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11.1 Introduction

This chapter considerstechniques designed to providethedigital counterpart to ahandwrit-
tensignature. A digital signature of amessageisanumber dependent on some secret known
only to the signer, and, additionally, on the content of the message being signed. Signatures
must be verifiable; if adispute arises asto whether aparty signed adocument (caused by ei-
ther alying signer trying to repudiate asignatureit did create, or afraudulent claimant), an
unbiased third party should be ableto resolve the matter equitably, without requiring access
to the signer’s secret information (private key).

Digital signatures have many applicationsin information security, including authenti-
cation, dataintegrity, and non-repudiation. One of the most significant applications of dig-
ital signaturesis the certification of public keysin large networks. Certification isameans
for atrusted third party (TTP) to bind the identity of a user to apublic key, so that at some
later time, other entities can authenticate a public key without assistance from atrusted third
party.

The concept and utility of a digital signature was recognized several years before any
practical realization wasavailable. Thefirst method discovered wasthe RSA signature sch-
eme, which remainstoday one of themost practical and versatiletechniquesavailable. Sub-
sequent research has resulted in many alternative digital signature techniques. Some offer
significant advantagesin terms of functionality and implementation. This chapter isan ac-
count of many of the results obtained to date, with emphasis placed on those devel opments
which are practical.
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Chapter outline

§11.2 providesterminol ogy used throughout the chapter, and describesaframework for dig-
ital signaturesthat permitsauseful classification of the variousschemes. Itismore abstract
than succeeding sections. §11.3 provides an indepth discussion of the RSA signature sch-
eme, as well as closely related techniques. Standards which have been adopted to imple-
ment RSA and related signature schemes are also considered here. §11.4 [noks at meth-
ods which arise from identification protocols described in Chapter 10. Techniques based
on the intractability of the discrete logarithm problem, such as the Digital Signature Algo-
rithm (DSA) and ElGamal schemes, are the topic of §11.5. One-time signature schemes,
many of which arise from symmetric-key cryptography, are considered ir §11.6. §11.7 de-
scribesarbitrated digital signaturesand the ESIGN signature scheme. Variationson the ba-
sic concept of digital signatures, including blind, undeniable, and fail-stop signatures, are
discussed iri §11.8 F-urther notes, including subtle points on schemes documented in the
chapter and variants (e.g., designated confirmer signatures, convertible undeniable signa-
tures, group signatures, and electronic cash) may be foundin §11.9.

11.2 A framework for digital signature mechanisms

§1.6 provides a brief introduction to the basic ideas behind digital signatures, and §1.8.3
shows how these signatures can be realized through reversible public-key encryption tech-
niques. This section describes two general models for digital signature schemes. A com-
plete understanding of the material in this section is not necessary in order to follow sub-
sequent sections; the reader unfamiliar with some of the more concrete methods such as
RSA (§11.3) and ElGamal (§11.5) is well advised not to spend an undue amount of time.
Theideaof aredundancy functionisnecessary in order to understand the algorithmswhich
givedigital signatures with message recovery. The notation provided in Table 11.1 will be
used throughout the chapter.

11.2.1 Basic definitions

1. A digital signatureis adata string which associates a message (in digital form) with
some originating entity.

2. A digital signature generation algorithm (or signature generation algorithm) is a
method for producing a digital signature.

3. A digital signature verification algorithm (or verification algorithm) is amethod for
verifyingthat adigital signatureisauthentic (i.e., wasindeed created by the specified
entity).

4. A digital signature scheme (or mechanism) consists of a signature generation algo-
rithm and an associated verification algorithm.

5. A digital signature signing process (or procedure) consists of a (mathematical) digi-
tal signature generation algorithm, along with amethod for formatting datainto mes-
sages which can be signed.

6. A digital signature verification process (or procedure) consists of averification algo-
rithm, along with a method for recovering data from the message !

LOften little distinction is made between the terms scheme and process, and they are used interchangesbly.
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11.2

This chapter is, for the most part, concerned simply with digital signature schemes. In
order to use adigital signature schemein practice, it is necessary to have adigital signature
process. Several processes related to various schemes have emerged as commercially rele-
vant standards; two such processes, namely 1SO/IEC 9796 and PKCS #1, are described in
§11.3.5and §11.3.6, respectively. Notation used in the remainder of thischapter isprovided
inTable 11.1. The setsand functionslisted in Table 11.1 are al publicly known.

| Notation | Meaning |
M a set of elements called the message space.
M aset of elements called the signing space.

S a set of elements called the signature space.

R al — 1 mapping from M to M s called the redundancy function.
Mg theimage of R (i.e., M = Im(R)).
R! theinverseof R (i.e, R~': Mr — M).

R aset of elements called the indexing set for signing.

h aone-way function with domain M.
My, theimageof h (i.e, h: M — My); M;, C Mg caled the
hash value space.

Table 11.1: Notation for digital signature mechanisms.

Note (commentson Table 11.1)

(i) (messages) M isthe set of elementsto which asigner can affix adigital signature.
(i) (signing space) M s isthe set of elementsto which the signature transformations (to
be described in §11.2.2 and §11.2.3) are applied. The signature transformations are
not applied directly to the set M.
(iii) (signature space) S is the set of elements associated to messagesin M. These ele-
ments are used to bind the signer to the message.
(iv) (indexing set) R is used to identify specific signing transformations.

A classification of digital signature schemes

§11.2.2 end §11.2.3 describe two general classes of digital signature schemes, which can be
briefly summarized as follows:

1. Digital signature schemeswith appendix require the original message asinput to the
verification algorithm. (Sez Definition 11.3.)

2. Digital signature schemeswith message recovery do not requirethe original message
as input to the verification algorithm. In this case, the original message is recovered
from the signature itself. (See Definition 11.7.)

These classes can be further subdivided according to whether or not |R| = 1, as noted in
Definition 11.2.

Definition A digita signature scheme (with either message recovery or appendix) is said
to be a randomized digital signature schemeif |R| > 1; otherwise, the digital signature
schemeis said to be deterministic.

Figure 11.1 illustrates this classification. Deterministic digital signature mechanisms can
be further subdivided into one-time signature schemes (§11.6) end multiple-use schemes.
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Figure 11.1: Ataxonomy of digital signature schemes.

Digital signature schemes

11.2.2 Digital signature schemes with appendix

11.3

11.4

Digital signature schemes with appendix, as discussed in this section, are the most com-
monly used in practice. They rely on cryptographic hash functions rather than customized
redundancy functions, and are less prone to existential forgery attacks (§11.2.4).

Definition Digita signature schemes which require the message as input to the verifica
tion algorithm are called digital signature schemes with appendix.

Examples of mechanisms providing digital signatures with appendix are the DSA
(811.5.1), ElGama (§11.5.2), and Schnorr (§11.5.3) signature schemes. Notation for the
following discussion isgivenin Table 11.1.

Algorithm Key generation for digital signature schemes with appendix

SUMMARY: each entity creates a private key for signing messages, and a corresponding
public key to be used by other entities for verifying signatures.

1. Each entity A should select a private key which definesaset S4 = {Sax: k € R}
of transformations. Each S 4 j, isa1-1 mapping from M}, to S andiscalled asigning
transformation.

2. S, defines a corresponding mapping V4 from M, x S to {true, false} such that

~ N true, if SA’k(ﬁl) = s*,
Va(m, s7) = { false, otherwise,

foral m € My, s* € S; here, m = h(m) form € M. V, iscaled a verification
transformation and is constructed such that it may be computed without knowledge
of the signer’s private key.

3. A'spublickey isV,; A’sprivatekey istheset S4.
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11.5 Algorithm Signature generation and verification (digital signature schemes with appendix)

SUMMARY: entity A producesasignature s € S for amessagem € M, which can later
be verified by any entity B.
1. Sgnature generation. Entity A should do the following:
(8) Selectanelement k € R.
(b) Computem = h(m) and s* = S4 1 (m).
(c) A'ssignaturefor m is s*. Both m and s* are made available to entities which
may wish to verify the signature.
2. Verification. Entity B should do the following:
(a) Obtain A’sauthentic public key V4.
(b) Computem = h(m) andu = V4 (m, s*).
(c) Accept thesignatureif and only if u = true.

