notation. AssociateB = By,_; ... By By with the polynomialB(z) = Z;’;& B;x'.
2. Section of MAC key.
(a) Select a random binary irreducible polynomigt) of degreen. (This repre-
sents randomly drawing a functidnfrom a (b, m) hash-family.)
(b) Select a random-bit one-time keyk (to be used as a one-time pad).
The secret MAC key consists pfz) andk, both of which must be shared a priori
between the MAC originator and verifier.
3. Computer(B) = coef (B(x) - 2™ mod p(z)), them-bit string of coefficients from
the degreen — 1 remainder polynomial after dividing(z) - ™ by p(z).
4. Them-bit MAC-value for B is: h(B)®k.

Fact (security of CRC-based MAC) For any values andm > 1, the hash-family resulting
from Algorithm 9.72 is e-balance for ¢ = (b + m)/(2™~!), and the probability of MAC
forgery is at most.

Remark (polynomial reuse) The hash function & in Algorithm 9.72 is determina by the
irreducible polynomiap(zx). In practice p(z) may be re-used for different messages (e.g.,
within a session), but for each message a new randon sypuld be used.

9.6 Data integrity and message authentication

This section considers the use of hash functions for data integrity and message authenti-
cation. Following preliminary subsections, respectively, providing background definitions
and distinguishing non-malicious from malicious threats to data integrity, three subsequent
subsections consider three basic approaches to providing data integrity using hash func-
tions, as summarizel in Figure 9.8.

9.6.1 Background and definitions

This subsection discusses data integrity, data origin authentication (message authentica-
tion), and transaction authentication.

Assurances are typically required both that data actually came from its reputed source
(data origin authentication), and that its state is unaltered (data integrity). These issues can-
not be separated — data which has been altered effectively has a new source; and if a source
cannot be determined, then the question of alteration cannot be settled (without reference
to a source). Integrity mechanisms thus implicitly provide data origin authentication, and
vice versa.
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Figure 9.8: Three methods for providing data integrity using hash functions. The second method provides

encipherment simultaneously.
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(i) Data integrity
Definition Dataintegrityis the property whereby data has not been altered in an unautho-
rized manner since the time it was created, transmitted, or stored by an authorized source.

Verification of data integrity requires that only a subset of all candidate data items sat-
isfies particular criteria distinguishing the acceptable from the unacceptable. Criteria al-
lowing recognizability of data integrity include appropriate redundancy or expectation with
respect to format. Cryptographic techniques for data integrity rely on either secret informa-
tion or authentt channeb (89.6.4).

The specific focus of data integrity is on the bitwise composition of data (cf. transac-
tion authentication below). Operations which invalidate integrity include: insertion of bits,
including entirely new data items from fraudulent sources; deletion of bits (short of deleting
entire data items); re-ordering of bits or groups of bits; inversion or substitution of bits; and
any combination of these, such as message splicing (re-use of proper substrings to construct
new or altered data items). Data integrity includes the notion that data items are complete.
For items split into multiple blocks, the above alterations apply analogously with blocks
envisioned as substrings of a contiguous data string.

(ii) Data origin authentication (message authentication)

Definition Data origin authentication is a type of authentication whereby a party is cor-
roborated as the (original) source of specified data created at some (typically unspecified)
time in the past.

By definition, data origin authentication includes data integrity.

Definition Message authentication is a term used analogously with data origin authenti-
cation. It provides data origin authentication with respect to the original message source
(and data integrity, but no uniqueness and timeliness guarantees).

Methods for providing data origin authentication include the following:

1. message authentication codes (MACS)
2. digital signature schemes
3. appending (prior to encryption) a secret authenticator value to encrypted text.

Data origin authentication mechanisms based on shared secret keys (e.g., MACs) do not
allow a distinction to be made between the parties sharing the key, and thus (as opposed to
digital signatures) do not provide non-repudiation of data origin — either party can equally
originate a message using the shared key. If resolution of subsequent disputes is a potential
requirement, either an on-line trusted third party in a notary role, or asymmetric techniques
(see Chapter 11) may be used.

While MACs and digital signatures may be used to establish that data was generated by
a specified party at some time in the past, they provide no inherent uniqueness or timeliness
guarantees. These techniques alone thus cannot detect message re-use or replay, which is
necessary in environments where messages may have renewed effect on second or subse-
guentuse. Such message authentication techniques may, however, be augmented to provide
these guarantees, as next discussed.

5Such asealed authenticator (cf. a MAC, sometimes called aappended authenticator) is used along with an
encryption method which provides error extension. While this resembles the technique of using encryption and
an ML C (§9.6.5), wherea the MDC is a (known) function of the plaintext a sealel authenticatoisitself secret.
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(iii) Transaction authentication

9.78 Definition Transaction authentication denotes message authentication augmented to ad-
ditionally provide uniqueness and timeliness guarantees on data (thus preventing unde-
tectable message replay).

The uniquenes and timelines guarantes o’ Definition 9.78 are typically provided
by appropriate use of time-variant parameters (TVPs). These include random numbers in
challenge-rgporese protocok, sequene numbes, and timestamps as discussed in §10.3.1.
This may be viewed as a combination of message authentication and entity authentication
(Definition 10.1). Loosely speking,

message authentication + TVP = transaction authentication.

As a simple example, sequence numbers included within the data of messages authen-
ticated by aMAC or digital signatue algorithm allow replay detectio (see Remak 9.79),
and thus provide transaction authentication.

As a second example, for exchanges between two parties involving two or more mes-
sages, transaction authentication on each of the second and subsequent messages may be
provided by including in the message data covered by a MAC a random number sent by the
other party in the previous message. This chaining of messages through random numbers
prevents message replay, since any MAC values in replayed messages would be incorrect
(due to disagreement between the random number in the replayed message, and the most
recent random number of the verifier).

Table 9.10 summarize the properties of these and othe types of authenticationAu-
theniicaiion in ine broadest sense encompasses not only data integrity and data origin au-
thentication, but also protection from all active attacks including fraudulent representation
and message replay. In contrast, encryption provides protection only from passive attacks.

— Property identification data | timeliness or| defined
J Type of authentication of source | integrity | unigueness in
message authentication yes yes — §9.6.1
transaction authentication yes yes yes §9.6.1
entity authentication yes — yes §10.1.1
key authentication yes yes desirable | §12.2.1

Table 9.10: Properties of various types of authentication.

9.79 Remark (sequencenumbersand authentication) Sequence numbers may provide unique-
ness, but not (real-time) timeliness, and thus are more appropriate to detect message replay
than for entity authentication. Sequence numbers may also be used to detect the deletion of
entire messages; they thus allow data integrity to be checked over an ongoing sequence of
messages, in addition to individual messages.

9.6.2 Non-malicious vs. malicious threats to data integrity

The techniques required to provide data integrity on noisy channels differ substantially from
those required on channels subject to manipulation by adversaries.

Checksums provide protection against accidental or non-malicious errors on channels
which are subject to transmission errors. The protection is non-cryptographic, in the sense
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that neither secret keys nor secured channels are used. Checksums generalize the idea of
a parity bit by appending a (small) constant amount of message-specific redundancy. Both
the data and the checksum are transmitted to a receiver, at which point the same redundancy
computation is carried out on the received data and compared to the received checksum.
Checksums can be used either for error detection or in association with higher-level error-
recovery strategies (e.g., protocols involving acknowledgements and retransmission upon
failure). Trivial examplesinclude an arithmetic checksum (compute the running 32-bit sum

of all 32-bit data words, discarding high-order carries), and a simple XOR (XOR all 32-

bit words in a data string)Error-correcting codes go one step further than error-detecting
codes, offering the capability to actually correct a limited number of errors without retrans-
mission; this is sometimes calléarward error correction.

Example (CRCs) Cyclic redundancy codes or CRCs are commonly used checksums. A
k-bit CRC algorithm maps arbitrary length inputs irktdit imprints, and provides signif-
icantly better error-detection capability th&rbit arithmetic checksums. The algorithm

is based on a carefully choséh -+ 1)-bit vector represented as a binary polynomial; for

k = 16, a commonly used polynomial (CRC-16)jgr) = 1+ 2%+ z'® + 6. A t-bit data
input is represented as a binary polynonaiat) of degreet — 1, and the CRC-value cor-
responding tel(z) is the 16-bit string represented by the polynomial remain@erwhen

216 . d(x) is divided byg(z);® nolynomial remaindering is analogous to computing integer
remainders by long division. For all messagés) with ¢ < 32 768, CRC-16 can detect

all errors that consist of only a single bit, two bits, three bits, or any odd number of bits, all
burst errors of bitlength 16 or less, 99.99724<(2~ 1) of 17-bit burst errors, and 99.998%
(1—2716) of all bursts 18 bits or longer. (Burst error of bitlengthb is any bitstring of ex-
actlyb bits beginning and ending withla) Analogous to the integer case, other data strings
d'(z) yielding the same remainder d&r) can be trivially found by adding multiples of the
divisor g(x) to d(z), or inserting extra blocks representing a multiplg;0f). CRCs thus

do not provide one-wayness as required for MDCs; in fact, CRCs are a class of linear (error
correcting) codes, with one-wayness comparable to an XOR-sum. O

While of use for detection of random erroksbit checksums are not of cryptographic
use, because typically a data string checksumming to any target value can be easily created.
One method is to simply insert or append to any data string of chokebitacorrecting-
block ¢ which has the effect of correcting the overall checksum to the desired value. For
example, for the trivial XOR checksum, if the target checksumi,insert as block the
XOR of ¢/ and the XOR of all other blocks.

