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3.1 Introduction and overview

The security of many public-key cryptosystems relies on the apparent intractability of the
computational problems studied in this chapter. In a cryptographic setting, it is prudent to
makethe assumptionthat theadversary isvery powerful. Thus, informally speaking, 2com-
putational problem is said to be easy or tractableif it can be solved in (expected)® polyno-
mial time, at least for anon-negligiblefraction of al possibleinputs. In other words, ii ihere
is an agorithm which can solve a non-negligible fraction of all instances of a problem in
polynomial time, then any cryptosystem whose security is based on that problem must be
considered insecure.

The computational problems studied in this chapter are summarizeclin Table 3.1. The
true computational complexities of these problems are not known. That isiv say, iy are
widely believed to beintractable,? although no proof of thisis known. Generally, the only
lower boundsknown on the resources required to solve these problemsarethe trivial linear
bounds, which do not provide any evidence of their intractability. It is, therefore, of inter-
est to study their relative difficulties. For this reason, various techniques of reducing one

LFor simplicity, the remainder of the chapter shall generally not distinguish between deterministic polynomial-
time algorithms and randomized algorithms (see §2.3.4) whose expected running time is polynomial.
2More precisely, these problems are intractable if the problem parameters are carefully chosen.
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3.1

3.2

Problem || Description |

FACTORING Integer factorization problem: given a positive integer n, find
its prime factorization; that is, writen = pi'p5? ... p;* where
the p; are pairwise distinct primesand each e; > 1.

RSAP RSA problem (also known as RSA inversion): given a positive
integer n that is a product of two distinct odd primesp and ¢, a
positive integer e such that ged(e, (p — 1)(¢ — 1)) = 1, and an
integer ¢, find an integer m such that m® = ¢ (mod n).

QRP Quadratic residuosity problem: given an odd composite inte-
ger n and an integer a having Jacobi symbol () = 1, decide
whether or not a is a quadratic residue modulo .

SQROOT Sguarerootsmodulon: givenacompositeintegernanda € Q.,
(the set of quadratic residues modulo n), find a square root of a
modulo n; that is, an integer  such that 22 = a (mod n).
DLP Discrete logarithm problem: given a prime p, a generator « of
Z,,and an element 3 € Z,, find theinteger z, 0 < = < p — 2,
such that o® = 8 (mod p).

GDLP Generalized discrete logarithm problem: given a finite cyclic
group G of order n, agenerator « of GG, and an element 3 € G,
findtheinteger z, 0 < x < n — 1, suchthat o® = 3.

DHP Diffie-Hellman problem: given a prime p, a generator « of Z,
and elements a® mod p and a® mod p, find a*® mod p.
GDHP Generalized Diffie-Hellman problem: givenafinitecyclic group

G, agenerator o of G, and group elements o and o?, find a*®.
SUBSET-SUM || SQubset sum problem: given a set of positive integers
{a1,aq,...,a,} andapositiveinteger s, determine whether or
not there is a subset of the a; that SUmsto s.

Table 3.1: Some computational problems of cryptographic relevance.

computational problem to another have been devised and studied in theliterature. Thesere-
ductions provide a meansfor converting any algorithm that solvesthe second probleminto
an algorithm for solving the first problem. The following intuitive notion of reducibility
(cf. §2.3.3) is used in this chapter.

Definition Let A and B be two computational problems. A issaid to polytime reduceto
B, written A <p B, if thereis an algorithm that solves A which uses, as a subroutine, a
hypothetical algorithm for solving B, and which runsin polynomial time if the algorithm
for B does.

Informally speaking, if A polytime reducesto B, then B is at least as difficult as A;
equivaently, A is no harder than B. Consequently, if A is awell-studied computational
problemthat iswidely believed to beintractable, then provingthat A <p B providesstrong
evidence of the intractability of problem B.

Definition Let A and B betwo computational problems. If A <p Band B <p A, then
A and B are said to be computationally equivalent, written A =p B.

31n the literature, the hypothetical polynomial-time subroutine for B is sometimes called an oracle for B.
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Informally speaking, if A =p B then A and B are either both tractable or both in-
tractable, as the case may be.

Chapter outline

The remainder of the chapter is organized as follows. Algorithmsfor the integer factoriza-
tion problem are studied in §3.2. Two problemsrelated to factoring, the RSA problem and
the quadratic residuosity problem, are briefly considered in §3.3 and §3.4. Efficient algo-
rithms for computing square rootsin Z,, p aprime, are presented in §3.5, and the equiva-
lence of the problems of finding square roots modulo a composite integer n and factoring
n is established. Algorithms for the discrete logarithm problem are studied in §3.6, and
the related Diffie-Hellman problem is briefly considered in §3.7. The relation betwesii the
problems of factoring a composite integer n and computing discrete logarithmsin (cyclic
subgroups of) the group Z,, is investigated in §3.8. The tasks of finding partia solutions
to the discrete logarithm problem, the RSA problem, and the problem of computing square
roots modulo a composite integer n are the topics of §3.9. The L3-lattice basis reduction
algorithm is presented in §3.10, along with algorithmsor the subset sum problem and for
simultaneous diophantine approximation. Berlekamp's Q-matrix algorithm for factoring
polynomialsis presented in §3.11. Finaly, §3.12 provides references and further chapter
notes.

3.2 The integer factorization problem

3.3

3.4

3.5

3.6

The security of many cryptographic techniques depends upon the intractability of the in-
teger factorization problem. A partial list of such protocols includes the RSA public-key
encryption scheme (§8.2), the RSA signature scheme (§11.3.1), and the Rabin public-key
encryption scheme (§8.3). This section summarizes the current knowledge on algorithms
for the integer factorization problem.

Definition The integer factorization problem (FACTORING) is the following: given a
positive integer n, find its prime factorization; that is, write n = p{*p5? - - - p;* wherethe
p; are pairwisedistinct primesand each e; > 1.

Remark (primality testing vs. factoring) The problem of deciding whether an integer is
compositeor prime seemsto be, in general, much easier than the factoring problem. Hence,
before attempting to factor an integer, the integer should be tested to make sure that it is
indeed composite. Primality tests are amain topic of Chapter 4.

Remark (splitting vs. factoring) A non-trivial factorization of n is a factorization of the
formn = abwherel < a < nand1 < b < n; a and b are said to be non-trivial factors
of n. Here a and b are not necessarily prime. To solve the integer factorization problem, it
sufficesto study algorithmsthat split n, that is, find anon-trivial factorizationn = ab. Once
found, thefactorsa and b can betested for primality. Thealgorithmfor splitting integerscan
then berecursively applied to a and/or b, if either isfound to be composite. In this manner,
the prime factorization of n can be obtained.

Note (testing for perfect powers) If n > 2, it can beefficiently checked asfollowswhether
or not n is a perfect power, i.e., n = z* for someintegersz > 2, k > 2. For each prime
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p < lgn, aninteger approximation z of n'/? is computed. Thiscan be done by performing
abinary search for = satisfyingn = z? intheinterval [2, 2l18"/P1+1], Theentire procedure
takes O((1g® n) Iglglg n) bit operations. For the remainder of this section, it will always
be assumed that n isnot aperfect power. It followsthat if n iscomposite, then n hasat |east
two distinct prime factors.

Some factoring algorithms are tailored to perform better when the integer n being fac-
tored is of a special form; these are called special-purpose factoring algorithms. The run-
ning times of such algorithmstypically depend on certain propertiesof thefactorsof n. Ex-
amples of special-purposefactoring algorithmsincludetrial division (§3.2.1), Pollard’srho
algorithm (§3.2.2) Pollard’sp — 1 algorithm (§3.2.3), the élliptic curve aigorithm (§3.2.4),
and the speciai number field sieve (§3.2.7). In contrast, the running times of the so-called
general-purposefactoring algoriiiims depend solely on the size of n. Examplesof general-
purpose factoring algorithms include the quadratic sieve (§3.2.6) and the general number
field sieve: (§3.2.7).

Whenever appiicable, special-purposeal gorithmsshould be employed asthey will gen-
erally be more efficient. A reasonable overall strategy is to attempt to find small factors
first, capitalize on any particular special forms an integer may have, and then, if all else
fails, bring out the general-purpose algorithms. As an example of a general strategy, one
might consider the following.

1. Apply trial division by small primes|ess than some bound b;.

2. Next, apply Pollard’s rho algorithm, hoping to find any small prime factors smaller
than some bound by, where by > by.

3. Apply thedlliptic curvefactoring algorithm, hoping to find any small factors smaller
than some bound b3, where bs > bs.

4. Finaly, apply one of the more powerful genera -purpose algorithms (quadratic sieve
or general number field sieve).

3.2.1 Trial division

Onceit isestablished that an integer n is composite, before expending vast amountsof time
with more powerful techniques, the first thing that should be attempted istrial division by
all “small” primes. Here, “small” isdetermined asafunction of the size of n. Asan extreme
case, trial division can be attempted by all primesup to v/n. If thisis done, trial division
will completely factor n but the procedurewill take roughly +/n divisionsin the worst case
when . isaproduct of two primes of the same size. In generdl, if the factorsfound at each
stage are tested for primality, then trial division to factor n completely takes O(p + lgn)
divisions, where p is the second-largest prime factor of n.

Fact 3.7 indicatesthat if trial division isused to factor arandomly chosen large integer
n, ihen ine aigorithm can be expected to find some small factorsof n relatively quickly, and
expend a large amount of time to find the second largest prime factor of n.

3.7 Fact Letn bechosen uniformly at random from the interval [1, z].
@i) If % < a < 1, then the probability that the largest prime factor of n is < z% is
approximately 1 + In . Thus, for example, the probability that » has a prime factor
> \/zisln2 =~ 0.69.
(i) The probability that the second-largest prime factor of n is < z%-2!17 isabout 1.
(iii) Theexpected total number of primefactorsof nislnlnz+O(1). (If n = [ p;*, the
total number of primefactorsof nis e;.)
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3.2.2 Pollard’s rho factoring algorithm

Pollard’srho agorithm is a special-purpose factoring a gorithm for finding small factors of
acompositeinteger.

Let f : S — S bearandom function, where S is afinite set of cardinality n. Let
xo bearandom element of S, and consider the sequence zy, z1, x2, . .. definedby x; 1 =
f(z;) fori > 0. Since S isfinite, the sequence must eventually cycle, and consists of a
tail of expectedlength /7n /8 followed by an endlessly repeating cycle of expected length
v/mn /8 (seeFact 2.37). A problemthat arisesin somecryptanalytictasks, includinginteger
factorizatior (Algorithm 3.9) and the discrete logarithm problen (Algorithm 3.60), is of
finding distinct indicess and 7 such that z; = z; (acollisionisthen sid i frave vceurred).

An obviousmethod for finding acollisionisto computeand storex; fori = 0,1, 2, . ..
andlook for duplicates. The expected number of inputsthat must betried beforeaduplicate
isdetectedis y/mn/2 (Fact 2.27). Thismethod requires O(/n) memory and O(y/n) time,
assuming the z; are stored in a hash table so that new entries can be added in constant time.

3.8 Note (Floyd'scycle-finding algorithm) The large storage requirementsin the above tech-
nique for finding a collision can be eliminated by using Floyd's cycle-finding algorithm.
In this method, one starts with the pair (z1, z2), and iteratively computes (z;, z2;) from
the previous pair (x;—1, z2;—2), until z,,, = x2,, for somem. If the tail of the sequence
has length A\ and the cycle has length 4, then the first time that x,,, = x2.,, iISwhenm =
u(1 4+ [A/u]). Notethat A < m < A + u, and consequently the expected running time of
thismethod is O(y/n).

Now, let p be a prime factor of acompositeinteger n. Pollard’s rho algorithm for fac-
toring n attempts to find duplicates in the sequence of integers xg, 1, 2, . .. defined by
zo = 2,241 = f(z;) = 22 + 1 mod p for i > 0. Floyd's cycle-finding algorithm is uti-
lized tofind z,,, and z2,,, suchthat x,,, = 2., (mod p). Sincep dividesn but isunknown,
thisis done by computing the terms z; modulo n and testing if ged(zy, — z2m,n) > 1.
If also ged(zy, — @am,n) < n, then anon-trivia factor of n is obtained. (The situation
ged(zy, — Tam, n) = n occurs with negligible probability.)

3.9 Algorithm Pollard’s rho algorithm for factoring integers

INPUT: acompositeinteger n that is not a prime power.
OUTPUT: anon-trivia factor d of n.
1. Seta<2, b<2.
2. Fori=1,2,... dothefollowing:
2.1 Compute a<—a? + 1 mod n, b<b? + 1 mod n, b<b?+ 1 mod n.
2.2 Computed = ged(a — b, n).
2.3 If 1 < d < n then return(d) and terminate with success.
2.4 If d = n then terminate the algorithm with failure (see Note 3.12).

3.10 Example (Pollard’s rho algorithm for finding a non-trivial factor of n = 455459) The
following table lists the values of variablesa, b, and d at the end of each iteration of step 2
o’ Algorithm 3.9.

©1997 CRC PressLLC



Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

3.11

3.12

[ o [ b [ d]

5 26 1
26 2871 1
677 179685 1
2871 155260 1
44380 | 416250 | 1
179685 | 43670 1
121634 | 164403 | 1
155260 | 247944 | 1

44567 68343 | 743

Hence two non-trivial factors of 455459 are 743 and 455459/743 = 613. O

Fact Assuming that the function f(z) = 2% + 1 mod p behaves like a random function,
the expected time for Pollard’srho agorithm to find afactor p of n isO(,/p) modular mul-
tiplications. Thisimpliesthat the expected time to find a non-trivial factor of n is O(n'/4)
modular multiplications.

Note (options upon termination with failure) If Pollard's rho algorithm terminates with
failure, one option isto try again with a different polynomial f having integer coefficients
instead of f(z) = 2% + 1. For example, the polynomia f(x) = x? + ¢ may be used as
longasc # 0, —2.

3.2.3 Pollard’s p — 1 factoring algorithm

3.13

Pollard’sp — 1 factoring algorithm i s a special-purpose factoring algorithm that can be used
to efficientlv find any prime factors p of a composite integer n for which p — 1 is smooth
(see2 Definition 3.13) with respect to some relatively small bound B.

Definition Let B be apositive integer. An integer n is said to be B-smooth, or smooth
with respect to a bound B, if al its primefactorsare < B.

The idea behind Pollard’'s p — 1 agorithm is the following. Let B be a smoothness
bound. Let @ be the least common multiple of all powersof primes < B that are < n. If
¢ <n,thenllng <Ilnn,andsol < LE—ZJ Thus

Q — H qunn/lan,

g<B

wheretheproductisover al distinct primesq < B. If pisaprimefactor of n suchthatp—1
is B-smooth, then p — 1|Q, and consequently for any a satisfying ged(a, p) = 1, Fermat’'s
theorem (Fact 2.127) impliesthat a® = 1 (mod p). Henceif d = gcd(a® — 1,n), then
pld. Itispossiblethat d = n, in which case the algorithm fails; however, thisis unlikely to
occur if n has at least two large distinct prime factors.
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3.14

3.15

3.16

3.17

Algorithm Pollard’s p — 1 algorithm for factoring integers

INPUT: acompositeinteger n that is not a prime power.
OUTPUT: anon-trivia factor d of n.
1. Select asmoothness bound B.
2. Select arandominteger a, 2 < a < n — 1, and compute d = ged(a,n). If d > 2
then return(d).
3. For each prime ¢ < B do thefollowing;:

3.1 Computel = |12 .

Ing
3.2 Compute a+a? mod n (using Algorithm 2.143).
4. Computed = ged(a — 1,n).
5. If d = 1 or d = n, then terminate the algorithm with failure. Otherwise, return(d).

Example (Pollard'sp — 1 algorithmfor finding a non-trivial factor of n = 19048567)

1. Select the smoothnessbound B = 19.

2. Select theinteger a = 3 and compute ged(3,n) = 1.
3. Thefollowingtableliststheintermediate values of thevariablesgq, I, and a after each

iteration of step 3in Algorithm 3.14:
la[ ] a |

2 [ 24 | 2293244
3 | 15 | 13555889
5 | 10 | 16937223
7 8 | 15214586
11| 6 9685355
13 | 6 | 13271154
17 | 5 | 11406961
19 | 5 554506

4. Computed = ged (554506 — 1,n) = 5281.
5. Two non-trivial factorsof n arep = 5281 and ¢ = n/p = 3607 (thesefactorsarein

fact prime).
Noticethatp — 1 = 5280 =2° x 3 x 5 x 11,andg — 1 = 3606 = 2 x 3 x 601. That
is, p — 1is19-smooth, while ¢ — 1 isnot 19-smooth. O

Fact Let n be an integer having a prime factor p such that p — 1 is B-smooth. The run-
ning time of Pollard’sp — 1 agorithm for finding the factor p isO(B Inn/ In B) modular
multiplications.