Figure11.2 providesaschematic overview of adigital signature schemewith appendix.
The following properties are required of the signing and verification transformations:
(i) foreachk € R, S4, should be efficient to compute;
(ii) V4 should be efficient to compute; and
(iii) it should be computationally infeasible for an entity other than A to find anm € M
and an s* € S such that V4 (m, s*) = true, wherem = h(m).

(b) The verification process

Figure 11.2: Overview of a digital signature scheme with appendix.

11.6 Note (use of hash functions) Most digital signature schemes with message recovery
(§11.2.3) ere applied to messages of afixed length, while digital signatures with appendix
are applied to messages of arbitrary length. The one-way function 4 ir Algorithm 11.5is
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typically selected to be a collision-free hash function (see Definition 9.3). An alternative
to hashing is to break the message into blocks of a fixed length which can be individually
signed using a signature scheme with message recovery. Since signature generationisrel-
atively slow for many schemes, and since reordering of multiple signed blocks presents a
security risk, the preferred method is to hash.

11.2.3 Digital signature schemes with message recovery

The digital signature schemes described in this section have the feature that the message
signed can berecovered from the signatureitself. In practice, thisfeatureis of usefor short
messages (see §11.3.3(viii)).

11.7 Definition A digital signatureschemewith messagerecoveryisadigital signaturescheme
for which a priori knowledge of the message is not required for the verification algorithm.

Examples of mechanisms providing digital signatureswith message recovery are RSA
(§11.3.1), Rabin (§11.3.4), and Nyberg-Rueppel (§11.5.4) oublic-key signature schemes.

11.8 Algorithm Key generation for digital signature schemes with message recovery

SUMMARY: each entity creates a private key to be used for signing messages, and a cor-
responding public key to be used by other entities for verifying signatures.

1. Each entity A should select aset S4 = {Sa: k € R} of transformations. Each
S 4 k isal-1 mapping from M to S and is called a signing transformation.

2. S, defines acorresponding mapping V4 with the property that V4 0 S 4 1 istheiden-
tity map on Mg for dl k € R. V4 is called a verification transformation and is
constructed such that it may be computed without knowledge of the signer’s private
key.

3. A’spublickey isVy; A'sprivatekey istheset S4.

11.9 Algorithm Signature generation and verification for schemes with message recovery

SUMMARY: entity A producesasignature s € S for amessagem € M, which can later
be verified by any entity B. The message m isrecovered from s.

1. Sgnature generation. Entity A should do the following:
(8) Selectanelementk € R.
(b) Computem = R(m) and s* = S4 x(m). (R isaredundancy function; see
Table 11.1 end Note 11.10.)
(c) A’'ssignatureis s*; thisis made available to entities which may wish to verify
the signature and recover m fromiit.
2. Verification. Entity B should do the following:
(a) Obtain A’sauthentic public key V4.
(b) Computem = V4(s*).
(c) Verify that m € Mg. (If m € Mg, then rgject the signature.)
(d) Recover m from m by computing R~ ().
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11.10

11.11

11.12

Figure 11.3: Overview of a digital signature scheme with message recovery.

Figure 11.3 providesa schematic overview of adigital signature scheme with message
recovery. Thefollowing properties are required of the signing and verification transforma-
tions:

(i) foreachk € R, S4 1 should be efficient to compute;
(ii) V4 should be efficient to compute; and
(iti) it should be computationally infeasible for an entity other than A tofindany s* € S
such that V4 (s*) € Mg.

Note (redundancy function) The redundancy function R and itsinverse R~ are publicly
known. Selecting an appropriate R is critical to the security of the system. To illustrate
this point, supposethat Mr = Ms. Suppose R and S 4 j, are bijectionsfrom M to Mz
and M s to S, respectively. Thisimpliesthat M and S have the same number of elements.
Thenforany s* € S, V4(s*) € Mg, anditistrivial to find messagesm and corresponding
signatures s* whichwill be accepted by the verification algorithm (step 2 of Algorithm 11.9)
asfollows.

1. Selectrandom k € R and random s* € S.

2. Computem = V4(s*).

3. Computem = R~ (m).
The element s* isavalid signature for the message m and was created without knowledge
of the set of signing transformations S 4.

Example (redundancy function) Suppose M = {m: m € {0,1}"} for some fixed posi-
tiveinteger n and Ms = {t: t € {0,1}*"}. Define R: M — Mg by R(m) = m|m,
where || denotes concatenation; that is, Mg = {m|/m: m € M} C Msg. For largeval-
uesof n, the quantity [Mg|/|Ms| = (1)" isanegligibly small fraction. This redundancy
function is suitable provided that no judicious choice of s* on the part of an adversary will
have a non-negligible probability of yielding V4 (s*) € Mg. O

Remark (selectinga redundancy function) Eventhoughtheredundancy function R ispub-
licknowledgeand R~ iseasy to compute, selection of R iscritical and should not be made
independently of the choice of the signing transformationsin S, Example 11.21 provides
a specific example of aredundancy function which compromises the security of the signa-
ture scheme. An example of a redundancy function which has been accepted as an inter-
national standard is given in §11.3.5. This redundancy function is not appropriate for al
digital signature schemes with message recovery, but does apply to the RSA (§11.3.1) and
Rabin (§11.3.4) digital signature schemes.
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11.13 Remark (aparticular class of message recovery schemes) §1.8.3 describesaclass of dig-
ital signature schemes with message recovery which arise from reversible public-key en-
cryption methods. Examplesincludethe RSA (§8.2) and Rabin (§8.3) encryption schemes.
Thecorresponding signaturemechanismsarediscussed in £11.3.1 and §11.3.4, respectively.

11.14 Note (signatures with appendix from schemes providing message recovery) Any digital
signature scheme with message recovery can beturnedinto adigital signature schemewith
appendix by simply hashing the message and then signing the hash value. The messageis
now required as input to the verification algorithm. A schematic for this situation can be
derived from Figure 11.3 and isillustrated ir Figure 11.4. Theredundancy function R isno
longer critical to the security of the signature scheme, and can beany 1 — 1 function from
My to M.

Figure 11.4: Sgnature scheme with appendix obtained from one providing message recovery.

11.2.4 Types of attacks on sighature schemes

The goal of an adversary is to forge signatures; that is, produce signatures which will be
accepted as those of some other entity. The following provides a set of criteriafor what it
means to break a signature scheme.

1. total break. An adversary is either able to compute the private key information of
the signer, or finds an efficient signing algorithm functionally equivalent to the valid
signing algorithm. (For example, se2§11.3.2(i).)

2. selectiveforgery. Anadversary isableto createavalid signaturefor aparticular mes-
sage or class of messages chosen a priori. Creating the signature does not directly
involve the legitimate signer. (See Example 11.21.)

3. existential forgery. An adversary is able to forge a signature for at least one mes-
sage. The adversary haslittle or no control over the message whose signatureis ob-
tained, and the legitimate signer may be involved in the deception (for example, see
Note 11.66(iii)).

There are two basic attacks against public-key digital signature schemes.

1. key-only attacks. In these attacks, an adversary knows only the signer’s public key.
2. message attacks. Here an adversary is able to examine signatures corresponding ei-
ther to known or chosen messages. Message attacks can be further subdivided into
three classes:
(8 known-messageattack. Anadversary hassignaturesfor aset of messageswhich
are known to the adversary but not chosen by him.
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(b) chosen-message attack. An adversary obtains valid signatures from a chosen
list of messages before attempting to break the signature scheme. This attack
is non-adaptive in the sense that messages are chosen before any signatures
are seen. Chosen-message attacks against signature schemes are analogous to
chosen-ciphertext attacks against public-key encryption schemes (see §1.13.1).

(c) adaptivechosen-messageattack. Anadversary isallowedto usethesigner asan
oracle; the adversary may request signatures of messages which depend on the
signer’s public key and he may request signatures of messages which depend
on previously obtained signatures or messages.

