Chapter

Stream Ciphers

Contentsin Brief

6.1 Introduction

6.2 Feedback shift registers

6.3 Stream ciphersbased on LFSRs
6.4 Other stream ciphers

6.5 Notesand further references

6.1 Introduction

Stream ciphers are an important class of encryption algorithms. They encrypt individual
characters (usually binary digits) of a plaintext message one at a time, using an encryp-
tion transformation which varies with time. By contrast, block ciphers (Chapter 7) tend to
simultaneously encrypt groups of characters of a plaintext message using a fixed encryp-
tion transformation. Stream ciphers are generally faster than block ciphers in hardware,
and have less complex hardware circuitry. They are also more appropriate, and in some
cases mandatory (e.g., in some telecommunications applications), when buffering is lim-
ited or when characters must be individually processed as they are received. Because they
havelimited or no error propagation, stream ciphers may al so be advantageousin situations
where transmission errors are highly probable.

There is avast body of theoretical knowledge on stream ciphers, and various design
principlesfor stream ciphershave been proposed and extensively analyzed. However, there
arerelatively few fully-specified stream cipher algorithmsin the open literature. This un-
fortunate state of affairs can partially be explained by the fact that most stream ciphersused
in practice tend to be proprietary and confidential. By contrast, numerous concrete block
cipher proposal's have been published, some of which have been standardized or placed in
the public domain. Nevertheless, because of their significant advantages, stream ciphersare
widely used today, and one can expect increasingly more concrete proposal sin the coming
years.

Chapter outline

Theremainder cf §6.1 introduces basic conceptsrelevant to stream ciphers. Feedback shift
registers, in particuiar iinear feedback shift registers (LFSRs), are the hasic building block
inmost stream ciphersthat have been proposed; they arestudiedin§6.2. Threegeneral tech-
niquesfor utilizing LFSRsinthe construction of stream ciphersare presentedin §6.3: using

©1997 CRC PressLLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-004.png&w=394&h=2
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-004.png&w=394&h=2

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

a nonlinear combining function on the outputs of several LFSKs (§6.3.1), using a nonlin-
ear filtering function on the contents of asingle LFSR (§6.3.2), and using the output of one
(or more) LFSRsto control the clock of one (or more) other LFSRs (§6.3.3). Two concrete
proposalsfor clock-contralled aenerators, the alternating step generator and the shrinking

generator arepresentedin §6.3.3. §6.4 presentsastream cipher not based on L FSRs, namely
SEAL. §6.5 concludes with references and further chapter notes.

6.1.1 Classification

6.1

Stream ciphers can be either symmetric-key or public-key. The focus of this chapter is
symmetric-key stream ciphers; the Blum-Goldwasser probabilistic public-key encryption
scheme (§8.7.2) is an example of apublic-key stream cipher.

Note (block vs. stream ciphers) Block ciphers process plaintext in relatively large blocks
(e.g., n > 64 bits). The same function is used to encrypt successive blocks; thus (pure)
block ciphers are memoryless. In contrast, stream ciphers process plaintext in blocks as
small as asingle bit, and the encryption function may vary as plaintext is processed; thus
stream ciphers are said to have memory. They are sometimes called state ciphers since
encryption depends on not only the key and plaintext, but aso on the current state. This
distinction between block and stream ciphersis not definitive (see Remark 7.25); adding a
small amount of memory to ablock cipher (asin the CBC mode) resultsin a stream cipher
with large blocks.

(i) The one-time pad
Recall (Definition 1.39) that a Viernam cipher over the binary alphabet is defined by
c; =m;®dk; fori=1,2,3...

where my, mo, ms, ... arethe plaintext digits, k1, ko, k3, ... (the keystream) are the key
digits, c1, co, c3, . . . arethe ciphertext digits, and @ is the XOR function (bitwise addition
modulo 2). Decryption is defined by m; = c¢;®k;. If the keystream digits are generated
independently and randomly, the Vernam cipher is called a one-time pad, and is uncondi-
tionally secure (§1.13.3(i)) against a ciphertext-only attack. More precisely, if M, C, and
K arerandom variables respectively denoting the plaintext, ciphertext, and secret key, and
if H() denotes the entropy function (Definition 2.39), then H(M|C) = H(M). Equiva-
lently, I(M; C) = 0 (see Definition 2.45): the ciphertext contributes no information about
the plaintext.

Shannon proved that a necessary condition for a symmetric-key encryption schemeto
be unconditionally secureisthat H(K) > H(M). That is, the uncertainty of the secret
key must be at |least as great as the uncertainty of the plaintext. If the key has bitlength &,
and the key bits are chosen randomly and independently, then H(K') = k, and Shannon’s
necessary condition for unconditional security becomesk > H(M). The one-timepad is
unconditionally secure regardless of the statistical distribution of the plaintext, and is op-
timal in the sense that its key is the smallest possible among all symmetric-key encryption
schemes having this property.

An obviousdrawback of the one-time pad isthat the key should be aslong asthe plain-
text, which increases the difficulty of key distribution and key management. This moti-
vatesthe design of stream cipherswhere the keystream is pseudorandomly generated from
asmaller secret key, with the intent that the keystream appears random to a computation-
ally bounded adversary. Such stream ciphers do not offer unconditional security (since
H(K) < H(M)), but the hopeis that they are computationally secure (§1.13.3(iv)).

©1997 CRC PressLLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-009.png&w=394&h=2
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-009.png&w=394&h=2

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

Stream ciphers are commonly classified as being synchronous or self-synchronizing.

(ii) Synchronous stream ciphers

6.2 Definition A synchronousstream cipher is onein which the keystream is generated inde-
pendently of the plaintext message and of the ciphertext.

The encryption process of a synchronous stream cipher can be described by the equations

oiy1 = f(oik),
zi = g(oi,k),
¢ = hz,my),

where oy is the initial state and may be determined from the key k, f is the next-state
function, ¢ is the function which produces the keystream z;, and h is the output function
which combines the keystream and plaintext m,; to produce ciphertext c;. The encryption
and decryption processes are depicted in Figure 6.1. The OFB mode of ablock cipher (see
§7.2.2(iv)) is an example of a synchronous stream cipher.
(i) Encryption (i) Decryption

Plaintext m;

Ciphertext c;

Key k
m; Keystream z;
State o;

Tit1

Ci k

Figure 6.1: General model of a synchronous stream cipher.

6.3 Note (propertiesof synchronous stream ciphers)

(i) synchronization requirements. In a synchronous stream cipher, both the sender and
receiver must be synchronized — using the same key and operating at the same posi-
tion (state) within that key —to allow for proper decryption. If synchronizationislost
dueto ciphertext digitsbeing inserted or del eted during transmission, then decryption
fails and can only be restored through additional techniques for re-synchronization.
Techniques for re-synchronization include re-initialization, placing special markers
at regular intervalsin the ciphertext, or, if the plaintext contains enough redundancy,
trying al possible keystream offsets.

(if) no error propagation. A ciphertext digit that is modified (but not deleted) during
transmission does not affect the decryption of other ciphertext digits.

(i) active attacks. As a consequence of property (i), the insertion, deletion, or replay
of ciphertext digits by an active adversary causesimmediateloss of synchronization,
and hence might possibly be detected by the decryptor. Asaconsequenceof property
(i), an activeadversary might possibly be ableto make changesto sel ected ciphertext
digits, and know exactly what affect these changes have on the plaintext. Thisillus-
trates that additional mechanisms must be employed in order to provide data origin
authentication and data integrity guarantees (see §9.5.4).

Most of the stream ciphersthat have been proposed to datein the literature are additive
stream ciphers, which are defined below.

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.4

6.5

Definition A binary additive stream cipher is a synchronous stream cipher in which the
keystream, plaintext, and ciphertext digitsare binary digits, and the output function & isthe
XOR function.

Binary additive stream ciphers are depicted in Figure 6.2. Referring to Figure 6.2, the
keystream generator is composed of the next-state funciion j and the function g (see Fig-
ure6.1), and is also known as the running key generator.

(i) Encryption (i) Decryption

Plaintext m;
Ciphertext c;
my Key k Ci

Keystream z;
Keystream | z; Keystream | z;
k —o (o2} k —@ m;

Generator Generator

Figure 6.2: General model of a binary additive stream cipher.

(iii) Self-synchronizing stream ciphers
Definition A self-synchronizing or asynchronous stream cipher is one in which the key-
streamisgenerated asafunction of the key and afixed number of previousciphertext digits.

The encryption function of a self-synchronizing stream cipher can be described by the
equations
g = (CiotsCimtt1y--+,Ci1),
g(o-’h k)v
Ci - h(Z“ mi);

Z

whereoy = (c—¢,¢—tt1,...,c-1) iSthe (non-secret) initial state, % is the key, g isthe
function which produces the keystream z;, and h is the output function which combines
the keystream and plaintext m; to produce ciphertext ¢;. The encryption and decryption
processes are depicted in Figure 6.3. The most common presently-used self-synchronizing
stream ciphers are based on biock cipnersin 1-bit cipher feedback mode (see §7.2.2(iii)).

(i) Encryption (i) Decryption

Figure 6.3: General model of a self-synchronizing stream cipher.

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.6 Note (propertiesof self-synchronizing stream ciphers)

(i) self-synchronization. Self-synchronizationis possibleif ciphertext digits are deleted
or inserted, because the decryption mapping depends only on a fixed number of pre-
ceding ciphertext characters. Such ciphers are capable of re-establishing proper de-
cryption automatically after loss of synchronization, with only a fixed number of
plaintext characters unrecoverable.

(i) limited error propagation. Suppose that the state of a self-synchronization stream ci-
pher depends on ¢ previous ciphertext digits. If a single ciphertext digit is modified
(or even deleted or inserted) during transmission, then decryption of up to ¢ subse-
quent ciphertext digits may be incorrect, after which correct decryption resumes.

(iii) active attacks. Property (ii) implies that any modification of ciphertext digits by an
active adversary causes several other ciphertext digits to be decrypted incorrectly,
thereby improving (compared to synchronous stream ciphers) thelikelihood of being
detected by the decryptor. As a consequence of property (i), it ismoredifficult (than
for synchronous stream ciphers) to detect insertion, deletion, or replay of ciphertext
digits by an active adversary. This illustrates that additional mechanisms must be
employed in order to provide data origin authentication and dataintegrity guarantees
(see §9.5.4).

(iv) diffusion of plaintext statistics. Since each plaintext digit influences the entire fol-
lowing ciphertext, the statistical properties of the plaintext are dispersed through the
ciphertext. Hence, self-synchronizing stream ciphersmay be moreresi stant than syn-
chronous stream ciphers against attacks based on plaintext redundancy.

6.2 Feedback shift registers

Feedback shift registers, in particular linear feedback shift registers, are the basic compo-
nents of many keystream generators. §6.2.1 introduces linear feedback shift registers. The
linear complexity of binary sequencesisstudiedin §6.2.2, whilethe Berlekamp-Massey al-
gorithm for comniting it is presented in §6.2.3. Finally, nonlinear feedback shift registers
arediscussed in §6.2.4.

6.2.1 Linear feedback shift registers

Linear feedback shift registers (LFSRS) are used in many of the keystream generators that
have been proposed in the literature. There are several reasonsfor this:

1. LFSRs are well-suited to hardware implementation;

2. they can produce sequences of large period (Fact 6.12);

3. they can produce sequences with good statistical properties (Fact 6.14); and

4. because of their structure, they can be readily analyzed using algebraic techniques.