Note (improvements) The smoothnessbound B in Algorithm 3.14 is selected based on the
amount of time oneis willing to spend on Pollard’s p — i aiguriiinn before moving on to
more general techniques. In practice, B may be between 10° and 10°. If the algorithm
terminates with d = 1, then one might try searching over prime numbers g1, gz, - .. , q
larger than B by first computing a<—a% mod n for 1 < ¢ < [, and then computing d =
ged(a — 1,n). Another variant is to start with a large bound B, and repeatedly execute
step 3 for afew primes ¢ followed by the gcd computation in step 4. There are numerous
other practical improvements of the algorithm (see page 125).
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3.2.4 Elliptic curve factoring

Thedetails of the élliptic curve factoring algorithmare beyond the scope of thisbook; nev-
ertheless, arough outlinefollows. The success of Pollard’sp — 1 algorithm hingesonp — 1
being smooth for some prime divisor p of n; if no such p exists, then the agorithm fails.
Observethat p — 1 isthe order of the group Z,,. The elliptic curve factoring algorithmisa
generalization of Pollard’s p — 1 algorithm in the sense that the group Z,, is replaced by a
random elliptic curve group over Z,,. The order of such a group is roughly uniformly dis-
tributedintheinterval [p+1—2,/p, p+1+2,/p]. If theorder of the group chosenissmooth
with respect to some pre-selected bound, the elliptic curve algorithm will, with high prob-
ability, find a non-trivial factor of n. If the group order is not smooth, then the algorithm
will likely fail, but can be repeated with a different choice of elliptic curve group.

The elliptic curve algorithm has an expected running time of Lp[%, V2] (see Exam-
ple 2.61 for definition of L,) to find afactor p of n. Since this running time depends on
the size of the prime factors of n, the algorithm tends to find small such factorsfirst. The
eliptic curve algorithm is, therefore, classified as a special-purpose factoring algorithm. 1t
is currently the algorithm of choicefor finding ¢-decimal digit primefactors, for ¢ < 40, of
very large composite integers.

In the hardest case, when n is a product of two primes of roughly the same size, the
expected running time of the elliptic curve algorithmis L,, [%, 1], whichis the same as that
of the quadratic sieve (§3.2.6). However, the dliptic curve algorithm is not as efficient as
the quadratic sievein practice for such integers.

3.2.5 Random square factoring methods

3.18

3.19

3.20

The basic idea behind the random square family of methods is the following. Suppose
and y are integers such that 22 = y? (mod n) but x # 4y (mod n). Then n divides
22 —y? = (z—vy)(x+y) butn doesnot divideeither (x—y) or (z+y). Hence, ged(z—y, n)
must be a non-trivia factor of n. Thisresult is summarized next.

Fact Letz,y,andn beintegers. If 22 = y? (mod n)butz # +y (mod n), thenged (z—
y,n) isanon-trivia factor of n.

The random square methods attemnt to find integers « and y at random so that 22 = y?
(mod n). Then, asshownin Fact 3.19, with probability at least % itisthecasethatz # +y
(mod n), whence ged(x — y, n) will yield anon-trivial factor of n.

Fact Let n be an odd composite integer that isdivisible by k distinct odd primes. If a €
7, then the congruence 22 = a? (mod n) has exactly 2* solutions modulo n, two of
whicharez = aandz = —a.

Example Letn = 35. Thentherearefour solutionsto the congruencez? = 4 (mod 35),
namely ¢ = 2, 12, 23, and 33. O

A common strategy employed by the random square algorithmsfor finding = and y at
random satisfying 2 = y? (mod n) isthefollowing. A set consisting of thefirst ¢ primes
S ={p1,p2,-...,p: }ischosen; S iscalled thefactor base. Proceedto find pairsof integers
(ai, b;) satisfying

(i) a? =b; (mod n); and
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(ii) b; = H?lej"j, eij > 0; that is, b; is p;-smooth.
Next find a subset of the b;'s whose product is a perfect square. Knowing the factoriza-
tions of the b;’s, this is possible by selecting a subset of the b;’s such that the power of
each prime p; appearing in their product is even. For this purpose, only the parity of the
non-negative integer exponentse,; needs to be considered. Thus, to simplify matters, for

each i, associate the binary vector v; = (vi1, vie, - - . , vit) With the integer exponent vector
(eil, €i2y . ,eit) such that Vij = €5 mod 2. Ift 4+ 1 pajrs (CLZ‘, bl) are obtained, then the
t-dimensional vectors vy, vs, . . ., vs.+1 Must be linearly dependent over Z,. That is, there

must exist anon-empty subset 7' C {1,2,... ,t+ 1} suchthat ), ;. v; = 0 over Zs, and
hence[ ], b: isaperfect square. Theset T' can befound using ordinary linear algebraover
Zs. Clearly, [[;cr a? is also a perfect square. Thus setting z = [Licr @i and y to be the
integer squareroot of [],. b; yieldsapair of integers (z, y) satisfyingz* = > (mod n).
If thispair also satisfies x # +y (mod n), then ged(z — y, n) yields a non-trivial factor
of n. Otherwise, some of the (a;, b;) pairs may be replaced by some new such pairs, and
the processis repeated. In practice, there will be several dependencies among the vectors
V1,2, ... , V41, @and with high probability at least one will yield an (z, y) pair satisfying
x # +y (mod n); hence, this last step of generating new (a;, b;) pairs does not usually
occur.

This description of the random square methodsis incomplete for two reasons. Firstly,
the antimal choice of ¢, the size of the factor base, is not specified; this is addressed in
Note 3.24. Szcondly, a method for efficiently generating the pairs (a;, b;) is not specified.
Scvera techniques have been proposed. 1n the simplest of these, called Dixon’s algorithm,
a; is chosen at random, and b; = a? mod n is computed. Next, trial division by elements
in the factor base is used to test whether b; is p;-smooth. If not, then another integer a; is
chosen at random, and the procedureis repeated.

The more efficient techniques strategically select an a; such that b; isrelatively small.
Since the proportion of p;-smaoath integers in the interval [2, z] becomes larger as x de-
creases, the probability of such b; being p,-smooth is higher. The most efficient of such
techniquesis the quadratic sieve algorithm, which is described next.

3.2.6 Quadratic sieve factoring

Supposeaninteger n isto befactored. Let m = |/n], and consider the polynomial ¢(z) =
(z +m)? — n. Note that

q(z) = 2> +2mx+m?* —n ~ 2?4 2maz, (3.1)

whichissmall (relativeto n) if x issmall in absolute value. The quadratic sieve algorithm
sdectsa; = (z + m) and tests whether b; = (x + m)? — n is p;-smooth. Note that
a? = (x + m)? = b; (mod n). Note also that if aprimep dividesb; then (z +m)? = n

(mod p), and hence n is a quadratic residue modulo p. Thus the factor base need only
contain those primes p for which the Legendre symbol (%) is1 (Definition 2.145). Further-
more, since b; may benegative, —1 isincluded in thefactor base. The stepsof the quadratic

sieve algorithm are summarized in Algorithm 3.21.

©1997 CRC PressLLC



Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

3.21 Algorithm Quadratic sieve algorithm for factoring integers

INPUT: acompositeinteger n that is not a prime power.
OUTPUT: anon-trivia factor d of n.

1

2.
3.

© N om

Select the factor base S = {p1,p2,... ,p:}, Wherep, = —1andp; (j > 2) isthe
(j — 1)*® prime p for which n is a quadratic residue modulo p.
Computem = |/n].
(Collect t + 1 pairs (a;, b;). The x values are chosen in the order 0, +1, £2,....)
Set i+1. Whilei < t + 1 do the following:
3.1 Computeb = q(z) = (z+m)? —n, andtest using tria division (cf. Note 3.23)
by elementsin S whether b isp.-smooth. If not, pick anew x and repeat stgp 3.1.
32 If bisp,-smooth, say b = [[;_, p;”, then set a;«—(z + m), b;«b, and v; =
('qul,'UiQ, Ce ,'Uit), Wherevij = €jj mod 2 forl < j <t.
3.3 i+—i+ 1.
Use linear algebra over Z to find a non-empty subset 7 C {1,2,...,¢t + 1} such
that ZiET V; = 0.
Compute z = HieT a; mod n.
Foreachj, 1 < j <t,computel; = (> ;1 eij)/2.
Computey = H§:1 pé»j mod n.
If z = +y (mod n), thenfind another non-empty subset 7' C {1,2,... ,¢+1} such
that > ;. v; = 0, and go to step 5. (In the unlikely case such a subset 7' does not
exist, replace afew of the (a;, b;) pairswith new pairs (step 3), and go to step 4.)
Compute d = ged(z — y, n) and return(d).

3.22 Example (quadratic sieve algorithmfor finding a non-trivial factor of n = 24961)

1.

©oN O A

10.
11.

Select thefactor base S = {-1,2,3,5,13,23} of sizet = 6. (7,11, 17 and 19 are
omitted from S since (%) = —1 for these primes)

Compute m = [1/24961| = 157.
Following is the data collected for the first t + 1 vaues of « for which ¢(x) is 23-
smooth.
| i | x | q(x) | factorization of g(x) | a; | Vs |
1] 0] —312 —2%.3.13 157 | (1,1,1,0,1,0)
2| 1 3 3 158 | (0,0,1,0,0,0)
3| -1] —625 —5* 156 | (1,0,0,0,0,0)
4| 2] 320 20.5 159 | (0,0,0,1,0,0)
5| -2 | —936 —23.32.13 155 | (1,1,0,0,1,0)
6| 4| 960 26.3.5 161 | (0,0,1,1,0,0)
7| -6 | —2160 —2*.3%.5 151 | (1,0,1,1,0,0)

By inspection, v; 4+ v2 +v5 = 0. (Inthenotation of Algorithm 3.21, T’ = {1, 2,5}.)
Compute z = (ajazas mod n) = 936.

Computeh =1,1, =3, l3 =2,1,=0, l5 =1, lﬁ =0.

Computey = —22 - 32 - 13 mod n = 24025.

Since 936 = —24025 (mod n), another linear dependency must be found.

By inspection, vs + vg + v7 = 0; thusT = {3,6, 7}.

Compute z = (azasar mod n) = 23405.

Computeh =1,lo=5,13=2,14=3,l15 =0,lg = 0.
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3.23

3.24

3.25

3.26

3.27

12. Computey = (—2° - 3% - 5% mod n) = 13922.
13. Now, 23405 # +13922 (mod n), socomputeged(z—y,n) = ged(9483,24961)
109. Hence, two non-trivial factors of 24961 are 109 and 229.

Ol

Note (sieving) Instead of testing smoothnessby trial divisionin step 3.1 of Algorithm 3.21,
amore efficient technique known as sieving is employed in practice. Observefirst that If p
isan odd primein the factor base and p divides¢(x), thenp aso dividesq(z + Ip) for every
integer I. Thus by solving the equation ¢(z) = 0 (mod p) for x (for example, using the
algorithmsin §3.5.1), one knows either one or two (depending on the number of solutions
to the quadratic equation) entire sequences of other valuesy for which p divides ¢(y).
The sieving processis the following. An array Q[ ] indexedby z, —M < z < M, is
created and the z*® entry isinitialized to |lg |¢(z)|]. Letzy, x2 bethesolutionsto g(x) = 0
(mod p), where p is an odd primein the factor base. Then the value |1g p| is subtracted
from those entries Q[z] inthe array for whichz = 1 or z3 (mod p) and —M < z < M.
This is repeated for each odd prime p in the factor base. (The case of p = 2 and prime
powers can be handled in asimilar manner.) After the sieving, the array entries Q[z] with
values near 0 are most likely to be p;-smooth (roundoff errors must be taken into account),
and this can be verified by factoring ¢(x) by trial division.

Note (running time of the quadratic sieve) To optimize the running time of the quadratic
sieve, the size of the factor base should be judiciously chosen. The optimal selection of
t &~ Ly[3, 1] (see Example 2.61) is derived from knowledge concerning the distribution
of smooth integers close to /n. With this choice, Algorithm 3.21 with sieving (Note 3.23)
has an expected running time of L,,[%, 1], independent of ife size of the factors of ».

Note (multiple polynomial variant) In order to collect a sufficient number of (a;, b;) pairs,
the sieving interval must be quite large. From equation (3.1) it can be seen that |g(x)| in-
creases linearly with |z|, and consequently the probability of smoothness decreases. To
overcome this problem, a variant (the multiple polynomial quadratic sieve) was proposed
whereby many appropriately-chosen quadratic polynomialscan beused instead of just ¢(x),
each polynomial being sieved over aninterval of much smaller length. Thisvariant also has
an expected running time of Ln[%, 1], and is the method of choicein practice.

Note (paralléizing the quadratic sieve) The multiple polynomial variant of the quadratic
sieveiswell suited for parallelization. Each node of a parallel computer, or each computer
in anetwork of computers, smply sievesthrough different collectionsof polynomials. Any
(a;, b;) pair found is reported to a central processor. Once sufficient pairs have been col-
lected, the corresponding system of linear equationsis solved on asingle (possibly parallel)
computer.

Note (quadratic sieve vs. dliptic curve factoring) The elliptic curve factoring algorithm
(§3.2.4) hasthe sarre* expected (asymptotic) running time as the quadratic sieve factoring
algorithm in the special case when n isthe product of two primes of equal size. However,
for such numbers, the quadratic sieve is superior in practice because the main stepsin the
algorithm are single precision operations, compared to the much more computationally in-
tensive multi-precision elliptic curve operations required in the elliptic curve algorithm.

4This does not take into account the different o(1) termsin the two expressions Ln[% ,1].
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3.2.7 Number field sieve factoring

For several years it was believed by some people that a running time of Ln[é, 1] was, in
fact, the best achievable by any integer factorization algorithm. This barrier was brokenin
1990 with thediscovery of the number field sieve. Likethe quadratic sieve, the number field
sieveis an algorithm in the random square family of methods (§3.2.5). That is, it attempts
tofindintegersz and y suchthat z2 = y? (mod n) andz # +y (mod n). Toachievethis
goal, two factor bases are used, one consisting of al prime numbersless than some bound,
and the other consisting of all prime ideals of norm less than some bound in the ring of
integers of a suitably-chosen algebraic number field. The details of the algorithm are quite
complicated, and are beyond the scope of this book.

A special version of the algorithm (the special number field sieve) applies to integers
of theformn = r¢ — s for small r and |s|, and has an expected running time of L,[$, ¢,
where ¢ = (32/9)'/3 ~ 1.526.

The general version of the algorithm, sometimes called the general number field sieve,
appliestoall integersand hasan expected runningtimeof L, [3, ¢], wherec = (64/9)'/3 ~
1.923. Thisis, asymptotically, the fastest algorithm known for integer factorization. The
primary reason why the running time of the number field sieve is smaller than that of the
guadratic sieve is that the candidate smooth numbers in the former are much smaller than
thosein the latter.

The general number field sieve was at first believed to be slower than the quadratic
sieve for factoring integers having fewer than 150 decimal digits. However, experiments
in 1994-1996 have indicated that the general number field sieveis substantially faster than
the quadratic sieve even for numbersin the 115 digit range. Thisimpliesthat the crossover
point between the effectiveness of the quadratic sieve vs. the general number field sieve
may be 110-120 digits. For this reason, the general number field sieve is considered the
current champion of all general -purpose factoring algorithms.

3.3 The RSA problem

3.28

3.29

Theintractability of the RSA problemformsthebasisfor the security of the RSA public-key
encryption scheme (§8.2) and the RSA signature scheme (§11.3.1).

Definition The RSA problem (RSAP) isthefollowing: given apositiveinteger n thatisa
product of two distinct odd primes p and ¢, a positiveinteger e such that ged(e, (p —1)(¢—
1)) = 1, and an integer ¢, find an integer m such that m® = ¢ (mod n).

In other words, the RSA problemisthat of finding e*? rootsmodul o acompositeinteger

n. The conditionsimposed on the problem parameters n and e ensure that for each integer

c € {0,1,...,n — 1} thereisexactly onem € {0,1,...,n — 1} suchtha m® = ¢

(mod n). Equivalently, the function f : Z,, — Z,, defined as f(m) = m® mod nisa
permutation.