In contrast to checksums, data integrity mechanisms based on (cryptographic) hash
functions are specifically designed to preclude undetectable intentional modification. The
hash-values resulting are sometimes cailligegrity check values (ICV), or cryptographic
check valuesin the case of keyed hash functions. Semantically, it should not be possible for
an adversary to take advantage of the willingness of users to associate a given hash output
with a single, specific input, despite the fact that each such output typically corresponds to
a large set of inputs. Hash functions should exhibit no predictable relationships or correla-
tions between inputs and outputs, as these may allow adversaries to orchestrate unintended
associations.

6 A modification is typically used in practice (e.g., complementifg)) to address the combination of an input
d(z) = 0 and a “stuck-at-zero” communications fault yielding a successful CRC check.
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9.6.3 Data integrity using a MAC alone

Message Authentication Codes (MACs) as discussed earlier are designed specifically for
applications where data integrity (but not necessarily privacy) is required. The originator

of a message computes a MAQ (x) over the message using a secret MAC keshared

with the intended recipient, and sends both (effectively hx(x)). The recipient deter-

mines by some means (e.g., a plaintext identifier field) the claimed source identity, sepa-
rates the received MAC from the received data, independently computes a MAC over this
data using the shared MAC key, and compares the computed MAC to the received MAC.
The recipient interprets the agreement of these values to mean the data is authentic and has
integrity — that is, it originated from the other narty which knows the shared key, and has
not been alterad in transit. This correspondsto Figure 9.8(a)

9.6.4 Data integrity using an MDC and an authentic channel

The use of a secretkey is not essential in order to provide data integrity. It may be eliminated
by hashing a message and protecting the authenticity of the hash via an authentic (but not
necessarily private) channel. The originator computes a hash-code using an MDC over the
message data, transmits the data to a recipient over an unsecured channel, and transmits the
hash-code over an independent channel known to provide data origin authentication. Such
authentic channels may include telephone (authenticity through voice recognition), any data
medium (e.qg., floppy disk, piece of paper) stored in a trusted place (e.g., locked safe), or
publication over any difficult-to-forge public medium (e.g., daily newspaper). The recipient
independently hashes the received data, and compares the hash-code to that received. If
these values agree, the recipient accepts the data as having integrity. This corresponds to
Figure9.8(c).

Exampie applications include virus protection of software, and distribution of software
or public keys via untrusted networks. For virus checking of computer source or object
code, this technique is preferable to one resulting in encrypted text. A common example
of combining an MDC with an authentic channel to provide data integrity is digital signa-
ture schemes such as RSA, which typically involve the use of MDCs, with the asymmetric
signature providing the authentic channel.

9.6.5 Data integrity combined with encryption

Whereas digital signatures provide assurances regarding both integrity and authentication,
in general, encryption alone provides neither. This issue is first examined, and then the
guestion of how hash functions may be employed in conjunction with encryption to pro-
vide data integrity.

() Encryption alone does not guarantee data integrity

A common misconception is that encryption provides data origin authentication and data
integrity, under the argument that if a message is decrypted with a key shared only with
party A, and if the decrypted message is meaningful, then it must have originatedifrom
Here “meaningful” means the message contains sufficient redundancy or meets some other
a priori expectation. While the intuition is that an attacker must know the secret key in
order to manipulate messages, this is not always true. In some cases he may be able to
choose the plaintext message, while in other cases he may be able to effectively manipulate
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plaintext despite not being able to control its specific content. The extentto which encrypted
messages can be manipulated undetectably depends on many factors, as illustrated by the
following examples.

Example (re-ordering ECB blocks) The ciphertext blocks of any block cipher used only
in ECB mode are subject to re-ordering. O

Example (encryption of random data) If the plaintext corresponding to a given cipher-

text contains no redundancy (e.g., arandom key), then all attempted decryptions thereof are
meaningful, and data integrity cannot be verified. Thus, some form of redundancy is always
required to allow verification of integrity; moreover, to facilitate verification in practice, ex-
plicit redundancy verifiable by automated means is required. O

Example (bit manipulationsin additive streamciphers) Despite the fact that the one-time

pad offers unconditional secrecy, an attacker can change any single bit of plaintext by mod-
ifying the corresponding bit of ciphertext. For known-plaintext attacks, this allows an at-
tacker to substitute selected segments of plaintext by plaintext of his own choosing. An
example target bit is the high-order bit in a numeric field known to represent a dollar value.
Similar comments apply to any additive stream cipher, including the OFB mode of any
block cipher. O

Example (bit manipulation in DES ciphertext blocks) Several standard modes of opera-
tion for any block cipher are subject to selective bit manipulation. Modifying the last cipher-
text block in a CFB chain is undetectable. A ciphertext block in CFB mode which yields
random noise upon decryptionis an indication of possible selective bit-manipulation of the
preceding ciphertext block. A ciphertext block in CBC mode which yields random noise
upon decryption is an indication of possible selective bit-manipulation of the following ci-
phertext block. For further discussion regarding error extension in standard modes of op-
eration see §7.2.2 O

(ii) Data integrity using encryption and an MDC

If both confidentiality and integrity are required, then the following data integrity technique
employing anm-bit MDC h may be used. The originator of a messagmmputes a hash
valueH = h(zx) over the message, appends it to the data, and encrypts the augmented
message using a symmetric encryption algoriffimith shared key, producing ciphertext

C = Bu( || h(x)) 9.2)

(Note that this differs subtlely from enciphering the message and the hash separately as
(Ex(z), Ex(h(x))), which e.g. using CBC requires two IVs.) This is transmitted to a recip-
ient, who determines (e.g., by a plaintext identifier field) which key to use for decryption,
and separates the recovered détfaom the recovered hadth’. The recipientthen indepen-
dently computes the hadifz’) of the received data’, and compares this to the recovered
hashH’. If these agree, thc rccovered data is accepted as both being authentic and having
integrity. This correspondsto Figure 9.8(b)

The intention is that tiie encrypiion protects the appended hash, and that it be infeasi-
ble for an attacker without the encryption key to alter the message without disrupting the
correspondence between the decrypted plaintext and the recovered MDC. The properties
required of the MDC here may be notably weaker, in general, than foran MDC used in con-
junction with, say, digital signatures. Here the requirement, effectively a joint condition on
the MDC and encryption algorithm, is that it not be feasible for an adversary to manipulate
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or create new ciphertext blocks so as to produce a new ciphé&rtexhich upon decryp-
tion will yield plaintext blocks having the same MDC as that recovered, with probability
significantly greater than 1 i2™.

Remark (separationof integrity and privacy) While this approach appears to separate pri-
vacy and data integrity from a functional viewpoint, the two are not independent with re-
spect to security. The security of the integrity mechanism is, at most, that of the encryption
algorithm regardless of the strength of the MDC (consider exhaustive search of the encryp-
tion key). Thought should, therefore, be given to the relative strengths of the components.

Remark (vulnerability to known-plaintext attack) In environments where known-plain-

text attacls are possble, the technique of equatian (9.2) should nat be used in conjunction

with additive stream ciphers unless additional integrity techniques are used. In this sce-
nario, an attacker can recover the key stream, then make plaintext changes, recompute a
new MDC, and re-encrypt the modified message. Note this attack compromises the man-
ner in which the MDC is used, rather than the MDC or encryption algorithm directly.

If confidentiality is not essential other than to support the requirement of integrity, an
apparent option is to encrypt only either the mesaagethe MDCh (). Neither approach
iscommonfor ressonsincluding Remark 9.85 end the generdundesirability to utilize en-
cryption primitives in systenis ieguiiiing oy integrity or authentication services. The fol-
lowing further comments apply:

1. encrypting the hash-codeonly: (z, Ej(h(z)))
Applyingthekey tothe hash-valueonly (cf. Exampk9.65) resultsin apropert (typi-
cal for public-key signatures but) atypical for MACs: pairs of inputs’ with collid-
ing outputs (MAC-values here) can be verifiably pre-determined without knowledge
of k. Thush must be collision-resistant. Other issues include: pairs of inputs having
the same MAC-value under one key also do under other keys; if the blocklength of
the cipherEy is less than the bitlengtt, of the hash-value, splitting the latter across
encryption blocks may weaken securikymust be reserved exclusively for this in-
tegrity function (otherwise chosen-text attacks on encryntion allow selective MAC
forgery); andE, mug not be an additive stream ciphe (see Remak 9.86).

2. encrypting the plaintext only: (Ej(x), h(z))
This offers little computational savings over encrypting both message and hash (ex-
cept for very short messages) and, as abbge), must be collision-resistant and thus
twice the typical MAC bitlength. Correct guesses of the plaintexay be confirmed
(candidate values’ for z can be checked by comparihgz’) to h(z)).

(i) Data integrity using encryption and a MAC
it is sumeiimnes suggested to use aMAC rathe than the MDC in the mechaném of equa-

tion (9.2) on page 365. In thiscase, aMAC algorithm Ay replaces the MD@, and rather
thanC = Ei(x || h(z)), the message sent is

C' = Ei(z || hir (2)) (9.3)

The use of a MAC here offers the advantage (over an MDC) that should the encryption al-
gorithm be defeated, the MAC still provides integrity. A drawback is the requirement of
managing both an encryption key and a MAC key. Care must be exercised to ensure that
dependencies between the MAC and encryption algorithms do not lead ta secuiity weak-
nesss, ard as a generhrecommendatiothese algorithns should be independety(see Ex-

ampk 9.88).
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Remark (precluding exhaustive MAC search) Encryptian of the MA C-value in equation
(9.3 precludes an exhaustie key seart attadk on the MA C key.