6.7 Definition A linear feedback shift register (LFSR) of length L consists of L stages (or
delay elements) numbered 0,1, . .. , L — 1, each capable of storing one bit and having one
input and one output; and a clock which controls the movement of data. During each unit
of time the following operations are performed:

(i) the content of stage 0 is output and forms part of the output sequence;

©1997 CRC PressLLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-015.png&w=394&h=2
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-015.png&w=394&h=2
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-017.png&w=394&h=2
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-017.png&w=394&h=2

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

(ii) the content of stage:ismovedto stage: — 1 foreachid, 1 <i < L —1; and
(iii) the new content of stage L — 1 is the feedback bit s; which is calculated by adding
together modulo 2 the previous contents of a fixed subset of stages0,1,...,L — 1.

Figure 6.4 depictsan LFSR. Referring to the figure, each ¢; iseither 0 or 1; the closed
semi-circiesare AND gates; and the feedback bit s; isthe modulo 2 sum of the contents of
those stagesi, 0 < ¢ < L — 1, forwhiche¢y_; = 1.

C2

| Stage | _ ¢ | Stage cose | Stage | Lo o - -

L-1 L-2 1 0 output

Figure 6.4: Alinear feedback shift register (LFSR) of length L.

6.8 Definition The LFSR of Figure 6.4 isidenoted (L, C(D)), where C(D) = 1+ 1D +
caD? + -+ + ¢ D € Zy[D] is the connection polynomial. The LFSR is said to be non-
singular if the degree of C'(D) is L (that is, c;, = 1). If theinitial content of stage ¢ is
s; €{0,1} foreachi, 0 < ¢ < L —1,then[sy_1,...,s1, So] iscaled theinitial state of

the LFSR.

6.9 Fact If theinitial state of the LFSR in Figure 6.4i5[s_1,... , s1, so], then the output

sequence s = sg, S1, S2, . . . iIsuniquely dgeterimiiied by the following recursion:

S = (clsj_l +c28j—2+ -+ CLSj_L) mod 2 fij > L.

6.10 Example {cutput sequence of an LFSR) Consider the LFSR (4,1 + D + D*) depicted
in Figure 6.5. If theinitial state of the LFSR is [0, 0, 0, 0], the output sequence is the zero
sequence. Thne following tables show the contents of the stages D3, D», D1, Dy at theend
of each unit of time ¢ when theinitial stateis[0,1, 1, 0].

[t [Ds [Do[Di|Do| | t[Ds[Do]Di]Do|
0] 01]1]0 81 1] 1] 10
1lofol]1 |1 ol 11| 1|1
2/ 10|01 00| 1|11
sl ol1]o]o 110 |11
aloflol1]o 1200|101
510001 Bl1|o|1]o0
6/ 110 |o0]o 11|01
711100 500110

The output sequenceiss = 0,1,1,0,0,1,0,0,0,1,1,1,1,0,1,..., and is periodic with
period 15 (see Definition 5.25). O

The significance of an LFSR being non-singular is explained by Fact 6.11.

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.11

6.12

6.13

6.14

__ | Stage ‘ __ | Stage __ | Stage __ | Stage ‘ ‘
3 2 1 0 output
D3 Do D, Do

Figure 6.5: TheLFSR (4,1 + D + D*) of Example 6.10.

Fact Every output sequence (i.e., for al possible initial states) of an LFSR (L, C(D)) is
periodicif and only if the connection polynomial C'(D) has degree L.

If an LFSR (L, C(D)) issingular (i.e., C(D) has degree less than L), then not all out-
put sequences are periodic. However, the output sequences are ultimately periodic; that
is, the sequences obtained by ignoring a certain finite number of terms at the beginning
are pericdic. For thoremainder of this chapter, it will be assumed that all LFSRs are non-
singular. Fact 6.12 determinesthe periods of the output sequences of some special types of
non-singuiar LFSKs.

Fact (periodsof LFSR output sequences) Let C(D) € Z»[D] be aconnection polynomial
of degree L.

(i) If C(D) isirreducible over Z, (see Definition 2.190), then each of the 2 — 1 non-
zero initial states of the non-singular LFSR (L, C'(D)) produces an output sequence
with period equal to the least positive integer N such that C(D) divides1 + DV in
Zs[D]. (Note: it is always the case that this IV isadivisor of 2& — 1.)

(i) If (D) isaprimitivepolynomial (see Definition 2.228), then each of the 2% — 1 non-
zero initia states of the non-singular LFSR (L, C'(D)) produces an output sequence
with maximum possible period 2% — 1.

A method for generating primitive polynomials over Z, uniformly at randomis given
in Algorithm 4.78. Table 4.8 lists a primitive polynomial of degree m over Z, for each m,
1 <'m < 229. Fact 6.12(ii) motivates the following definition.

Definition If C(D) € Z»[D] is a primitive polynomial of degree L, then (L, C(D)) is
called amaximum-length LFSR. The output of amaximum-length LFSR with non-zeroini-
tial stateis called an m-sequence.

Fact 6.14 demonstrates that the output sequences of maximum-length LFSRs have good
statistical properties.

Fact (statistical properties of m-sequences) Let s be an m-sequence that is generated by
amaximum-length LFSR of length L.

(i) Let k beaninteger,1 < k < L, and let 5 be any subsequence of s of length 2~ +
k — 2. Then each non-zero sequence of length k appears exactly 2% times as a
subsequenceof 5. Furthermore, the zero sequenceof length k appearsexactly 27—+ —
1 timesasasubsequenceof 5. Inother words, the distribution of patternshaving fixed
length of at most L isamost uniform.

(i) s satisfies Golomb's randomness postulates (§5.4.3). That is, every m-sequenceis
also a pn-sequence (see Definition 5.29).

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.15

Example (m-sequence) Since C(D) = 1+ D + D* isaprimitive polynomial over Z,,
theLFSR (4, 1+ D + D*) isamaximum-length LFSR. Hence, the output seaquence of this
LFSR isan m-sequence of maximum possibleperiod NV = 2% —1 = 15 (cf. Example6.10).
Example 5.30 verifies that this output sequence satisfies Golomb’s randomness properties.

]

6.2.2 Linear complexity

6.16

6.17

6.18

6.19

6.20

6.21

This subsection summarizes selected results about the linear complexity of sequences. All
sequences are assumed to be binary sequences. Notation: s denotes an infinite sequence
whose terms are sg, s1, S2, . . . ; s denotes afinite sequence of length n whose terms are
80,81,.-. ,Sn_1 (see Definition 5.24).

Definition AnLFSRissaidtogenerateasequences if thereissomeinitial statefor which
the output sequence of the LFSR is s. Similarly, an LFSR is said to generate afinite se-
guence s™ if there is some initial state for which the output sequence of the LFSR has s™
asitsfirst n terms.

Definition Thelinear complexity of aninfinitebinary sequence s, denoted L(s), isdefined
asfollows:
(i) if sisthezerosequences = 0,0,0,...,then L(s) = 0;
(i) if no LFSR generates s, then L(s) = oo;
(iii) otherwise, L(s) isthelength of the shortest LFSR that generates s.

Definition The linear complexity of a finite binary sequence s™, denoted L(s"), is the
length of the shortest LFSR that generates a sequence having s™ asitsfirst n terms.

Facts 6.19 -- 6.22 summarize some basic results about linear complexity.

Fact (propertiesof linear complexity) Let s and ¢ be binary sequences.
(i) Foranyn > 1, thelinear complexity of the subsequence s™ satisfies0 < L(s™) < n.
(i) L(s™) =0if and only if s™ isthe zero sequence of length n.
(iii) L(s™) =nifandonlyif s* =0,0,0,...,0,1.
(iv) If sisperiodic with period N, then L(s) < N.
(v) L(s®t) < L(s) + L(t), where st denotes the bitwise XOR of s and ¢.

Fact If thepolynomia C(D) € Z[D] isirreducible over Z, and has degree L, then each
of the2 —1 non-zeroinitial statesof thenon-singular LFSR (L, C(D)) producesan output
sequence with linear complexity L.

Fact (expectation and variance of the linear complexity of a random sequence) Let s™ be
chosen uniformly at random from the set of all binary sequences of length n, and let L(s™)
bethelinear complexity of s™. Let B(n) denotethe parity function: B(n) = 0if niseven;
B(n) =1ifnisodd.
(i) The expected linear complexity of s™ is
n n 44+Bn) 1 (n 2
E(L(S))_2+ 18 2n< +)

Hence, for moderately large n, E(L(s")) ~ % + 2 if niseven, and E(L(s")) ~
2+ 2 if nisodd.

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

(i) Thevariance of the linear complexity of s™ is Var(L(s™)) =

86_i<14—B(n)n+82—2B(n)> 1 (1 , 4 4)’

31 on 27 81 o T e

22n

Hence, Var(L(s™)) ~ £8 for moderately large n.

6.22 Fact (expectation of thelinear complexity of a random periodic sequence) Let s™ be cho-
sen uniformly at random from the set of all binary sequences of length n, wheren = 2t for
somefixed ¢ > 1, and let s be the n-periodic infinite sequence obtained by repeating the
sequence s™. Then the expected linear complexity of sis E(L(s")) =n —1+427".

Thelinear complexity profile of abinary sequenceisintroduced next.

6.23 Definition Lets = sg, s1,... beabinary sequence, and let L denote the linear com-
plexity of the subsequence s = s, s1,...,sy_1, N > 0. The sequence L1, Lo, . ..
is caled the linear complexity profile of s. Similarly, if s™ = sq,s1,...,s,_1 isafinite
binary sequence, the sequence L+, Lo, ... , L, iscalled the linear complexity profile of s™.

The linear complexity nrofile of a sequence can he computed using the Berlekamp-
Massey agorithm (Algorithm 6.30); see also Note 6.31. The following properties of the
linear complexity profiie can be deduced from Fact 6.29.

6.24 Fact (propertiesof linear complexity profile) Let L1, Lo, . .. bethelinear complexity pro-
file of asequence s = sg, 51,

(i) 1fj > i, thenL; > L,.
(i) Lyy1 > Ly ispossbleonly if Ly < N/2.
(III) If LN+1 > Ly, thenLNH +Ly=N-+1.

The linear complexity profile of a sequence s can be graphed by plotting the points
(N,Ly), N > 1,inthe N x L plane and jcining successive noints by a horizontal line
followed by avertical ling, if necessary (seeFigure6.6). Fact 6.24 canthen beinterpreted as
saying that the graph of alinear complexity profileisnon-decreasing. Moreover, a(vertical)
jumpin the graph can only occur from below theline L = N/2; if ajump occurs, thenitis
symmetric about thisline. Fact 6.25 showsthat the expected linear complexity of arandom
sequence should closely follow theline L = N/2.

6.25 Fact (expected linear complexity profile of a random sequence) Let s = sg, s1,... bea
random sequence, and let L y bethelinear complexity of the subsequences” = sg, s1,. .. ,
sy—1 foreach N > 1. For any fixed index N > 1, the expected smallest j for which
Lyyj; > Lyis2if Ly < N/2,0r2+ 2Ly — N if Ly > N/2. Moreover, the expected
increasein linear complexity is2if Ly > N/2,0r N — 2Ly + 2if Ly < N/2.