Remark (SQROOT vs. RSA problems) Since p — 1 is even, it follows that e isodd. In
particular, e # 2, and hence the SQROOT problem (Definition 3.43) is not a special case
of the RSA problem.
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3.30

Asis shownin §8.2.2(i), if the factors of n are known then the RSA problem can be
easily solved. Thisfact is stated next.

Fact RSAP <p FACTORING. That is, the RSA problem polytime reduces to the integer
factorization problem.

Itiswidely believed that the RSA and theinteger factorization problems are computa-
tionally equivalent, although no proof of thisis known.

3.4 The quadratic residuosity problem

3.31

3.32

3.33

The security of the Goldwasser-Micali probabilistic public-key encryption scheme (§8.7)
and the Blum-Blum-Shub pseudorandom bit generator (§5.5.2) are both based on the ap-
parent intractability of the quadratic residuosity problem.

Recall from §2.4.5 that if n > 3 isan odd integer, then J,, istheset of dl a € Z),
having Jacobi symbol 1. Recall also that @,, is the set of quadratic residues modulo » and
that the set of pseudosquares modulo n isdefined by Q,, = J,, — Q.

Definition Thequadratic residuosity problem (QRP) isthefollowing: given an odd com-
positeinteger n and a € J,,, decide whether or not a is a quadratic residue modulo 7.

Remark (QRP with a prime modulus) If n is a prime, then it is easy to decide whether
a € Z;, isaquadratic residue modulon since, by definition, a € Q, if andonly if (2) =1,
and the L egendre symbol (2) can be efficiently calculated by Algorithm 2.149.

Assume now that n is a product of two distinct odd primes p and ¢. It follows from
Fact 2.137 that if a € J,,, thena € Q,, if and only if (%) = 1. Thus, if the factorization of
n isknown, then QRP can be solved simply by computing the Legendre symbol (%) This
observation can be generalized to al integersn and leads to the following fact.

Fact QRP <p FACTORING. That is, the QRP polytime reduces to the FACTORING
problem.

On the other hand, if the factorization of n is unknown, then there is no efficient pro-
cedure known for solving QRP, other than by guessing the answer. If n = pq, then the
probability of a correct guess is% since |Q.| = |Qx| (Fact 2.155). Itis believed that the
QRPisasdifficult asthe problem of factoring integers, although no proof of thisis known.

3.5 Computing square roots in 7Z,

The operations of squaring modulo an integer n and extracting square roots modulo an in-
teger n are frequently used in cryptographic functions. The operation of computing square
roots modulo . can be performed efficiently when n isaprime, but is difficult whenn isa
composite integer whose prime factors are unknown.
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3.5.1 Case (i): nprime

3.34

3.35

3.36

Recall frorn Remark 3.32that if pisaprime, thenitiseasy to decideif a € Z, isaquadratic
residue modulo p. If a is, in fact, a quadratic residue modulo p, then the two square roots
of a can be efficiently computed, as demonstrated by’ Algorithm 3.34.

Algorithm Finding square roots modulo a prime p

INPUT: an odd primep and anintegera, 1 < a <p — 1.

OUTPUT: the two square roots of a modulo p, provided a isaquadratic residue modulo p.
1. ComputetheL egendresymbol (%) using Algorithm2.149. If (¢) = —1 thenreturn(a

does not have a square root mocrul 0 p) and terminate.

2. Selectintegersbd, 1 < b < p — 1, at random until oneis found with (%) =—1.(bis

a quadratic non-residue modulo p.)

By repeated division by 2, writep — 1 = 2%¢, wheret isodd.

Compute a~! mod p by the extended Euclidean algorithm (Algorithm 2.142).

Set c+b* mod p and r<a'*t1)/2 mod p (Algorithm 2.143).

For i from 1to s — 1 do thefollowing:

6.1 Computed = (r? -a*1)2s_i_1 mod p.
6.2 If d = —1 (mod p) then set r<—r - ¢ mod p.
6.3 Set c+—c? mod p.

7. Return(r, —r).

o Uk w

Algorithm 3.34 is;arandomized al gorithm because of the manner in whichthe quadratic
non-residue b is selected in step 2. No deterministic polynomial-timealgorithm for finding
a quadratic non-residue modulo a prime p is known (see Remark 2.151).

Fact Algorithm 3.34 has an expected running time of O((lg p)*) bit operations.

This running time is obtained by observing that the dominant step (step 6) is executed
s—1 times, eachiteration involvingamodular exponentiation and thustaking O((Ig p)*) bit
operations (Table 2.5). Sinceintheworst case s = O(lg p), therunning time of O((1g p)*)
follows. When s issmall, theloop in step 6 is executed only a small number of times, and
the running time of Algorithm 3.34is O((1g p)?) bit operations. This point is demonstrated
next for the special casess = 1 and s = 2.

Specializing Algorithm 3.34tothecase s = 1 yieldsthefollowing simpledeterministic
agorithm for finding square rootswhenp = 3 (mod 4).

Algorithm Finding square roots modulo a prime p where p = 3 (mod 4)

INPUT: an odd prime p wherep = 3 (mod 4), and asquarea € Q.
OUTPUT: the two square roots of a modulo p.

1. Computer = a®+1)/% mod p (Algorithm 2.143).

2. Return(r, —r).

Specializing Algorithm 3.34 to the case s = 2, and using the fact that 2 is a quadratic
non-residue modulop whenp = 5 (mod 8), yields the following simple deterministic al-
gorithm for finding square rootswhenp = 5 (mod 8).
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3.37

3.38

3.39

3.40

341

3.42

Algorithm Finding square roots modulo a prime p where p =5 (mod 8)

INPUT: an odd primep wherep = 5 (mod 8), and asquarea € Q,,.
OUTPUT: the two square roots of a modulo p.

1. Computed = a®~1/4 mod p (Algorithm 2.143).

2. If d = 1 then computer = a(P+3)/8 mod p.

3. If d = p — 1 then compute r = 2a(4a)P~5)/% mod p.

4. Return(r, —r).

Fact Algorithms3.36 and 3.37 have running times of O((lg p)?) bit operations.

Algorithm 3.391or finding square roots modulo p is preferableto Algorithm 3.34 when
p— 1 = 2°twith s iarge.

Algorithm Finding square roots modulo a prime p

INPUT: an odd prime p and asquare a € Q.
OUTPUT: the two square roots of a modulo p.
1. Choose random b € Z, until b> — 4a is a quadratic non-residue modulo p, i.e,
(b274a> -1
- .
2. Let f bethe polynomia z% — bx + a in Z[z].
3. Computer = z(*+1)/2 mod f using Algorithm 2.227. (Note:  will be an integer.)
4. Return(r, —r).

Fact Algorithm 3.39 has an expected running time of O((lg p)?) bit operations.

Note (computingsguarerootsinafinitefield) Algorithms3.34, 3.36, 3.37, and 3.39 can be
extended in a straightforward manner to find square rootsin any finitefieid I, of odd order
g = p™, p primme, rn > 1. Square rootsin finite fields of even order can also be computed
efficiently viaFact 3.42.

-1

Fact Eachelement a € Fom has exactly one square root, namely a2”

3.5.2 Case (ii): n composite

3.43

Thediscussion in this subsection isrestricted to the case of computing square roots modulo
n, where n is a product of two distinct odd primes p and q. However, al facts presented
here generalize to the case where n is an arbitrary composite integer.

Unlike the case where n isa prime, the problem of deciding whether agivena € Z;,
is a quadratic residue modulo a composite integer n, is believed to be a difficult problem.
Certainly, if the Jacobi symbol () = —1, then a is a quadratic non-residue. On the other
hand, if (¢) = 1, then deciding whether ci 1ot a is a quadratic residue is precisely the
guadratic residuosity problem, considered in §3.4.

Definition Thesquareroot modulo n problem (SQROOT) isthefollowing: givenacom-
posite integer n and a quadratic residue a modulo . (i.e. a € @), find a sguare root of a
modulo n.
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3.44

3.45

3.46

3.47

If the factors p and ¢ of n are known, then the SQROOT problem can be solved effi-
ciently by first finding square roots of a modulo p and modulo ¢, and then combining them
using the Chinese remainder theorem (Fact 2.120) to obtain the square roots of a« modulo
n. The steps are summarized ir Algorithm 3.44, which, in fact, finds all of the four square
roots of a modulo n.

Algorithm Finding square roots modulo n given its prime factors p and q

INPUT: aninteger n, itsprimefactorsp and ¢, and a € Q,,.
OUTPUT: the four square roots of a modulo n.
1. Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square
rootsr and —r of a modulo p.
2. Use: Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square
roots s and —s of a moduio q.
3. Usetheextended Euclidean algorithm (Algorithm 2.107) to find integersc and d such
that cp + dg = 1.
Set x4+ (rdq + scp) mod n and y«—(rdq — scp) mod n.
5. Return(£z mod n, £y mod n).

e

Fact Algorithm 3.44 has an expected running time of O((lg p)?) bit operations.

Algorithm 3.44 shows that if one can factor n, then the SQROOT problem is easy.
More precisely, SQROOT <p FACTORING. The converse of this statement is also true,
as stated in Fact 3.46.

Fact FACTORING <p SQROOT. That is, the FACTORING problem polytime reduces
to the SQROOT problem. Hence, since SQROOT <p FACTORING, the FACTORING
and SQROQT problems are computationally equivalent.

Justification. Suppose that one has a polynomial-time algorithm A for solving the SQ-
ROOT problem. This algorithm can then be used to factor a given composite integer n as
follows. Select an integer = at random with ged(z,n) = 1, and compute a = z% mod n.
Next, algorithm A isrunwith inputsa and n, and asquare root y of a modulo n isreturned.
If y = £z (mod n), then the trial fails, and the above procedureis repeated with a new
2 chosen at random. Otherwise, if 7 # +2 (mod n), then ged(z — y, n) is guaranteed to
be anon-trivial factor of n (Fact 3.18), namely, p or ¢q. Since a has four square roots mod-
ulon (£z and £z with £z # 2 (mod n)), the probability of success for each attempt
is % Hence, the expected number of attempts before a factor of n is obtained is two, and
conseguently the procedure runs in expected polynomial time. O

Note (strengthening of Fact 3.46) The proof cf Fact 3.46 can be easily modified to estab-
lish the following strongei iesiiit. Let ¢ > 1 be any constant. If there is an algorithm A
which, given n, can find a square root modulo n in polynomial time for a @ fraction
of all quadratic residuesa € @, then the algorithm A can be used to factor n in expected
polynomial time. The implication of this statement is that if the problem of factoring n is

difficult, then for almost all a € @,, it is difficult to find square roots modulo n.

The computational equivalence of the SQROOT and FACTORING problemswas the
basisof thefirst “provably secure” public-key encryption and signature schemes, presented
in §8.3.
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3.6 The discrete logarithm problem

3.48

3.49

3.50

3.51

3.52

3.53

The security of many cryptographic techniques depends on the intractability of the discrete
logarithm problem. A partial list of these includes Diffie-Hellman key agreement and its
derivatives (§12.6), EIGamal encryption (§8.4), and the EIGamal signature scheme and its
variants (§11.5). This section summarizes the current knowledge regarding algorithms for
solving the discrete logarithm problem.

Unless otherwise specified, algorithmsin this section are described in the general set-
ting of a (multiplicatively written) finite cyclic group G of order n with generator o (see
Definition 2.167). For amore concrete approach, the reader may find it convenient to think
of G as the multiplicative group Z,, of order p — 1, where the group operation is smply
multiplication modulo p.

Definition Let G be afinite cyclic group of order n. Let o be a generator of GG, and let
0 € G. Thediscrete logarithm of 5 to the base «, denoted log,, 3, is the unique integer z,
0<xz<n-—1,suchthat 8 = o®.

Example Letp = 97. ThenZg, isacyclic group of order n = 96. A generator of Zg- is
a = 5. Since53? = 35 (mod 97), logy 35 = 32in Zg;. O

The following are some elementary facts about logarithms.

Fact Let o be agenerator of acyclic group G of order n, and let 3, v € G. Let s bean
integer. Thenlog, (87v) = (log, B + log, ) mod n and log,, (5%) = slog, B mod n.

Thegroupsof mostinterest in cryptography arethe multiplicativegroup I, of thefinite
field IF, (§2.6), including the particular cases of the multiplicative group Z,, of theintegers
modulo aprime p, and the multiplicative group F5... of thefinitefield Fom of characteristic
two. Also of interest are the group of units Z;, where n is a composite integer, the group
of points on an eliptic curve defined over afinite field, and the jacobian of a hyperelliptic
curve defined over afinite field.

Definition The discrete logarithm problem (DLP) is the following: given a prime p, a
generator « of Z?, and an element 8 € Z7, find theinteger z, 0 < z < p — 2, such that
a® = (mod p).

Definition Thegeneralized discrete logarithm problem (GDLP) isthefollowing: givena
finite cyclic group G of order n, agenerator o of GG, and an element 5 € G, find theinteger
2,0 <z <n-—1,suchthat o® = .

The discrete logarithm problem in eliptic curve groups and in the jacobians of hyper-
eliptic curves are not explicitly considered in this section. The discrete logarithm problem
in Z, isdiscussed further in §3.8.

Note (difficulty of the GDLP isindependent of generator) Let « and v be two generators
of acyclicgroup G of order n, andlet 8 € G. Letz = log, 3,y = log, B8,and z = log,, 7.
Thena® = § =¥ = (a*)¥. Consequently = zy mod n, and

log, 3 = (log,, 3) (log, 7)™ mod n.

This means that any algorithm which computes logarithms to the base o can be used to
compute logarithmsto any other base v that is also a generator of G.
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3.54 Note (generalizationof GDLP) A moregeneral formulation of the GDLPisthefollowing:
givenafinitegroup G and elementsc, 5 € G, find aninteger z such that o® = 3, provided
that such an integer exists. In thisformulation, it is not required that G be a cyclic group,
and, evenifitis, itisnot required that o be agenerator of G. Thisproblem may be harder to
solve, in general, than GDLP. However, in the case where G isacyclic group (for example
if G isthe multiplicative group of afinitefield) and the order of o isknown, it can be easily
recognized whether an integer « satisfying o* = 3 exists. Thisis because of the following
fact: if G isacyclic group, a isan element of order n in G, and 8 € G, then there exists
an integer z suchthat o® = g if and only if 5™ = 1.

3.55 Note (solvingthe DLP inacyclic group G of order n isin essence computing an isomor-
phism between G and Z,,) Even though any two cyclic groups of the same order are iso-
morphic (that is, they have the same structure although the elements may be written in dif-
ferent representations), an efficient algorithm for computing logarithmsin one group does
not necessarily imply an efficient algorithm for the other group. To see this, consider that
every cyclic group of order n isisomorphic to the additive cyclic group Z,,, i.e., the set of
integers {0, 1,2, ... ,n — 1} where the group operation is addition modulo n. Moreover,
the discrete logarithm problem in the latter group, namely, the problem of finding an inte-
ger z such that ax = b (mod n) givena,b € Z,, is easy as shown in the following. First
note that there does not exist asolution z if d = ged(a,n) does not divide b (Fact 2.119).
Otherwisg, if d dividesb, the extended Euclidean algorithm (Algorithm 2.107) can be used
to find integers s and ¢ such that as + nt = d. Multiplying both sides of this equation by
the integer b/d gives a(sb/d) + n(tb/d) = b. Reducing this equation modulo n yields
a(sb/d) =b (mod n) and hencez = (sb/d) mod n isthe desired (and easily obtainable)
solution.

The known algorithmsfor the DLP can be categorized as follows:
1. algorithmswhichwork in arbitrary groups, e.g., exhaustive search (§3.6.1), the baby-
step giant-step algorithm (§3.6.2), Pollard’s rho algorithm (33.6.3);
2. agorithmswhich work in arbitrary groups but are especially efficient if the order of
the group has only small prime factors, e.g., Pohlig-Hellman algorithm (§3.6.4); and
3. theindex-calculusagorithms (§3.6.5) which are efficient only in certain groups.

3.6.1 Exhaustive search

The most obviousalgorithm for GDL P (Definition 3.52) isto successively computea?, ot
o? ... until 3 isobtained. This method takes O(n) multiplications, where n is the order
of a, andisthereforeinefficient if n islarge (i.e. in cases of cryptographicinterest).

3.6.2 Baby-step giant-step algorithm

Let m = [/n], wheren isthe order of . The baby-step giant-step algorithm is atime-
memory trade-off of the method of exhaustive search and isbased onthefollowing observa-
tion. If 3 = o®, thenonecanwritex = im+j, where0 < i, j < m. Hence, o® = o'™a/,
whichimplies 3(a=™)? = . This suggests the following algorithm for computing .
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3.56 Algorithm Baby-step giant-step algorithm for computing discrete logarithms

INPUT: agenerator « of acyclic group G of order n, and an element 5 € G.
OUTPUT: the discrete logarithm = = log,, 5.