Two alternatives here include encrypting the plaintext first and then computing a MAC
over the ciphertext, and encrypting the message and MAC separately. These are discussed
in turn.

1. computing a MAC over the ciphertext: (Ex(x), hi (Ex(x))).
This allows message authentication without knowledge of the plaintétcipher-
text key). However, as the message authentication is on the ciphertext rather than the
plaintext directly, there are no guarantees that the party creating the MAC knew the
plaintextz. The recipient, therefore, must be careful about conclusions drawn — for
example, ifEy, is public-key encryption, the originator eafmay be independent of
the party sharing the kely with the recipient.

2. separate encryption and MAC: (Ex(x), hi(x)).
This alternative requires that neither the encryption nor the MAC algorithm compro-
mises the objectives of the other. In particular, in this case an additional requirement
on the algorithm is that the MAC on must not compromise the confidentiality of
x (cf. Definition 9.7). Keys (k, k') should also be independenhere e.g, to pre
clude exhauwtive seart on the weake algorithm compromaeing the othe (cf. Ex-
ampk 9.88). If k and k¥’ are nat independentexhatstive key seard is theoretically
possible even without known plaintext.

(iv) Data integrity using encryption —examples

Example (improper combination of CBC-MAC and CBC encryption) Consider using the
dataintegrity mecdanism of equation (9.3) with Ej being CBC-encryption with kek and
initialization vectorI V, h,.: {x) being CRC-MAC withk’ andIV’, andk = £/, IV = IV".

The datar = x5 . . . ; can then be processed in a single CBC pass, since the CBC-MAC
is equal to the last ciphertext bloek= Ej(c;—1®z;), and the last data blockis 1 = ¢,
yielding final ciphertextblock; 1 = Ex(c;®x:4+1) = Ex(0). The encrypted MAC is thus
independent of both plaintext and ciphertext, rendering the integrity mechanism completely
insecure. Care should thus be taken in combining a MAC with an encryption scheme. In
general, it is recommended that distinct (and ideally, independent) keys be used. In some
cases, one key may be derived from the other by a simple technique; a common sugges-
tion for DES keys is complementation of every other nibble. However, arguments favoring
independent keys include the danger of encryption algorithm weaknesses compromising
authentication (or vice-versa), and differences between authentication and encryption keys
with respetto key managemeiif e cycle Ses also Remak 13.32 d

An efficiency drawback in using distinct keys for secrecy and integrity is the cost of two
separaepasesover thedate. Exampk9.89illu stratesapropased datintegrity mechansm
(which appeared in a preliminary draft of U.S. Federal Standard 1026) which attempts this
by using an essentially zero-cost linear checksum; it is, however, insecure.

Example (CBEC &iciyjtion witii XOR checksum — CBCC) Consider using the data integ-

rity medanisi of equation (9.2) with E, being CBC-encryption with ke, z = xz1zs . ..

x; a message i biocks, aind as MDC function the simple XOR of all plaintext blocks,
h(z) = @'} z;. The quantityd = h(z) which serves as MDC then becomes plain-
text blockz;1. The resulting ciphertext blocks using CBC encryption with= IV are

¢i = Ex(z;®c,-1),1 < i <t—+ 1. Inthe absence of manipulation, the recovered plain-
textisz; = ¢;_1®Dx(c;). To see that this scheme is insecure as an integrity mechanism,
let ¢, denote the actual ciphertext blocks received by a recipient, resulting from possibly
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manipulated blocks;, and letz denote the plaintext recovered by the recipient by CBC
decryption with the proper IV. The MDC computed over the recovered plaintext blocks is
then

i=t i=t i=t—1 i=t
M' = (') = Pt = Pl @Di(e)) = IVa( P )o@ Di())
i=1 i=1

i=1 =1

M’ is compared for equality with} , | (= ¢;®Dy(c;,)) as a check for data integrity, or
equivalently, thats = M’'®z;,, = 0. By constructionS = 0 if there is no manipula-

tion (i.e., if ¢; = ¢;, which impliesz} = x;). Moreover, the sun$ is invariant under any
permutation of the valueg,1 < i < t (sinceDy(c:+1) appears as a term i, butc4

does not¢;; must be excluded from the permutable set). Thus, any of the Giishertext
blocks can be permuted without affecting the successful verification of the MDC. Further-
more, insertion into the ciphertext stream of any random bigdkice, or any set of such
pairs, will cancel itself out in the suii, and thus also cannot be detected. O

9.90 Example (CBC encryptionwith mod 2™ — 1 checksum) Conside as an alternativeto Ex-
ampke 9.89the smpleMDC function h(z) = 2221 x;, the sum of plaintext blocks asbit
integers with wrap-around carry (add overflow bits back into units kit}, i.e., the sum modulo
2™ — 1; consder n = 64 for ciphes of blockengh 64. The sum S from Exampe 9.89in
this case involves both XOR and addition modgfo— 1; both permutations ot ciphertext
blocks and insertions of pairs of identical random blocks are now detected. (This technique
should not, however, be used in environments subject to chosen-plaintext attackl)

9.91 Example (PCBC encryptionwith mod 2™ checksum) A non-standard, non-self-synchron-
izing mode of DES known gdlaintext-ciphertext block chaining (PCBC) is defined as fol-
lows, fori > 0 and plaintextc = z1x2 ... 24! ¢civ1 = Eg(zi4+19G;) whereGy = IV,
G; = g(zi,¢;) fori > 1, andg a simple function such agz;,c;) = (z; + ¢;) mod
264 A one-pass technique providing both encryption and integrity, which exploits the error-
propagation property of this mode, is as follows. Append an additional plaintext block to
provide redundancy, e.ge;1 = IV (alternatively: a fixed constant a#). Encrypt all
blocks of the augmented plaintext using PCBC encryption as defined above. The quantity
ctr1 =FEk(ri4109(z4, ct)) serves as MAC. Upon deciphermentegf ;, the receiver ac-
cepts the message as having integrity if the expected redundancy is evident in the recovered
block z;.1. (To avoid a known-plaintext attack, the functignn PCBC should not be a
simple XOR for this integrity application.) O

9.7 Advanced attacks on hash functions

A deeper understanding of hash function security can be obtained through consideration of
various general attack strategies. The resistance of a particular hash function to known gen-
eral attacks provides a (partial) measure of security. A selection of prominent attack strate-
gies is presented in this section, with the intention of providing an introduction sufficient to
establish that designing (good) cryptographic hash functions is not an easily mastered art.
Many other attack methods and variations exist; some are general methods, while others
rely on peculiar properties of the internal workings of specific hash functions.
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9.7.1 Birthday attacks

9.92

9.93

Algorithm-independent attacks are those which can be applied to any hash function, treat-
ing it as a black-box whose only significant characteristics are the output bitler{gtid

MAC key bitlength for MACs), and the running time for one hash operation. It is typi-
cally assumed the hash output approximates a uniform random variable. Attacks falling
under this category include those based on hash-result bitsize (page 336); exhaustive MAC
key search (page 336); and birthday attacks on hash functions (including memoryless vari-
ations) as discussed below.

() Yuval's birthday attack on hash functions

Yuval's birthday attack was one of the first (and perhaps the most well-known) of many
cryptographic applications of the birthday paradox arising from the classical occupancy
distribution (§2.1.9: when drawing elemens randomy, with replacementfrom a set of

N elements, with high probability a repeated element will be encountered aRéN®(
selections. Such attacks are among those catjeare-root attacks.

The relevance to hash functions is that it is easier to find collisions for a one-way hash
function than to find pre-images or second preimages of specific hash-values. As a result,
signature schemes which employ one-way hash functions may be vulreravie io Yuval's at-
tadk outlined below. The attadk is applicabéto all unkeyel hash functiors (cf. Fad 9.33),
with running timeO(2™/2) varying with the bitlengthn of the hash-value.

Algorithm Yuval's birthday attack

INPUT: legitimate message, ; fraudulent message,; m-bit one-way hash functioh.
OUTPUT: 2}, x4 resulting from minor modifications af;, xo with h(z]) = h(z})
(thus a signature om serves as a valid signature of).

1. Generate = 2™/2 minor modificationse} of ;.

2. Hash each such modified message, and store the hash-values (grouped with corre-
sponding message) such that they can be subsequently searched on hash-value. (This
can done in O total time using conventional hashing.)

3. Generate minor modificationg of z2, computingh(z5) for each and checking for
matches with any} above; continue until a match is found. (Each table lookup will
require constant time; a match can be expected after alwaudidates,.)

Remark (application of birthday attack) The idea of this attack can be used by a dishon-
est signer who provides to an unsuspecting party his signaturé and later repudiates
signing that message, claiming instead that the message signed wasy a dishonest
verifier, who is able to convince an unsuspecting party to sign a prepared me$sagd
later claim that party’s signature afj. This remark generalizes to other schemes in which
the hash of a message is taken to represent the message itself.

Regarding practicality, the collisions produced by the birthday attack are “real” (vs.
pseudo-collisions or compression function collisions), and moreover of direct practical con-
sequence when messages are constructed to be meaningful. The latter may often be done as
follows: alter inputs via individual minor modifications which create semantically equiva-
lent messages (e.g., substituting tab characters in text files for spaces, unprintable characters
for each other, etc.). For 128-bit hash functions, 64 such potential modification points are
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required to allow25* variations. The attack then require$2®') time (feasible with ex-
treme parallelization); and while it requires space f¢2®) messages (which is impracti-
cal), the memory requirement can be addressed as discussed below.