6.26 Example (linear complexity profile) Consider the 20-periodic sequence s with cycle
s = 1,0,0,1,0,0,1,1,1,1,0,0,0,1,0,0,1,1,1,0.
The linear complexity profileof sis1,1,1,3,3,3,3,5,5,5,6,6,6,8,8 8 9,9 10 10,11,

[I B

11,11,11,14,14,14,14,15,15,15,17,17,17,18,18,19,19,19,19, Figure6.6 shows
the graph of the linear complexity profile of s. O

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

L = N/2line ,”

: : : } - N
10 20 30 40

Figure 6.6: Linear complexity profile of the 20-periodic sequence of Example 6.26.

Asisthecasewith all statistical testsfor randomness(cf. §5.4), the condition that ase-
guence s have alinear complexity profile that closely resemblesthat of a random sequence
is necessary but not sufficient for s to be considered random. Thispoint isillustrated in the
following example.

6.27 Example (limitationsofthelinear complexity profile) Thelinear complexity profile of the
sequence s defined as
1, ifi=2/ —1forsomej >0,
% = 1 0, otherwise,

followstheline L = N/2 asclosely aspossible. That is, L(s™) = [(N + 1)/2] for dl
N > 1. However, the sequence s is clearly non-random. O

6.2.3 Berlekamp-Massey algorithm

The Berlekamp-Massey algorithm (Algorithm 6.30) is an efficient algorithm for datarmin-
ing the linear complexity of afinite binary seguence s™ of length n (see Definition 6.18).
The algorithm takes n iterations, with the Nth iteration computing the linear compiexity
of the subsequence s’V consisting of the first V terms of s™. The theoretical basis for the
algorithm is Fact 6.29.

6.28 Definition Consider thefinitebinary sequences¥+! = 54, s1,... ,sn_1,5n. For C(D)
=1+4+c1D+---+cDElet (L, C(D)) bean LFSR that generates the subsequence sV =
50,81, .- ,SN—1. Thenext discrepancy dy isthedifferencebetween s and the (N +1)s*
term generated by the LFSR: dy = (sy + Zle ¢iSN—;) mod 2.

6.29 Fact Let sV = sg,s1,...,sny_1 beafinite binary sequence of linear complexity L =
L(s™),and let (L, C(D)) be an LFSR which generates s™.

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

(i) TheLFSR (L, C(D)) adsogeneratessV+1 = sq,51,... ,sy_1, sy if andonly if the
next discrepancy dy isequal to 0.
(i) If dy =0, then L(sV*1) = L.

(iii) Supposedy = 1. Let m thelargestinteger < N suchthat L(s™) < L(s"), and let
(L(s™), B(D)) bean LFSR of length L(s™) which generatess™. Then (L', C'(D))
isan LFSR of smallest length which generates s +1, where

I { L, if L> N/2,
N+1-L, ifL<N/2,

and C'(D) = C(D) + B(D) - DN-"™,

6.30 Algorithm Berlekamp-Massey algorithm

INPUT: abinary sequence s™ = sg, s1, S2, - - - , Sp—1 Of length n.
OUTPUT: the linear complexity L(s™) of s, 0 < L(s") < n.
1. Initialization. C(D)<1, L«+0, m« — 1, B(D)+1, N<«O0.
2. While (N < n) do the following:

2.1 Compute the next discrepancy d. d+(sy + Zle ¢isN—i) mod 2.
2.2 If d = 1 then do the following:
T(D)«C(D), C(D)+C(D)+ B(D) - DN—™,
If L < N/2then L« N +1— L, m«N, B(D)«T(D).
2.3 N<N +1.
3. Return(L).

6.31 Note (intermediate results in Berlekamp-Massey algorithm) At the end of each iteration
of step 2, (L, C(D)) is an LFSR of smallest length which generates s’v. Hence, Algo-
rithm 6.30 can also be used to compute the linear complexity profile (Definition 6.23) of
afinite sequence.

6.32 Fact The running time of the Berlekamp-Massey algorithm (Algorithm 6.30) for deter-
mining the linear complexity of a binary sequence of bitlength n is O(n?) bit operations.

6.33 Example (Berlekamp-Massey algorithm) Table 6.1 showsthe steps of Algorithm 6.30for
computingthelinear complexity of thebinary seGuerices™ = 0,0,1, 1,0, 1, 1, 1, 6of iength
n = 9. Thissequenceisfound to have linear complexity 5, and an LFSR which generates
itis(5,1+ D®+ D®). O

6.34 Fact Let s™ be afinite binary sequence of length n, and let the linear complexity of s™ be
L. Thenthereisaunique LFSR of length L which generates s™ if and only if L < 7.

An important consequence of Fact 6.34 aic Fact 6.24(iii) isthe following.

6.35 Fact Let s be an (infinite) binary sequence of linear complexity L, and let ¢ be a (finite)
subsequenceof s of length at least 2L. Then the Berlekamp-Massey algorithm (with step 3
modified to return both L and C'(D)) on input ¢ determines an LFSR of length L which
generates s.

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

[sv [d] T(D) | C(D) |L] m] BM®O) [N]
— | = — 1 0] -1 1 0
0|0 — 1 0] -1 1 1
0|0 — 1 0] -1 1 2
1|1 1 1+ D3 3 2 1 3
1 |1 1+ D3 1+D+ D3 3 2 1 4
0 |1 1+D+ D3 1+D+D?>+D3 | 3 2 1 5
1 |1 |1+D+D?>+D?3 1+ D+ D? 3 2 1 6
1 |0|1+D+D?*+D? 1+ D+ D? 3 2 1 7
1|1 1+ D+ D? 1+D+D?>+D% |5 7| 1+D+D?| 8
0 |1|1+D+D*+D> 14+ D3+ D> 5 7|1+D+D?| 9

Table 6.1: Seps of the Berlekamp-Massey algorithm cf Example 6.33.

6.2.4 Nonlinear feedback shift registers

This subsection summarizes selected results about nonlinear feedback shift registers. A
function with n bi nary inputs and one binary output is called a Boolean function of n vari-
ables; thereare 22" different Boolean functions of n variables.

6.36 Definition A (genera) feedback shift register (FSR) of length L consists of L stages (or
delay elements) numbered 0,1, . .. , L — 1, each capable of storing one bit and having one
input and one output, and a clock which controls the movement of data. During each unit
of time the following operations are performed:

(i) the content of stage 0 is output and forms part of the output sequence;
(i) the content of stage: ismovedto stage: — 1 foreachi,1 <i < L —1; and
(iii) the new content of stage L — 1 isthe feedback bit s; = f(sj_1,sj—2,--.,$j—L),
where the feedback function f isaBoolean function and s;_; isthe previous content
of stage L —i,1 <i < L.
If theinitial content of stagei iss; € {0,1} foreach0 <i < L—1,then[sy_1,... , s1, S0]
iscaled theinitial state of the FSR.

Figure6.7 depictsan FSR. Notethat if the feedback function f isalinear function, then
the FSR is a1 LFSR (Definition 6.7). Otherwise, the FSR is called anonlinear FSR.

4[f(sj—1,85-2,... ,8j-L) }

A i i
85 8j-1 Sj—2 coo e Sj—L+1 8j—L
»| Stage | o ¢ 5| Stage ceee _p| Stage | o ¢ | Stage | o -
L-1 L-2 1 0 output

Figure 6.7: A feedback shift register (FSR) of length L.

6.37 Fact If theinitial state of the FSR in Figure 6.7 i5[s_1,. .. , s1, o], then the output se-
guence s = sq, $1, S2, . . . iIsuniquely aeterimined Dy the following recursion:

S = f(ijl,SJ‘fQ,. .. ,Sj,L) forj > L.

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.38 Definition AnFSRissaidto be non-singular if and only if every output sequence of the
FSR (i.e., for @l possibleinitial states) is periodic.

6.39 Fact AnFSRwithfeedback function f(s;_1,s;—2,...,s;—r)isnon-singularif and only
if fisoftheform f =s,_r ® g(s;j-1,sj—2,...,8j—r+1) for some Boolean function g.

The period of the output sequence of a non-singular FSR of length L is at most 27,

6.40 Definition If theperiod of the output sequence (for any initial state) of anon-singular FSR
of length L is 2%, then the FSR is called ade Bruijn FSR, and the output sequenceis called
ade Bruijn sequence.

6.41 Example (de Bruijn sequence) Consider the FSR of length 3 with nonlinear feedback
function f(z1, 22, z3) = 1®x2PrsPr122. The following tables show the contents of the
3 stages of the FSR at the end of each unit of time ¢t when theinitid stateis [0, 0, 0].

| t | Stage2 | Stage1 | StageO | | t | Stage2 | Stagel | StageO |
0 0 0 0 4 0 1 1
1 1 0 0) 1 0 1
2 1 1 0 6 0 1 0
3 1 1 1 7 0 0 1
The output sequence is the de Bruijn sequence with cycle0,0,0,1,1,1,0, 1. O

Fact 6.42 demonstratesthat the output sequence of de Bruijn FSRs have good statistical
properties (compare with Fact 6.14(i)).

6.42 Fact (statistical properties of de Bruijn sequences) Let s be a de Bruijn sequence that is
generated by ade Bruijn FSR of length L. Let k beaninteger, 1 < k < L, andlet s beany
subsequence of s of length 2% + k — 1. Then each sequence of length & appears exactly
2L~k times as a subsequence of 5. In other words, the distribution of patterns having fixed
length of at most L is uniform.

6.43 Note (converting a maximumtlength LFSR to a de Bruijn FSR) Let R; be a maximum-
length LFSR of length L with (linear) feedback function f(s;_1,sj—2,... ,s;—r). Then
the FSR R, with feedback function g(ijl, Sj—2y- .- ,Sj,L) =f® §j-18j—2° " Sj—L+1
isade Bruijn FSR. Here, 5; denotes the complement of s;. The output sequence of R is
obtained from that of R; by simply adding a0 to the end of each subsequenceof L — 1 0's
occurring in the output sequence of R;.

6.3 Stream ciphers based on LFSRs

As mentioned in the beginning of §6.2.1, linear feedback shift registers are widely used
in keystream generators because they are well-suited for hardware implementation, pro-
duce segquences having large periods and good statistical properties, and are readily ana-
lyzed using algebraic techniques. Unfortunately, the output sequences of LFSRs are also
easily predictable, asthe following argument shows. Suppose that the output sequence s of
an LFSR haslinear complexity L. The connection polynomia C'(D) of an LFSR of length
L which generates s can be efficiently determined using the Berlekamp-Massey algorithm

©1997 CRC PressLLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-342.png&w=394&h=2
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-342.png&w=394&h=2

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.44

6.45

6.46

(Algorithm 6.30) from any (short) subsequence ¢ of s having length at least n = 2L (cf.
Fact 6.35). Having determined C(D), the LFSR (L, C'(D)) can then be initialized with
any substring of ¢ having length L, and used to generate the remainder of the sequence s.
An adversary may obtain the required subsequencet of s by mounting a known or chosen-
plaintext attack (§1.13.1) on the stream cipher: if the adversary knows the plaintext subse-
guencemy,mo, ... ,m, corresponding to a ciphertext sequencec, cs, . . . , ¢,, the corre-
sponding keystream bits are obtained asm;®c;, 1 < i < n.

Note (useof LFSRsin keystream generators) Since awell-designed system should be se-
cure against known-plaintext attacks, an L FSR should never beused by itself asakeystream
generator. Nevertheless, LFSRs are desirable because of their very low implementation
costs. Three general methodologies for destroying the linearity properties of LFSRs are
discussed in this section:

(i) using anonlinear combining function on the outputs of several LFSRKs (§6.3.1);
(ii) using anonlinear filtering function on the contents of asingle LFSR (£6.3.2); and
(iii) using the output of one (or more) LFSRs to control the clock of one (or more) other
LFSRs (§6.3.3).