1. Set m«[+/n].

2. Construct a table with entries (j,a’) for 0 < j < m. Sort this table by second
component. (Alternatively, use conventional hashing on the second component to
store the entries in a hash table; placing an entry, and searching for an entry in the
table takes constant time.)

3. Compute o~ and set v+ 0.

4. For i from0tom — 1 do thefollowing:

4.1 Check if « isthe second component of some entry in the table.
4.2 If v = oJ thenreturn(z = im + 7).
4.3 Set y—y-a™™.

Algorithm 3.56 requires storage for O(1/n) group elements. The table takes O(/n)
muitipiicationsto construct, and O(+/n 1gn) comparisonsto sort. Having constructed this
table, step 4 takes O(y/n) multiplicationsand O(1/n) table look-ups. Under the assump-
tion that agroup multiplication takes moretime than 1g n comparisons, the running time of
Algorithm 3.56 can be stated more concisely as follows.

3.57 Fact The running time of the baby-step giant-step algorithm (Algorithm 3.56) is O(/n)
group multiplications.

3.58 Example (baby-step giant-step algorithmfor logarithmsin Z7,5) Let p = 113. Theele-
ment o = 3 is agenerator of Zj,5 of order n = 112. Consider 3 = 57. Thenlog; 57 is
computed as follows.

1. Set m«[/112] = 11.
2. Construct atable whose entries are (j, o/ mod p) for 0 < j < 11:
J oO|1]2]| 3 4 5 6 71819 10

3’ mod 113 1131927 |8 |17 |51 |40 | 7] 21|63

and sort the table by second component:

J 0182 5 9 3 7 6 10| 4

37 mod 113 1371917 |21 |27 |40 |51 |63 |81

3. Using Algorithm 2.142, compute o~! = 3~! mod 113 = 38 and then compute
a~™ = 38" mod 113 = 58.

4. Next, v = Ba ™ mod 113 fori = 0,1,2,... is computed until avalue in the

second row of the table is obtained. Thisyields:

7 0 1 2 3 4 5 6 71819
~ =57-58 mod 113 57 [ 29 | 100 | 37 | 112 | 55 | 26 | 39
Finaly, since Ba="™ = 3 = o, 8 = «!% and, therefore, log; 57 = 100. O

3.59 Note (restricted exponents) In order to improve performance, some cryptographic proto-
cols which use exponentiation in Z,, select exponents of a special form, e.g. having small
Hamming weight. (The Hamming weight of an integer is the number of onesin its binary
representation.) Supposethat p is a k-bit prime, and only exneonents of Hamming weight ¢
are used. The number of such exponentsis (’;) Algorithm 3.56 can be modified to search
the exponent space in roughly ( : ’;2) steps. The algorithm also appliesto exponentsthat are
restricted in certain other ways, and extendsto all finite groups.
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3.6.3 Pollard’s rho algorithm for logarithms

3.60

Pollard’srho agorithm (Algorithm 3.60) 1or computing discretelogarithmsisarandomized
alaarithm with the same expected running time as the baby-step giant-step algorithm (Al-
gorithm 3.56), but which requires a negligible amount of storage. For thisreason, itisia
preferableto Algorithm 3.56 for problemsof practical interest. For simplicity, itisassumed
in this subsection that G is acyclic group whose order n is prime.

The group G is partitioned into three sets Sp, Sz, and S5 of roughly equal size based
on some easily testable property. Some care must be exercised in selecting the partition; for
example, 1 ¢ S». Define a sequence of group elements g, 1, ©2, ... by g = 1 and
{ /B'xiv ifxieslv

def

Tip1 = f(:l?l) = x2 if x; € Sg, (32)

a-x;, ifx; €853,
fori > 0. This sequence of group elements in turn defines two sequences of integers
ag,a1,as,... andbg, by, bo, ... satisfying z; = a® 3% fori > 0: ag = 0, by = 0, and for
i >0,
a;, if xr; € Sl,
Giy1 = 2a; mod n, if x; € So, (3.3
a; + 1 mod n, ifxz; € Ss,

and

2b; mod n, if z; € Sy, (3.9
biv |f xr; € Sg.

b; + 1 mod n, ifx; €Sy,
biy1 =

Floyd's cycle-finding algorithm (Note 3.8) can then be utilized to find two group elements
x; and zo; Such that z; = x9;. Hence a® B% = % (% and so Bb b2 = qo2i—a,
Taking logarithmsto the base « of both sides of this last equation yields

(bi — ba;) -log, B = (a2; —a;) (mod n).

Provided b; # by; (mod n) (note: b; = be; occurs with negligible probability), this equa-
tion can then be efficiently solved to determinelog,, 5.

Algorithm Pollard’s rho algorithm for computing discrete logarithms

INPUT: agenerator « of acyclic group G of primeorder n, and an element 8 € G.
OUTPUT: the discrete logarithm = = log,, S.
1. Set xg+1, ag+0, bg<0.
2. Fori=1,2,... dothefollowing:
2.1 Usingthe quantitiesx; 1,a;_1,b;—1, and x2; o, az;_2, ba;_o cOMputed previ-
oudly, computex;, a;, b; and x;, as;, ba; Using equations (3.2), (3.3), and (3.4).
2.2 If x; = x9;, then do the following:
Set r<b; — by; mod n.
If » = 0 then terminate the agorithm with failure; otherwise, compute
x =11 (az; — a;) mod n and return(x).

In the rare case thet Algorithm 3.60 terminates with failure, the procedure can be re-
peated hy sAlecting random integers ag, by intheinterval [1, n — 1], and starting with zo =
a® gt Example3.61w th artificially small parametersillustrates Pollard’srho algorithm.
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3.61 Example (Pollard'srhoalgorithmfor logarithmsinasubgroup of Z3¢4) Theelementa =
2 isa generator of the subgroup G of Z3g; of order n = 191. Suppose 8 = 228. Partition
theelementsof G into threesubsetsaccordingtotheruler € S;ifx =1 (mod 3),z € S,
if =0 (mod 3),andx € Ss if x =2 (mod 3). Table 3.2 showsthevauesof z;, a;, b;,
T2, ag;, and by; at the end of each iteration of step 2 of Algorithm 3.60. Note that z14 =
xog = 144. Finaly, computer = by4 — beg mod 191 = 125, 7~ = 12571 mod 191 =

136, and 7~ (a2 — a14) mod 191 = 110. Hence, log, 228 = 110. O
L i [[ @i [ ai[ b || 2i [ a2 [ bai |
1 228 0 1 279 0 2
2 279 0 2 184 1 4
3 92 0 4 14 1 6
4 184 1 4 256 2 7
5 205 1 5 304 3 8
6 14 1 6 121 6 18
7 28 2 6 144 12 38
8 256 2 7 235 | 48 152
9 152 2 8 72 48 154
10 304 3 8 14 96 118
11 372 3 9 256 | 97 119
12 121 6 18 304 98 120
13 12 6 19 121 5 51
14 144 | 12 | 38 144 10 104

Table 3.2: Intermediate steps of Pollard’s rho algorithm in Example 3.61.

3.62 Fact Let G beagroup of order n, aprime. Assume that the function f : G — G de-
fined by equation (3.2) behaveslike arandom function. Then the expected running time of
Pollard’srho algorithm for discretelogarithmsin G is O(1/n) group operations. Moreover,
the algorithm requires negligible storage.

3.6.4 Pohlig-Hellman algorithm

Algorithm 3.63for computing logarithmstakes advantage of the factorization of theorder n
of thegroup G. Let n = p7*p5? - - - p&r bethe primefactorization of n. If z = log,, 3, then
theapproachisto determinez; = « mod p{’ for1 < i < r, and then use Gauss sa gorithm
(Algorithm 2.121) to recover x mod n. Each integer z; is determined by computing the
digitslp, l1, ... ,le,—1 inturnof itsp;-ary representation: =; = lo+l1p;+- - -+lei_1pfi*1,
where 0 < lj <p;— 1.

To see that the output o° Algorithm 3.63 i5 correct, observe first that in step 2.3 the

. . . . r . ~ A e : j—1
order of @isq. Next, at iteraiion j of siep 2.4, v = alothat+Li-147"" Hence,

B o= B/ = (arTloham el e/t
(an/qj+1)ﬂfi*lO*lqu"'*lj—lqj_l
(an/q”l)quj+~~+le_1qe’1

(am/ays o Hesa T )l

)

the last equality being true because @ has order ¢. Hence, log 5 isindeed equal to ;.

©1997 CRC PressLLC



Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:09 22 March 2017

3.63 Algorithm Pohlig-Hellman algorithm for computing discrete logarithms

INPUT: agenerator o of acyclic group G of order n, and an element 5 € G.
OUTPUT: the discrete logarithm = = log,, 5.
1. Find the primefactorization of n: n = p7*ps? - - - p&, wheree; > 1.
2. For i from 1 to r do the following:
(Computez; = lo + lyp; + -+ + lei,lpfi_l, where z; = 2 mod p;*)
2.1 (Smplify the notation) Set g<—p; and e<—e;.
2.2 Sety+1andi_;+0.
2.3 Compute a«a™/1.
2.4 (Computethe!;) For j from0 to e — 1 do the following:

Compute y+yali—17 " and B« (By~ 1)/
Compute ;- log, 3 (€.9., using Algorithm 3.56; see Note 3.67(iii)).
25 Setx;<ly+ llq + o+ le—lqe_l.

3. Use Gauss's algorithm (Algorithm 2.121) to computetheinteger x, 0 < x < n — 1,
suchthat z = x; (mod p§*) forl <i <r.
4. Return(z).

Exampie 3.04 illustrates Algorithm 3.63 with artificially small parameters.

3.64 Example (Pohlig-Hellman algorithmfor logarithmsin Z3,) Let p = 251. The element
a = 71 isagenerator of Z35; of order n = 250. Consider 8 = 210. Then z = log;; 210
is computed as follows.

1. The prime factorization of n is250 = 2 - 53.
2. (a) (Computez; = z mod 2)
Compute@ = a"/? mod p = 250 and § = £™/2 mod p = 250. Thenz; =
10g50 250 = 1.
(b) (Computezy = 2 mod 53 = Iy + 115 + 1552)
i. Compute@ = o/® mod p = 20.
ii. Computey = 1and 3 = (By~1)"/5 mod p = 149. Using exhaustive
search,® compute [y = log,, 149 = 2.
iii. Computey = ya?mod p = 21 and 3 = (By1)"? mod p = 113.
Using exhaustive search, computel; = log,, 113 = 4.
iv. Computey = va*® mod p = 115and 8 = (By~1)P~1/125 mod p =
149. Using exhaustive search, computely = log,, 149 = 2.
Hence, 2o =2 +4-5+2-5% = 72.
3. Finaly, solve the pair of congruencesz = 1 (mod 2), z = 72 (mod 125) to get
x = log; 210 = 197. O

3.65 Fact Given thefactorization of n, the running time of the Pohlig-Hellman algorithm (Al-
gorithm 3.63) isO(>""_, e;(lgn + /p;)) group multiplications.

3.66 Note (effectiveness of Pohlig-Hellman) Fact 3.65 implies that the Pohlig-Hellman algo-
rithmisefficient only if each primedivisor p; of n isrelatively small; that is, if n isasmooth

5Exhaustive search is preferable to Algorithm 3.56 when the group is very small (here the order of @ is 5).
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3.67

integer (Definition 3.13). An example of a group in which the Pohlig-Hellman algorithm
is effective foiiows. Consider the multiplicative group Z,, where p is the 107-digit prime:

p = 227088231986781039743145181950291021585250524967592855
96453269189798311427475159776411276642277139650833937.

Theorder of Z, isn = p — 1 = 2*- 1047298 - 224737® - 350377*. Since the largest prime
divisor of p — 1 isonly 350377, it is relatively easy to compute logarithms in this group
using the Pohlig-Hellman algorithm.

Note (miscellaneous)

() If nisaprime, then Algorithm 3.63 (Pohlig-Hellman) is the same as baby-step giant-
step (Algorithm 3.56).

(i) Instep 1 of Algorithm 3.63, afactoring algorithm which findssmall factorsfirst (e.g.,
Algorithm 3.9) should be employed; if the order n is not a smooth integer, then Al-
gorithm 3.63 Isinefficient anyway.

(iii) Thestoragerequiredfor Algorithm 3.56in step 2.4 can be eliminated by usinginstead
Pollard’s rho algorithm (Algorithm 3.60).

3.6.5 Index-calculus algorithm

3.68

The index-calculus algorithm is the most powerful method known for computing discrete
logarithms. The technique employed does not apply to all groups, but when it does, it of-
ten gives a subexponential-time algorithm. The algorithm is first described in the general
setting of acyclic group C' (Algorithm 3.68). Two examplesare then presented to illustrate
how the index-cal culus algorithm works in two kinds of groups that are used in practical
applications, namely Z (Example 3.69) and IF5,. (Example 3.70),

The index-calculus aigoriinm reguires the selection of a relatively small subset S of
elements of G, called the factor base, in such away that a significant fraction of elements
of G can beefficiently expressed as products of elementsfrom £'. Algorithm 3.68 proceeds
to precompute a database containing the logarithmsof al the elementsin S, and then reuses
this database each time the logarithm of a particular group element is required.

The description of Algorithm 3.68 isincomplete for two reasons. Firstly, atechnique
for selecting thefactor base S 1snot specified. Secondly, amethod for efficiently generating
relations of the form (3.5) and (3.7) is not specified. The factor base S must be a subset of
G that issmall (so that the system of equationsto be solved in step 3 is not too large), but
not too small (so that the expected number of trials to generate a relation (3.5) or (3.7) is
not too large). Suitable factor bases and techniquesfor aenerating relations are known for
some cyclicgroupsincluding Z,, (se2§3.6.5(i)) and I, (see§3.6.5(ii);, and, moreover, the
multiplicative group I of agenera finitefieid IF,.

Algorithm Index-calculus algorithm for discrete logarithms in cyclic groups

INPUT: agenerator o of acyclic group G of order n, and an element 5 € G.
OUTPUT: the discrete logarithm y = log,, G-

1. (Select afactor base S) Chooseasubset S = {p1, p2, ... ,p:} of G suchthat a“sig-
nificant proportion” of al elementsin G can be efficiently expressed as a product of
elementsfrom S.

2. (Collect linear relationsinvolving logarithms of elementsin S)
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2.1 Select arandominteger k, 0 < k < n — 1, and compute o*.
2.2 Try towrite o* asaproduct of elementsin S:

t
of = pr"', ci > 0. (3.5
i=1

If successful, take logarithms of both sides of equation (3.5) to obtain alinear
relation

t
k= Z cilog, pi (mod n). (3.6)
i=1

2.3 Repeat steps 2.1 and 2.2 until ¢ + ¢ relations of the form (3.6) are obtained (c
isasmall positive integer, e.g. ¢ = 10, such that the system of equationsgiven
by the ¢t + ¢ relations has a unique solution with high probability).

3. (Find the logarithms of elementsin S) Working modulo n, solve the linear system
of t + ¢ equations (in ¢t unknowns) of the form (3.6) collected in step 2 to obtain the
valuesof log, p;, 1 <i < t.

4. (Compute y)

4.1 Select arandominteger k, 0 < k < n — 1, and compute 3 - o*.

4.2 Try towrite 3 - o asaproduct of elementsin S:

t
B-af =][pf, di>o0. (3.7)
=1

If the attempt isunsuccessful then repeat step 4.1. Otherwise, taking logarithms
of both sides of equation (3.7) yieldslog,, 8 = (3_}_, d; log,, p; — k) mod n;
thus, computey = (3°;_, d; log,, p; — k) mod n and return(y).

(i) Index-calculus algorithm in Z,

For thefield Z,, p aprime, the factor base S can be chosen as thefirst ¢ prime numbers. A
relation (3.5) is generated by computing o mod p and then using trial division to check
whether this integer is a product of primesin S. Example 3.69 llustrates Algorithm 3.68
in Z,, on aproblem with artificially small parameiers.

3.69 Example (Algorithm 3.68 for logarithmsin Z3,4) Let p = 229. Theelement a = 6 is
agenerator Of Zj,q OF Order n = 228. Consider 5 = 13. Then logg 13 is computed as
follows, using the index-cal culus technique.