(i) Memoryless variation of birthday attack

To removwe the memoy requiremenaof Algorithm 9.92, a determingtic mappirg may be

used which approximates a random walk through the hash-value space. By the birthday
paradox, in a random walk through a space'sfpoints, one expects to encounter some
point a second time (i.e., obtain a collision) aft&{2™/?) steps, after which the walk will
repeat its previous path (and begin to cycle). General memoryless cycle-finding techniques
may then be used to find this collision. (Henemorylessmeans requiring negligible mem-

ory, rather than in the stochastic sense.) These include Floyd's cycle-finding algorithm
(§3.2.2 and improvemersto it.

Following Algorithm 9.92, let g be a function such tha g(z1, H) = ) is a minor
modification, determined by the hash-valde of message; (each bit ofH might define
whether or not to modifyt; at a pre-determined modification point). af is fixed, then
g essentially maps a hash-result to a message and it is convenient tgw(itg) = 7.
Moreover, letg be injective so that distinct hash&sresult in distinct} . Then, with fixed
messages;, z2, and using some easily distinguishable property (e.g., parity) which splits
the space of hash-values into two roughly equal-sized subsets, define a funua@ping
hash-results to hash-results by:

| h(gs,(H)) if Hiseven
)= { h(gm (H)) if Hisodd (9.4)

The memoryless collision search technique (see above) is then used to find two inputs to
which map to the same output (i.e., collide)hlbehaves statistically as a random mapping
then, with probability0.5, the parity will differ in H and H’' for the colliding inputs, in
which case without loss of generality(g,,(H)) = h(g.,(H’)). This yields a colliding

pair of variationst] = g, (H), x4 = g.,(H') of distinct messages, , 2, respectively,
such that(z}) = h(z}), as per the output of Algonthm 9.92

(iii) Mustrative application to MD5

Actud applicatian of the abowe generc attad to a specific hash function raises additional
technicalities. To illustrate how these may be addressed, such application is now examined,
with assumptions and choices made for exposition onlyhltet an iterated hash function
processing messages in 512-bit blocks and producing 128-bit hashes (e.g., MD5, RIPEMD-
128). To minimize computationbexperse, restrict r (effectively g and k) in equation (9.4)
to single 512-hit blocks of;, such that each iteration efinvolves only the compression
function f on inputs one message block and the current chaining variable.

Let the legitimate message inptit consist ofs 512-bit blocks § > 1, prior to MD-
strengthening). Create a fraudulent messagef equal bitlength. Allowz, to differ from
x1 up to and including thg*® block, for any fixedj < s — 1. Use the(j + 1)* block of z;,
denotedB; (i = 1, 2), as amatching/replacementblock, to be replaced by the 512-bit blocks
resulting from the collision search. Set all blocksiinsubsequent t@; identically equal
to those inzq; «; will then differ fromz; only in the single blocK;j + 1). For maximum
freedom in the construction af,, choosej = s — 1. Letcy, ¢ be the respective 128-bit
intermediate results (chaining variables) after the iterated hash operates on jhadicks
of 1, 2. Compression functiofi maps(128 + 512 =) 640-bit inputs tal 28-bit outputs.
Sinae the chainirg variables depem on z;, g.,(= g¢) may be defined independent of
her (cf. equatia (9.4)), assuume both entire blocks B; may be replaced without practical
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implication. Letg(H) = B denote an injective mapping from the space of 128-bit hash-
values to the space of 512-bit potential replacement blocks, defined as follows: map each
two-bit segment off to one of four 8-bit values in the replacement bldgk (A practical
motivation for this is that ifr; is an ASCIl message to be printed, and the four 8-bit values
are selected to represent non-printable characters, then upon printing, the resulting blocks
B are all indistinguishable, leaving no evidence of adversarial manipulation.)

The collision-finding functiom for this specific example (corresponding to the generic
equatian (9.4)) isthen:

fler, g(H)) if Hiseven
r(H) :{ s, §<H)) if H is odd

Collisions for MD5 (and similar hash functions) can thus be foun®{2%*) operations
and without significant storage requirements.

9.7.2 Pseudo-collisions and compression function attacks

9.94

9.95

The exhawstive or brute force method discussed in §9.3.4 producirg preimags, 2nd-pre-
images, and collisions for hash functions, are always theoretically possible. They are not
considered true “attacks” unless the number of operations required is significantly less than
both the strength conjectured by the hash function designer and that of hash functions of
similar parameters with ideal strength. An attack requiring such a reduced number of oper-
ations is informally said tbreak the hash function, whether or not this computational effort

is feasible in practice. Any attack method which demonstrates that conjectured properties
do not hold must be taken seriously; when this occurs, one must admit the possibility of
additional weaknesses.

In addition to considering the complexity of finding (ordinary) preimages and colli-
sions, it is common to examine the feasibility of attacks on slightly modified versions of
the hash function in question, for reasons explained below. The most common case is ex-
amination of the difficulty of finding preimages or collisions if one allows free choice of
IVs. Attacks on hash functions with unconstrained Vs dictate upper bounds on the security
of the actual algorithms. Vulnerabilities found, while not direct weaknesses in the overall
hash function, are nonetheless considered certificational weaknesses and cast suspicion on
overall security. In some cases, restricted attacks can be extended to full attacks by standard
techniqgues.

Table 9.11 lists the mast commonyy examined variatiors, includingpseudo-collisions
— collisions allowing different IVs for the different message inputs. In contrast to preim-
ages and collisions, pseudo-preimages and pseudo-collisions are of limited direct practical
significance.

Note (alternate names for collision and preimage attacks) Alternate names for those in
Table 9.11 ere as follows. preimage or 2nd-preimag = target attack; pseudo-preimage
= free-siari target attack; collision (fixed IV) = collision attack; collision (random V)=
semi-free-start collision attack; pseudo-collisior= free-start collision attack.

Note (relativedifficulty of attacks) Finding a collision can be no harder than finding a 2nd-
preimage. Similarly, finding a pseudo-collision can be no harder than finding (two distinct)
pseudo-preimages.
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9.96

9.97

9.98

| | Type of attack VIV ][z ][] y | Find. .. |

preimage Vol—1*|—| o z: h(Vo, ) = yo
pseudo-preimage Fol—|* | = Yo xz, Vi h(V,z) =yo
2nd-preimage Vol Vo lzo| * | A(Vo,zo) | 2" R(Vh,z0) = h(Vo,2')
collision (fixed IV) VolVol *|* — z,x’"

h(Vo, z) = h(Vo,z")
collision (random IV)|| * |V | * | * — x, 2, V:

h(V,z) = h(V,')
pseudo-collision S I I — z, 2, V,V':

h(V,z) = h(V', 2')

Table 9.11: Definition of preimage and collision attacks. V and V' denote (potentially different)
IVs used for MDC h applied to inputs = and ', respectively; V, denotes the IV pre-specified in the
definition of h, xzo a pre-specified target input, and y = yo a pre-specified target output. * Denotes
Vs or inputs which may be freely chosen by an attacker; h(Vo, zo) denotes the hash-code resulting
from applying h with fixed IVV = V; toinput z = 2. — Means not applicable.

Example (trivial collisions for random IVs) If free choice of IV is allowed, then trivial
pseudo-collisions can be found by deleting leading blocks from a target message. For exam-
ple, for aniterated hash (cf. equatian (9.1) on page 333), h(IV, z122) = f(f(IV,x1), z2).
Thus, forIV’ = f(IV,z1), h(IV’',x2) = h(IV, z122) yields apseudo-collision of h, in-
dependetof the strength of f. (MD-strengtheniig as per Algorithm 9.26 precludaethis.)

]

Another common analysis technique is to consider the strength of weakened variants of
an algorithm, or attack specific subcomponents, akin to cryptanalyzing an 8-round version
of DES in place of the full 16 rounds.

Definition An attack onthe compression functionof an iterated hash functionis any attack
asper Table9.11with f(H;_1, z;) replacingh(Vy, ) —the compression functiofiin place

of hash functiork, chaining variabld?; _; in place of initializing valué/, and a single input
block z; in place of the arbitrary-length message

An attack on a compression function focuses on one fixedistéthe iterative func-
tion o equatian (9.1). The entire message corsists of a single block z; = z (without
MD-strengthening), and the hash output is taken to be the compression function output so
h(z) = H;. The importance of such attacks arises from the following.

Note (compression functionvs. hash function attacks) Any of the six attacksof Table9.11

which is found for the compression function of an iterated hash can be extended to a similar
attad of roughly equd complexity on the overal hash. An iteratal hash function is thus

in this regad at most as strong as its compresgon function (Howeve note for example,

an overall pseudo-collision is not always of practical concern, since most hash functions
specify a fixed IV.)

For example, consider amessage z1z- . .. z;. Suppose a successful 2nd-preimage
attack on compression functighyields a 2nd-preimage;, # z; such thatf(IV,z}) =
fIV,z1). Thenz' = zjzy ...z, is a preimage oh(z).

More positively, if MD-strengthening is used, the strength of an iterated hash with
respet to the attacls of Table 9.11 is the same as that of its compressio function (cf.
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9.99

Fad 9.24). Howevae, an iteratad hady may certainly be weake than its compressio func-
tion (e.g, Exampk 9.96 Fad 9.37)

In summary, a compression function secure against preimage, 2nd-preimage, and col-
lision (fixed 1V) attacks is necessary and sometimes, but not alwavs, sufficient for a secure
iterated hash ard security agains the othe (i.e., free-star} attacls of Table 9.11 is; desti-
able, but not always necessary for a secure hash function in praciice. For inis reason, com-
pression functicns are analyzed in isolation, and attacks on compression functions as per
Definition 9.97 are corsidered A further result motivating the study of pseudo-preimages

in thA fAallAnnne~
1O UL 1VHUVVITY.