Desirable properties of LFSR-based keystream generators

For essentially all possible secret keys, the output sequence of an LFSR-based keystream
generator should have the following properties:

1. large period;
2. largelinear complexity; and
3. good statistical properties (e.g., as described in Fact 6.14).

It is emphasized that these properties are only necessary conditions for a keystream gen-
erator to be considered cryptographically secure. Since mathematical proofs of security of
such generatorsare not known, such generatorscan only be deemed computationally secure
(8§1.13.3(iv)) after having withstood sufficient public scrutiny.

Note (connection polynomial) Since a desirable property of a keystream generator is that
its output sequences have large periods, component L FSRs should always be chosen to be
maximum-length LFSRs, i.e., the LFSRs should be of the form (L, C(D)) where C(D) €
Z»[D] isaprimitive polynomial of degree L (sez Definition 6.13 and Fact 6.12(ii)).

Note (known vs. secret connection polynomial) The LFSRsin an LFSR-based keystream
generator may have known or secret connection polynomials. For known connections, the
secret key generally consists of the initial contents of the component LFSRs. For secret
connections, the secret key for the keystream generator generally consists of both theinitial
contents and the connections.

For LFSRs of length L with secret connections, the connection polynomials should be
selected uniformly at random from the set of all primitive polynomialsof degree L over Zs.
Secret connections are generally recommended over known connections as the former are
moreresistant to certain attacks which use precomputation for analyzing the particular con-
nection, and becausetheformer are moreamenableto statistical analysis. Secret connection
LFSRs have the drawback of requiring extracircuitry to implement in hardware. However,
because of the extra security possible with secret connections, this cost may sometimes be
compensated for by choosing shorter LFSRs.

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.47

Note (sparsevs. dense connection polynomial) For implementation purposes, it is advan-
tageous to choose an LFSR that is sparse; i.e., only afew of the coefficients of the con-
nection polynomial are non-zero. Then only asmall number of connections must be made
between the stages of the LFSR in order to compute the feedback bit. For example, the con-
nection polynomial might be chosento beaprimitivetrinomial (cf. Table4.8). However, in
some L FSR-based keystream generators, specia attacks can be mounted if sparse connec-
tion polynomiasareused. Hence, it isgenerally recommended not to use sparse connection
polynomialsin LFSR-based keystream generators.

6.3.1 Nonlinear combination generators

6.48

6.49

One general technique for destroying the linearity inherent in LFSRs is to use several LF-
SRsin parallel. The keystream is generated as a nonlinear function f of the outputs of the
component L FSRs; thisconstructionisillustrated in Figure 6.8. Such keystream generators
are called nonlinear combination generators, and f 1s called the combining function. The
remainder of this subsection demonstrates that the function f must satisfy severa criteria
in order to withstand certain particular cryptographic attacks.

LFSR 1 -

LFSR 2 = f —— keystream

LFSR n -

Figure 6.8: Anonlinear combination generator. f isa nonlinear combining function.

Definition A product of m distinct variablesis called an m'* order product of the vari-
ables. Every Boolean function f(z1, 22, . .. , ,) can bewritten asamodulo 2 sum of dis-
tinct m*® order productsof itsvariables, 0 < m < n; thisexpressioniscalled the algebraic
normal formof f. The nonlinear order of f isthe maximum of the order of the terms ap-
pearing in its algebraic normal form.

For example, the Boolean function f(z1, z2, 23, 24,25) = 1 ® 22 ® 3 ® 425 D
r1232425 has nonlinear order 4. Note that the maximum possible nonlinear order of a
Boolean function in n variablesis n. Fact 6.49 demonstrates that the output sequence of
a nonlinear combination generator has high iinear complexity, provided that a combining
function f of high nonlinear order is employed.

Fact Supposethat n maximum-length LFSRs, whoselengths Ly, Lo, ... , L, arepairwise
distinet and greater than 2, are combined by anonlinear function f(z1, x2,... ,2,) (&8in
Figure 6.8) which is expressed in algebraic normal form. Then the linear complexity of the
keystreamis f(Lq, Lo, ..., Ly). (Theexpression f (L4, Lo, . .. , L,,) isevaluated over the
integers rather than over Zs.)

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.50

6.51

Example (Geffe generator) The Geffe generator, as depicted in Figure 6.9, iss defined by
three maximum-lengthLFSRswhoselengths L1, Lo, L3 are pairwisereiativeiy prime, with
nonlinear combining function

flr1,z2,23) = 122 B (1 + 22)x3 = Z122 D T223 D T3.

Thekeystream generated has period (211 — 1) - (222 — 1) - (212 — 1) and linear complexity
L=1LyLy+ LyL3 + Ls.

z
LFSR 1 -

ESnEs

Figure 6.9: The Geffe generator.

/
D—keystream
A

LJ

The Geffe generator is cryptographically weak because information about the states of
LFSR 1 and LFSR 3 leaksinto the output sequence. To seethis, let x1 (), z2(t), z3(t), z(t)
denote the t*" output bits of LFSRs 1, 2, 3 and the keystream, respectively. Then the cor-
relation probability of the sequence x; (¢) to the output sequence z(t) is

P(a(t) = 21(t) = P(za(t) = 1) + P(ws(t) = 0) - Plas(t) = 21(t))
1,11 3
2T s T

Similarly, P(z(t) = w3(t)) = 3. For this reason, despite having high period and mod-
erately hiah linear complexity, the Geffe generator succumbs to correlation attacks, as de-
scribed in Note 6.51. O

Note (correlation attacks) Suppose that n maximum-length LFSRs Ry, Rs, ... , R, of
lengths Ly, Lo, ... , L, areemployed in anonlinear combination generator. If the connec-
tion polynomials of the LFSRs and the combining function f are public knowledge, then
the number of different keys of the generator is [}, (2% — 1). (A key consists of theiini-
tial states of the LFSRs.) Suppose that there is a correlation between the keystream and
the output sequence of Ry, with correlation probability p > % If asufficiently long seg-
ment of the keystream is known (e.g., as is possible under a known-plaintext attack on a
binary additive stream cipher), theinitial state of R; can be deduced by counting the num-
ber of coincidences between the keystream and all possible shifts of the output sequence
of Ry, until this number agreeswith the correlation probability p. Under these conditions,
finding the initial state of R; will take at most 2%t — 1 trials. In the case where there is
a correlation between the keystream and the output sequences of each of Ry, Rs, ... , Ry,
the (secret) initial state of each LFSR can be determined independently in a total of about
S (2% — 1) trials; this number is far smaller than the total number of different keys.
In asimilar manner, correlations between the output sequences of particular subsets of the
LFSRs and the keystream can be exploited.

In view of Note 6.51, the combining function f should be carefully selected so that
thereis no statistical dependence between any small subset of the n LFSR sequences and

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.52

6.53

6.54

the keystream. This condition can be satisfied if f is chosen to be m'"-order correlation
immune.

Definition Let Xy, X,, ..., X, beindependent binary variables, each taking on the val-
ues 0 or 1 with probability . A Boolean function f(z1,z2, ... ,) ism™-order corre-
lation immuneif for each subset of m randomvariables X;,, X;,, ..., X;,, with1 <i; <
ig < -+ < im < n,therandomvarisble Z = f(X;, Xs, ..., X,,) isstatistically indepen-
dent of therandomvector (X;, , X.,,... , X;,,); equivdently, I(Z; X;,, X;,,... , X;,,) =
0 (see Definition 2.45).

For example, the function f(z1,2o.... .2,) = 1 S 22 © -+ © x,, IS (0 — 1)-
order correlationimmune. In light of Fact 6.49, the following shows that thereis atradeoff
between achieving high linear complexity and high correlation immunity with acombining
function.

Fact If aBooleanfunction f(x1, 2, ... ,z,)ism*™-order correlationimmune, where1 <
m < n, then the nonlinear order of f isat most n — m. Moreover, if f isbalanced (i.e.,
exactly half of the output valuesof f are0) thenthenonlinear order of fisat mostn—m—1
forl<m<n-—2.

The tradeoff between high linear complexity and high correlation immunity can be
avoided by permitting memory in the nonlinear combination function f. This point is il-
lustrated by the summation generator.

Example (summation generator) The combining function in the summation generator is
based on the fact that integer addition, when viewed over Z, isanonlinear function with
memory whose correlation immunity is maximum. To seethisinthecasen = 2, leta =
12" 4a124-ap and b = by, 1271 +- - -+b1 2+ by bethebinary representations
of integersa and b. Then the bitsof z = a + b are given by the recursive formula

zj = filaj,bj,ci1) =a; ®bj@cjo1 0<j5<m,

¢j = fala;,bj,¢j-1) = azb; & (a; ®bj)c;—1, 0<j<m—1,
where ¢; isthe carry bit, and c_; = a,, = b, = 0. Notethat f; is 2d_order corre-
lation immune, while f, is a memoryless nonlinear function. The carry bit ¢;_; carries
al the nonlinear influence of less significant bits of a and b (namely, a;_1, ... , a1, ao and
bj 1, b1, bo).

The summation generator, asdepicted in Figure 6.10, is defined by n maximum-length

LFSRswhose lengths L1, Lo, ... , L, are pairwise reiatively prime. The secret key con-

Tn
LFSRn | —keystream

Figure 6.10: The summation generator.

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

sists of the initial states of the LFSRs, and an initia (integer) carry Cy. The keystream
is generated as follows. Attimej (j > 1), the LFSRs are stepped producing output bits
T1,%2,...,T,, andtheinteger sum S; = Y7 | x; + C;_1 iscomputed. The keystream
bit is.S; mod 2 (the least significant bit of S;), while the new carry is computed as C; =
|.S;/2] (theremaining bitsof S;). The period of thekeystreamis]}, (2%« — 1), whileits
linear complexity is close to this number.

Even though the summation generator has high period, linear complexity, and corre-
lation immunity, it isvulnerableto certain correlation attacks and a known-plaintext attack
based on its 2-adic span (see page 218). O

6.3.2 Nonlinear filter generators

Another general technique for destroying the linearity inherent in LFSRs isto generate the
keystream as some nonlinear function of the stages of a single LFSR; this construction is
illustrated in Figure 6.11. Such keystream generatorsare called nonlinear filter generators,
and f iscalled the tiltering function.

keystream

Figure 6.11: Anonlinear filter generator. f isa nonlinear Boolean filtering function.

Fact 6.55 describes the linear complexity of the output sequence of a nonlinear filter
generator.

6.55 Fact Suppose that a nonlinear filter generator is constructed using a maximum-length
LFSR of length L and afiltering function f of nonlinear order m (asin Figure 6.11).
(i) (Key'sbound) Thelinear complexity of the keystreamisat most L,,, = >, (%).
(i) For afixed maximum-length LFSR of prime length L, the fraction of Boolean func-
tions f of nonlinear order m which produce sequences of maximum linear complex-
ity L., is
P ~ exp(—Ly/(L-2%)) > e V/L,

Therefore, for large L, most of the generators produce sequences whose linear com-
plexity meetsthe upper bound in (i).

The nonlinear function f selected for afilter generator should include many terms of
each order up to the nonlinear order of f.