1. Thefactor baseis chosen to bethefirst 5 primes: S = {2,3,5,7,11}.
2. The following six relations involving elements of the factor base are obtained (un-
successful attempts are not shown):
6% mod 229 = 180 = 22-3%.5
6'® mod 229 = 176 = 2* - 11
6'2 mod 229 = 165 =3 -5 - 11
652 mod 229 = 154 =2-7- 11
6% mod 229 = 198 = 2-3%- 11
62 mod 229 =210=2-3-5-7.
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3.70

These relations yield the following six equations involving the logarithms of ele-
ments in the factor base:

100 = 2logg2+ 2logg3 +1loggh (mod 228)
18 = d4logs2+logg1l (mod 228)
12 = logg3+loggh+loggll (mod 228)
62 = logg2+logg7+loggll (mod 228)
143 = logg2+ 2logg3 +logg 11 (mod 228)
206 = logg2+logg3+1loggb+logg7 (mod 228).

3. Solving the linear system of six equations in five unknowns (the logarithms z; =
logg p;) yields the solutionslog; 2 = 21, logg 3 = 208, logg 5 = 98, logg 7 = 107,
and log; 11 = 162.

4. Suppose that the integer & = 77 issdlected. Since 3 - o* = 13- 67" mod 229 =
147 = 3 - 72, it follows that

logg 13 = (logg 3+ 2logg 7 — 77) mod 228 = 117. O

(ii) Index-calculus algorithm in F5,,

The elements of the finite field Fom are represented as polynomialsin Zs[z] of degree at
most m — 1, where multiplication is performed modul o afixed irreducible polynomia f(z)
of degreem in Zs|x] (see §2.6). Thefactor base S can be chosen asthe set of al irreducible
polynomialsin Z,x] of degree at most some prescribed bound b. A relation (3.5) is gener-
ated by computing o mod f(z) and then using trial division to ciieck wireiier iiis poly-
nomial is a product of polynomialsin S. Example 3.70 illustrates Algorithm 3.68 in 5.
on a problem with artificially small pararneiers.

Example (Algorithm 3.68 for logarithmsin IF3;) The polynomia f(x) = 27 + x + 1 is
irreducible over Z,. Hence, the elements of the finite field IF5~ of order 128 can be repre-
sented as the set of al polynomiasin Zy[x] of degree at most 6, where multiplication is
performed modulo f(z). Theorder of F3; isn = 27 — 1 = 127, and a = z is agenerator
of F5:. Suppose 3 = z* + z® + 22 + 2+ 1. Theny = log,, 3 can be computed as follows,
using the index-cal culus technique.
1. Thefactor baseischosento betheset of al irreducible polynomialsinZ; [x] of degree
amost3: S={r,z+ 1,22 +x+ 1,23+ + 1,23 + 2% + 1}.
2. Thefollowing five relations involving elements of the factor base are obtained (un-
successful attempts are not shown):

z'® mod f(x) = 25 + 24 =2tz +1)2

2% mod f(z) = 2% +2° +2* + 2 =x(r+1)%(z® + 22 +1)
™ mod f(x) = 25 + 25 + 2 4 22 =2%(x+1)%(22 +z+1)
z* mod f(z) =2° + 2>+ +1 =+ D% +z+1)

o mod f(z) =2+ 2%+t + 2+ a2+ 1= (2% + 2 +1)(2® + 22 +1).

These relations yield the following five equations involving the logarithms of ele-
mentsin the factor base (for convenienceof notation, let p; = log,, =, p2 = log, (z+
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3.71

3.72

3.73

1), p3s =log, (2% + z + 1), ps = log, (23 + = + 1), and p5 = log,,. (2% + 2% + 1)):

18 = 4p; +2p2 (mod 127)

105 = p1+2p2+ps (mod 127)
72 = 2p;+2ps+p3 (mod 127)
45 = 2py+ps (mod 127)

121 = py+ps (mod 127).

3. Solvingthelinear system of five equationsin fiveunknownsyieldsthevaluesp; = 1,
p2 = 7,p3 = 56, py = 31, and p5 = 90.
4. Suppose k = 66 is selected. Since

Bk = (z* + 2% + 2% + =+ 1)2% mod f(z) = 2° + 2® + = = x(z®> + = + 1),
it follows that
log, (z* +2® + 2 + 2+ 1) = (p1 + 2p3 — 66) mod 127 = 47. 0

Note (runningtime of Algorithm 3.68) To optimizethe running time of the index-calculus
algorithm, the size ¢ of the factor base should be judiciously chosen. The optimal selection
relies on knowledge concerning the distribution of smooth integersintheinterval [1, p — 1]
for the case of Z,,, and for the case of IF5.. on the distribution of smooth polynomials (that
is, polynomialsall of whoseirreduciblefactors haverelatively small degrees) among poly-
nomialsin Fy[z] of degreelessthan m. With an optimal choice of ¢, theindex-calculusal-
gorithm as described abovefor Z; and Fs,.. has an expected runningtime of L[4, c] where
g=porqg=2" andc > 0isaconstant.

Note (fastest algorithmsknown for discretelogarithmsinZ;, and IF5..) Currently, the best
algorithm known for computing logarithmsin IF5,. isavariation of theindex-cal culusalgo-
rithm called Copper smith’salgorithm, with an expected running time of Lom [% , ¢] for some
constant ¢ < 1.587. The best algorithm known for computing logarithmsin Z,, is avaria-
tion of theindex-calculusalgorithm called the number field sieve, with an expected running
timeof L,[%,1.923]. Thelatest effortsin these directionsare surveyed in the Notes section
(§3.12).

Note (parallelization of the index-calculus algorithm)

(i) For the optimal choice of parameters, the most time-consuming phase of the index-
calculus algorithm is usually the generation of relations involving factor base loga-
rithms (step 2 of Algorithm 3.68). The work for this stage can be easily distributed
among a network of processors by simply having the processors search for relations
independently of each other. The relations generated are collected by a central pro-
cessor. When enough relations have been generated, the corresponding system of lin-
ear equations can be solved (step 3 of Algorithm 3.68) on asingle (possibly parallel)
computer.

(if) The database of factor base logarithms need only be computed once for a given fi-
nitefield. Relativeto this, the computation of individual logarithms (step 4 of Algo-
rithm 3.68) is considerably faster.
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3.6.6 Discrete logarithm problem in subgroups of Z;

Thediscretelogarithm problemin subgroupsof Z,, hasspecial interest becauseits presumed
intractability is the basis for the security of the U.S. Government NIST Digital Signature
Algorithm (§11.5.1), among other cryptographic techniques.

Let p beaprimeand g aprimedivisor of p — 1. Let G be the unique cyclic subgroup
of Z,, of order ¢, and let a be agenerator of G. Then the discretelogarithm problemin G'is
thefollowing: givenp, q, o, and 8 € G, findtheuniqueinteger z, 0 < x < ¢—1, suchthat
a® = (3 (mod p). The powerful index-calculusalgorithms do not appear to apply directly
inG. That s, oneneedsto apply theindex-calculusalgorithmin thegroup Z;, itself in order
to computelogarithmsin the smaller group G. Consequently, there are two approachesone
could take to computing logarithmsin G

1. Use a“square-root” agorithm directly in G, such as Pollard's rho agorithm (Algo-
rithm 3.60). The running time of this approachis O(,/q).

2. Lety beagenerator of Z7, and let ] = (p — 1)/q. Use an index-calculus algorithm
in Z,, tofind integers y and z such that o = 4% and 3 = ~*. Thenz = log, 8 =
(z/1)(y/1)~* mod q. (Sincey and z are both divisible by I, y/I and /I are indeed
integers.) The running time of this approachis Lp[é, c| if the number field sieveis
used.

Which of the two approachesis faster depends on the relative size of \/g and L%, c].

3.7 The Diffie-Hellman problem

3.74

3.75

3.76

The Diffie-Hellman problem is closely related to the well-studied discrete logarithm prob-
lem (DLP) of §3.6. Itisof significanceto public-key cryptography becauseits apparent in-
tractability formsthebasisfor the security of many cryptographic schemesincluding Diffie-
Hellman key agreement and its derivatives (§12.6), and EIGamal public-key encryption

(§8.4).

Definition The Diffie-Hellman problem (DHP) is the following: given aprime p, a gen-
erator o of Z;, and elements a® mod p and o mod p, find a®® mod p.

Definition Thegeneralized Diffie-Hellman problem (GDHP) isthefollowing: given afi-
nite cyclic group G, agenerator o of G, and group elements o and a?, find a.?.

Suppose that the discrete logarithm problem in Z;, could be efficiently solved. Then
given a, p, a® mod p and o mod p, one could first find a from «, p, and a® mod p by
solving a discrete logarithm problem, and then compute (a®)® = a®® mod p. This estab-
lishesthefoll owing rel ation between the Diffie-Hel Iman problem and the discrete logarithm
problem.

Fact DHP <p DLP. That is, DHP polytime reducesto the DLP. More generally, GDHP
<p GDLP.

The question then remains whether the GDLP and GDHP are computationally equiv-
alent. Thisremains unknown; however, some recent progressin thisregard is summarized
in Fact 3.77. Recall that ¢ is the Euler phi function (Definition 2.100), and an integer is
B-smouin i al its primefactorsare < E' (Definition 3.13).
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3.77

Fact (known eguivalences between GDHP and GDLP)

(i) Letpbeaprimewherethefactorizationof p—1isknown. Supposealsothat ¢(p—1)
is B-smooth, where B = O((In p)¢) for some constant ¢. Thenthe DHP and DLPin
Z,, are computationally equivalent.

(il) More generdly, let G be afinite cyclic group of order n where the factorization of
n is known. Suppose also that ¢(n) is B-smooth, where B = O((Inn)€) for some
constant ¢. Then the GDHP and GDLP in G are computationally equivalent.

(iii) Let G beafinite cyclic group of order n wherethe factorization of n isknown. If for
each prime divisor p of n either p — 1 or p + 1 is B-smooth, where B = O((Inn)€)
for some constant ¢, then the GDHP and GDLPin G are computationally equivalent.

3.8 Composite moduli

3.78

3.79

3.80

The group of units of Z,,, namely Z;,, has been proposed for use in several cryptographic
mechanisms, including the key agreement protocols of Yacobi and McCurley (see §12.6
notes on page 538) and the identification scheme of Girault (see §10.4 notes on page 423).
There are connections of cryptographic interest between the discrete logarithm and Diffie-
Hellman problemsin (cyclic subgroupsof) Z;, , and the problem of factoring n. Thissection
summarizes the results known along these lines.

Fact Letn beacompositeinteger. If the discrete logarithm problemin Z;, can be solved
in polynomial time, then n. can be factored in expected polynomial time.

In other words, the discrete logarithm problemin Z7, is at least as difficult as the prob-
lem of factoring n. Fact 3.79 is apartial converse to Fact 3.78 and states that the discrete
logarithmin Z;, isno iterder iien the combination of the prabiemns of factoring » and com-
puting discrete logarithmsin Z;, for each prime factor p of n.

Fact Letn beacompositeinteger. Thediscretelogarithm problemin Z;, polytimereduces
to the combination of the integer factorization problem and the discrete logarithm problem
in Zy, for each prime factor p of n.

Fact 3.80 statesthat the Diffie-Hellman problemin Z;, isat least as difficult asthe prob-
lem of facioring n.

Fact Letn = pg wherep and ¢ are odd primes. If the Diffie-Hellman problemin Z;, can
be solved in polynomial time for a non-negligible proportion of al basesa € Z;, thenn
can be factored in expected polynomial time.

3.9 Computing individual bits

Whilethediscretelogarithm problemin Z; (§3.6), the RSA problen (§3.3), and the problem
of computing square roots modulo a compositeinteger n (§3.5.2) appear io be intractable,
when the problem parameters are carefully selected, it remains possiblethat it is much eas-
ier to compute some partia information about the solution, for example, its least signifi-
cant bit. It turns out that while some bits of the solution to these problems are indeed easy
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3.81

3.82

to compute, other bits are equally difficult to compute as the entire solution. This section
summarizes the results known along these lines. The results have applications to the con-
struction of probabilistic public-key encryption schemes (§8.7) and pseudorandom bit gen-
eration (§5.5).

Recall (Definition 1.12) that afunction f is called a one-way function if f(x) is easy
to computefor al z initsdomain, but for essentially al y in therange of f, it is computa-
tionally infeasible to find any « such that f(z) = y.

Three (candidate) one-way functions

Although no proof is known for the existence of a one-way function, it iswidely believed
that one-way functions do exist (cf. Remark 9.12). The following are candidate one-way
functions (in fact, one-way permutations) since they are easy to compute, but their inver-
sion requiresthe solution of the discrete logarithm problemin Z*, the RSA problem, or the
problem of computing square roots modulo n, respectively:
1. exponentiation modulo p. Let p beaprimeand let o be a generator of Z,,. Thefunc-
tionis f : Z, — 7Z, defined s f(z) = o mod p.
2. RSA function. Let p and ¢ be distinct odd primes, n = pq, and let e be an integer
such that ged(e, (p — 1)(¢ — 1)) = 1. Thefunctionis f : Z, — Z,, defined as
f(z) = z° mod n.
3. Rabin function. Let n = pq, where p and ¢ are distinct primes each congruent to
3 modulo 4. Thefunctionis f : @, — Q. defined as f(z) = z? mod n. (Re-
call from Fact 2.160 that f is a permutation, and from Fact 3.46 that inverting f,
i.e., computing principal square roots, is difficult assuming integer factorization is
intractable.)

The following definitionsare used in §3.9.1, 3.9.2, and 3.9.3.

Definition Let f : S — S beaone-way function, where S is afinite set. A Boolean
predicate B : S — {0, 1} issaid to be ahard predicate for f if:
(i) B(x) iseasy tocomputegivenz € S; and
(ii) an oraclewhich computes B(x) correctly with non-negligibleadvantage® given only
f(z) (wherex € S) can beused toinvert f easlly.

Informally, B is ahard predicate for the one-way function f if determining the single
bit B(z) of information about z, given only f(x), isasdifficult asinverting f itself.

Definition Let f : S — S beaone-way function, where S isafinite set. A k-bit predi-
cate B*) : S —; {0,1}* issaid to be a hard k-bit predicate for f if:
(i) B (x) iseasy to computegiven z € S; and
(i) for every Boolean predicate B : {0,1}* — {0,1}, an oracle which computes
B(B™ (x)) correctly with non-negligible advantage given only f () (Wherez € S)
can be used to invert f easily.
If suchaB®*) exists, then f issaid to hide k bits, or the k bits are said to be simultaneously
secure.

Informally, B(*) isahard k-bit predicatefor the one-way function f if determining any
partial information whatsoever about B*) (), given only f(z), is as difficult asinverting
f itself.

61 Definitions 3.81 and 3.82, te probability istaken over all choices of 2 € .S and random coin tosses of the
oracle.
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3.9.1 The discrete logarithm problem in Z; — individual bits

3.83

3.84

3.85

Let p bean odd primeand o agenerator of Z,,. Assume that the discrete logarithm problem
inZ,, isintractable. Let 3 € Z;, and let * = log, 3. Recal from Fact 2.135 that 3 is
a quadratic residue modulo p if and only if x is even. Hence, the least significant bit of
z isequal to (1 — (£))/2, where the Legendre symbol (2) can be efficiently computed
(Algorithm 2.149). More generally, the following is true.

Fact Let p be an odd prime, and let o be a generator of Z,. Supposethat p — 1 = 2°,
where ¢t isodd. Then thereis an efficient algorithm which, given 8 € Z;, computesthe s
least significant bits of =z = log,, B.

Fact Letpbeaprimeand o agenerator of Z,. Definethe predicate B : Z, — {0, 1} by

_Jo, ifl<z<(p-1)/2,
B(z) _{ 1, if(p—1)/2<z<p-—1.
Then B is a hard predicate for the function of exponentiation modulo p. In other words,

given p, a, and 3, computing the single bit B(z) of the discrete logarithm = = log,, G isas
difficult as computing the entire discrete logarithm.

Fact Letp beaprimeand o agenerator of Z,. Let k = O(lglg p) be an integer. Let the
interval [1, p— 1] bepartitionedinto 2% intervals Iy, I, . . . , I« _; of roughly equal lengths.
Define the k-bit predicate B®) : Z —s {0,1}* by B® (2) = jif z € I;. Then B®) is
ahard k-bit predicate for the function of exponentiation modulo p.