Fact (pseudo-preimages yielding preimages) If the compression functioif of an n-bit
iterated hash functioh does not have ideal computational securt)(against pseudo-

Table 9.2). Thisresut istrue even if h has MD-strengherning.

Justification. The attack requires messages of 3 or more blocks, with 2 or more uncon-
strained to allow a meet-in-the-middle attack (page 374). If pseudo-preimages can be found
in 2° operations, the@("*+%)/2 forward points an@("~*)/2 backward points are employed
(fewer backward points are used since they are more costly). Preimages can thus be found
in 2 - 2(n+5)/2 pperations.

9.7.3 Chaining attacks

9.100

Chaining attacks are those which are based on the iterative nature of hash functions and, in
particular, the use of chaining variables. These focus on the compression fufcaibrer

than the overall hash functign and may be further classified as below. An example for
context is first given.

Example (chainingattack) Consider a (candidate) collision resistant iterative hash func-
tion h producing a 128-bit hash-result, with a compression funcfigaking as inputs a
512-bit message block; and 128-bit chaining variabld; (H, = IV) and producing out-
putH;.1 = f(H;, ;). For afixed 10-block message(640 bytes), considell = h(x).
Suppose one picks any one of the 10 blocks, and wishes to replace it with another block
without affecting the hasliZ. If h behaves like a random mapping, the number of such
512-bit blocks is approximateBp? /2128 = 2384 Any efficient method for finding any

one of thes@3%* blocks distinct from the original constitutes an attackwoi he challenge

is that such blocks are a sparse subset of all possible blocks, abo2t?.in O

(i) Correcting-block chaining attacks

Using the example above for context, one could attempt to (totally) replace a massage
with a new message’, such that(z) = h(z'), by using a single unconstrained “correct-

ing” block in z’, designated ahead of time, to be determined later such that it produces a
chaining value which results in the overall hash being equal to targetatiieSuch acor-

recting block attack can be used to find both preimages and collisions. If the unconstrained
block is the first (last) block in the message, it is callesbaecting first (last) block at-

tack. These attacks may be precluded by reguiring per-block redundancy, but this results in
an undesirable bandwidh penaly. Exampk9.10L illu stratesacorrectirg first block attack.

The extension of Yuval's birthday attack (page 369), with message alterations restricted to
the last block of candidate messages, resembles a correcting last block attack applied simul-
taneously to two messages, seeking a (birthday) collision rather than a fixed overall target
hash-value.
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9.101 Example (correcting block attack on CBC cipher mode) The CBC mode of encryption
with non-secretkeyl, = IV; H; = Ey(H;_1®z;)) is unsuitable as an MDC algorithm,
because it fails to be one-way — the compression function is reversible when the encryption
key is known. A messag€, of unconstrained length (sa@ylocks) can be constructed to
have any specified target hash-valdeas follows. Letr), ...z, bet — 1 blocks chosen
freely. SetH, <— H, thenforifromttol computeH; , < Dy(H])®x}. Finally, compute
xf < Dy (Hy)®IV. Then, fore’ = ziz, ...z}, h(z’) = H and all but blocke} (which
will appear random) can be freely chosen by an adversary; even this minor drawback can
be partially addressed by a meet-in-the-middle strategy (see below). Analogous remarks
apply to the CFB mode. O

(i) Meet-in-the-middle chaining attacks

These are hirthday attacks similar to Yuval's (and which can be made essentially memory-
less) but which seek collisions on intermediate results (i.e., chaining variables) rather than
the overall hash-result. When applicable, they allow (unlike Yuval's attack) one to find a
message with a pre-specified hash-result, for either a 2nd-preimage or a collision. An at-
tack point is identified between blocks of a candidate (fraudulent) message. Variations of
the blocks preceding and succeeding this point are generated. The variations are hashed
forward from the algorithm-specified IV (computid = f(H;_1, z;) as usual) and back-
ward from the target final hash-result (computiig= f~'(H;1, x;.1) for someH,, 1,

zi+1, ideally forz;; chosen by the adversary), seeking a collision in the chaining vari-
able H; at the attack point. For the attack to work, the attacker must be able to efficiently
gG backward throudh the chain (certainly moreso than by brute force — e.g., see Exam-

ple 9.102), i.e., invert the compresson function in the following manner given a value

H;y1, find a pair(H;, z;41) such thatf (Hi, zi11) = Hit1.

9.102 Example (meet-in-the-middle attack on invertible key chaining modes) Chaining modes
which allow easily derived stage keys result in reversihle comnression functions unsuitable
for use in MDCs due to lack of one-waynes (cf. Exampk 9.101). An exampe of such
invertible key chaining methods is Bitzer’s schemdi, = IV, H; = f(H;—1,2;) =
Ey,(H;—1) wherek; = z;®s(H;_1) ands(H;_1) is a function mapping chaining variables
to the key space. For exposition, kebe the identity function. This compression function
is unsuitable because it falls to a meet-in-the-middle attack as outlined above. The ability
to move backwards through chaining variables, as required by such an attack, is possible
here with the chaining variable; computed fromH, . ; as follows. Choose a fixed value
kit1 < k, computeH; < Dy (H;;1), then choose as message blegk; < k®H;. O

(i) Fixed-point chaining attacks

A fixed point of a compression function is a pdifl;_1, z;) suchthatf (H;_1,z;) = H;_1.

For such a pair of message block and chaining value, the overall hash on a message is un-
changed upon insertion of an arbitrary number of identical blaglka the chain point at

which that chaining value arises. Such attacks are thus of concern if it can be arranged that
the chaining variable has a value for which a fixed point is known. This includes the fol-
lowing cases: if fixed points can be found and it can be easily arranged that the chaining
variable take on a specific value; or if for arbitrary chaining valligs;, blocksz; can

be found which result in fixed-points. Fixed points allow 2nd-preimages and collisions to
be produceg their effect can be counterd by inclusion of a trailing length-blok (Algo-

rithm 9.26).
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(iv) Differential chaining attacks

Differential cryptanalysis has proven to be a powerful tool for the cryptanalysis of not only
block ciphers but also of hash functions (including MACs). For multi-round block ciphers
this attack method examines input differences (XORSs) to round functions and the corre-
sponding output differences, searching for statistical anomalies. For hash functions, the
examination is of input differences to compression functions and the corresponding output
differences; a collision corresponds to an output difference of zero.

9.7.4 Attacks based on properties of underlying cipher

9.103

The implications of certain properties of block ciphers, which may be of no practical con-
cern when used for encryption, must be carefully examined when such ciphers are used
to construct iterated hash functions. The general danger is that such properties may facil-
itate adversarial manipulation of compression function inputs so as to allow prediction or
greater control of outputs or relations between outputs of successive iterations. Included
among block cipher properties of possible concern are the following (cf. Chapter 7):

1. complementation property: y = Ex(r) <= y = E(T), whereT denotes bitwise
complement. This makes it trivial to find key-message pairs of block cipher inputs
whose outputs differ in a pre-determined manner. For example, for such a block ci-
pherE, the compression functiof( H; 1, z;) = Ey, @, (z:)®z; (alinear trans-
formation of the Matyas-Meyer-Oseas function) produces the same outpuiefind
its bitwise complemernt;.

2. weak keys: Ej(Ex(x)) = « (for all z). This property of involution of the block
cipher may allow an adversary to easily create a two-step fixed point of the compres-
sion functionf in the case that message bloak$ave direct influence on the block
cipher key input (e.g., if = E., (H;_1), insert 2 blocks;; containing a weak key).

The threat is similar fosemi-weak keys, whereE} (Ex(z)) = x.

3. fixed points: Ey(x) = . Block cipher fixed points may facilitate fixed-point attacks
if an adversary can control the block cipher key input. For example, for the Davies-
Meyer compression functiofi( H;_1,x;) = E.,(H;—1)®H;_1, if H;_; is a fixed
point of the block cipher for key; (i.e., E,,(H;—1) = H;_1), then this yields a
predictable compression function outg{td; 1, ;) = 0.

4. key collisions: Ey(z) = Ey (z). These may allow compression function collisions.

Although they may serve as distinguishing metrics, attacks which appear purely certi-
ficational in nature should be noted separately from others; for example, fixed point attacks
appear to be of limited practical consequence.

Example (DES-based hash functions) Consider DES as the block cipher in question (see
§7.4). DES has the complementatio property;, has 4 weegk keys and 6 pairs of semi-weak

keys (each with bit 2 equal to bit 3); each weak key P¥sfixed points (thus a random
plaintext is a fixed point of some weak key with probabitity®°), as do 4 of the semi-

weak keys; and key collisions can be foun@i operations. The security implications of
these properties must be taken into account in the design of any DES-based hash function.
Concerns regarding both weak keys and the complementation property can be eliminated
by forcing key bits 2 and 3 to be 10 or 01 within the compression function. O
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9.8 Notes and further references

§9.1

§9.2

The definitive reference for cryptographic hash functions, and an invaluable source for the
material in this chapter (including many otherwise unattributed results), is the comprehen-
sive treatment of Preneel [1003, 1004]; see also the surveys of Preneel [1002] and Preneel,
Govaerts, and Vandewalle [1006]. Davies and Price [308] also provide a solid treatment
of message authentication and data integrity. An extensive treatment of conventional hash-
ing, including historical discussion tracing origins back to IBM in 1953, is given by Knuth
[693, p.506-549]. Independent of cryptographic applicatioinjer sal classes of hash func-
tionswere introduced by Carter and Wegman [234] in the late 1970s, the idea being to find
a class of hash functions such that for every pair of inputs, the probability was low that a
randomly chosen function from the class resulted in that pair colliding. Shortly thereafter,
Wegman and Carter [1234] noted the cryptographic utility of these hash functions, when
combined with secret keys, for (unconditionally secure$sage authentication tag sys-

tems; they formalized this concept, earlier considered by Gilbert, MacWilliams, and Sloane
[454] (predating the concept of digital signatures) who attribute the problem to Simmons.
Simmons ([1138],[1144]; see also Chapter 10 of Stinson [1178]) independently developed
a general theory of unconditionally secure message authentication schemes and the subject
of authentication codes (see also §9.5 below).