11.15 Note (adaptivechosen-messageattack) In principle, an adaptive chosen-messageattack is
themost difficult type of attack to prevent. It isconceivablethat given enough messagesand
corresponding signatures, an adversary could deduce a pattern and then forgea signature of
its choice. While an adaptive chosen-message attack may be infeasible to mount in prac-
tice, a well-designed signature scheme should nonetheless be designed to protect against
the possibility.

11.16 Note (security considerations) Thelevel of security requiredin adigital signature scheme
may vary accordingto theapplication. For example, in situationswherean adversary isonly
capable of mounting a key-only attack, it may suffice to design the scheme to prevent the
adversary from being successful at selective forgery. In situations where the adversary is
capable of a message attack, it is likely necessary to guard against the possibility of exis-
tential forgery.

11.17 Note (hash functionsand digital signature processes) When a hash function h isused in
adigital signature scheme (as is often the case), h should be a fixed part of the signature
process so that an adversary is unable to take avalid signature, replace h with aweak hash
function, and then mount a selective forgery attack.

11.3 RSA and related signature schemes

This section describes the RSA signature scheme and other closely related methods. The
security of the schemes presented here relies to a large degree on the intractability of the
integer factorization problem (see §3.2). The schemes presented include both digital signa-
tures with message recovery and appendix (see: Note 11.14).

11.3.1 The RSA signature scheme

The message space and ciphertext space for the RSA public-key encryption scheme (§8.2)
arebothZ,, = {0,1,2,... ,n — 1} wheren = pq isthe product of two randomly chosen
distinct prime numbers. Since the encryption transformation is a bijection, digital signa-
turescan be created by reversing theroles of encryptionand decryption. The RSA signature
schemeis adeterministic digital signature scheme which provides message recovery (see
Definition 11.7). The signing space M s and signature space S areboth Z,, (se2Table 11.1
for notation). A redundancy function R: M — Z,, ischosen and is public knowledge.
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11.18 Algorithm Key generation for the RSA signature scheme

SUMMARY: each entity creates an RSA public key and a corresponding private key.
Each entity A should do the following:
1. Generate two large distinct random primes p and ¢, each roughly the same size (see
§11.3.2).
2. Computen =pgand¢ = (p — 1)(g — 1).
3. Selectarandominteger e, 1 < e < ¢, such that ged(e, ¢) = 1.
4. Use the extended Euclidean algorithm (Algorithm 2.107) to compute the uniquein-
tegerd, 1 < d < ¢, suchthated =1 (mod ¢).
5. A’spublickey is(n,e); A'sprivatekey isd.

11.19 Algorithm RSA signature generation and verification

SUMMARY: entity A signsamessagem € M. Any entity B can verify A’ssignatureand
recover the message m from the signature.
1. Sgnature generation. Entity A should do the following:
(8 Computem = R(m), aninteger intherange [0,n — 1].
(b) Compute s = m¢ mod n.
(c) A’ssignaturefor m iss.
2. Verification. To verify A’ssignature s and recover the message m, B should:
(a) Obtain A’sauthentic public key (n,e).
(b) Computem = s¢ mod n.
(c) Verify that m € Mg; if not, reject the signature.
(d) Recover m = R~1(m).

Proof that signature verification works. If s is a signature for a message m, then s =
m? mod n wherem = R(m). Sinceed = 1 (mod ¢), s¢ = m*? = m (mod n). Fi-
naly, R~1(m) = R~ (R(m)) = m.

11.20 Example (RSA signature generation with artificially small parameters)
Key generation. Entity A selects primesp = 7927, ¢ = 6997, and computesn = pqg =
55465219 and ¢ = 7926 x 6996 = 55450296. A choosese = 5 and solvesed = 5d = 1
(mod 55450296), yielding d = 44360237. A’s public key is (n = 55465219, e = 5);
A’sprivatekey isd = 44360237.
Sgnaturegeneration. For the sake of simplicity (but se2§11.3.3(ii)), assumethat M = Z,,
and that the redundancy function R: M — Z,, istheidentity map R(m) = mfordlm €
M. To sign amessage m = 31229978, A computesm = R(m) = 31229978, and com-
putesthe signature s = m<? mod n = 3122997844360237 mod 55465219 = 30729435.
Sgnature verification. B computesm = s°modn = 30729435° mod 55465219 =
31229978. Finally, B acceptsthe signature since m hasthe required redundancy (i.e., m €
MR), andrecoversm = R~1(m) = 31229978. O

11.3.2 Possible attacks on RSA signhatures

(i) Integer factorization

If an adversary is able to factor the public modulus n of some entity A, then the adversary
can compute ¢ and then, using the extended Euclidean algorithm (Algorithm 2.107), deduce
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the private key d from ¢ and the public exponent e by solving ed = 1 (mod ¢). This
congtitutes atotal break of the system. To guard against this, A must select p and ¢ so that
factoring n is acomputationally infeasible task. For further information, see §8.2.2(i) and
Note 8.8.

(i) Multiplicative property of RSA

The RSA signature scheme (aswell asthe encryption method, cf. §8.2.2(v)) hasthefollow-
ing multiplicative property, sometimes referred to as the homomorphic property. If s; =
m¢ mod n and s, = m¢ mod n are signatures on messages m; and m., respectively (or
more properly on messages with redundancy added), then s = s;s2 mod n has the prop-
erty that s = (myms)? mod n. If m = mym, hasthe proper redundancy (i.e., m € Mg),
then s will be avalid signature for it. Hence, it is important that the redundancy function
R isnot multiplicative, i.e., for essentialy all pairsa,b € M, R(a - b) # R(a)R(b). As
Example 11.21 shows, this condition on R is necessary but not sufficient for security.

11.21 Example (insecureredundancy function) Letn bean RSA modulusand d the privatekey.
Let k = [lgn] bethebitlength of n, and let ¢ be afixed positive integer such that t < k/2.
Let w = 2! and let messages be integers m in theinterval [1, 727t — 1]. The redundancy
function R istakento be R(m) = m2! (theleast significant ¢ bits of the binary representa-
tion of R(m) are 0's). For most choices of n, R will not have the multiplicative property.
The general existential forgery attack described in Note 11.10 would have a probability of
success of (%)t. But for thisredundancy function, a selective forgery attack (whichismore
serious) is possible, asis now explained.

Suppose that an adversary wishesto forge a signature on amessage m. The adversary
knowsn but not d. Theadversary can mount thefollowing chosen-message attack to obtain
the signature on m. Apply the extended Euclidean algorithm (Algorithm 2.107) to n and
m = R(m) = m2' = mw. At each stage of the extended Euclidean algorithm, integers
x, y, and r are computed such that xn + ym = r. It can be shown that at some stage there
existsay and r such that |y| < n/wandr < n/w, provided w < y/n. If y > 0, form
integers mos = rw and mg = yw. If y < 0, formintegersms = rw and m3z = —yw. In
either case, my and m3 have the required redundancy. If signatures s, = mg mod n and
s3 = mg mod n are obtained from the legitimate signer, then the adversary can compute a
signature for m asfollows:

d
o ify >0, compute 32 = 72 = (;—f’u)d = (£)? = m? mod n;

mg y

d
o if y <0, compute =2 = =25 = (22)¢ = (£)? = m? mod n.

—s3 (7777,3)’1 -
In either case, the adversary has a signed message of its choice with the required redun-
dancy. Thisattack isan example of achosen-message attack providing selective forgery. It
emphasizes the requirement for judicious choice of the redundancy function R. O

11.3.3 RSA signatures in practice

() Reblocking problem

Onesuggested use of RSA isto sign amessageand then encrypt the resulting signature. One
must be concerned about the relative sizes of the moduli involved when implementing this
procedure. Supposethat A wishesto sign and then encrypt a message for B. Suppose that
(na,es) and (np,ep) are A'sand B’s public keys, respectively. If n4 > np, then there
is a chance that the message cannot be recovered by B, asillustrated in Example 11.22.