3.9.2 The RSA problem — individual bits

3.86

3.87

Let n be a product of two distinct odd primes p and ¢, and let e be an integer such that
ged(e, (p —1)(g — 1)) = 1. Givenn, e, and ¢ = z° mod n (for somez € Z,), some
information about z is easily obtainable. For example, since e is an odd integer,

(5)=()=6) =)

and hencethe singlebit of information (%) can be obtained simply by computing the Jacobi
symbol (£) (Algorithm 2.149). There are, however, other bits of information about = that
are difficult to compute, as the next two results show.

Fact Definethe predicate B : Z,, — {0,1} by B(z) = x mod 2; that is, B(x) isthe
least significant bit of . Then B isahard predicate for the RSA function (see page 115).

Fact Let k = O(lglgn) be an integer. Define the k-bit predicate B*) : Z,, — {0,1}*
by B*)(z) = 2 mod 2*. Thatis, B(®)(z) consists of the k |east significant bits of z. Then
B(¥) isahard k-bit predicate for the RSA function.

Thusthe RSA function haslg lg n simultaneously secure bits.
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3.9.3 The Rabin problem — individual bits

3.88

3.89

Let n = pq, where p and ¢ are distinct primes each congruent to 3 modulo 4.

Fact Definethe predicate B : Q,, — {0,1} by B(z) = z mod 2; that is, B(z) isthe
least significant bit of the quadratic residue z. Then B is a hard predicate for the Rabin
function (see page 115).

Fact Letk = O(lglgn) bean integer. Define the k-bit predicate B : Q,, — {0,1}*
by B*)(z) = z mod 2*. That is, B%*)(z) consists of the k least significant bits of the
quadratic residue z. Then B®*) isahard k-bit predicate for the Rabin function.

Thus the Rabin function has1g 1g n simultaneously secure bits.

3.10 The subset sum problem

3.90

3.91

3.92

3.93

The difficulty of the subset sum problem was the basis for the (presumed) security of the
first public-key encryption scheme, called the Merkle-Hellman knapsack scheme (§8.6.1).

Definition Thesubset sumproblem(SUBSET-SUM) isthefollowing: givenaset {a4, as,

. ,an + Of positive integers, called a knapsack set, and a positive integer s, determine
whether or not there is a subset of the a; that sum to s. Equivalently, determine whether
or not thereexist z; € {0,1},1 <4 <n,suchthat Y7, a;z; = s.

The subset sum problem above is stated as a decision problem. It can be shown that
the problem is computationally equivalent to its computational version which isto actually
determinethe z; suchthat """ ; a;x; = s, provided that such z; exist. Fact 3.91 provides
evidence of the intractability of the subset sum problem.

Fact The subset sum problem is NP-complete. The computational version of the subset
sum problemis NP-hard (see Example 2.74).

Algorithms 3.92 anc 3.94 give two methods for solving the computational version of
the subset sum problem; both are exponential -timealgorithms. Algorithm 3.94 isthefastest
method known for the general subset sum problem.

Algorithm Naive algorithm for subset sum problem

INPUT: aset of positiveintegers {ay, as, . . . , a, } and apositive integer s.
OUTPUT: z; € {0,1},1 < i <n,suchthat >_" , a;z; = s, provided such z; exist.

1. For each possible vector (z1,x2, ... ,2,) € (Z2)™ do the following:
1.1 Computel = Y7 | a;x;.
1.2 If I = sthenreturn(asolutionis (z1, z2, ... , Zn)).

2. Return(no solution exists).

Fact Algorithm 3.92 takes O(2™) steps and, hence, isinefficient.
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3.94 Algorithm Meet-in-the-middle algorithm for subset sum problem

INPUT: aset of positiveintegers {aq, az, . . . , a, } and apositive integer s.
OUTPUT: z; € {0,1},1 < i <n,suchthat >_"" , a;z; = s, provided such z; exist.

1. Sett<|n/2|.

2. Congtruct atable with entries (Y!_, @iz, (€1, 22, . .. ,x¢)) for (z1,2a,... ,2¢) €
(Z2)t. Sort thistable by first component.

3. Foreach (w441, Tt42, .- ,2n) € (Z2)™t, do the following:

3.1 Compute I =s— >, 41 a;z; and check, using abinary search, whether [ is
the first component of some entry in the table.
32 If1 ="', a;x; thenreturn(asolutionis (z1, za, . . . , ).
4. Return(no solution exists).

3.95 Fact Algorithm 3.94 tekes O(n2"/2) steps and, hence, isinefficient.

3.10.1 The L3-lattice basis reduction algorithm

The L3-lattice basis reduction algorithm is a crucial component in many number-theoretic
algorithms. Itisuseful for solving certain subset sum problems, and has been used for crypt-
analyzing public-key encryption schemes which are based on the subset sum problem.

3.96 Definition Letz = (z1,x2,...,2,) andy = (y1,¥2,--. ,yn) betwovectorsinR"™. The
inner product of x and y is the real number

<Z,Yy>= T1Y1 +X2y2 + -+ TpYn.
3.97 Definition Lety = (y1,v2,-.. ,yn) beavectorin R™. Thelength of y isthe real number

Iyl = v<yy> = \/y%+y§+'~+y3y

3.98 Definition Let B = {by,b2,...,by,} beaset of linearly independent vectorsin R™ (so
thatm < n). Theset L of al integer linear combinationsof by, bs, ... , b, iscalled alattice
of dimension m; that is, L = Zb; + Zby + - - - + Zb,,. The set B is called abasisfor the
lattice L.

A lattice can have many different bases. A basis consisting of vectors of relatively
small lengthsis called reduced. The following definition provides a useful notion of are-
duced basis, and is based on the Gram-Schmidt orthogonalization process.

3.99 Definition Let B = {by,bs,...,b,} beabasisfor alatice L C R". Define the vectors
by (1 <14 < n)andtherea numbersy; ; (1 < j <4 < n)inductively by
< biv b; > . .
1<j5<e<n, (3.8)

,ui,j = * * )
< b7, b7 >

i1
b; b — Zlii,jb;v 1<i<n. (39

j=1

Thebasis B is said to be reduced (more precisely, Lovasz-reduced) if

1
|Mm‘|§§7 fori<j<i<n
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(where |1, ;| denotes the absolute value of 1; ;), and
* 3 * .
Il = (3= o) Il fori<i<n (310
Fact 3.100 explains the sense in which the vectorsin areduced basis are relatively short.

3.100 Fact Let L C R™ bealattice with areduced basis {b1,bs, ... ,b,}.
(i) For every non-zeroz € L, ||by || < 2(»=1/2||z]].
(i) Moregenerally, for any set {a;, as, ... , a;} of linearly independent vectorsin L,
b5l < 2D max(|las |, asll, - .. , lac]), for1<j<t.
The L3-attice basis reduction algorithm (Algorithm 3.101) is a polynomial-time al go-
rithm (Fact 3.103) for finding areduced basis, given abasisior alattice.

3.101 Algorithm L3-lattice basis reduction algorithm

INPUT: abasis (b, ba, . .. , b,) for alattice LinR™, m > n.
OUTPUT: areduced basisfor L.
1. bI(—bl, Bi+ < by{,bﬁf >.
2. For i from 2 to n do the following:
2.1 bf<b;.
22 Forjfrom1toi—1,set p; j< < b, b} > /Bj and b} <-b} — p; ;b
2.3 B+ < bi,bf >.
3. k<2.
4. Execute subroutine RED(k,k — 1) to possibly update some y; ;.
5. 1f B, < (3 — pij. 4_1)Br—1 then do the following:
5.1 Set pé—pp k-1, B<Bi + p?Bi—1, pkk—14puBir_1/B, By Byx_1By/B,
and Br_1+B.
5.2 Exchange by, and by 1.
5.3 If k > 2 then exchange pux,,; and pi—1; forj =1,2,... k- 2.
54 Fori=k+1,k+2,...,n:
Set ti—pi gy ikt fhik—1 — pt, AN pi k14t + g 100 k-
55 k< max(2,k —1).
5.6 Goto step 4.
Otherwise, forl =k — 2,k —3,... , 1, execute RED(k,l), and finally set k<& + 1.
6. If & < n then go to step 4. Otherwise, return(by, bo, . .. , by).

RED(k,I) If |uur,1| > 3 then do the following:
1. r+ L0.5 + uk,lj, br<by — rb.
2. Forj fromltol — 1, set Wi, j Mk, — THL,5-
3. Mgkl — T

*
-

3.102 Note (explanation of selected steps of Algorithm 3.101)
(i) Steps1andz2initializetheagorithm by computings; (1 <i <mn)andp;; (1 <j <
i < n) asdefinedin equations(3.9) and (3.8), and also B; =< b},bf > (1 < i < n).
(i) kisavariable such that the vectors by, bo, . .. ,br_1 arereduced (initialy £ = 2 in
step 3). The algorithm then attemptsto modify by, sothat by, b, . . . , by, arereduced.
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3.103

(iii) In step 4, the vector by, is modified appropriately so that | x—1| < %, and the i ;
areupdatedfor1 < j < k — 1.

(iv) In step 5, if the condition of equation (3.10) isviolated for ¢ = &, then vectors by,
and by, are exchanged and their corresponding parameters are updated. Also, k is
decremented by 1 sincethen it isonly guaranteed that b1, bo, . .. , bx_o are reduced.
Otherwise, by, is modified appropriately so that | ;| < % forj =1,2,... ,k—2,
while keeping (3.10) satisfied. k isthen incremented because now by, bs, ..., by are
reduced.

It can be proven that the L3-algorithm terminates after a finite number of iterations.
Note that if L is an integer lattice, i.e. L C Z", then the L3-algorithm only operates on
rational numbers. The precise running timeis given next.

Fact Let L C Z" bealatticewith basis {b1,bs,... ,b,}, andlet C € R, C > 2, besuch
that ||b;||? < C fori = 1,2,...,n. Thenthe number of arithmetic operations needed by
Algorithm 3.101 is O(n* log C), on integers of size O(n log C) bits.

3.10.2 Solving subset sum problems of low density

3.104

3.105

Thedensity of aknapsack set, as defined below, providesameasure of the size of the knap-
sack elements.

Definition LetS = {aj,as,... ,a,} beaknapsack set. The density of S is defined to be
- n
~ max{lga; | 1 <i<n}

Algorithm 3.105 reduces the subset sum problem to one of finding a particular short
vector in alattice. By Fact 3.100, the reduced basis produced by the L>-algorithmincludes
avector of length whiciiis guararieed to be within afactor of 2("~1)/2 of the shortest non-
zero vector of the lattice. In practice, however, the L3-algorithm usually finds a vector
which is much shorter than what is guaranteed by Fact 3.100. Hence, the L3-algorithm
can be expected to find the short vector which yields a solution to the subset sum problem,
provided that this vector is shorter than most of the non-zero vectorsin the lattice.

Algorithm Solving subset sum problems using L3-algorithm

INPUT: aset of positiveintegers {ay, as, . . . , a, } and an integer s.
OUTPUT: z; € {0,1},1 < i <n,suchthat >_"" , a;z; = s, provided such z; exist.

1 Letm = [1/n].
2. Forman (n+ 1)-dimensional lattice L with basis consisting of the rows of the matrix

1 0 O 0 may

0 1 0 0 mao

0 0 1 0 masg
A= . .

0 0 O 1 may,

33 3 3 ms

3. Find areduced basis B of L (uset Algorithm 3.101).
4. For each vector y = (y1, Y2, - .- , Ynt+1) i B, do inefollowing:
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4.1 Ify,11 =0andy; € {—3,3} forali=1,2,... ,n, thendothefollowing:
Fori=1,2,...,n,setziy; + 3.

If >0 | a;x; = s, thenreturn(asolutionis (z1, za, . . . , zy)).
Fori— 1,2, m Sy, b b
If Y0 a;z; = s, thenreturn(asolution is (z1, 2, . .. , ).

5. Return(FAILURE). (Either no solution exists, or thealgorithm hasfailed to find one.)

Justification. Let the rows of the matrix A be by, bs, ... ,by+1, andlet L bethe (n + 1)-

dimensional lattice generated by thesevectors. If (x1, zo, ... , z,,) isasolutionto thesubset
sum problem, the vector y = 7" | x;b; — bny1 isin L. Notethat y; € {—1,1} for

i=1,2,...,nandy,,1 = 0. Since||y|| = \/y§+y§+---+yg+1 the vector y isa
vector of short lengthin L. If the density of the knapsack set is small, i.e. the a; arelarge,
then most vectorsin L will have relatively large lengths, and hence y may be the unique
shortest non-zero vector in L. If thisisindeed the case, then there is good possibility of the
L3-algorithm finding a basis which includes this vector.

Algorithm 3.105 i3 not guaranteed to succeed. Assuming that the L3-algorithm always
produces a basis which includes the shortest non-zero lattice vector, Algorithm 3.105 suc-
ceeds with high probability if the density of the knapsack set is|ess than 0.9408.

3.10.3 Simultaneous diophantine approximation

3.106

3.107

Simultaneousdiophantineapproximationis concerned with approximating avector (£, 42

q’ q’
. ,‘17") of rational numbers (more generally, avector (a1, as, ... , a,) of real numbers)
by avector (2L, 22 , £2) of rational numberswith asmaller denominator p. Algorithms

for finding sipmuﬁaneous diophantine approximation have been used to break some knap-
sack public-key encryption schemes (§8.6).

Definition Letd beareal number. Thevector (%, %2, e %) of rational numbersissaid
to be a simultaneous diophantine approximation of §-quality to the vector (%, %2, e ‘17")
of rational numbersif p < ¢ and
4 ) -
p— —pi| <qg °fori=1,2,... n.
q

(Thelarger ¢ is, the better is the approximation.) Furthermore, it is an unusually good si-
multaneous diophantine approximation (UGSDA) if § > L.

Fact 3.107 shows that an UGSDA is indeed unusual.
Fact Forn > 2, the set
q1 g an
Sn(Q) = {<_17_27 7_> | 0 S qi < q, ng(QI7QQ7"' ,qn7Q) = 1}
q g q
has at least 1™ members. Of these, at most O(¢g™!~®)+1) members have at least one J-

quality simultaneous diophantine approximation. Hence, for any fixed § > % the fraction
of membersof S,,(¢) having at least one UGSDA approaches( as g — co.

Algorithm 3.108 reduces the problem of finding a §-quality simultaneous diophantine
approximation, and hence also a UGSDA,, to the problem of finding a short vector in alat-
tice. The latter problem can (usually) be solved using the L3-lattice basis reduction.
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3.108 Algorithm Finding a §-quality simultaneous diophantine approximation

INPUT: avector w = (%, %2, ce q") of rational numbers, and arational number 6 > 0.
OUTPUT: ad-quality simultaneousdlophantlneapprOX| mation ( % %2 e p") of w.

1. Choose an integer \ ~ ¢°
2. User Algorithm 3.101 to find areduced basis B for the (n + 1)-dimensional lattice L
which is generated by the rows of the matrix

Aq 0 0 0 0
0 A 0 - 0 0
0 0 N -+ 0 0
A= . . . . .
0 0 0 - XM O
=A@ =A@ —Agz -0 —Agn 1
3. Foreachv = (v1,va,... ,Upn, Unt1) iN B suchthat v, 1 # ¢, dothefollowing:
3.1 pvpt1-
3.2 Forifrom1ton, setp;% (% +pg;).
33 I [pL —pi| <q” 3 foreachi, 1 <i <mn, thenreturn(Z:, B2 Be).

4. Return(FAILURE). (Either no §-quality simultaneousdiophantine approximation ex-
ists, or the algorithm has failed to find one.)

Justification. Let the rows of the matrix A be denoted by b1, bs, ... ,b,11. Suppose that

(%, %2, ,‘1") has a §-quality approxmanon(”1 , ”;, .. ,”7"). Then the vector

r = pibi +paba+ -+ ppby + Dbppa
= (Mp1g —pq1), A(p2q — Pg2), - - -, X(Pnq — PGn), P)

isin L and haslength less than approximately (v/n + 1)g. Thusz isshort compared to the
original basisvectors, which are of length roughly ¢*+9. Also, if v = (v1,V2,... ,Upt1)iS
avector in L of length less than ¢, then the vector (”1 , ’;f e %) definedin step 3isad-
quality approximation. Hencethereisagood possi b| lity that the L3-algorithmwill produce
areduced basis which includes a vector v that correspondsto a d-quality approximation.