Rabin [1022, 1023] first suggested employing a one-way hash function (constructed by us-
ing successive message blocks to key an iterated block encryption) in conjunction with a
one-time signature scheme and later in a public-key signature scheme; Rabin essentially
noted the requirements of 2nd-preimage resistance and collision resistance. Merkle [850]
explored further uses of one-way hash functions for authentication, including the idea of
tree authentication [852] for both one-time signatures and authentication of public files.

Merkle [850] (partially published as [853]) was the first to give a substantial (informal) def-
inition of one-way hash functions in 1979, specifying the properties of preimage and 2nd-
preimage resistance. Foreshadowing UOWHFs (see below), he suggested countering the
effect of Remaik 9.36 by using dightly differert hash functions h over time; Merkle [850,
p.16-18] also proposed a public key distribution method based on a one-way hash function
(effectively used as a one-way pseudo-permutation) and the birthday paradox, in a precur-
sor to his “puzzle system” (see page 537). The first formal definition of a CRHF was given
in 1988 by Damgtd [295] (an informal definition was later given by Merkle [855, 854];
see also [853]), who was first to explore collision resistant hash functions in a complexity-
theoretic setting. Working from the idea daw-resistant pairs of trapdoor permutations

due to Goldwasser, Micali, and Rivest [484], Daang) definectlaw-resistant families of
permutations (without the trapdoor property). The terctaw-resistant (originally: claw-

free) originates from the pictorial representation of a functional mapping showing two dis-
tinct domain elements being mapped to the same range element under distinct fufiétions
andf() (colliding atz = f((z) = ) (y)), thereby tracing out a claw.

Goldwasser et al. [484] established that the intractability of factoring suffices for the exis-
tence of claw-resistant pairs of permutations. Damghowed that the intractability of the

discrete logarithm problem likewise suffices. Using several reasonably efficient number-
theoretic constructions for families of claw-resistant permutations, he gave the first prov-
ably collision resistant hash functions, under such intractability assumptions (for discrete
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logarithms, the assumption required is that talgpegific discrete logarithms be difficult).
Russell [1088] subsequently established that a collection of collision resistant hash func-
tions exists if and only if there exists a collectionabdw-resistant pairs of pseudo-per mu-
tations; a pseudo-permutation on a set is a function computationally indistinguishable from
a permutation (pairs of elements demonstrating non-injectivity are hard to find). It remains
open whether the existence of one-way functions suffices for the existence of collision re-
sistant hash functions.

The definition of a one-wg function (Definition 9.9) was given in the semina pape of

Diffie and Hellman [345], along with the use of the discrete exponential function modulo

a prime as a candidate OWF, which they credit to Gill. The idea of providing the hash-
value of some data, to indicate prior commitment to (or knowledge of) that data, was uti-
lized in Lamport’s one-time signature scheme (circa 1976); see page 485. The OWF of
Exampk9.13 wasknown to Matyasand Meye circal979 Asnoted by Massy [786], the

idea of one-wayness was published in 1873 by J.S. Jevons, who noted (preceding RSA by a
century) that multiplying two primes is easy whereas factoring the result is not. Published
work dated 1968 records the use of ciphers essentially as one-way functions (decryption
was not required) in a technique to avoid storing cleartext computer account passwords in
time-shared systems. These were referred tmnasvay ciphers by Wilkes [1244] (p.91-

93 in 1968 or 1972 editions; p.147 in 1975 edition), who credits Needham with the idea
and an implementation thereof. The first proposal of a non-invertible function for the same
purpose appears to be that of Evans, Kantrowitz, and Weiss [375], while Purdy [1012] pro-
posed extremely high-degree, sparse polynomials over a prime field as a class of functions
which were computationally difficult to invert. Foreshadowing later research into collision
resistance, Purdy also defined tiegeneracy of such a function to be the maximum number

of preimages than any image could have, noting that “if the degeneracy is catastrophically
large there may be no security at all”.

Naor and Yung [920] introduced the cryptographic primitive known ars zer sal one-way

hash function (UOWHF) family, and give a provably secure construction for a one-way hash
function from a one-way hash function which compresses by a single bitl (to ¢ bits);

the main property of a UOWHF family is 2nd-preimage resistance as fora OWHF, but here
an instance of the function is picked at random from a family of hash functions after fixing
an input, as might be modeled in practice by using a random IV with a OWHF. Naor and
Yung [920] also prove by construction that UOWHFs exist if and only if one-way permu-
tations do, and show how to use UOWHFs to construct provably secure digital signature
schemes assuming the existence of any one-way permutation. Building on this, Rompel
[1068] showed how to construct a UOWHF family from any one-way function, and based
signature schemes on such hash functions; combining this with the fact that a one-way func-
tion can be constructed from any secure signature scheme, the result is that the existence of
one-way functions is necessary and sufficient for the existence of secure digital signature
schemes. De Santis and Yung [318] proceed with more efficient reductions from one-way
functions to UOWHFs, and show the equivalence of a number of complexity-theoretic def-
initions regarding collision resistance. Impagliazzo and Naor [569] give an efficient con-
struction for a UOWHF and prove security equivalent to the subset-sum probldidiP(an

hard problem whose corresponding decision probleNAscomplete); for parameters for
which a random instance of subset-sum is hard, they argue that this UOWHF is secure (cf.
Remaik 9.12). Impagliazzg Levin, and Luby [568] prove the existene of one-wg func-

tions is necessary and sufficient for that of secure pseudorandom generators.

Application-specific (often unprovable) hash function properties beyond collision resist-
ance (but short of preimage resistance) may often be identified as necessary, e.g., for or-
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§9.3

§9.4

dinary RSA signatures computed directly after hashing, the multiplicative RSA property
dictates that for the hash functi@gnused it be infeasible to find messagesey, 2 such
thath(z) = h(z1) - h(z2). Anderson [27] discusses such additional requirements on hash
functions. For a summary of requirements on a MAC in the special case of multi-cast au-
thentication, see Preneel [1003]. Bellare and Rogaway [93] include discussion of issues
related to the random nature of practical hash functions, and cryptographic uses thereof.
Damgdrd [295] showed that the security of a digital signature scheme which is not existen-
tially forgeable under an adaptive chosen-message attack will not be decreased if used in
conjunction with a collision-resistant hash function.

Bellare, Goldreich, and Goldwasser [88] (see also [89]) introduce the idearefental
hashing, involving computing a hash value over data and then updating the hash-value after
changing the data; the objective is that the computation required for the update be propor-
tional to the amount of change.

Merkle'smeta-methd [854] (Algorithm 9.25) was based onideasfrom his 1979 Ph.D. the-

sis [850]. An equivalent construction was given by Damp[296], which Gibson [450]
remarks on again yielding Merkle’'s method. Naor and Yung [920] give a related construc-
tion for 2UOWHE See Preneé[1003] for fundamenthresults (¢’. Remarks9.35 a1 9.36,

ani Fad 9.27 on cascadig has functiors which follow similar resuls on strean ciphers

by Maure ard iviassey [822]). The paddirgmethal of Algorithms9.29 and 9.30 criginated

from ISO/IEC 10118-4[608]. The basicideaof thelong-messageattad: (Faa 9.3/ isfrom
Winternitz [1250].

The hash function of Algorithm 9.42 ard referred to as Davies-Meye (as cited per Quis-

guater and Girault [1019]) has been attributed by Davies to Meyer; apparently known to
Meyer and Matyas circa 1979 it was published along with Algorithm 9.41 by Matyas,

Meyer, and Oseas [805]. The MiyaguchiPreneé schene (Algorithm 9.43) was proposed

circa 1989 by Preneel [1003], and independently by Miyaguchi, Ohta, and lwata [886]. The
three single-lengh rate-ore schemes discussed (Remaik 9.44) are amorg 12 compresson
functions employingron-invertible chaining found through systematic analysis by Preneel

et al. [1007] to be provably secure under black-box analysis, 8 being certificationally vul-
nerable to fixed-point attack nonetheless. These 12 are linear transformations on the mes-
sage block and chaining variable (i.e,, H'] = Alz, H] for any of the 6 invertible x 2

binary matrices A) of the Matyas-Meye-Osea (Algorithm 9.41) and Miyaguchi-Preneel
schemes; these latter two themselves are among the 4 recommended when the underlying
cipher is resistant to differential cryptanalysis (e.g., DES), while Davies-Meyer is among
the remaining 8 recommended otherwise (e.g., for FEAL). MDC-2 and MDC-4 are of IBM
origin, proposed by Brachtl et al. [184], and reported by Meyer and Schilling [860]; details

of MDC-2 are also reported by Matyas [803]. For a description of MDC-4, see Bosselaers
and Preneel [178].