©1997 CRC PressLLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-358.png&w=394&h=2
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-358.png&w=394&h=2

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.56 Example (knapsackgenerator) Theknapsack keystream generator isdefined by amaxim-
um-lengthLFSR (L, C(D)) andamodulusQ = 2~. Thesecret key consistsof knapsack
integer weights a1, as, . . . , ar, €ach of bitlength L, and the initial state of the LFSR. Re-
call that the subset sum problem (§3.10) is to determine a subset of the knapsack weights
which add up to a given integer s, provided that such a subset exists; this problemis NP-
hard (Fact 3.91). The keystream is generated as follows: at time j, the LFSR is stepped
and the knapsack sum S; = Zle x;a; mod @ iscomputed, where [z, ... ,z2, z1] isthe
state of the LFSR at time j. Finally, selected bits of .S; (after S; is converted to its binary
representation) are extracted to form part of the keystream (the [1g L] least significant bits
of S; should be discarded). Thelinear complexity of the keystream isthen virtually certain
tobe L(2L —1).

Since the state of an LFSR is a binary vector, the function which mapsthe LFSR state
to the knapsack sum S; is indeed nonlinear. Explicitly, let the function f be defined by
f(z) = ZiL=1 z;a; mod Q, wherexz = [zr,...,x, 1] iSasate. If z and y are two
states then, in genera, f(z @ y) # f(z) + f(y). O

6.3.3 Clock-controlled generators

In nonlinear combination generators and nonlinear filter generators, the component L FSRs
are clocked regularly; i.e., the movement of datain all the LFSRsis controlled by the same
clock. The main idea behind a clock-controlled generator is to introduce nonlinearity into
LFSR-based keystream generators by having the output of one LFSR control the clocking
(i.e., stepping) of asecond LFSR. Sincethe second LFSR isclockedin anirregular manner,
the hope is that attacks based on the regular motion of LFSRs can be foiled. Two clock-
controlled generatorsare described in this subsection: (i) the alternating step generator and
(i) the shrinking generator.

() The alternating step generator

The dternating step generator uses an LFSR R; to control the stepping of two LFSRS, R,
and R3. The keystream produced is the XOR of the output sequences of R, and Rs.

6.57 Algorithm Alternating step generator

SUMMARY: acontrol LFSR R; is used to selectively step two other LFSRs, R, and R3.
OUTPUT: asequence which is the bitwise XOR of the output sequences of R and R3.
The following steps are repeated until a keystream of desired length is produced.
1. Register R; isclocked.
2. If theoutput of R, is1 then:
Ro isclocked; R3 isnot clocked but its previous output bit is repeated.
(For thefirst clock cycle, the “ previous output bit” of Rz istakento be0.)
3. If the output of R; is0 then:
R3 isclocked; R isnot clocked but its previous output bit is repeated.
(For thefirst clock cycle, the “ previous output bit” of R, istakento be0.)
4. Theoutput bitsof R, and R3 are XORed; the resulting bit is part of the keystream.

More formally, let the output sequences of LFSRs Ry, Rs, and R3 be ag, a1, as, .. .,
bo,b1,ba,...,andcg, c1,co ..., respectively. Defineb_; = ¢_; = 0. Then the keystream
produced by the alternating step generator is zg, 1, T2, . . ., Where z; = by(jy © ¢j_4(j)—1

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.58

6.59

and t(47) = (Zf:o a;) — 1fordl j > 0. The aternating step generator is depicted in

Figure 6.12.
=)_> LFSR R,
Y
clock—»e—» LFSRR; - — output
A
»%’D_» LFSR Rs
Figure 6.12: The alternating step generator.
Example (alternating step generator with artificially small parameters) Consider an al-

ternating step generator with component LFSRs Ry = (3,1 + D? + D3), Ry = (4,1 +
D3+ D*),and R3 = (5,1 + D + D? + D* + D®). Supposethat theinitial states of R,
Ry, and R3 are [0,0,1],[1,0,1,1],and [0, 1,0, 0, 1], respectively. The output sequence of
R, isthe 7-periodic sequence with cycle
a” = 1,0,0,1,0,1,1.
The output sequence of R isthe 15-periodic sequence with cycle
b% = 1,1,0,1,0,1,1,1,1,0,0,0,1,0,0.
The output sequence of R3 isthe 31-periodic sequence with cycle
At =1,0,0,1,0,1,0,1,1,0,0,0,0,1,1,1,0,0,1,1,0,1,1,1,1,1,0,1,0,0,0.

The keystream generated is

z = 1,0,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0,1,1,1,1,0,1,1,0,0,0,1,1,1,0,.... O

Fact 6.59 establishes, under the assumption that R; producesade Bruijn sequence (see
Definition 6.40), that the output sequence of an alternating step generator satisfiesthe basic
requirements of high period, high linear complexity, and good statistical properties.

Fact (properties of the alternating step generator) Supposethat R; producesade Bruijn
sequenceof period 2X1. Furthermore, supposethat R, and R3 are maximum-length LFSRs
of lengths L, and L3, respectively, suchthat ged (L2, L3) = 1. Let z betheoutput sequence
of the alternating step generator formed by R,, R2, and Rs.

(i) Thesequencez hasperiod 251 - (282 — 1) - (285 — 1).

(i) Thelinear complexity L(z) of z satisfies

(Ly + L) - 29271 < L(z) < (L2 + L3) - 25

(iii) Thedistribution of patternsin z is almost uniform. More precisely, let P be any bi-
nary string of length ¢ bits, wheret < min (Lo, Ls). If z(¢) denotesany ¢ consecutive

bitsin z, then the probability that z(t) = P is (%)1t +0(1/2827t) + O(1/2L371).

Since ade Bruijn sequence can be obtained from the output sequence s of amaximum-
length LFSR (of length L) by simply adding a0 to the end of each subsequenceof L —10’s
occurring in s (see Note 6.43), i is reasonabl e to expect that the assertions of high period,

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.60

6.61

6.62

high linear complexity, and good statistical propertiesin Fact 6.59 also hold when R; isa
maximum-length LFSR. Note, however, that this has not yet been proven.

Note (security of the alternating step generator) The LFSRs R;, R2, R3 should be cho-
sen to be maximum-length LFSRswhose lengths L1, Lo, L3 are pairwiserelatively prime:
ged(L, L) = 1, ged(Lo, L3) = 1, ged(L1, L3) = 1. Moreover, the lengths should be
aboutthesame. If Ly ~ [, Lo ~ [, and L3 = [, the best known attack on the aternating
step generator is a divide-and-conquer attack on the control register Ry which takes ap-
proximately 2 steps. Thus, if I ~ 128, the generator is secure against al presently known
attacks.

(ii) The shrinking generator

The shrinking generator is arelatively new keystream generator, having been proposed in
1993. Nevertheless, dueto its simplicity and provable properties, it is a promising candi-
date for high-speed encryption applications. In the shrinking generator, acontrol LFSR R;
is used to select a portion of the output sequence of a second LFSR R;. The keystream
produced is, therefore, a shrunken version (also known as an irreqularly decimated subse-
guence) of the output sequence of R», as specified in Algorithm 6.61 and depicted in Fig-
ure 6.13.

Algorithm Shrinking generator

SUMMARY: acontrol LFSR R; is used to control the output of asecond LFSR R».
The following steps are repeated until a keystream of desired length is produced.

1. Registers R; and R are clocked.

2. If the output of R, is 1, the output bit of R, forms part of the keystream.

3. If the output of R; is0, the output bit of R, is discarded.

More formally, let the output sequences of LFSRs R, and Rs be ag, a1, as,... and
bo, b1, ba, . .., respectively. Then the keystream produced by the shrinking generator is
xo,T1,T2,..., Wherex; = b;;, and, for each j > 0, i; is the position of the 5% 1 in the
sequenceagp, ai,ag,

— = LFSRR; |--"“---

clock—»=e

Y

a; =1
LFSR R, > = output b;

L »discard b;
a; = O

Figure 6.13: The shrinking generator.

Example (shrinking generator with artificially small parameters) Consider a shrinking
generator with component LFSRs Ry = (3,1 + D + D?) and Ry = (5,1 + D3 + D®).
Supposethat theinitial states of R, and R, are[1,0,0] and [0, 0, 1,0, 1], respectively. The
output sequence of R; isthe 7-periodic sequence with cycle

a” = 0,0,1,1,1,0,1,

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

while the output sequence of R, isthe 31-periodic sequence with cycle
v = 1,0,1,0,0,0,0,1,0,0,1,0,1,1,0,0,1,1,1,1,1,0,0,0,1,1,0,1,1,1,0.
The keystream generated is
z = 1,0,0,0,0,1,0,1,1,1,1,1,0,1,1,1,0,.... O

Fact 6.63 establishesthat the output sequenceof ashrinking generator satisfiesthebasic
requirements of high period, high linear complexity, and good statistical properties.

6.63 Fact (propertiesof theshrinking generator) Let R; and R, be maximum-length LFSRs of
lengths L; and L, respectively, and let = be an output sequence of the shrinking generator
formed by R; and Rs.

(i) 1f ged(Ly, L2) = 1, then x has period (252 — 1) - 2L1-1,
(i) Thelinear complexity L(z) of x satisfies

Ly-2177% < L(z) < Ly-20271

(i) Supposethat the connection polynomialsfor R; and R» are chosen uniformly at ran-
dom from the set of all primitive polynomials of degrees L, and L, over Z,. Then
the distribution of patternsin x isamost uniform. More precisely, if P isany binary
string of length ¢ bitsand «(¢) denotesany ¢ consecutivebitsin z, then the probability
that z(t) = Pis(3)! + O(t/212).

6.64 Note (security of the shrinking generator) Supposethat the component LFSRs R; and R;
of the shrinking generator have lengths L, and L, respectively. If the connection polyno-
mialsfor R; and R, are known (but not the initial contents of Ry and R5), the best attack
known for recovering the secret key takes O(2%1 - L3) steps. On the other hand, if secret
(and variable) connection polynomials are used, the best attack known takes O (2251 - Ly -
L,) steps. Thereis also an attack through the linear complexity of the shrinking generator
which takes O(251 - L2) steps (regardless of whether the connections are known or secret),
but this attack requires 2% - L, consecutive bits from the output sequence and is, therefore,
infeasible for moderately large L, and L,. For maximum security, R; and R should be
maximum-length LFSRs, and their lengths should satisfy gcd(L1, L) = 1. Moreover, se-
cret connections should be used. Subject to these congtraints, if L; ~ [and L, =~ [, the
shrinking generator has a security level approximately equal to 22!, Thus, if L; ~ 64 and
L, ~ 64, the generator appears to be secure against all presently known attacks.

6.4 Other stream ciphers

While the LFSR-based stream ciphers discussed in §6.3 are well-suited to hardware im-
plementation, they are not especially amenable to software implementation. This has led
to several recent proposalsfor stream ciphersdesigned particularly for fast softwareimple-
mentation. Most of these proposalsareeither proprietary, or arerelatively new and have not
received sufficient scrutiny from the cryptographic community; for thisreason, they are not
presented in this section, and instead only mentioned in the chapter notes on page 222.
Two promising stream ciphers specifically designed for fast software implementation
are SEAL and RC4. SEAL is presented in §6.4.1. RC4 is used in commercia products,
and has a variable key-size, but it remains proprietary and is not presented here. Two

©1997 CRC PressLLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-375.png&w=394&h=2
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-375.png&w=394&h=2

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

other widely used stream ciphers not based on LFSRs are the Output Feedback (OFB; see
§7.2.2(iv)) and Cipher Feedback (CFB; see §7.2.2(iii)) modes of block ciphers. Another
class of keystream generators not based on LFSRs are those whose security relies on the
intractability of an underlying number-theoretic problem; these generatorsare much slower
than those based on LFSRs and are discussed in §5.5.