3.11 Factoring polynomials over finite fields

The problem considered in this section is the following: given apolynomia f(z) € Fy[z],
with ¢ = p™, find itsfactorization f(z) = f1(z)° fo(x)e2 - - - fi(x)¢t, whereeach f;(z) is
anirreduciblepolynomial inF,[z] and eache; > 1. (e; iscalled the multiplicity of the fac-
tor f;(x).) Severa situationscall for the factoring of polynomialsover finitefields, such as
index-calculus algorithms in F3,.. (Example 3.70) and Chor-Rivest public-key encryption
(§8.6.2). This section presents an algorithm tor square-free factorization, and Berlekamp’s
classical deterministic algorithm for factoring polynomials which is efficient if the under-
lying field is small. Efficient randomized algorithms are known for the case of large g; ref-
erences are provided on page 132.
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3.11.1 Square-free factorization

Observefirst that f(x) may be divided by itsleading coefficient. Thus, it may be assumed
that f () ismonic (see Definition 2.187). This section shows how the problem of factoring
amonic polynomial f(x) may then be reduced to the problem of factoring one or more
monic square-free polynomials.

3.109 Definition Let f(z) € F4[z]. Then f(z) is square-freeif it has no repeated factors, i.e.,
thereis no polynomial g(z) with deg g(x) > 1 such that g(x)? divides f(z). The square-
free factorization of f(x)is f(z) = Hle fi(x)?, where each f;(z) is a square-free poly-
nomial and ged(f;(x), f;(x)) = 1 for i # j. (Some of the f;(z) in the square-free factor-
ization of f(x) may bel.)

Let f(z) = > i_, a;z" beapolynomial of degreen > 1. The (formal) derivative of
f(z) isthe polynomial f’(x) = 27" aiy1 (i + 1)zt If f/(z) = 0, then, because p is the
characteristic of Fy, in each term a; 2" of f(z) for which a; # 0, the exponent of z must
be amultiple of p. Hence, f(z) hastheform f(z) = a(z)?, wherea(z) = S27/2 a%/Px,

and the problem of finding the square-free factorization of f(x) is reduced to findi ns that
of a(z). Now, itispossiblethat a’(x) = 0, but repeating this process as necessary, it may
be assumed that f'(z) # 0.

Next, let g(z) = ged(f(z), f'(x)). Noting that an irreducible factor of multiplicity &
in f(x) will have multiplicity £ — 1 in f/(z) if ged(k,p) = 1, and will retain multiplicity
kin f'(x) otherwise, the following conclusions may be drawn. If g(z) = 1, then f(x)
has no repested factors; and if g(x) has positive degree, then g(x) is a non-trivial factor
of f(x), and f(x)/g(x) has no repeated factors. Note, however, the possibility of g(x)
having repeated factors, and, indeed, the possibility that ¢’(xz) = 0. Nonetheless, g(x) can
berefined further asabove. The stepsare summarizedin Algorithm 3.110. Inthealgorithm,
F denotes the square-free factorization of afactor of f(x) in factored form.

3.110 Algorithm Square-free factorization

SQUARE-FREE(f ()
INPUT: amonic polynomial f(x) € F,[x] of degree > 1, where F, has characteristic p.
OUTPUT: the square-freefactorization of f(z).
1. Seti+1, F+1, and compute f'(z).
2. If f/(x) = 0 then set f(z)« f(x)*/? and F+(SQUARE-FREE(f(z)))?.
Otherwise (i.e. f'(x) # 0) do the following:
2.1 Compute g(z)< ged(f (), f'(z)) and h(z)+ f(z)/g(x).
2.2 While h(z) # 1 do thefollowing:
Compute h(z)< ged(h(z), g(x)) and I(x)+h(z)/h(z).
Set F+F -l(z)!, i+i+ 1, h(x)+h(z),and g(z)<g(z)/h(z).
2.3 If g(x) # 1 then set g(z)<g(z)'/? and F<+F - (SQUARE-FREE(g(z)))”.
3. Return(F).

Oncethe square-freefactorization f(x) = Hle fi(x)* isfound, the square-free poly-
nomials f1(x), f2(z),... , fr(z) need to be factored in order to obtain the complete fac-
torization of f(x).
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3.11.2 Berlekamp’s Q-matrix algorithm

Let f(x) = []i_, fi(=) be amonic polynomial in F,[z] of degree n having distinct irre-
duciblefactors f;(z), 1 < i < t. Berlekamp's Q-matrix algorithm (Algorithm 3.111) for
factoring f(x) is based on the following facts. The set of polynomials

B = {b(x) € Fylz]/(f(x)) [ b(z)" = b(z) (mod f(z))}

is avector space of dimension ¢t over IF,. B consists of precisely those vectorsin the null
space of the matrix Q — I,, where @ isthe n x n matrix with (4, j)-entry ¢;; specified by

n—1
2 mod f(z) = Zqijxj, 0<i<n-—1,
§=0

and where I, isthe n x n identity matrix. A basis B = {v1(z), v2(z),... ,v:(x)} for
B can thus be found by standard techniques from linear algebra. Finally, for each pair of
distinct factors f;(x) and f;(z) of f(z) there exists some vi(z) € B and somea € Fy
such that f;(z) dividesvg(z) — o but f;(x) doesnot divide vi.(z) — «: these two factors
can thus be split by computing ged(f(x), vk (z) — «). In Algorithm 3.111, a vector w =

n—1i

(wo, w1, ... ,wn—1) isidentified with the polynomial w(z) = >, w;x".

3.111 Algorithm Berlekamp’s Q-matrix algorithm for factoring polynomials over finite fields

INPUT: asquare-free monic polynomial f(x) of degreen inF,[z].
OUTPUT: the factorization of f(z) into monic irreducible polynomials.

1. Foreachi, 0 < i < n — 1, compute the polynomial
2" mod f(z) = Zqijm].
j=0

Note that each ¢;; is an element of F,.

2. Formthen x n matrix Q whose (i, j)-entry is g;, .

3. Determineabasisvy, va, . .. , v; for the null space of the matrix (@ — I,,), where I,
isthen x n identity matrix. The number of irreduciblefactorsof f(x) isprecisely .

4. Set F+{f(x)}. (F istheset of factorsof f(x) found so far; their product is equal
to f(x))

5. For i from 1 to ¢ do the following;:

5.1 For each polynomia h(x) € F suchthat deg h(x) > 1 do thefollowing: com-
pute gcd(h(z), v; (z) — a) for each o € F,, and replace h(z) in F by all those
polynomialsin the gcd computations whose degrees are > 1.

6. Return(the polynomialsin F' are theirreduciblefactors of f(x)).

3.112 Fact Therunningtimeof Algorithm 3.111 for factoring asquare-freepolynomial of degree
n over F, isO(n? + tqn?) F,-operations, where ¢ is the number of irreducible factors of
f(x). Themethod is efficient only when ¢ is small.
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3.12 Notes and further references

§3.1

§3.2

Many of the topics discussed in this chapter lie in the realm of algorithmic number the-
ory. Excellent references on this subject include the books by Bach and Shallit [70], Cohen
[263], and Pomerance[993]. Adleman and McCurley [15] give an extensive survey of the
important open problems in algorithmic number theory. Two other recommended surveys
are by Bach [65] and Lenstra and Lenstra[748]. Woll [1253] gives an overview of there-
ductions among thirteen of these problems.

A survey of theinteger factorization problem is given by Pomerance[994]. See also Chap-
ters8 and 10 of Cohen [263], and the books by Bressoud [198] and K oblitz [697]. Brillhart
et al. [211] provide extensive listings of factorizations of integers of the form 5™ + 1 for
“small” nandb = 2,3,5,6,7,10,11,12.

Bach and Sorenson [71] presented some algorithms for recognizing perfect powers
(cf. Note 3.6), cne having aworst-case running time of O(lg® n) bit operations, and a sec-
onu having an average-case running time of O(lg” n) bit operations. A more recent algo-
rithm of Bernstein [121] runs in essentially linear time O((lgn)'*t°(")). Fact 3.7 is from
Knuth [692]. Pages 367-369 of this reference contain explicit formulas regarding the ex-
pected sizes of the largest and second largest prime factors, and the expected total number
of prime factors, of arandomly chosen positive integer. For further results, see Knuth and
Trabb Pardo [694], who prove that the average number of bitsin the £*" largest prime fac-
tor of arandom m-bit number is asymptotically equivalent to the average length of the k"
longest cycle in a permutation on m objects.

Floyd's cycle-finding algorithm (Note 3.8) is described by Knuth [692, p.7]. Sedgewick,
Szymanski, and Yao [1106] showed inai by saving a small number of values from the x;
seguence, acollision can be found by doing roughly one-third thework asin Floyd'scycle-
finding algorithm. Pollard’s rho algorithm for factoring (Algorithm 3.9) is due to Pollard
[985]. Regarding Note 3.12, Cohen [ 263, p.422] provides an explanation for the restriction
¢ # 0,—2. Brent [196] presented a cycle-finding algorithm which is better on average
than Floyd’s cycle-finding algorithm, and appliedit to yield afactorization algorithmwhich
is similar to Pollard's but about 24 percent faster. Brent and Pollard [197] later modified
this algorithm to factor the eighth Fermat number Fy = 22° + 1. Using techniques from
algebraic geometry, Bach [67] obtained the first rigorously proven result concerning the
expected running time of Pollard’s rho algorithm: for fixed k&, the probability that a prime
factor p is discovered before step k isat least (%) /p + O(p~%/2) asp — cc.

Thep — 1 agorithm (Algorithm 3.14) is due to Pollard [984]. Severa practical improve-
ments have been proposed for the p — 1 algorithm, including those by Montgomery [894]
and Montgomery and Silverman [895], the latter using fast Fourier transform techniques.
Williams [1247] presented an algorithm for factoring n which is efficient if n has a prime
factor p suchthat p+ 1 issmooth. These methodswere generalized by Bach and Shallit [69]
to techniques that factor n efficiently provided n has a prime factor p such that the &** cy-
clotomic polynomial @ (p) is smooth. Thefirst few cyclotomic polynomialsare @4 (p) =
p—1,82(p) = p+1,P3(p) = p* +p+1, Bu(p) = p*>+1, 5(p) = p* +p* +p*> +p+1,
and ®(p) = p?> —p+ 1.

The elliptic curve factoring algorithm (ECA) of §3.2.4 was invented by Lenstra [756].
Montgomery [894] gave several practical improvements to the ECA. Silverman and
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Wagstaff [1136] gave apractical analysis of the complexity of the ECA, and suggested op-
timal parameter selection and running-time guidelines. Lenstraand Manasse [753] imple-
mented the ECA on anetwork of MicroVAX computers, and were successful in finding 35-
decimal digit primefactors of large (at least 85 digit) compositeintegers. Later, Dixon and
Lenstra [350] implemented the ECA on a 16K MasPar (massively parallel) SIMD (single
instruction, multiple data) machine. The largest factor they found was a 40-decimal digit
prime factor of an 179-digit composite integer. On November 26 1995, Peter Montgomery
reported finding a 47-decimal digit prime factor of the 179-digit composite integer 52°6+1
with the ECA.

Hafner and McCurley [536] estimated the number of integersn < x that can be factored
with probability at least % using at most ¢ arithmetic operations, by trial division and the
elliptic curve algorithm. Pomerance and Sorenson [997] provided the anal ogous estimates
for Pollard’sp — 1 algorithm and Williams' p + 1 algorithm. They concludethat for agiven
running time bound, both Pollard’sp—1 and Williams' p+1 algorithmsfactor moreintegers
than trial division, but fewer than the elliptic curve algorithm.

Pomerance[994] creditstheidea of multiplying congruencesto produceasolutionto 22 =
y? (mod n) for the purpose of factoring r. (§3.2.5) to some old work of Kraitchik circa
1926-1929. The continued fraction factoring aigorithm, first introduced by Lehmer and
Powers[744] in 1931, and refined more than 40 years|ater by Morrison and Brillhart [908],
was the first realization of a random square method to result in a subexponential-time al-
gorithm. The algorithm was later analyzed by Pomerance [989] and conjectured to have
an expected running time of L,,[2,/2]. If the smoothnesstesting in the algorithm is done
with the élliptic curve method, then the expected running time dropsto L, [% ,1]. Morrison
and Brillhart were also the first to use the idea of afactor baseto test for good (a;, b;) pairs.
The continued fraction algorithm was the champion of factoring algorithms from the mid
1970s until the early 1980s, when it was surpassed by the quadratic sieve algorithm.

The quadratic sieve (QS) (§3.2.6) was discovered by Pomerance [989, 990]. The multiple
polynomial variant of the quadratic sieve (Note 3.25) is due to P. Montgomery, and is de-
scribed by Pomerance [990]; see also Siiverimain {1135]. A detailed practical analysis of
the QS is given by van Oorschot [1203]. Several practical improvements to the original
algorithms have subsequently been proposed and successfully implemented. Thefirst seri-
ous implementation of the QS was by Gerver [448] who factored a 47-decimal digit num-
ber. In 1984, Davis, Holdridge, and Simmons [311] factored a 71-decimal digit number
with the QS. In 1988, Lenstraand Manasse [ 753] used the QS to factor a 106-decimal digit
number by distributing the computations to hundreds of computers by electronic mail; see
also Lenstraand Manasse [754]. In 1993, the QS was used by Denny et a. [333] to factor
a 120-decimal digit number. In 1994, the 129-decimal digit (425 bit) RSA-129 challenge
number (see Gardner [440]), wasfactored by Atkinset a. [59] by enlisting the h<ip of asout
1600 computersaround the world. Thefactorization was carried out in 8 months. Table 3.3
shows the estimated time taken, in mipsyears, for the above factorizations. A minsyear is
equivalent to the computational power of acomputer that israted at 1 mips (millioninstruc-
tions per second) and utilized for one year, or, equivalently, about 3 - 10'3 instructions.

Thenumber field sieve wasfirst proposed by Pollard [987] and refined by others. Lenstraet
al. [752] described the special number field sieve (SNFS) for factoring integers of the form
r¢ — s for small positiver and |s|. A readableintroduction to the algorithm is provided by
Pomerance [995]. A detailed report of an SNFS implementation is given by Lenstraet al.
[751]. Thisimplementation was used to factor the ninth Fermat number Fy = 2512 + 1,
which is the product of three prime factors having 7, 49, and 99 decimal digits. The gen-
eral number field sieve (GNFS) was introduced by Buhler, Lenstra, and Pomerance [219].
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§3.3

§3.4

§3.5

| Year | Number of digits | mipsyears |

1984 71 0.1
1988 106 140
1993 120 825
1994 129 5000

Table 3.3: Running time estimates for numbers factored with QS

Coppersmith [269] proposed modifications to the GNFS which improve its running time
to L, [%,1.902], however, the method is not practical; another modification (also imprac-
tical) allows a precomputation taking L, [%,2.007] timeand L,[$, 1.639] storage, follow-
ing which al integersin alarge range of values can be factored in Ln[é, 1.639] time. A
detailed report of a GNFS implementation on a massively parallel computer with 16384
processors is given by Bernstein and Lenstra [122]. See also Buchmann, Loho, and Za-
yer [217], and Golliver, Lenstra, and McCurley [493]. More recently, Dodson and Lenstra
[356] reported on their GNFS implementation which was successful in factoring a 119-
decimal digit number using about 250 mipsyears of computing power. They estimated that
this factorization completed about 2.5 times faster than it would with the quadratic sieve.
Most recently, Lenstra [746] announced the factorization of the 130-decimal digit RSA-
130 challenge number using the GNFS. Thisnumber is the product of two 65-decimal digit
primes. The factorization was estimated to have taken about 500 mips years of computing
power (compare with Table 3.3). The book edited by Lenstra and Lenstra [749] contains
severa other articlesi related to the number field sieve.

The ECA, continued fraction algorithm, quadratic sieve, special number field sieve, and
general number field sieve have heuristic (or conjectured) rather than proven running times
because the analyses make (reasonable) assumptions about the proportion of integers gen-
erated that are smooth. See Canfield, Erdds, and Pomerance [231] for bounds on the pro-
portion of y-smooth integers in the interval [2, z]. Dixon’s algorithm [351] was the first
rigorously analyzed subexponential-time algorithm for factoring integers. The fastest rig-
orously analyzed algorithm currently known is due to Lenstra and Pomerance [759] with
an expected running time of L, [%, 1]. These algorithms are of theoretical interest only, as
they do not appear to be practical.

TheRSA problemwasintroduced inthelandmark 1977 paper by Rivest, Shamir, and Adle-
man [1060].

The quadratic residuosity problem is of much historical interest, and was one of the main
algorithmic problems discussed by Gauss [444].