The DES-based hash function of Merkle [855] which is mentioned uses the meta-method
and employs a compression functibmapping 119-bit input to 112-bit output in 2 DES
operations, allowing 7-bit message blocks to be processed (with rate 0.055). An optimized
version maps 234 bits to 128 bits in 6 DES operations, processing 106-bit message blocks
(with rate 0.276); unfortunately, overheads related to “bit chopping” and the inconvenient
block size are substantial in practice. This construction is nrovably as secure as the under-
lying block ciphe assuming an unflawed ciphe (cf. Table 9.3, Prened [1003] shows that
accounting for DES weak keys and complementaiioii aiops the rate slightly to 0.266). Win-

©1997 CRC Press LLC



Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:10 22 March 2017

ternitz [1250] considers the security of the Davies-Meyer hash under a black-box model (cf.
Remark 9.45).

The search for secure double-length hash functions of rate 1 is ongoing, the goal being
security better than single-length Matyas-Meyer-Oseas and approaching that of MDC-2.
Quisquater and Girault [1019] proposed two functions, one (QG-original) appearing in the
Abstracts of Eurocrypt’89 and a second (QG-revised) in the final proceedings altered to
counter an attack of Coppersmith [276] on the first. The attack, restricted to the case of
DES as underlying block cipher, uses fixed points resulting from weak keys to find colli-
sions in236 DES operations. A general attack of Knudsen and Lai [688], which (unfortu-
nately) applies to a large class of double-length (Re-pit) rate-one block-cipher-based
hashes including QG-original, finds preimages in alR8uiperations plug™ storage. The
systematic method used to establish this result was earlier used by Hohl et al. [560] to prove
that pseudo-preimage and pseudo-collision attacks on a large class of double-length hash
functions of rate 1/2 and 1, including MDC-2, are no more difficult than on the single-length
rate-one Davies-Meyer hash; related results are summarized by Lai and Knudsen [727].
A second attack due to Coppersmith [276], not restricted to DES, employs 88 correcting
blocks to find collisions for QG-revised &t steps. Another modification of QG-original,

the LOKI Double Hash Function (LOKI-DBH) of Brown, Pieprzyk, and Seberry [215], ap-
pears as a general construction to offer the same security as QG-revised (provided the un-
derlying block cipher is not LOKI).

The speed in Table 9.5 are normalizel from the timings reportal by Dobbertin Bose-

laers, and Preneel [355], relative to an assembly code MD4 implementation optimized for
the Pentium procesor, with a throughpt (90 MHz clocK) of 1657 Mbit/s (optimized C

code was roughly a factor of 2 slower). See Bosselaers, Govaerts, and Vandewalle [177]
for a detailed MD5 implementation discussion.

MD4 and MD5 (Algorithms 9.49 9.51) were designed by Rivest [1055, 1035]. An Aus-

tralian extension of MD5 known as HAVAL has also been proposed by Zheng, Pieprzyk,
and Seberry [1268]. The first published partial attack on MD4 was by den Boer and Bosse-
laers [324], who demonstrated collisions could be found when Round 1 (of the three) was
omitted from the compression function, and confirmed unpublished work of Merkle show-
ing that collisions could be found (for input pairs differing in only 3 bits) in under a mil-
lisecond on a personal computer if Round 3 was omitted. More devastating was the partial
attack by Vaudenay [1215] on the full MD4, which provided only near-collisions, but al-
lowed sets of inputs to be found for which, of the corresponding four 32-bit output words,
three are constant while the remaining word takes on all possible 32-bit values. This re-
vealed the word access-order in MD4 to be an unfortunate choice. Finally, late in 1995,
using techniques related to those which earlier allowed a partial attack on RIPEMD (see
helow) Dohbertin [354] broke MD4 as a CRHF by finding not only collisions as stated in
Remaik 9.50 (taking afew second on apersond computer)but collisions for meaningful
messages (in under one hour, requiring 20 free bytes at the start of the messages).

A first partial attack on MD5 was published by den Boer and Bosselaers [325], who found
pseudo-collisions for its compression functibnwhich maps a 128-bit chaining variable

and sixteen 32-bit words down to 128-bits; us2l§ operations, they found a 16-word
messageX and chaining variableS; # S, (these differing only in 4 bits, the most sig-
nificant of each word), such th@(S1, X) = f(S2, X). Because this specialized internal
pseudo-collision could not be extended to an external collision due to the fixed initial chain-
ing values (and due to the special relation between the inputs), this attack was considered by
many to have little practical significance, although exhibiting a violation of the design goal
to build a CRHF from a collision resistant compression function. But in May of 1996, us-
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ing techniques related to his attack on MP24 above, Bokhertin (rump session, Eurocrypt’96)
found MD5 compresson function collisions;(Remak 9.52) in 10 hourson apetsond com-
puter (abouR3* compress function computations).

Anticipating the feasibility oR2%* operations, Rivest [1055] proposed a method to extend
MD4 to 256 bits by running two copies of MD4 in parallel over the input, with different
initial chaining values and constants for the second, swapping the values of the vdriable
with the first after processing each 16-word block and, upon completion, concatenating the
128-bit hash-values from each copy. However, in October of 1995 Dobbertin [352] found
collisions for the compression function of extended MD2%h compress function opera-
tions, and conjectured that a more sophisticated attack could find a collision for extended
MD4 itself in O@2%°) operations.

MD2, an earlier and slower hash function, was designed in 1988 by Rivest; see Kaliski
[1033] for a description. Rogier and Chauvaud [1067] demonstrated that collisions can be
efficiently found for the compression function of MD2, and that the MD2 checksum block
is necessary to preclude overall MD2 collisions.

RIPEMD [178] was designed in 1992 by den Boer and others under the European RACE
Integrity Primitives Evaluation (RIPE) project. A version of MD4 strengthened to counter
known attacks, its compression function has two parallel computation lines of three 16-
step rounds. Nonetheless, early in 1995, Dobbertin [353] demonstrated that if the first or
last (parallel) round of the 3-round RIPEMD compress function is omitted, collisions can
be found in23! compress function computations (one day on a 66 MHz personal com-
puter). This result coupled with concern about inherent limitations of 128-bit hash results
motivatad RIPEMD-160 (Algorithm 9.55) by Dobbertin Bosslaers, and Preneé [355];

but for corrections, see the directarypub/ COSI C/ bossel ae/ ri pend/ at ftp site
ftp.esat. kul euven. ac. be. Increased security is provided by five rounds (each
with two lines) and greater independence between the parallel lines, at a performance
penalty of a factor of 2. RIPEMD-128 (with 128-bit result and chaining variable) was si-
multaneously proposed as a drop-in upgrade for RIPEMD; it scales RIPEMD-160 back to
four rounds (each with two lines).

SHA-1 (Algorithm 9.53) isa U.S. governmenhstandad [404]. It differs from the original
standard SHA [403], which it supersedes, only in the inclusion of the 1-bit rotation in the
block expansion from 16 to 80 words. For discussion of how this expansion in SHA is re-
lated to linear error correcting codes, see Preneel [1004].

Lai and Massey [729] proposed two hash functions of rate 1/2 fvitkbit hash values,
TandemDavies-Meyer andAbreast Davies-Meyer, based on am-bit block cipher with2m-

bit key (e.g., IDEA), and a thireh-bit hash function using a similar block cipher. Merkle’s
public-domain hash function Snefru [854] and the FEAL-based N-Hash proposed by Miya-
guchi, Ohta, and Ilwata [886] are other hash functions which have attracted considerable at-
tention. Snefru, one of the eatiest propasals, isbased on theidea of Algorithm 9.41, (typi-

cally) using agt the first 128 bits of output of a custom-designed symmetric 512-bit block
cipher with fixed keyc = 0. Differential cryptanalysis has been used by Biham and Shamir
[137] to find collisions for Snefru with 2 passes, and is feasible for Snefru with 4 passes;
Merkle currently recommends 8 passes (impacting performance). Cryptanalysis of the 128-
bit hash N-Hash has been carried out by Biham and Shamir [136], with attacks on 3, 6, 9,
and 12 rounds being of respective complegity224, 240, and256 for the more secure of

the two proposed variations.

Despite many proposals, few hash functions based on modular arithmetic have withstood
attack, and most that have (including those which are provably secure) tend to be relatively
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inefficient MASH-1 (Algorithm 9.56). from Committee Draft ISO/IEC 101184 [608],
evolved from a long line of related proposals successively broken and repaired, includ-
ing contributions by Jueneman; Davies and Price; A. Jung; Girault [457] (which includes a
summary); and members of ISO SC27/WG2 circa 1994-95 (e.g., in response to the crypt-
analysis of the 1994 draft proposal, by Coppersmith and Preneel, in ISO/IEC JTC1/SC27
N1055, Attachment 12, “Comments on MASH-1 and MASH-2 (Feb.21 1995)"). Most
prominent among prior proposals was ggenodn algorithm (due to Jung) in informative
Annex D of CCITT Recommendation X.509 (1988 version), which despite suffering ig-
nominy at the hands of Coppersmith [275], was resurrected with modifications as the basis
for MASH-1.

Simmons [1146] notes that techniques for message authentication without secrecy (today
called MACs) were known to Simmons, Stewart, and Stokes already in the early 1970s.

In the open literature, the idea of using DES to provide a MAC was presented already in
Feb. 1977 by Campbell [230], who wrote.” Each group of 64 message bits is passed
through the algorithm after being combined with the output of the previous pass. The final
DES output is thus a residue which is a cryptographic function of the entire message”, and
noted that to detect message replay or deletion each message could be made unique by using
per-message keys or cryptographically protected sequence numbers. Page 121 of this same
publication describes the use of encrvption in conjunction with an appended redundancy
ched code for manipulation detectian (cf. Figure 9.8(b).