©1997 CRC PressLLC



Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:10 22 March 2017

11.22 Example (reblocking problem) Letny = 8387 x 7499 = 62894113,e4 = 5,and d4 =
37726937;andnp = 55465219,ep = 5,dp = 44360237. Noticethatn 4o > np. Suppose
m = 1368797 is a message with redundancy to be signed under A’s private key and then
encrypted using B’s public key. A computesthe following:

1. s =m? mod ny = 136879737726937 mod 62894113 = 59847900.
2. ¢ = s mod np = 59847900° mod 55465219 = 38842235.

To recover the message and verify the signature, B computes the following:

1. 5= c?® mod np = 38842235%4360237 10d 55465219 = 4382681.
2. M = 3% mod na = 4382681° mod 62894113 = 54383568.

Observethat m # m. Thereason for thisisthat s islarger than the modulusnz. Here, the
probability of this problem occurringis (ns — np)/na ~ 0.12. O

There are various ways to overcome the reblocking problem.

1. reordering. The problem of incorrect decryption will never occur if the operation us-
ing the smaller modulusis performedfirst. Thatis, if n4 > np, then entity A should
first encrypt the message using B’s public key, and then sign the resulting cipher-
text using A’s private key. The preferred order of operations, however, is always to
sign the message first and then encrypt the signature; for if A encryptsfirst and then
signs, an adversary could removethe signature and replace it with its own signature.
Even though the adversary will not know what is being signed, there may be situa-
tions where this is advantageous to the adversary. Thus, reordering is not a prudent
solution.

2. two moduli per entity. Have each entity generate separate moduli for encrypting and
for signing. If each user’ssigning modulusissmaller than al of the possible encrypt-
ing moduli, thenincorrect decryption never occurs. Thiscan beguaranteed by requir-
ing encrypting moduli to be (¢ 4 1)-bit numbers and signing moduli ¢-bit numbers.

3. prescribing the formof the modulus. Inthismethod, one selectsthe primesp and ¢ so
that the modulusn has a special form: the highest-order bitisal and the & following
bitsareal 0’s. A t-bit modulusn of thisform can befound asfollows. For n to have
the required form, 2t~ < n < 2t=1 + 2¢=%~1_ Sdect arandom [t/2]-bit prime p,
and search for aprime ¢ intheinterval between [2¢~! /p] and | (2t~ + 2¢t=%=1) /p|;
then n = pq isamodulus of the required type (see: Example 11.23). This choice for
the modulus n does not completely prevent the incorrect decryption problem, but it
can reduce the probability of its occurrence to a negligibly small number. Suppose
that n 4 issuch amodulusand s = m?4 mod n 4 isasignature on m. Suppose fur-
ther that s hasa1 in one of the high-order & + 1 bit positions, other than the highest.
Then s, since it is smaler than n 4, must have a 0 in the highest-order bit position
and so is necessarily smaller than any other modulus of a similar form. The proba-
bility that s does not have any 1’sin the high-order £ + 1 bit positions, other than the
highest, islessthan (%)k, whichisnegligibly small if & is selected to be around 100.

11.23 Example (prescribing the form of the modulus) Suppose one wants to construct a 12-hbit
modulus n such that the high order bit isa 1 and the next £k = 3 bitsare 0's. Begin by
selecting a 6-bit primep = 37. Select aprime g in theinterval between [211 /p] = 56 and
| (21! + 28)/p] = 62. The possibilities for ¢ are 59 and 61. If ¢ = 59 is selected, then
n = 37 x 59 = 2183, having binary representation 100010000111. If ¢ = 61 is selected,
thenn = 37 x 61 = 2257, having binary representation 100011010001. O
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(i) Redundancy functions

In order to avoid an existential forgery attack (see §11.2.4) on the RSA signature scheme,
a suitable redundancy function R is required. §11.3.5 describes one such function which
has been accepted as an international standard. Judicious choice of aredundancy function
iscrucial to the security of the system (see §11.3.2(ii)).

(i) The RSA digital signature scheme with appendix

Note 11.14 describes how any digital signature scheme with message recovery can be
modified to give a digital signature scheme with appendix. For example, if MD5 (Algo-
rithm 9.51) is used to hash messages of arbitrary bitlengthsto bitstrings of length 128, then
Algorithm 11.9 could be used to sign these hash values. If n isak-bit RSA modulus, then
a suitable redundancy function R is required to assign 128-bit integers to k-bit integers.
§11.3.6 clescribes a method for doing this which is often used in practice.

(iv) Performance characteristics of signature generation and verification

Letn = pg bea2k-bhit RSA moduluswherep and ¢ are each k-hit primes. Computingasig-
nature s = m? mod n for amessage m requires O(k?*) bit operations (regarding modular
multiplication, see §14.3; and for modular exponentiation, §14.6). Since the signer typi-
cally knows p and ¢, she can compute s; = m¢ mod p, s = m? mod ¢, and determine s
by using the Chinese remainder theorem (see Note 14.75). Although the complexity of this
procedure remains O(k3), it is considerably more efficient in some situations.

Verification of signaturesis significantly faster than signing if the public exponent is
chosen to be a small number. If this is done, verification requires O(k?) bit operations.
Suggested valuesfor e in practice are 3 or 216 + 1;2 of course, p and ¢ must be chosen so
that ged(e, (p —1)(¢ — 1)) = 1.

The RSA signature schemeisthusideally suited to situationswhere signature verifica
tion isthe predominant operation being performed. For example, when atrusted third party
creates a public-key certificate for an entity A, this requires only one signature generation,
and this signature may be verified many times by various other entities (see §13.4.2).

(v) Parameter selection

Asof 1996, aminimum of 768 bitsisrecommended for RSA signature moduli. A modulus
of at least 1024 bitsis recommended for signatures which require much longer lifetimes or
which are critical to the overall security of alarge network. It is prudent to remain aware
of progressin integer factorization, and to be prepared to adjust parameters accordingly.

No weaknessesin the RSA signature scheme have been reported when the public expo-
nent e is chosen to be asmall number such as 3 or 21 + 1. It isnot recommended to restrict
the size of the private exponent d in order to improve the efficiency of signature generation
(cf. §8.2.2(iv)).

(vi) Bandwidth efficiency

Bandwidth efficiency for digital signatureswith message recovery refersto the ratio of the
logarithm (base 2) of the size of the signing space M s to thelogarithm (base 2) of the size of
M g, theimage space of the redundancy function. Hence, the bandwidth efficiency is deter-
mined by theredundancy R. For RSA (and the Rabin digital signaturescheme, §11.3.4), the
redundancy function specified by | SO/IEC 9796 (§11.3.5) takes k-bit messages and encodes
them to 2k-bit elementsin Mg from which a 2k-bit signature is formed. The bandwidth

2The choice of e = 216 4 1 is based on the fact that e is a prime number, and ¢ mod n can be computed
with only 16 modular squarings and one modular multiplication (see §14.6.1).
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efficiency in thiscaseis % For example, with a modulus of size 1024 bits, the maximum
size of amessage which can be signed is 512 bits.

(vii) System-wide parameters

Each entity must have adistinct RSA modulus; it isinsecureto use a system-wide modulus
(see §8.2.2(vi)). The public exponent e can be a system-wide parameter, and is in many
applications (see Note 8.9(ii)).

(viii) Short vs. long messages

Suppose n is a 2k-bit RSA modulus which is used in Algorithm 11.19 to sign &-bit mes-
sages(i.e., thebandwidth efficiency is %). Suppose entity A wishesto sign akt-bit message
m. One approach is to partition m into k-bit blocks such that m = m; ||ms|| - - - ||m. and
sign each block individually (but see Note 11.6 regarding why this is not recommended).
Thebandwidth requirement for thisis 2kt bits. Alternatively, A could hash messagem toa
bitstring of length! < & and sign the hash value. The bandwidth requirement for thissigna-
tureiskt+ 2k, wheretheterm k¢ comesfrom sending the messagem. Since kt+ 2k < 2kt
whenever t > 2, it follows that the most bandwidth efficient method is to use RSA digital
signatureswith appendix. For amessage of size at most k-bits, RSA with message recovery
ispreferred.