An extensive treatment of the problem of finding square roots modulo a prime p, or more
generally, the problem of finding d** rootsin afinitefield, can be found in Bach and Shallit
[70]. The presentation 0" Algorithm 3.34 tor finding square roots modulo a prime is de-
rived from Koblitz [697, pp.48-49]; a proof of correctness can be found there. Bach and
Shallit attribute the essential ideas of Algorithm 3.34 to an 1891 paper by A. Tonelli. Al-
gorithm 3.39 is from Bach and Shallit [ 70}, wio aitiibute it to a 1903 paper of M. Cipolla.

The computational equivalence of computing square roots modulo a composite n and fac-
toring n (Fact 3.46 ancl Note 3.47) was first discovered by Rabin [1023].
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§3.6

A survey of the discrete logarithm problemis given by McCurley [827]. See also Odlyzko
[942] for a survey of recent advances.

Knuth [693] attributes the baby-step giant-step algorithm (Algorithm 3.56) to D. Shanks.
The baby-step giant-step algorithmsfor searching restri ctea expoineiit spaces (cf . Note 3.59)
are described by Heiman [546]. Supposethat p isa k-bit prime, and that only exponents of
Hamming weight ¢ are used. Coppersmith (personal communication, July 1995) observed
that this exponent space can be searchedin k - (’;;22) steps by dividing the exponent into two
equal piecesso that the Hamming weight of each pieceist/2; if k ismuch smaller than 2¢/2,
thisis an improvement over Note 3.59.

Pollard’srho algorithmfor logarithms (Algorithm 3.60) isdueto Pollard [986]. Pollard also
presented alambda method for comgiitiing discireie iogarithmswhich is applicable when z,
thelogarithm sought, isknownto lieinacertaininterval. Morespecifically, if theinterval is
of width w, the method isexpected to take O (1/w) group operationsand requiresstoragefor
only O(lg w) group elements. Van Oorschot and Wiener [1207] showed how Pollard’srho
algorithm can be parallelized so that using m processors resultsin a speedup by afactor of
m. Thishas particular significanceto cyclic groupssuch as elliptic curve groups, for which
no subexponential-time discrete logarithm algorithm is known.

The Pohlig-Hellman algorithm (Algorithm 3.63) was discovered by Pohlig and Hellman
[982]. A variation which represents the logarithm in a mixed-radix notation and does not
use the Chinese remainder theorem was given by Thiong Ly [1190].

According to McCurley [827], the basic ideas behind the index-cal culus algorithm (Algo-
rithm 3.68) first appeared in the work of Kraitchik (circa 1922-1924) and of Cunningham
(see Western and Miller [1236]), and was rediscovered by several authors. Adleman [8] de-
scribed themethod for the group Z,, and analyzed the complexity of thea gorithm. Hellman
and Reyneri [555] gave the first description of an index-calculus algorithm for extension
fieldsF,m with p fixed.

Coppersmith, Odlyzko, and Schroeppel [280] presented threevariants of theindex-calculus
method for computing logarithms in Z,: the linear sieve, the residue list sieve, and the
Gaussian integer method. Each has a heuristic expected running time of L[5, 1] (cf.
Note 3.71). The Gaussian integer method, which isrelated to the method of EIGamal [369],
wasimplemented in 1990 by L aM acchiaand Odlyzko [ 736] and was successful in comput-
ing logarithmsin Z,, with p a 192-bit prime. The paper concludesthat it should be feasible
to compute discrete logarithms modul o primes of about 332 bits (100 decimal digits) using
the Gaussian integer method. Gordon[510] adapted the number field sievefor factoringin-
tegersto the problem of computing logarithmsin Z”; hisalgorithm has a heuristic expected
running time of L,[1, c], where c = 32/3 ~ 2.080. Schirokauer [1092] subsequently pre-
sented a modification of Gordon’s algorithm that has a heuristic expected running time of
Ly[%,c], wherec = (64/9)'/3 ~ 1.923 (Note 3.72). This s the same running time as
conjectured for the number field sieve for factoring integers (see §3.2.7). Recently, Weber
[1232] implemented the algorithms of Gordon and Schirokauer and was successful in com-
puting logarithmsin Z,,, where p isa40-decimal digit primesuchthat p — L isdivisibleby a
38-decimal digit (127-bit) prime. Morerecently, Weber, Denny, and Zayer (persona com-
munication, April 1996) announced the solution of a discrete logarithm problem modulo a
75-decimal digit (248-bit) prime p with (p — 1)/2 prime.

Blake et al. [145] made improvements to the index-calculus technique for ... and com-
puted logarithms in F3:.-. Coppersmith [266] dramatically improved the algorithm and
showed that under reasonable assumptions the expected running time of hisimproved a-
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gorithmis Lom [%, c| for some constant ¢ < 1.587 (Note 3.72). Later, Odlyzko [940] gave
severa refinements to Coppersmith’s algorithm, and a detaiied practical analysis; this pa
per provides the most extensive account to date of the discrete logarithm problemin F....
A similar practical analysiswas also given by van Oorschot [1203]. Most recently in 1992,
Gordon and McCurley [511] reported on their massively parallel implementation of Cop-
persmith’salgorithm, combined with their own improvements. Using primarily a1024 pro-
cessor NCUBE-2 machine with 4 megabytes of memory per processor, they compl eted the
precomputation of logarithms of factor base elements (which is the dominant step of the
algorithm) required to compute logarithmsin F3..7, F3s1s, and F3.0:. The calculationsfor
F3401 Were estimated to take 5 days. Gordon and McCurley al so completed most of the pre-
computations required for computing logarithmsin F3sos ; the amount of time to complete
thistask on the 1024 processor nCUBE-2 was estimated to be 44 days. They concluded that
computing logarithms in the multiplicative groups of fields as large as Fosos still seemsto
be out of their reach, but might be possible in the near future with a concerted effort.

It was not until 1992 that a subexponential-time algorithm for computing discrete loga-
rithms over al finite fields IF, was discovered by Adleman and DeMarrais [11]. The ex-
pected running time of thealgorithmis conjecturedto be L,, [%, c| for someconstant c. Adle-
man [9] generalized the number field sieve from algebraic number fields to algebraic func-
tion fieldswhich resulted in an algorithm, called the function field sieve, for computing dis-
crete logarithmsin IF,.. ; the algorithm has a heuristic expected running time of L,n [%, q]
for some constant ¢ > 0 whenlogp < m?™), and where g is any function such that
0 < g(m) < 0.98 and lim,,_,~ g(m) = 0. The practicality of the function field sieve has
not yet been determined. It remains an open problem to find an algorithm with a heuristic
expected running time of L[4, ] for all finitefields F,.

The a gorithms mentioned in the previousthree paragraphs have heuristic (or conjectured)
rather than proven running times because the analyses make some (reasonable) assump-
tions about the proportion of integers or polynomials generated that are smooth, and also
becauseit isnot clear when the system of linear equationsgenerated hasfull rank, i.e., yields
a unique solution. The best rigorously analyzed algorithms known for the discrete loga-
rithm problemin Z,, and ... are due to Pomerance [991] with expected running times of
Ly[%,v/2] and Low [2, v/2], respectively. Lovorn [773] obtained rigorously analyzed algo-
rithms for the fields . and F,,» withlogp < m?98, having expected running times of
Ly2[%, 3] and L,» [, v/2], respectively.

Thelinear system of equations collected in the quadratic sieve and number field sieve fac-
toring algorithms, and the index-cal culus algorithms for computing discrete logarithmsin
Z, and 5, arevery large. For the problem sizes currently under consideration, these sys-
tems cannot be solved using ordinary linear algebratechniques, due to both time and space
constraints. However, the equations generated are extremely sparse, typically with at most
50 non-zero coefficients per equation. The technique of structured or so-called intelligent
Gaussian elimination (see Odlyzko [940]) can be used to reduce the original sparse system
to amuch smaller system that is still fairly sparse. The resulting system can be solved us-
ing either ordinary Gaussian elimination, or one of the conjugate gradient, Lanczos (Cop-
persmith, Odlyzko, and Schroeppel [280]), or Wiedemann algorithms [1239] which were
also designed to handle sparse systems. LaMacchiaand Odlyzko [737] have implemented
some of these algorithmsand concluded that the linear algebrastagesarising in both integer
factorization and the discrete logarithm problem are not running-time bottlenecksin prac-
tice. Recently, Coppersmith [272] proposed a modification of the Wiedemann algorithm
which allows parallelization of the algorithm; for an analysis of Coppersmith’s algorithm,
see Kaltofen [657]. Coppersmith [270] (see also Montgomery [896]) presented a modifi-
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cation of the Lanczos agorithm for solving sparse linear equations over IFy; this variant
appearsto be the most efficient in practice.

Asan example of the numbersinvolved, Gordon and McCurley’s[511] implementation for
computinglogarithmsinF5.o: produced atotal of 117164 equationsfrom afactor base con-
sisting of the 58636 irreducible polynomialsin Fy[x] of degree at most 19. The system of
equationshad 2068707 non-zero entries. Structured Gaussian elimination was then applied
to this system, the result being a16139 x 16139 system of equationshaving 1203414 non-
zero entries, which was then solved using the conjugate gradient method. Another example
isfrom the recent factorization of the RSA-129 number (see Atkinset al. [59]). Thesieving
step produced a sparse matrix of 569466 rows and 524339 columns. Structured Gaussian
elimination was used to reduce this to adense 188614 x 188160 system, which was then
solved using ordinary Gaussian elimination.

Thereare many ways of representing afinitefield, although any two finite fields of the same
order are isomorphic (see alsc Note 3.55). Lenstra[757] showed how to compute an iso-
morphism between any two exiicitly given representationsof afinitefield in deterministic
polynomial time. Thus, it is sufficient to find an algorithm for computing discrete loga-
rithmsin one representation of agiven field; this algorithm can then be used, together with
the isomorphism obtained by L enstra’s algorithm, to compute logarithmsin any other rep-
resentation of the samefield.

Menezes, Okamoto, and Vanstone [843] showed how the discretelogarithm problem for an
elliptic curveover afinitefield IF,, can be reduced to the discretelogarithm problemin some
extension field IF «. For the special class of supersingular curves, k is at most 6, thus pro-
viding a subexponential-time algorithm for the former problem. This work was extended
by Frey and Riick [422]. No subexponential-time algorithm is known for the discrete log-
arithm problem in the more general class of non-supersingular elliptic curves.

Adleman, DeMarrais, and Huang [12] presented a subexponential-time algorithm for find-
ing logarithms in the jacobian of large genus hyperelliptic curves over finite fields. More
precisely, there exists anumber ¢, 0 < ¢ < 2.181, such that for al sufficiently largeg > 1
and all odd primes p withlogp < (2g + 1)%-98, the expected running time of the algo-
rithm for computing logarithmsin the jacobian of agenus g hyperelliptic curve over Z,, is
conjectured to be Lyzq+1[3, c.
McCurley [826] invented a subexponential-time a gorithm for the discrete logarithm prob-
lem in the class group of an imaginary quadratic number field. See also Hafner and Mc-
Curley [537] for further details, and Buchmann and Dillmann [216] for an implementation
report.

In 1994, Shor [1128] conceived randomized polynomial-timeal gorithmsfor computing dis-
crete logarithms and factoring integers on a quantum computer, a computational device
based on quantum mechanical principles; presently it isnot known how to build a quantum
computer, nor if thisis even possible. Also recently, Adleman [10] demonstrated the feasi-
bility of using toolsfrom molecular biology to solvean instance of the directed Hamiltonian
path problem, which is NP-complete. The problem instance was encoded in molecules of
DNA, and the steps of the computation were performed with standard protocols and en-
zymes. Adleman notes that while the currently available fastest supercomputers can exe-
cute approximately 102 operations per second, it is plausible for aDNA computer to ex-
ecute 102° or more operations per second. Moreover such a DNA computer would be far
more energy-efficient than existing supercomputers. It is not clear at present whether it is
feasibleto buildaDNA computer with such performance. However, should either quantum
computers or DNA computers ever become practical, they would have a very significant
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§3.7

§3.8

§3.9

§3.10

impact on public-key cryptography.

Fact 3.77(i) isdue to den Boer [323]. Fact 3.77(iii) was proven by Maurer [817], who also
proved more generaly that the GDHP and CELPin agroup G of order n are computation-
aly equivalent when certain extra information of length O(lgn) bitsis given. The extra
information depends only on n and not on the definition of GG, and consists of parameters
that define cyclic elliptic curves of smooth order over the fields Z,,, where the p; are the
prime divisors of n.

Waldvogel and Massey [1228] proved that if a and b are chosen uniformly and randomly
fromtheinterval {0,1,... ,p—1},thevaluesa®® mod p areroughly uniformly distributed
(see page 537).

Facts 3.78 and 3.79 are due to Bach [62]. Fact 3.80 is due to Shmuely [1127]. McCurley
[825] refined this result to prove that for speciaiiy chosen composite n, the ability to solve
the Diffie-Hellman problem in Z;, for the fixed base o = 16 implies the ability to factor n.

The notion of ahard Boolean predicate (Definition 3.81) was introduced by Blum and Mi-
cali [166], who also proved Fact 3.84. Thenotion ot ahard k-bit predicate: (Definition 3.82)
was introduced by Long and Wigderson [772], who also proved Fact 3.85; see also Peralta
[968]. Fact 3.83i5dueto Peralta[968]. The results on hard predicaiesaind k-bit predicates
for the RSA Tunctions (Facts 3.86 and 3.87) are dueto Alexi et a. [23]. Facts 3.88 and 3.89
are dueto Vazirani and Vazirani [1218].

Yao [1258] showed how any one-way |ength-preserving permutation can be transformed
into a more complicated one-way length-preserving permutation which has a hard predi-
cate. Subsequently, Goldreich and Levin[471] showed how any one-way function f can be
transformed into a one-way function g which hasa hard predicate. Their constructionisas
follows. Definethefunction g by g(p, ) = (p, f(x)), wherepisabinary string of the same
length as z, say n. Then g isaso aone-way functionand B(p,z) = >, p;z; mod 2 is
ahard predicatefor g.

Hastad, Schrift, and Shamir [543] considered the one-way function f(z) = a® mod n,
wheren isaBlum integer and o € Z;,. Under the assumption that factoring Blum integers
isintractable, they proved that all the bits of thisfunction areindividually hard. Moreover,
the lower half as well as the upper half of the bits are simultaneously secure.

The subset sum problem (Definition 3.90) is sometimes confused with the knapsack prob-
lemwhich is the following: given two sets {a;, as, ... ,a,} and {by,ba, ... ,b,} of pos
itive integers, and given two positive integers s and ¢, determine whether or not thereisa
subset S of {1,2,... ,n}suchthat )", _ga; < sand), o b; > t. Thesubset sum prob-
lem is actually a special case of the knapsack problemwhen a; = b; fori = 1,2,... ,n
and s = t. Algorithm 3.94 is described by Odlyzko [941].

The L3-lattice basis reduction algorithm (Algorithm 3.101) and Fact 3.103 are both due to
Lenstra, Lenstra, and Lovéasz [750]. Improved algorithms have been given for lattice basis
reduction, for example, by Schnorr and Euchner [1099]; consult also Section 2.6 of Cohen
[263]. Algorithm 3.105for solving the subset sum probleminvolving knapsackssets of low
densitly isiioim Cosier et al. [283]. Unusually good simultaneous diophantine approxima-
tionswere first introduced and studied by Lagarias[723] Fact 3.107 and Algorithm 3.108
are from this paper.
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§3.11

A readableintroduction to polynomial factorization algorithmsisgiven by Lidl and Nieder-
reiter [ 764, Chapter 4]. Algorithm 3.110 for square-freefactorization isfrom Geddes, Cza-
por, and Labahn [445]. Yun |1261| presented an algorithm that is more efficient thari Algo-
rithm 3.110 for finding the square-free factorization of a polynomial. The running time ot
thealgorithmisonly O(n?) Z,-operationswhen f(z) isapolynomial of degreen inZ,[z].
A lucid presentation of Yun'salgorithmis provided by Bach and Shallit [70]. Berlekamp’s
Q-matrix algorithrri (Algorithm 3.111) wasfirst discovered by Prange[999] for the purpose
of factoring polynomiaisof theform z — 1 over finite fields. The algorithm was later and
independently discovered by Berlekamp [117] who improved it for factoring general poly-
nomialsover finite fields.

There is no deterministic polynomial-time algorithm known for the problem of factoring
polynomials over finite fields. There are, however, many efficient randomized algorithms
that work well even when the underlying field is very large, such as the algorithms given
by Ben-Or [109], Berlekamp [119], Cantor and Zassenhaus [232], and Rabin [1025]. For
recent work along these lines, see von zur Gathen and Shoup [1224], as well as Kaltofen
and Shoup [658].
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