The termMAC itself evolved in the period 1979-1982 during development of ANSI X9.9
[36], where it is defined as “an eight-digit number in hexadecimal format which is the result
of passing a financial message through the authentication algorithm using a specific key.”
FIPS 81 [398] standardizes MACs based on CBC and CFB modes (CFB-based MACs are
little-used, having some disadvantages over CBC-MAC and apparently no advantages); see
also FIPS113[400 . Algorithm 9.58isgeneralizel by ISO/IEC 9797 [597] toaCBC-based

MAC for ann-bit block cipher providing am-bit MAC, m < n, including an alternative to

the optiond strengthenig process of Algorithm 9.58: asecord key &’ (passbly dependent

onk) is used to encrypt the final output block. As discussed in Chapter 15, using ISO/IEC
9797 with DES to produe a 32-bit MAC aid Algorithm 9.29 for paddirg is equivalent

to the MAC snecified in ISO 8731-1, ANSI X9.9 and required by ANSI X9.17. Regard-
ing RIPE-MAC (Exampk 9.63) [178], otha than the 264 probability of guessing a 64-bit

MAC, and MAC forgery as applicable to all iterated MACs (see below), the best known at-
tacks providing key recovery are linear cryptanalysis ugiticknown plaintexts for RIPE-
MAC1, and a2''2 exhaustive search for RIPE-MAC3. Bellare, Kilian, and Rogaway [91]
formally examine the security of CBC-based MACs and provide justification, establishing
(via exact rather than asymptotic arguments) that pseudorandom iuinciions aie preserved
unde ciphea biock chaining they also propcse solutions to the problem of Exampk 9.62

(cf. Remaik 9.59).

The MAA (Algorithm 9.68) vias developel in resporse to arequest by the Bankes Auto-

mated Clearing Services (U.K.), and first appeared as a U.K. National Physical Laboratory
Report (NPL Report DITC 17/83 February 1983). It has been part of an ISO banking stan-
dard [577] since 1987, and is due to Davies and Clayden [306]; comments on its security
(see also below) are offered by Preneel [1003], Davies [304], and Davies and Price [308],
who note that its design follows the general principles of the Decimal Shift and Add (DSA)
algorithm proposed by Sievi in 1980. As a consequence of the conjecture that MAA may
show weaknesses in the case of very long messages, 1ISO 8731-2 specifies a special mode
of operation for messages over 1024 bytes. For more recent results on MAA including ex-
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ploration of a key recovery attack, see Preneel and van Oorschot [1010].

Methods for constructing a MAC algorithm from an MDC, including the secret prefix, suf-
fix, and envelope methods, are discussed by Tsudik [112£€]; Calvin, McCloghrie, and Davin
[438] suggest addressng the message extersion problam (Exampk 9.65) In the secré suf-

fix method by using a prepended length field (this requires two passes over the message
if the length is not knowra priori). Preneel and van Oorschot [1009] compare the secu-
rity of these methods; propase MD5-MAC (Algorithm 9.69 and similar constructions for
customized MA C functiorsbased on RIPEMD ard SHA; ard provide Fad 9.57, vhich ap-

plies to MAA (n = 64 = 2m) with u = 232> and» = 232-3, while for MD5-MAC

(n = 128 = 2m) both « and v are on the orde of 2¢4. Remak 9.60 notwithstanding,

the use of am-bit internal chaining variable with a MAC-value of bitlength = n/2 is
supported by these results.

The envelope method with padding (Exanple 9.66) is discussel by Kaliski and Robshaw
(CryptoBytes vol.1 no.1, Spring 1995). Preneel and van Oorschot [1010] proposed a key
recovery attack on this method, which although clearly impractical by requiring2¢er
known text-MAC pairs (for MD5 with 128-hit key), reveals an architectural flaw. Bellare,
Canetti, and Krawczyk [86] rigorously examined the security of a nested MAC construction
(NMA C), and the practicd variation HMA C theredi (Exampk9.67), proving HMA C to be

secure provided the hash function used exhibits certain appropriate characteristics. Prior
to this, the related constructidrik, ||h(k2||x)) was considered in the note of Kaliski and
Robshaw (see above).

Other recent proposals for practical MACs include the bucket hashing construction of Rog-
away [1065], and the XOR MAC scheme of Bellare g&in; and Rogaway [90]. The latter

is a provably secure construction for MACs under the assumption of the availability of a
finite pseudorandom function, which in practice is instantiated by a block cipher or hash
function; advantages include that it is parallelizable and incremental.

MAC:s intended to provide unconditional security are often cadl@tentication codes (cf.

§9.1 above) with an authentication tag (cf. MAC valug accompanyig dat to provide

origin authentication (including data integrity). More formally, an authentication code in-
volves finite setsS of source states (plaintextyl of authentication tags, and of secret

keys, and a set of rules such that e&ch IC defines a mappingx : S — A. An (authen-
ticated) message, consisting of a source state and a tag, can be verified only by the intended
recipient (as for MACs) possessing a pre-shared key. Wegman and Carter [1234] first com-
bined one-time pads with hash functions for message authentication; this approach was pur-
sued by Brassard [191] trading unconditional security for short keys.

This approach was further refined by Krawczyk [714] (see also [717]), whose CRC-based
schene (Algorithm 9.72) isaminor modification of acorstruction by Rabin [1026]. A sec-

ond LFSR-based scheme proposed by Krawczyk for produeitit hashes (again com-
bined with one-time pads as par Algorithm 9.72) improves on atechnique of Wegman and
Carter, and involves matrix-vector multiplication byrarx b binaryToeplitzmatrix A (each
left-to-right diagonal is fixed4; ; = Ay, for k —i =1 — j7), itself generated from a ran-

dom binary irreducible polynomial of degree (defining the LFSR), aneh bits of initial

state. Krawczyk proves that the probability of successful MAC forgery herebftitanes-

sage is at mogt/2m~1, e.g., less tha@ =3 even form = 64 and a 1 Gbyte message (cf.

Fad 9.73. Earlier, Bierbraue et al. [127] explored the relatiors betwea coding theoyy,
universai hashing, and practical authentication codes with relatively short keys (see also
Johansson, Kabatianskii, and Smeets [638]; and the survey of van Tilborg [1211]). These
and other MAC constructions suitable for use with stream ciphers are very fast, scalable,
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and information-theoretically secure when the short keys they require are used as one-time
pads; when used with key streams generated by pseudorandom generators, their security is
dependent on the stream and (at best) computationally secure.

Desmedt [335] investigated authenticity in stream ciphers, and proposed both uncondition-
ally secure authentication systems and stream ciphers providing authenticity. Lai, Rueppel,
and Woollven [731] define an efficient MAC for use with stream ciphers (but see Preneel
[1003] regarding a modification to address tampering with ends of messages). Part of an
initial secret key is used to seed a key stream generator, each bit of which selectively routes
message bits to one of two feedback shift registers (FSRs), the initial states of which are part
ofthe secret key and the final states of which comprise the MAC. The number of pseudoran-
dom bits required equals the number of message bhits. Taylor [1189] proposes an alternate
MAC technique for use with stream ciphers.

Simmons [1144] notes the use of sealed authenticators by the U.S. military. An early pre-
sentation of MACs and authenticationis given by Meyer and Matyas [859]; the third or later
printinas are recommended, and include the one-pass PCBC encryption-integrity method of
Exampk 9.91 Exampk 9.8 was initially propcsed by the U.S. Nationd Bureau of Stan-

dards, and was subsequently found by Jueneman to have deficiencies; this is included in the
extensive discussion by Jueneman, Matyas, and Meyer [645] of using MDCs for integrity,
along with theideaof Exampk9.90 which Daviesand Price[308, p.124] also corsider for

n = 16. Later work by Jueneman [644] considers both MDCs and MACs; see also Meyer
and Schilling [860]. Davies and Price also provide an excellent discussion of transaction au-
thenticationnoting additiond techniqus (cf. §9.6.1) acldressng messge replay including

use of MAC values themselves from immediately preceding messages as chaining valuesin
place of random number chaining. Subtle flaws in various fielded data integrity techniques
are discussed by Stubblebine and Gligor [1179].

The taxonomy of nreimages and collisions is from Preneel [1003]. The alternate terminol-
ogy of Note9.Hisfrom Lai and Massey [729], who published thefirst systematt treatment

of aitacks oii iterated hash functions, including relationships between fixed-start and free-
start attacks, consideredeal security, and re-examined MD-strengthening. The idea of
Algorithm 9.92 was published by Yuvd [1262], but the implicatiors of the birthday para-

dox were known to others at the time, e.g., see Merkle [850, p.12-13]. The details of the
memoryless version are from van Oorschot and Wiener [1207], who also show the process
can be perfectly parallelized (i.e., attaining a faetspeedup withr processors) using par-

allel collision search methods; related independent work (unpublished) has been reported
by Quisquater.

Meet-in-the-middle chaining attacks can be extended to handle additional constraints and
otherwise generalized. A “triple birthday” chaining attack, applicable when the compres-
sion function is invertible, is given by Coppersmith [267] and generalized by Girault, Co-
hen, Campana [460]; see also Jueneman [644]. For additional discussion of differential
cryptanalysis of hash functions based on block ciphers, see Biham and Shamir [138], Pre-
neel, Govaerts, and Vandewalle [1005], and Rijmen and Preneel [1050].
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