6.4.1 SEAL

6.65

6.66

SEAL (Software-optimized Encryption Algorithm) is a binary additive stream cipher (see
Definition 6.4) that was proposed in 1993. Sinceit isrelatively new, it has not yet received
much scrutiny from the cryptographic community. However, it is presented here because
it isone of the few stream ciphers that was specifically designed for efficient software im-
plementation and, in particular, for 32-bit processors.

SEAL is a length-increasing pseudorandom function which maps a 32-bit sequence
number n to an L-hit kevstream under control of a 160-hit secret key a. In the preprocess-
ing stage (step 1 o Algorithm 6.68), the key is stretched into larger tables using the table-
generation function G, specitied in Algorithm 6.67; this function is based on the Secure
Hash Algorithm SHA-1 (Algorithm 9.53). Subsequent to this preprocessing, keystream
generation requires about 5 machine instructions per byte, and is an order of magnitude
faster than DES (Algorithm 7.82).

The following notation is used in SEAL for 32-bit quantities A, B, C, D, X;, and Y}:
A: bitwise complement of A
AN B, AV B, A®B: bitwise AND, inclusive-OR, exclusive-OR
“A + s": 32-bit result of rotating A left through s positions
“A — s": 32-bit result of rotating A right through s positions

A + B: mod 232 sum of the unsigned integers A and B
def def

e f(B,C,D) = (BAC)V(BAD); ¢(B,C,D)= (BAC)V(BAD)V(CAD);
WB,C,D) ™ BacaD

e A||B: concatenation of A and B

o (X1,...,X;)«<(Y1,...,Y;): smultaneous assignments (X;«+Y;), where

(Y1,...,Y;) isevaluated prior to any assignments.

Note (SEAL 1.0vs. SEAL 2.0) Thetable-generationfunction (Algorithm 6.67) for thefirst
version of SEAL (SEAL 1.0) was based on the Secure Hash Algorithm (SHA). SEAL 2.0
differsfrom SEAL 1.0 in that the table-generation function for the former is based on the
modified Secure Hash Algorithm SHA-1 (Algorithm 9.53).

Note (tables) Thetable generation (step 1 of Algorithm 6.68) uses the compression func-
tion of SHA-1 to expand the secret key a into larger tables T', S, and R. These tables can
be precomputed, but only after the secret key a has been established. TablesT and S are
2K bytes and 1K byte in size, respectively. The size of table R depends on the desired
bitlength L of the keystream — each 1K byte of keystream requires 16 bytes of R.

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

6.67 Algorithm Table-generation function for SEAL 2.0

Gali)

INPUT: a 160-bit string a and an integer i, 0 < i < 232,

OUTPUT: a 160-bit string, denoted G (¢).

1. Definition of constants. Define four 32-bit constants (in hex): y; = 0x5a827999,
yo = Ox6ed9ebal, y3 = 0x8f 1bbcdc, v, = Oxcab2c1d6.
2. Table-generation function.

(initialize 80 32-bit words Xg, X1, ... , X79)
Set X + . For j from 1 to 15 do: X ;<+— 0x00000000.
For 5 from 16 to 79 do: Xj — ((Xj_g@Xj_g@Xj_14@Xj_16) — 1)
(initialize working variables)
Break up the 160-hit string a into five 32-bit words. a = HyH,H>H3H,.
(A, B,C,D, E) < (Ho, Hi1, Ha, H3, Hy).
(execute four rounds of 20 steps, then update; ¢ is a temporary variable)
(Round 1) For j from 0 to 19 do the following:
t < (A+5)+ f(B,C,D)+E+X;+v),
(A,B,C,D,E) < (t,A, B+ 30,C, D).
(Round 2) For j from 20 to 39 do the following:
t < (A« 5)+h(B,C,D)+ E + X; + ya),
(A,B,C,D,E) + (t,A,B < 30,C, D).
(Round 3) For j from 40 to 59 do the following:
t < ((A+5)+g(B,C,D)+ E + X; +ys3),
(A,B,C,D,E) < (t,A,B <+ 30,C, D).
(Round 4) For j from 60 to 79 do the following:
t « (A+5)+h(B,C,D)+E+ X; +ya),
(A,B,C,D,E) + (t,A,B < 30,C, D).
(update chaining values)
(Ho,Hl, H,, Hs, H4) < (H() +A Hi+B,H,+C,Hs+ D,H; + E)
(completion) The value of G, (i) is the 160-bit string Ho|| H || Hy|| Hs|| Hy.

6.68 Algorithm Keystream generator for SEAL 2.0

SEAL (a,n)

INPUT: a 160-bit string a (the secret key), a (non-secret) integer n, 0 < n < 232 (the
seguence number), and the desired bitlength L of the keystream.

OUTPUT: keystream y of bitlength L, where L’ isthe least multiple of 128 whichis> L.

1. Table generation. Generate the tables T', S, and R, whose entries are 32-bit words.
Thefunction F used below isdefined by F,, (i) = H,,,.-, where HLH{ HiHH, =
G.(|7/5]), and where the function G, is defined in Algorithm 6.67.

1.1 For ¢ from 0 to 511 do the following: T'[¢]«F, (i).
1.2 For j from 0 to 255 do the following: S[j]« F,(0x00001000 + j).
1.3 For kfrom0to4- [(L —1)/8192] — 1 do: R[k]|+ F,(0x00002000 + k).

2. Initialization procedure. Thefollowing is a description of the subroutine
Initialize(n,l,A,B,C,D,ny, no,n3,nys) Which takesasinput a 32-bit word n
and an integer [, and outputseight 32-bit words A, B, C, D, nq, na, n3, and ny. This
subroutineis used in step 4.

A<n®R[4l], B+ (n < 8)®R[4l + 1], C+(n — 16)® R[4l + 2],
D+ (n < 24)®R[4l + 3].

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

For j from 1 to 2 do the following:
P+ AAOx000007fc, B<—B + T[P/4], A<(A —9),
P+ BA0x000007fc, C+C + T[P/4], B+ (B
P+CA0x000007fc, D+D +T[P/4], C+(C
P+ DAOx000007fc, A«~A+ T[P/4], D+~(D
(nl, n2,Nn3, TM)(—(D, B, A, C)
P+ ANOx000007fc, BB + T[P/4], A<(A —9).
P+ BA0Xx000007fc, C+C + T[P/4], B« (B < 9).
P+CN0x000007fc, D«D + T[P/4], C+(C — 9).
P+ DA0x000007fc, A«A + T[P/4], D« (D < 9).
3. Initialize y to be the empty string, and I<0.
4. Repeat the following:
4.1 Executetheprocedurel niti alize(n,l, A, B,C, D,ni,ng,ns,ng).
4.2 For i from 1 to 64 do the following:
P+ A/ 0x000007fc, B+ B + T[P/4], A+(A < 9), B« B®A,
Q+BAOx000007fc, C+-Ca®T[Q/4], B+(B <= 9), C+C + B,
P+ (P + C)AOx000007fc, D+ D + T[P/4], C+(C < 9), D+~ DaC,
Q+(Q + D)A0x000007fc, A« AdT[Q/4], D+(D < 9), A+~A+ D,
P+ (P + A)A0x000007fc, B+ B&T[P/4], A+ (A —9),
Q+(Q + B)A0Ox000007fc, C+C + T[Q/4], B+ (B < 9),
P+ (P + C)AOx000007fc, D« D@T[P/4], C+(C < 9),
Q+(Q + D)A0Ox000007fc, A«A+T[Q/4], D+ (D —9),
yy || (B + S[4i —4]) || (CS[4i — 3]) || (D + 5[4 — 2]) || (A®S[4i — 1]).
If yis> L hitsin length then return(y) and stop.
Ifiisodd, set (4, C)+(A+ny, C+ns). Otherwise, (4, C)+(A+ns, C+ny).
4.3 Seti«+I1+1.

— 9)
—9),
— 9)

6.69 Note (choice of parameter L) In most applications of SEAL 2.0 it is expected that L <
219 Jarger values of L are permissible, but come at the expense of a larger table R. A
preferred method for generating a longer keystream without requiring a larger table R is
to compute the concatenation of the keystreams SEAL (a,0), SEAL(a,1), SEAL(a,2),.. ..
Sincethe sequence number isn < 232, akeystream of length up to 25! bits can be obtained
in this manner with L = 21°.

6.70 Example (testvectorsfor SEAL 2.0) Supposethekey a isthe 160-bit (hexadecimal) string
67452301 ef cdab89 98badcfe 10325476 c3d2elfO0,
n = 0x013577af, and L = 32768 hits. Table R consists of words R[0], R[1],. .. , R[15]:

5021758d ce577c11 fa5bd5dd 366d1b93 182cff 72 ac06d7c6
2683ead8 fabe3573 82a10c96 48c483bd ca92285c 71f e84c0
bd76b700 6f dcc20c 8dadal51 4506dd64

Thetable T consists of wordsT'[0], T'[1], ... , T[511]:

92b404e5 56588ced 6c¢clacd4e bf 053f 68 09f 73a93 cd5f 176a
b863f 14e 2b014a2f 4407e646 38665610 222d2f 91 4d941a21

3af 3a4bf 021e4080 2a677d95 405c7db0 338e4ble 19ccf 158

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

Thetable S consists of words S[0], S[1],. .. , S[255]:

907cle3d ce7lef Oa 48f559ef 2b7ab8bc 4557f 4b8 033e9b05
Af deOef a 1a845f 94 38512c3b d4b44591 53765dce 469ef a02

bd7dea87 fd036d87 53aa3013 ec60e282 leaef 8f 9 0b5a0949
The output y of Algorithm 6.68 consists of 1024 words y[0], y[1], . .. , y[1023]:

37a00595 9b84c49c adbele05 0673530f 0ac8389d c5878ec8
da6666d0 6da71328 1419bdf 2 d258bebb b6a42ad4d 8a31la72

547df de9 668d50b5 ba9e2567 413403c5 43120b5a ecf 9d062
The XOR of the 1024 words of y is 0x098045fc. O

6.5 Notes and further references

§6.1

§6.2

Although now dated, Rueppel [1075] provides a solid introduction to the analysis and
design of stream ciphers. For an updated and more comprehensive survey, see Rueppel
[1081]. Another recommended survey is that of Robshaw [1063].

The concept of unconditional security was introduced in the seminal paper by Shannon
[1120]. Maurer [819] surveystherole of information theory in cryptography and, in partic-
ular, secrecy, authentication, and secret sharing schemes. Maurer [811] devised arandom-
ized stream cipher that is unconditionally secure “with high probability”. More precisely,
an adversary is unableto obtain any information whatsoever about the plaintext with prob-
ability arbitrarily close to 1, unless the adversary can perform an infeasible computation.
Thecipher utilizesapublicly-accessible source of random bitswhoselengthismuch greater
than that of all the plaintext to be encrypted, and can conceivably be made practical. Mau-
rer’'s cipher is based on theimpractical Rip van Winkle cipher of Massey and Ingermarsson
[789], which is described by Rueppel [1081].