11.3.4 The Rabin public-key signature scheme

11.24

11.25

The Rabin public-key signature schemeissimilar to RSA (Algorithm 11.19), but it usesan
even public exponent e. 3 For the sake of simplicity, it will be assumed that e = 2. The
signing space M is @, (the set of quadratic residues modulo n — see Definition 2.134)
and signatures are square roots of these. A redundancy function R from the message space
M to M isselected and is public knowledge.

Algorithm 11.25 dascribesthe basic version of the Rabin public-key signature scheme.
A more detailed version (and one more useful in practice) is presented in Algorithm 11.30.

Algorithm Key generation for the Rabin public-key signature scheme

SUMMARY: each entity creates a public key and corresponding private key.

Each entity A should do the following:
1. Generate two large distinct random primes p and ¢, each roughly the same size.
2. Computen = pq.
3. A’spublickey isn; A’'s privatekey is (p, q).

Algorithm Rabin signature generation and verification

SUMMARY: entity A signsamessagem € M. Any entity B can verify A’ssignatureand
recover the message m from the signature.
1. Sgnature generation. Entity A should do the following:
(8 Computem = R(m).
(b) Compute a squareroot s of m mod n (using Algorithm 3.44).
(c) A'ssignaturefor m iss.

3Since p and q are distinct primesin an RSA modulus, ¢ = (p — 1)(q — 1) iseven. In RSA, the public
exponent e must satisfy ged(e, ¢) = 1 and so must be odd.
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2. Verification. To verify A’ssignature s and recover the message m, B should:
(a) Obtain A’s authentic public key n.
(b) Computem = s? mod n.
(c) Verify that m € Mg; if not, reject the signature.
(d) Recover m = R~1(m).

11.26 Example (Rabin signature generation with artificially small parameters)

Key generation. Entity A selectsprimesp = 7, ¢ = 11, and computesn = 77. A’s
publickey isn = 77; A’sprivatekey is (p = 7,q = 11). The signing spaceis Ms =
Q7 =11,4,9,15,16, 23,25, 36, 37, 53, 58, 60, 64, 67, 71}. For the sake of simplicity (but
see: Note 11.27), take M = M s and theredundancy function R to betheidentity map (i.e.,
m = R(m) = m).

Sgnature generation. To sign amessagem = 23, A computes R(m) = m = 23, and then
finds asquare root of m modulo 77. If s denotes such asquareroot, then s = +£3 (mod 7)
and s = +£1 (mod 11), implying s = 10, 32, 45, or 67. The signature for m is chosen to
be s = 45. (The signature could be any one of the four square roots.)

Signature verification. B computesm = s mod 77 = 23. Sincem = 23 € Mg, B
accepts the signature and recoversm = R~1(m) = 23. O

11.27 Note (redundancy)

(i) Aswith the RSA signature scheme (Example 11.21), an appropriate choice of are-
dundancy function R is crucia to the security of the Rabin signature scheme. For
example, supposethat M = Ms = @, and R(m) = mforal m € M. If an
adversary selects any integer s € Z and squaresit to get m = s? mod n, then s is
avalid signature for m and is obtained without knowledge of the private key. (Here,
the adversary has little control over what the message will be.) In this situation, ex-
istential forgery istrivial.

(if) Inmost practical applicationsof digital signature schemeswith messagerecovery, the
message space M consists of bitstrings of some fixed length. For the Rabin scheme,
determining aredundancy function R isachallengingtask. For example, if amessage
m isabitstring, R might assign it to the integer whose binary representation is the
message. There is, however, no guarantee that the resulting integer is a quadratic
residue modulo n, and so computing a square root might be impossible. One might
try to append a small number of random bits to m and apply R again in the hope
that R(m) € Q,. On average, two such attempts would suffice, but a deterministic
method would be preferable.

Modified-Rabin signature scheme

To overcomethe problem discussed in Note 11.27(ii), amodified version of the basic Rabin
signatureschemeisprovided. Thetechnique presentedissimilar tothat usedinthel SO/IEC
9796 digital signature standard (§11.3.5). It providesadeterministic method for associating
messages with elements in the signing space M s, such that computing a sguare root (or
something close to it) is always possible. An understanding of this method will facilitate
thereading of §11.3.5.

11.28 Fact Let p and g be distinct primes each congruent to 3 modulo 4, and let n = pq.
(i) If ged(z,n) = 1,then z(P~D@=D/2 = 1 (mod n).
(ii) If 2 € Qn, then z(~P—415)/8 ;mod n isasquare root of 2 modulo n.
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(iii) Let z be aninteger having Jacobi symbol (£) =1, andletd = (n — p — ¢+ 5)/8.
Then

2d _ z, ifze@,,
T mOdn_{n—a:, ifr & Qn.

(iv) If p # ¢ (mod 8), then (2) = —1. Hence, multiplication of any integer = by 2 or
2~ mod n reverses the Jacobi symbol of z. (Integers of the formn = pg where
p=¢q=3 (mod 4) andp # q (mod 8) are sometimes called WIliams integers.)

Algorithm 11.30 is a modified version of the Rabin digital signature scheme. Mes-
sages to be signed are from Mg = {m € Z,: m = 6 (mod 16)}. Notation is given
in Table 11.2. In practice, the redundancy function R should be more complex to prevent
existential forgery (se2 §11.3.5 for an example).

| Symbol | Term | Description |
M message space {me€Zn:m<[(n—6)/16]}
Ms signing space {m €Z,: m=6 (mod 16)}
S signature space {s € Zy: (s> mod n) € Ms}
R redundancy function | R(m) = 16m + 6 foral m € M
Mg image of R {m € Z,: m =6 (mod 16)}

Table 11.2: Definition of sets and functions for Algorithm 11.30.

11.29 Algorithm Key generation for the modified-Rabin signature scheme

SUMMARY: each entity creates a public key and corresponding private key.

Each entity A should do the following:
1. Select randomprimesp = 3 (mod 8), ¢ = 7 (mod 8) and computen = pq.
2. A’spublickey isn; A'sprivatekeyisd = (n —p — ¢+ 5)/8.

11.30 Algorithm Modified-Rabin public-key signature generation and verification

SUMMARY: entity A signsamessagem € M. Any entity B can verify A’ssignatureand
recover the message m from the signature.

1. Sgnature generation. Entity A should do the following:
(8 Computem = R(m) = 16m + 6.
(b) Compute the Jacobi symbol J = () (using Algorithm 2.149).
(c) If J = 1 then compute s = m? mod n.
(d) If J = —1 then compute s = (m/2)? mod n. 4
(e) A'ssignaturefor m iss.
2. Verification. To verify A’ssignature s and recover the message m, B should:
(8) Obtain A’sauthentic public key n.
(o) Computem’ = s2 mod n. (Notetheoriginal message m itself isnot required.)
(€) f m' =6 (mod 8), tekem = m/.
(d) If m' =3 (mod 8), takem = 2m/.

4If J # 1 or —1 then J = 0, implying ged(n, n) # 1. Thisleads to afactorization of n. In practice, the
probability that this will ever occur is negligible.
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11.31

11.32

11.33

(e Ifm' =7 (mod 8),takem =n —m/.

(f) If m' =2 (mod 8), takem = 2(n — m’).

(g) Verify that m € Mg (se2Table 11.2); if not, reject the signature.
(h) Recover m = R=(m) = (m — 6)/16.

Proof that signature verification works. The signature generation phase signseither v = m
or v = m,/2 depending upon which has Jacobi symbol 1. By Fact 11.28(iv), exactly one of
m, m/2 has Jacobi symbol 1. Thevalue v that issignedissuch that v = 3 or 6 (mod 8).
By Fact 11.28(iii), s> mod n = v or n — v depending on whether or not v € @Q,,. Since
n =5 (mod 8), these cases can be uniquely distinguished.