Onetechniquefor solving the re-synchronization problem with synchronous stream ciphers
isto havethe receiver send aresynchronization request to the sender, whereby anew inter-
nal stateis computed as a (public) function of the original internal state (or key) and some
public information (such as the time at the moment of the request). Daemen, Govaerts,
and Vandewalle [291] showed that this approach can result in atotal loss of security for
some published stream cipher proposals. Proctor [1011] considered the trade-off between
the security and error propagation problemsthat arise by varying the number of feedback
ciphertext digits. Maurer [808] presented various design approachesfor self-synchronizing
stream ciphersthat are potentially superior to designs based on block ciphers, both with re-
spect to encryption speed and security.

Anexcellentintroductionto thetheory of both linear and nonlinear shift registersisthebook
by Golomb [498]; see aso Selmer [1107], Chapters 5 and 6 of Beker and Piper [84], and
Chapter 8 of Lidl and Niederreiter [764]. A lucid treatment of m-sequencescan befoundin
Chapter 10 of McEliece[830]. Whilethediscussionin thischapter has been restricted to se-
guences and feedback shift registers over the binary field Z», many of the results presented
can be generalized to sequences and feedback shift registers over any finite field IF,,.

©1997 CRC PressLLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-392.png&w=394&h=2
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch6&iName=master.img-392.png&w=394&h=2

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

The results on the expected linear complexity and linear complexity profile of random se-
guences (Facts 6.21, 6.22, 6.24, and 6.25) are from Chapter 4 of Rueppel [1075]; they also
appear in Rueppel [1077]. Dai and Yang [294] extended Fact 6.22 and obtained bounds
for the expected linear complexity of an n-periodic sequencetor each possible value of n.
The bounds imply that the expected linear complexity of a random periodic sequence is
close to the neriod of the sequence. The linear complexity profile of the sequence defined
in Example 6.27 was established by Dai [293]. For further theoretical analysisof the linear
complexity profile, consult the work of Niederreiter [927, 928, 929, 930].

Facts 6.29 ancl 6.34 are due to Massey [784]. The Berlekamp-Massey agorithm (Algo-
rithm 6.30) 15 dueto Massey [784], and is based on an earlier algorithm of Berlekamp [118]
tor decoding BCH codes. While the algorithm in §6.2.3 is only described for binary se-
guences, it can be generalized to find the linear complexity of sequences over any field.
Further discussion and refinementsof the Berlekamp-Massey algorithmare given by Blahut
[144]. There are numerous other algorithms for computing the linear complexity of a se-
guence. For example, Games and Chan [439] and Robshaw [1062] present efficient algo-
rithmsfor determining the linear complexity of binary sequences of period 2"; these algo-
rithms have limited practical use since they require an entire cycle of the sequence.

Jansen and Boekee [632] defined the maximum order complexity of a sequence to be the
length of the shortest (not necessarily linear) feedback shift register (FSR) that can gener-
ate the sequence. The expected maximum order complexity of a random binary sequence
of length n is approximately 21gn. An efficient linear-time algorithm for computing this
complexity measure was also presented; see also Jansen and Boekee [631].

Another complexity measure, the Ziv-Lempel complexity measure, was proposed by Ziv and
Lempel [1273]. Thismeasurequantifiestherate at which new patternsappear in asequence.
Mund [912] used a heuristic argument to derive the expected Ziv-Lempel complexity of a
random binary sequence of a given length. For a detailed study of the relative strengths
and weaknesses of the linear, maximum order, and Ziv-Lempel complexity measures, see
Erdmann [372].

Kolmogorov [704] and Chaitin [236] introduced the notion of so-called Turing-Kolmogorov
-Chaitin complexity, which measures the minimum size of the input to a fixed universal
Turing machinewhich can generateagiven sequence; seea so Martin-Lof [783]. Whilethis
complexity measureis of theoretical interest, there is no algorithm known for computing it
and, hence, it has no apparent practical significance. Beth and Dai [124] have shown that
the Turing-K olmogorov-Chaitin complexity is approximately twice the linear complexity
for most sequences of sufficient length.

Fact 6.39 is due to Golomb and Welch, and appears in the book of Golomb [498, p.115].
Lai [725] showed that Fact 6.39 iss only true for the binary case, and established necessary
and sufficient conditionsfor an FSR over ageneral finite field to be nonsingular.

Klapper and Goresky [677] introduced a new type of feedback register called a feedback
with carry shift register (FCSR), which is equipped with auxiliary memory for storing the
(integer) carry. An FCSR is similar to an LFSR (see Figure 6.4), except that the contents
of the tapped stages of the shift register are added asintegers to the current content of the
memory to form asum S. The least significant bit of S (i.e., S mod 2) is then fed back
into the first (leftmost) stage of the shift register, while the remaining higher order bits(i.e.,
| S/2]) are retained as the new value of the memory. If the FCSR has L stages, then the
space required for the auxiliary memory is at most 1g L bits. FCSRs can be conveniently
analyzed using the algebra over the 2-adic numbersjust as the algebra over finite fieldsis
used to analyze LFSRs.

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

§6.3

Any periodic binary sequence can be generated by a FCSR. The 2-adic span of a periodic
sequenceis the number of stages and memory bitsin the smallest FCSR that generatesthe
sequence. Let s be a periodic sequence having a 2-adic span of T'; note that 7" is no more
than the period of s. Klapper and Goresky [678] presented an efficient algorithm for finding
an FCSR of length T which generates s, given 27 + 2[1g T'] + 4 of the initial bitsof s. A
comprehensive treatment of FCSRs and the 2-adic span is given by Klapper and Goresky
[676].

Notes 6.46 eincl 6.47 on the selection of connection polynomialswere essentially first point-
ed out by Meier and Staffelbach [834] and Chepyzhov and Smeets [256] in relation to
fast correlation attacks on regularly clocked LFSRs. Similar observations were made by
Coppersmith, Krawczyk, and Mansour [279] in connection with the shrinking generator.
More generally, to withstand sophisticated correlation attacks (e.g., see Meier and Staffel-
bach [834]), the connection polynomials should not have low-weight polynomial multiples
whose degrees are not sufficiently large.

Klapper [675] provides examples of binary sequences having high linear complexity, but
whose linear complexity islow when considered as sequences (whose elements happen to
beonly 0 or 1) over alarger finitefield. Thisdemonstratesthat high linear complexity (over
7o) by itself isinadequate for security. Fact 6.49 was proven by Rueppel and Staffelbach
[1085].

The Geffe generator (Example 6.50) was proposed by Geffe [446]. The Pless generator
(Arrangement D of [978]) was another early proposal for anonlinear combination genera-
tor, and uses four JK flip-flops to combine the output of eight LFSRs. This generator also
succumbs to a divide-and-conquer attack, as was demonstrated by Rubin [1074].

Thelinear syndrome attack of Zeng, Yang, and Rao [1265] is a known-plaintext attack on
keystream generators, and isbased on earlier work of Zengand Huang [1263]. Itiseffective
when the known keystream B can bewrittenintheform B = A® X, where A isthe output
sequence of an LFSR with known connection polynomial, and the sequence X is unknown
but sparse in the sense that it contains more 0’'sthan 1's. If the connection polynomials of
the Geffe generator are all known to an adversary, and are primitive trinomials of degrees
not exceeding n, then the initial states of the three component LFSRs (i.e., the secret key)
can be efficiently recovered from a known keystream segment of length 37n bits.

The correlation attack (Note 6.51) on nonlinear combination generators was first devel-
oped by Siegenthaler [1133], and estimates were given for the length of the observed
keystream required for the attack to succeed with high probability. The importance of
correlation immunity to nonlinear combining functions was pointed out by Siegenthaler
[1232]. who showed the tradeoff between high correlationimmunity and high nonlinear or-
der (Fact 6.53). Meier and Staffelbach [834] presented two new so-called fast correlation
attackswhich are more efficient than Siegenthal er’ s attack in the case where the component
LFSRs have sparse feedback polynomials, or if they havelow-weight polynomial multiples
(e.g., each having fewer than 10 non-zero terms) of not too large a degree. Further exten-
sions and refinements of correlation attacks can be found in the papers of Mihaljevic and
Gaolit [874], Chepyzhov and Smeets [256], Goli¢ and Mihaljevic [491], Mihaljevic and J.
Golit [875], Mihaljevit [873], Clark, Goli¢, and Dawson [262], and Penzhorn and Kiihn
[967]. A comprehensivesurvey of correlation attacks on LFSR-based stream ciphersisthe
paper by Goli€ [486]; the cases where the combining function is memoryless or with mem-
ory, aswell aswhen the LFSRs are clocked regularly or irregularly, are all considered.

The summation generator (Example 6.54) was proposed by Rueppel [1075, 1076]. Meier

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

and Staffelbach [837] presented correl ation attacks on combination generatorshaving mem-
ory, cracked the summation generator having only two component LFSRS, and as a result
recommended using several LFSRs of moderate lengths rather than just afew long LFSRs
in the summation generator. As an example, if a summation generator employs two LF-
SRs each having length approximately 200, and if 50 000 keystream bits are known, then
Meier and Staffelbach’s attack is expected to take less than 700 trials, where the dominant
step in each trial involves solving a400 x 400 system of binary linear equations. Dawson
[312] presented another known-plaintext attack on summation generators having two com-
ponent LFSRs, which requires fewer known keystream bits than Meier and Staffelbach’s
attack. Dawson’s attack is only faster than that of Meier and Staffelbach in the case where
both LFSRsarerelatively short. Recently, Klapper and Goresky [678] showed that the sum-
mation generator has comparatively low 2-adic span (see page 218). More precisely, if a
and b are two sequences of 2-adic span Az(a) and Az (b), respectively, and if s is the re-
sult of combining them with the summation generator, then the 2-adic span of s is at most
Xa(a) + X2 (D) +2[1g(A2(a))] + 2[1g(A2(b))] + 6. For example, if m-sequences of period
2L —1for L = 7,11,13,15, 16, 17 are combined with the summation generator, then the
resulting sequence has linear complexity nearly 279, but the 2-adic span is less than 218,
Hence, the summation generator is vulnerable to a known-plaintext attack when the com-
ponent LFSRs are all relatively short.

The probability distribution of the carry for addition of n random integerswas analyzed by
Staffelbach and Meier [1167]. 1t was proven that the carry isbalanced for evenn and biased
foroddn. Forn = 3thecarry isstrongly biased, however, the bias convergesto 0 asn tends
to co. Goli€ [485] pointed out the importance of the correl ation between linear functions of
the output and input in general combinerswith memory, and introduced the so-called linear
sequential circuit approximation method for finding such functionsthat produce correlated
sequences. Golit [488] used thisasabasisfor developing alinear cryptanalysistechnique
for stream ciphers, and in the same paper proposed a stream cipher called GOAL, incorpo-
rating principles of modified truncated linear congruential generators (see page 187), self-
clock-control, and randomly generated combiners with memory.

Fact 6.55(i) isdueto Key [670], while Fact 6.55(ii) was proven by Rueppel [1075]. Massey
and Serconek [794] gave an aternate proof of Key's bound that is based on the Discrete
Fourier Transform. Siegenthaler [1134] described a correlation attack on nonlinear filter
generators. Forré [418] has applied fast correlation attacks to such generators. Anderson
[29] demonstrated other correlationswhich may be useful in improving the success of cor-
relation attacks. An attack called the inversion attack, proposed by Goli€ [490], may be
more effective than Anderson’s attack. Goli¢ also providesalist of design criteriafor non-
linear filter generators. Ding [349] introduced the notion of differential cryptanalysis for
nonlinear filter generatorswherethe LFSR is replaced by a simple counter having arbitrary
period.

The linear consistency attack of Zeng, Yang, and Rao [1264] is a known-plaintext attack
on keystream generators which can discover key redundanciesin various generators. It is
effectivein situationswhereit is possible to single out a certain portion &, of the secret key
k, and form alinear system of equations Az = b where the matrix A isdetermined by &1,
and b is determined from the known keystream. The system of equations should have the
property that it is consistent (and with high probability has a unique solution) if &, isthe
true value of the subkey, while it isinconsistent with high probability otherwise. In these
circumstances, one can mount an exhaustive search for &, , and subsequently mount a sepa-
rate attack for theremaining bits of &. If thebitlengthsof k; and k arel; and, respectively,
the attack demonstratesthat the security level of the generator is 2!t 4 2!—!1 | rather than 2.

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

The multiplexer generator was proposed by Jennings [637]. Two maximum-length LFSRs
having lengths L1, Lo, that are relatively prime are employed. Let h be a positive integer
satisfying h < min(Lq,1g Lo). After each clock cycle, the contents of afixed subset of &
stages of thefirst LFSR are selected, and converted to an integer ¢ in theinterval [0, Lo — 1]
usingal — 1 mapping 6. Finaly, the content of stage ¢ of the second LFSR is output as
part of the keystream. Assuming that the connection polynomialsof the L FSRs are known,
the linear consistency attack provides a known-plaintext attack on the multiplexer gener-
ator requiring a known keystream sequence of length N > L, + L»2" and 221" linear
consistency tests. Thisdemonstratesthat the choice of the mapping 6 and the second LFSR
do not contribute significantly to the security of the generator.

Thelinear consistency attack has also been considered by Zeng, Yang, and Rao [1264] for
the multispeed inner-product generator of Massey and Rueppel [793]. In this generator,
two LFSRsof lengths L; and L» are clocked at different rates, and their contents combined
at the lower clock rate by taking the inner-product of the min(L;, L) stages of the two
LFSRs. The paper by Zeng et al. [1266] is a readable survey describing the effectiveness
of thelinear consistency and linear syndrome attacks in cryptanalyzing stream ciphers.

The knapsack generator (Example 6.56) was proposed by Rueppel and Massey [1084] and
extensively analyzed by Rueppel [1075], however, no concrete suggestionson selecting ap-
propriate parameters (thelength L of the LFSR and the knapsack weights) for the generator
were given. No weaknesses of the knapsack generator have been reported in the literature.

Theideaof using the output of aregister to control the stepping of another register wasused
in several rotor machines during the second world war, for example, the German Lorenz
SZ40 cipher. A description of this cipher, and also an extensive survey of clock-controlled
shift registers, is provided by Gollmann and Chambers [496].

The aternating step generator (Algorithm 6.57) was proposed in 1987 by Giinther [528],
who also proved Fact 6.59 and described the divide-and-conquer attack mentioned in
Note 6.60. The aternating step generator is based on the stop-and-go generator of Beth
and Fiper [126]. In the stop-and-go generator, a control register R; is used to control the
stepping of another register R, asfollows. If the output of Ry is1, then R; is clocked; if
the output of R, is0, then R, isnot clocked, however, its previous output isrepeated. The
output of R, isthen XORed with the output sequenceof athird register R3 whichisclocked
at the samerate as R;. Beth and Piper showed how ajudicious choice of registers Ry, R»,
and R3 can guarantee that the output sequence has high linear complexity and period, and
good statistical properties. Unfortunately, the generator succumbs to the linear syndrome
attack of Zeng, Yang, and Rao [1265] (see also page 218): if the connection polynomialsof
R, and R are primitivetrinomial s of degree not exceeding n, and known to the adversary,
then theinitial states of the three component LFSRs (i.e., the secret key) can be efficiently
recovered from a known-plaintext segment of length 37n bits.

Another variant of the stop-and-go generator isthe step-1/step-2 generator due to Gollmann
and Chambers [496]. This generator uses two maximum-length registers R; and R of the
same length. Register R; is used to control the stepping of R, asfollows. If the output of
R, is0, then R, isclocked once; if the output of R; is 1, then R; is clocked twice before
producing the next output bit. Zivkovi¢ [1274] proposed an embedding correlation attack
on R, whose complexity of O(2%2), where L, isthe length of R.

A cyclicregister of length L isan LFSR with feedback polynomial C'(D) = 1+ D*. Goll-
mann [494] proposed cascading n cyclic registers of the same primelength p by arranging
them serially in such away that al except thefirst register are clock-controlled by their pre-
decessors; the Gollmann p-cycle cascade can be viewed as an extension of the stop-and-go

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

generator (page 220). Thefirst register is clocked regularly, and its output bit is the input
bit to the second register. In general, if the input bit to the i*" register (for i > 2) at time
t is a;, then the i** register is clocked if a; = 1; if a; = 0, the register is not clocked but
its previous output bit is repeated. The output bit of the i*" register is then X ORed with a;,
and the result becomestheinput bit tothe (i + 1) register. The output of thelast registeris
the output of the p-cycle cascade. Theinitial (secret) stage of acomponent cyclic register
should not bethe all-0’s vector or the all-1’s vector. Gollmann proved that the period of the
output sequenceis p™. Moreover, if p isaprime such that 2 is a generator of Z,, then the
output sequence haslinear complexity p™. Thissuggestsvery strongly using long cascades
(i.e., n large) of shorter registersrather than short cascades of longer registers. A variant of
the Gollmann cascade, called an m-sequence cascade, has the cyclic registers replaced by
maximum-length L FSRs of the same length L. Chambers[237] showed that the output se-
quence of such an m-sequence cascade has period (22 — 1) and linear complexity at least
L(2F —1)"~1. Park, Lee, and Goh [964] extended earlier work of Menicocci [845] and re-
ported breaking 9-stage m-sequence cascades where each LFSR has length 100; they also
suggested that 10-stage m-sequence cascades may be insecure. Chambers and Gollmann
[239] studied an attack on p-cycle and m-sequence cascades called lock-in, which results
in areduction in the effective key space of the cascades.

The shrinking generator (Algorithm 6.61) was proposed in 1993 by Coppersmith,
Krawczyk, and Mansour [279], who a so provec! Fact 6.63 and described the attacks men-
tionedin Note6.64. Theirregular output rate of the shrinking generator can be overcomeby
using ashort butfer tor the output; the influence of such abuffer isanalyzed by Kessler and
Krawczyk [669]. Krawczyk [716] mentions some techniques for improving software im-
plementations. A throughput of 2.5 Mbits/sec is reported for a C language implementation
on a33MHz IBM workstation, when the two shift registers each have lengths in the range
61-64 bits and secret connections are employed. The security of the shrinking generator is
studied further by Goli¢ [487].

A key generator related to the shrinking generator is the self-shrinking generator (SSG) of
Meier and Staffelbach [838]. The self-shrinking generator uses only one maximum-length
LFSR R. The output sequence of R is partitioned into pairs of bits. The SSG outputs a
0 if aparis10, and outputsa 1 if apair is11; 01 and 00 pairs are discarded. Meier and
Staffel bach proved that the self-shrinking generator can beimplemented asa shrinking gen-
erator. Moreover, the shrinking generator can be implemented as a self-shrinking genera-
tor (whose component LFSR is not maximum-length). More precisely, if the component
LFSRs of a shrinking generator have connection polynomials C; (D) and C3(D), its out-
put sequence can be produced by a self-shrinking generator with connection polynomial
C(D) = C1(D)? - Cy(D)?. Meier and Staffelbach also proved that if thelength of Ris L,
then the period and linear complexity of the output sequence of the SSG are at least 21-/2

and 2L5/21-1 respectively. Moreover, they provided strong evidence that this period and
linear complexity isin fact about 2Z~!. Assuming arandomly chosen, but known, connec-
tion polynomial, the best attack presented by Meier and Staffelbach on the SSG takes 2079
steps. More recently, Mihaljevi€ [871] presented a significantly faster probabilistic attack
on the SSG. For example, if L = 100, then the new attack takes 2°7 steps and requires a
portion of the output sequence of length 4.9 x 108. The attack does not have an impact on
the security of the shrinking generator.

A recent survey of techniques for attacking clock-controlled generators is given by Goll-
mann [495]. For some newer attack techniques, see Mihaljevit [872], Goli¢ and O’ Connor
[492], and Goli€ [489]. Chambers[238] proposed a clock-controlled cascade composed of
LFSRseach of length 32. Each 32-bit portion of the output sequence of acomponent LFSR

©1997 CRC PressLLC

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

§6.4

is passed through an invertible scrambler box (S-box), and the resulting 32-bit sequenceis
used to control the clock of thenext L FSR. Baum and Blackburn[77] generalized thenotion
of aclock-controlled shift register to that of aregister based on afinite group.

SEAL (Algorithm 6.68) was designed and patented by Coppersmith and Rogaway [281].
Rogaway and Coppersmith [1066] report an encryption speed of 7.2 Mbytes/sec for an as-
sembly languageimplementation ona50 MHz 486 processor with L = 4096 bits, assuming
precomputed tables (¢f. Note 6.66).

Although the stream cipher RC4 remains proprietary, alleged descriptions have been pub-
lished which are output compatiblewith certified implementationsof RC4; for example, see
Schneier [1094]. Blocher and Dichtl [156] proposed a fast software stream cipher called
FISH (Fibonacci Shrinking generator), which isbased on the shrinking generator principle
applied to the lagged Fibonacci generator (also known as the additive generator) of Knuth
[692, p.27]. Anderson[28] subsequently presented aknown-plaintext attack on FISH which
requires a few thousand 32-bit words of known plaintext and a work factor of about 249
computations. Anderson also proposed afast software stream cipher called PIKE based on
the Fibonacci generator and the stream cipher A5; adescription of A5 isgiven by Anderson
[2g].

Wolfram [1251, 1252] proposed a stream cipher based on one-dimensional cellular automa-
tawith nonlinear feedback. Meier and Staffel bach [835] presented aknown-plaintext attack
onthiscipher which demonstrated that key lengthsof 127 bits suggested by Wolfram [1252]
areinsecure; Meier and Staffelbach recommend key sizes of about 1000 bits.

Klapper and Goresky [679] presented constructionsfor FCSRs (see page 217) whose output
seguences have nearly maximal period, are balanced, and are nearly de Bruijn sequencesin
the sense that for any fixed non-negative integer ¢, the number of occurrences of any two
t-bit sequences as subsequences of a period differs by at most 2. Such FCSRs are good
candidates for usage in the construction of secure stream ciphers, just as maximum-length
LFSRswereusedin §6.3. Goresky and Klapper [518] introduced ageneralization of FCSRs
called d-FCSRs, based on ramified extensions of the 2-adic numbers(d is the ramification).

©1997 CRC PressLLC

	Handbook of Applied Cryptography

	Chapter 6: Stream Ciphers
	6.1 Introduction
	Chapter outline
	6.1.1 Classification

	6.2 Feedback shift
	6.2.1 Linear feedback
	6.2.2 Linear complexity
	6.2.3 Berlekamp-Massey algorithm
	6.2.4 Nonlinear feedback shift registers

	6.3 Stream cipher based on LFSRs
	6.3.1 Nonlinear combination generators
	6.3.2 Nonlinear filter generators
	6.3.3 Clock-controlled generators

	6.4 Other stream ciphers
	6.4.1 SEAL

	6.5 Notes and further references