Example (modified-Rabin signature scheme with artificially small parameters)

Key generation. A choosesp = 19, ¢ = 31, and computesn = pg = 589 and d =
(n—p—q+5)/8 = 68. A’spublickeyisn = 589, while A’s private key isd = 68.
Thesigning space M s isgiveninthefollowing table, a ong with the Jacobi symbol of each
element.

m 6 22 54 70 8 102 118 134 150 166

(z5) || -1 1 -1 -1 1 1 1 1 -1 1

m || 182 198 214 230 246 262 278 294 326 358

(z5) || -1 1 1 1 1 -1 1 -1 -1 -1

374 390 406 422 438 454 470 486 502 518

(=) -1 -1 -1 1 1 1 -1 -1 1 -1
m || 534 550 566 582
() || -1 1 -1 1

Signature generation. To sign amessage m = 12, A computes = R(12) = 198, (Z) =
(3%) = 1,and s = 198% mod 589 = 102. A’ssignaturefor m = 12iss = 102.

Sgnature verification. B computes m’ = s> mod n = 1022 mod 589 = 391. Since
m' = 7 (mod 8), Btakesm = n —m’ = 589 — 391 = 198. Finally, B computes

m = R~*(m) = (198 — 6)/16 = 12, and accepts the signature. O

Note (security of modified-Rabin signature scheme)

(i) When using Algorithm 11.30, one should never sign avalue v having Jacobi symbol
—1, since this leads to a factorization of n. To see this, observethat y = v2?¢ = 52
must have Jacobi symbol 1; but 32 = (v?)?? = v? (mod n) by Fact 11.28(iii).
Therefore, (v—y)(v+y) = 0 (mod n). Sincewv and y have opposite Jacobi symbols,
v Zy (mod n) andthusged(v — y,n) = p or q.

(ii) Existential forgery is easily accomplished for the modified-Rabin scheme as it was
for the original Rabin scheme (see: Note 11.27(i)). Oneonly needstofindan s, 1 <
s < n — 1, such that either s2 or n — s2 or 2s2 or 2(n — s?) mod n is congruent to
6 modulo 16. In any of these cases, s isavalid signature for m’ = s? mod n.

Note (performance characteristics of the Rabin signature scheme) Algorithm 11.25 re-
quires a redundancy function from M to Ms = @,, which typically involves computing
aJacobi symbol (Algorithm 2.149). Signature generation then involves computing at least
one Jacobi symbol (see Note 11.27) and a square root modulo n. The square root compu-
tation is comparable to an exponentiation modulo n (see Algorithm 3.44). Since comput-
ing the Jacobi symbol is equivalent to a small number of modular multiplications, Rabin
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signature generation is not significantly more computationally intensive than an RSA sig-
nature generation with the same modulus size. Signature verificationisvery fastif e = 2;
it requires only one modular multiplication. Squaring can be performed slightly more ef-
ficiently than a general modular multiplication (see Note 14.18). This, too, compares fa-
vorably with RSA signature verification even when the RSA public exponentise = 3.
The modified Rabin scheme (Algorithm 11.30) specifiesthe message space and redundancy
function. Signature generation requiresthe evaluation of a Jacobi symbol and one modular
exponentiation.

11.34 Note (bandwidth efficiency) The Rabin digital signature schemeissimilar tothe RSA sch-
eme with respect to bandwidth efficiency (see §11.3.3(vi)).

11.3.5 ISO/IEC 9796 formatting

| SO/IEC 9796 was publishedin 1991 by the I nternational Standards Organization asthefirst
international standard for digital signatures. It specifies a digital signature process which
usesadigital signature mechanism providing message recovery.

Themain features of ISO/IEC 9796 are: (i) it is based on public-key cryptography; (ii)
the particular signature algorithm is not specified but it must map & bits to k& bits; (iii) it
is used to sign messages of limited length and does not require a cryptographic hash func-
tion; (iv) it provides message recovery (see Note 11.14); and (V) it specifies the message
padding, where required. Examples of mechanisms suitable for the standard are RSA (Al-
gorithm 11.19) and modified-Rabin (Algorithm 11.30). The specific methods used for
padding, redundancy, and truncation in 1SO/IEC 9796 prevent various meansto forge sig-
natures. Table 11.3 provides notation for this subsection.

| Symbol | Meaning |
k the bitlength of the signature.

d the bitlength of the message m to be signed;
itisrequiredthatd < 8 [(k + 3)/16].

the number of bytesin the padded message; = = [d/8].

r one more than the number of padding bits, » = 8z — d + 1.

t the least integer such that a string of 2¢ bytesincludes at |east
k—1bits; ¢t = [(k—1)/16].

Table 11.3: 1SO/IEC 9796 notation.

11.35 Example (sample parameter values for 1SO/IEC 9796) The following table lists sample
values of parametersin the signing process for a 150-bit message and a 1024-bit signature.

Parameter | k (bits) d (bits) =z (bytes) r (bits) ¢ (bytes)
Value 1024 150 19 3 64
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(i) Signature process for ISO/IEC 9796
The signature process consists of 5 steps as per Figure 11.5(a).

(a) ISO/IEC 9796 signature process (b) ISO/IEC 9796 verification process

Message Signature

Padding
‘ Signature opening ‘

NO
Extension Y YES \—> Reject

‘ Message recovery ‘

Redundancy NO
Y YES Reject

‘ Redundancy checking ‘

‘ Truncating and forcing ‘
NO
* LYES Reject

‘ Signature production ‘ Signature accepted

L1

Figure 11.5: Sgnature and verification processes for |SO/IEC 9796.

1. padding. If m isthe message, form the padded message MP = 0"~ !||m where 1 <
r < 8, such that the number of bitsin MP isamultiple of 8. The number of bytesin
MPisz: MP = m,|/m,_1] - - - ||m2|/m1 where each m, isabyte.

2. message extension. The extended message, denoted ME, is obtained from MP by
repeated concatenation on the left of MP with itself until ¢ bytes are in the string:
ME = ME|ME;_1||---||ME2|| ME, (each ME, isabyte). If ¢ is not amultiple
of z, then the last bytes to be concatenated are a partial set of bytesfrom MP, where
these bytes are consecutive bytes of MP from the right. More precisely, ME ;1 =
m(l modz)+1 for 0 S ) S t—1.

3. message redundancy. Redundancy is added to MF to get the byte string MR =
MRg;||MRg; 1| - - - || MR2|| MR, asfollows. MR is obtained by interleaving the ¢
bytes of MFE with ¢ redundant bytes and then adjusting byte MR, of the resulting
string. Moreprecisely, MR2;—1 = ME; and MRy, = S(ME;) for1 < i < t, where
S(u) is called the shadow function of the byte u, and is defined as follows. If u =
uz||uy wherewu; andug arenibbles(stringsof bitlength 4), then S (u) = 7 (ug)||7(u1)
where 7 isthe permutation

/012345678 9 ABCDEF
™\E 358 942 F 0DUBGS6 7 A C 1

(For brevity, 7 is written with nibbles represented by hexadecimal characters.) Fi-
nally, MR is obtained by replacing MR, withr & MR, .5
4. truncation and forcing. Form the k-bit intermediate integer IR from MR asfollows:
(a) totheleast significant k& — 1 bitsof MR, append on the left asingle bit 1;
(b) modify the least significant byte us ||u; of the result, replacing it by u, [|0110.
(Thisisdoneto ensurethat IR = 6 (mod 16).)

5The purpose of MRa. is to permit the verifier of a signature to recover the length d of the message. Since
d =8z — r + 1, it suffices to know z and r. These values can be deduced from MR.
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5. signature production. A signature mechanism is used which maps k-bit integers to
k-bit integers (and allows message recovery). IR issigned using this mechanism; let
s denote the resulting signature.

11.36 Note (RSA, Rabin) ISO/IEC 9796 was intended for use with the RSA (Algorithm 11.1¢)6
and Rabin (Algorithm 11.25)7 digital signature mechanisms. For these particular schemes,
signature production i1s stated more explicitly. Let e be the public exponent for the RSA or
Rabin algorithms, n the modulus, and d the private exponent. First form the representative
element RR whichis: (i) IR if eisodd, or if e iseven and the Jacobi symbol of IR (treated
asaninteger) with respect to themodulusn is1; (ii) IR /2 if e iseven and the Jacobi symbol
of IR with respect to n is —1. The signaturefor m iss = (RR)? mod n. ISO/IEC 9796
specifiesthat thesignature s should bethelesser of (RR)? mod nandn— ((RR)¢ mod n).

(ii) Verification process for ISO/IEC 9796

The verification process for an |SO/IEC 9796 digital signature can be separated into three
stages, as per Figure 11.5(b).
1. signature opening. Let s be the signature. Then the following steps are performed.
(8 Apply the public verification transformation to s to recover an integer IR’.
(b) Reject the signatureif IR’ isnot astring of & bits with the most significant bit
being a 1, or if the least significant nibble does not have value 0110.
2. message recovery. A string MR’ of 2t bytesis constructed from IR’ by performing
the following steps.
() Let X betheleast significant & — 1 bitsof IR’.
(b) If uql|ug||uz||0110 arethe four least significant nibbles of X, replace the least
significant byte of X by 7= (uy) ||uz.
(c) MR’ isobtained by padding X with between 0 and 15 zero bits so that the re-
sulting string has 2t bytes.
Thevalues z and r are computed as follows.
(@ Fromthe2t bytesof MR', computethet sums MR, & S(MR5, ;),1 <i<t.
If al sumsare0, reject the signature.
(b) Let z be the smallest value of i for which MR}, © S(MR5; ;) # 0.
(c) Let r be the least significant nibble of the sum found in step (b). Reject the
signature if the hexadecimal value of r is not between 1 and 8.
From MR’, the z-byte string MP’ is constructed as follows.
(@ MP;= MR, ,forl1<i<z.
(b) Reject the signatureif the r — 1 most significant bits of AP’ arenot all 0's.
(c) Let M’ bethe8z — r + 1 least significant bits of MP’.
3. redundancy checking. The signature s is verified asfollows.
(@ From M’ construct a string MR by applying the message padding, message
extension, and message redundancy steps of the signing process.

(b) Accept the signatureif and only if the k — 1 least significant bits of MR" are
equal tothe k — 1 least significant bits of MR’'.

6Since steps 1 through 4 of the signature process describe the redundancy function R, m in step 1aof Algo-
rithm 11.19 is taken to be IR.
“m istaken to be IR in step 1 of Algorithm 11.25.
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11.3.6 PKCS #1 formatting

11.37

11.38

Public-key cryptography standards (PK CS) are asuite of specificationswhich includetech-
niquesfor RSA encryption and signatures (see §15.3.6). This subsection describesthe dig-
ital signature process specified in PKCS #1 (“RSA Encryption Standard”).

Thedigital signaturemechanismin PK CS#1 doesnot usethe messagerecovery feature
of the RSA signature scheme. It requires a hashing function (either MD2, or MD5 — see
Algorithm 9.51) and, therefore, isadigital signature schemewith appendix. Table 11.4lists
notation used in this subsection. Capital lettersrefer to octet strings. If X isan octet string,
then X; isoctet + counting from the | eft.

| Symbol | Meaning | Symbol | Meaning |

k thelength of n in octets (k > 11) EB encryption block
n the modulus, 28(F=1) < n, < 28k ED | encrypted data

D, q the primefactors of n octet | abitstring of length 8
e the public exponent ab hexadecimal octet value
d the private exponent BT block type
M message PS padding string

MD message digest S signature

MD’ | comparative message digest I1X length of X in octets

Table 11.4: PKCS#1 notation.

(i) PKCS #1 data formatting

Thedataisan octet string D, where || D|| < k—11. BT isasingle octet whose hexadecimal
representationiseither 00 or 01. PSisan octet stringwith ||PS|| = k—3—||D||. If BT = 00,
thenall octetsin PSare00; if BT = 01, thenall octetsin PSareff. Theformatted data block
(called the encryption block) is EB = 00||BT||PS||00||D.

Note (data formatting rational€)
(i) Theleading 00 block ensuresthat the octet string EB, when interpreted as an integer,

isless than the modulus .

(ii) If the block typeis BT = 00, then either D must begin with a non-zero octet or its
length must be known, in order to permit unambiguous parsing of EB.

(iii) 1f BT = 01, then unambiguous parsing is always possible.

(iv) For thereason given in (iii), and to thwart certain potential attacks on the signature
mechanism, BT = 01 is recommended.

Example (PKCS#1 data formatting for particular values) Suppose that » is a 1024-bit
modulus (so £ = 128). If ||D|| = 20 octets, then ||PS|| = 105 octets, and ||[EB|| = 128
octets. (|

(i) Signature process for PKCS #1

The signature process involves the steps as per Figure 11.6(a).
The input to the signature process is the message M, and the signer’s private exponent d
and modulus n.

1. message hashing. Hash the message M using the selected message-digest algorithm
to get the octet string MD.
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(a) PKCS #1 signature process (b) PKCS #1 verification process

Message Signature and Message

. Octet-string-to-integer
Message hashing conversion

N
* Y YES o REJECT

Message digest

enCOfing RSA computation
Data block Y
formatting .
Integer-to-octet-string
* conversion

Octet-string-to-
nteger conversion \

* Parsing
RSA computation
YES NO
* Y REJECT
Integer-to-octet Data decoding
-string conversion \_}
NO
% | REJECT
Signature Message digesting
and
comparison

NO
l YES \—> REJECT

Signature accepted

Figure 11.6: Sgnature and verification processes for PKCS#1.

2. message digest encoding. MD and the hash algorithm identifier are combined into
an ASN.1 (abstract syntax notation) value and then BER-encoded (basic encoding
rules) to give an octet data string D.

3. data block formatting. With data string input D, use the data formatting from
§11.3.6(i) to form octet string EB.

4. octet-string-to-integer conversion. Let the octets of EB be EB, ||EBy|| - - - |[EBy,. De-
fine EB; to bethe integer whose binary representation is the octet EB; (least signifi-
cant bit is on the right). Theinteger representing EB ism = Y.+, 28(+—)EB, 8

5. RSA computation. Compute s = m¢ mod n.

6. integer-to-octet-string conversion. Convert s to an octet string ED = ED; ||ED|| - - -
||[EDy., wherethe octets ED; satisfy s = Y%, 28(+—)ED,. ThesignatureisS = ED.

(iii) Verification process for PKCS #1

The verification processinvolves the steps as per Figure 11.6(b). ""he input to the verifica-
tion processis the message M, the signature S, the public exponent e, and modulusn.

1. octet-string-to-integer conversion.
(8 Reject Sif the bitlength of Sisnot amultiple of 8.

8Since EB; = 00 and n > 28(k—1) then0 < m < n.
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(b) Convert Sto aninteger s asin step 4 of the signature process.
() Reject thesignatureif s > n.
2. RSA computation. Compute m = s mod n.
3. integer-to-octet-string conversion. Convert m to an octet string EB of length & octets
asin step 6 of the signature process.
4. parsing. Parse EB into ablock type BT, apadding string PS, and the data D.
() Reject thesignatureif EB cannot be parsed unambiguously.
(b) Reject thesignatureif BT isnot one of 00 or 01.
(c) Reject thesignatureif PS consists of < 8 octets or isinconsistent with BT.
5. data decoding.

(8) BER-decode D to get a message digest MD and a hash algorithm identifier.
(b) Reject the signatureif the hashing algorithm identifier does not identify one of
MD2 or MD5.
6. message digesting and comparison.
(@) Hash the message M with the selected message-digest algorithm to get MD’.
(b) Accept the signature Son M if and only if MD’ = MD.

11.4 Fiat-Shamir signature schemes

Asdescribed in Note 10.30, any identification scheme involving a witness-challenge resp-
onse segquence can be converted to a signature scheme by replacing the random challenge of
theverifier with aone-way hash function. Thissection describestwo signature mechanisms
which arise in thisway. The basis for this methodology is the Fiat-Shamir identification
protocol (Protocol 10.24).

11.4.1 Feige-Fiat-Shamir signature scheme

The Feige-Fiat-Shamir signature scheme is a modification of an earlier signature scheme
of Fiat and Shamir, and requires a one-way hash function »: {0,1}* — {0, 1}* for some
fixed positiveinteger k. Here {0, 1}* denotesthe set of bitstringsof bitlength &, and {0, 1} *
denotesthe set of all hitstrings (of arbitrary bitlengths). The method providesadigital sig-
nature with appendix, and is a randomized mechanism.

11.39 Algorithm Key generation for the Feige-Fiat-Shamir signature scheme

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:
1. Generate random distinct secret primes p, ¢ and formn = pq.
2. Select apositiveinteger k£ and distinct random integers sy, sa, ... , sk € Z...
3. Computev; = sj_2 modn,1 <j<k.
4. A’spublickey isthe k-tuple (v1, v, ... ,vx) andthemodulusn; A’s private key is
the k-tuple (s1, s2, ... , Sk).
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11.40

11.41

11.42

Algorithm Feige-Fiat-Shamir signature generation and verification

SUMMARY: entity A signsabinary messagem of arbitrary length. Any entity B can verify
this signature by using A’s public key.
1. Sgnature generation. Entity A should do the following:
(a) Selectarandomintegerr,1 <r <mn —1.
(o) Computeu = 72 mod n.
(c) Computee = (el,eQ, ... ex) = h(mlju); eache; € {0,1}.
(d) Computes =r - HJ 1 jj mod n.
(e) A’ssignaturefor m is (e, s).
2. Verification. To verify A’ssignature (e, s) on m, B should do the following:
(a) Obtain A’sauthentic public key (v1,va,... ,vx) andn.
(o) Computew = s2 - H] 1 ;J mod n.
(c) Computee’ = h(m|w).
(d) Accept thesignatureif and only if e = €.

Proof that signature verification works.
k

k k
2 EJ_Q 2e; € _ 2.
||v ~||sj Ilvj: IISU? =r*=u (mod n).
=1

j=1 j=1

Hence, w = u and thereforee = ¢’.

Example (Feige-Fiat-Shamir signature generation with artificially small parameters)
Key generation. Entity A generates primesp = 3571, ¢ = 4523, and computesn = pq =
16151633. The following table displays the selection of s; (A’s private key) and integers
v; (A’s public key) along with intermediate values s]fl.

| J L+ [ 2 [ s [ 4 [ 5 |
5 42 73 85 101 150
s;'modn || 4999315 | 885021 | 6270634 | 13113207 | 11090788
v =s;?modn || 503594 | 4879739 | 7104483 | 1409171 | 6965302

Signature generation. Suppose h: {0,1}* — {0,1}° isahash function. A selectsaran-
dom integer r = 23181 and computesu = r? mod n = 4354872. To sign message m, A
evaluatese = h(m|ju) = 10110 (the hash value has been contrived for this example). A
formss = rs1s3s4 mod n = (23181)(42)(85)(101) mod n = 7978909; the signature for
mis (e = 10110, s = 7978909).

Sgnature verification. B computes s> mod n = 2926875 and viv3v4 mod n = (503594)
(7104483)(1409171) mod n = 15668174. B then computesw = s?vv3vy mod n =
4354872, Sincew = u, it followsthat ¢/ = h(m||w) = h(m|lu) = e and, hence, B ac-
ceptsthe signature. O

Note (security of Feige-Fiat-Shamir signature scheme)

(i) Unlike the RSA signature scheme (Algorithm 11.19), all entities may use the same
modulus n (cf. §8.2.2(vi)). In this scenario, atrusted third party (TTP) would need
to generate the primes p and ¢ and also public and private keys for each entity.
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11.43

11.44

11.45

11.46

(if) The security of the Feige-Fiat-Shamir scheme is based on the intractability of com-
puting square roots modulo n (see §3.5.2). It has been proven to be secure against an
adaptive chosen-message attack, provided that factoringisintractable, h isarandom
function, and the s;’s are distinct.

Note (parameter selection and key storage requirements) If n isat-bit integer, the private
key constructed in Algorithm 11.39 is kt bitsin size. Thismay be reduced by selecting the
randomvalues s;, 1 < j < k, as numbers of bitlength ¢’ < ¢; ¢, however, should not be
chosen so small that guessing the s; isfeasible. The publickey is (k + 1)t bitsin size. For
example, if t = 768 and k = 128, then the private key requires 98304 bits and the public
key requires 99072 bits.

Note (identity-based Feige-Fiat-Shamir signatures) Suppose a TTP constructs primes p
and ¢ and modulusn; themodulusis common to all entitiesin the system. Algorithm 11.39
can be modified so that the scheme is identity-based. Entity A’s bitstring I4 containsin-
formation which identifies A. The TTP computesv; = f(Ia|l7), 1 < j < k, where f is
aone-way hash function from {0, 1}* to Q,, and j is represented in binary, and computes
asquareroot s; of vj‘l modulon, 1 < j < k. A’spublic key issimply the identity infor-
mation I 4, while A’s private key (transported securely and secretly by the TTPto A) isthe
k-tuple(si, sa, ..., sk). Thefunctionsh, f, andthemodulusn are system-wide quantities.

This procedure has the advantage that the public key generated in Algorithm 11.39
might be generated from a smaller quantity I 4, potentially reducing the storage and trans-
mission cost. It hasthe disadvantagesthat the private keysof entitiesareknowntothe TTR,
and the modulus n is system-wide, making it a more attractive target.

Note (small prime variation of Feige-Fiat-Shamir signatures) Thisimprovement aimsto
reducethe size of thepublic key and increasetheefficiency of signatureverification. Unlike
the modification described ir Note 11.44, cach entity A generatesits own modulusn 4 and
aset of £ small primes vy, vs,... , v € @, (€ach prime will regquire around 2 bytes to
represent). Entity A selects one of the squarerootss; of vj‘l modulon foreachj, 1 < j <
k; these form the private key. The public key consists of n 4 and thevaluesvy, vs, ... , vg.
Verification of signatures proceeds more efficiently since computationsare done with much

smaller numbers.

Note (performance characteristics of Feige-Fiat-Shamir signatures) With the RSA sch-
eme and a modulus of length ¢ = 768, signature generation using naive techniques re-
quires, on average, 1152 modular multiplications (more precisely, 768 squarings and 384
multiplications). Signature generation for the Feige-Fiat-Shamir scheme (Algorithm 11.40)
requires, on average, k/2 modular multiplications. To sign a message with this scheme, a
modulus of length ¢t = 768 and k& = 128 requires, on average, 64 modular multiplications,
or less than 6% of the work required by a naive implementation of RSA. Signature verifi-
cation requires only one modular multiplication for RSA if the public exponentise = 3,
and 64 modular multiplications, on average, for Feige-Fiat-Shamir. For applicationswhere
signature generation must be performed quickly and key space storage is not limited, the
Feige-Fiat-Shamir scheme (or DSA-like schemes— see §11.5) may be preferableto RSA.
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11.4.2 GQ signature scheme

The Guillou-Quisquater (GQ) identification protocol (§10.4.3) can be turned into a digital
signature mechanism (Algorithm 11.48) if the challenge is replaced with a one-way hash
function. Let h: {0,1}* — Z,, be ahash function where n is a positive integer.

11.47 Algorithm Key generation for the GQ signature scheme

SUMMARY: each entity creates a public key (n, e, J4) and corresponding private key a.
Entity A should do the following:

1. Select random distinct secret primes p, g and formn = pq.

2. Selectanintegere € {1,2,... ,n — 1} suchthat ged(e, (p — 1)(¢ — 1)) = 1. (See
Note 11.50 for guidance on selecting e.)

3. Selectaninteger J4, 1 < J4 < n, which serves as an identifier for A and such that
ged(J4,n) = 1. (Thebinary representation of J4 could be used to convey informa-
tion about A such as name, address, driver’slicense number, etc.)

4. Determine aninteger a € Z,, suchthat J4a¢ =1 (mod n) asfollows:

4.1 Compute J; ! mod n.
4.2 Computed; = e ! mod (p— 1) anddz = e~ mod (g — 1).
4.3 Computea; = (J;*)% mod p and as = (J; )% mod q.
4.4 Find a solution a to the simultaneous congruencesa = a; (mod p), a = as
(mod g).
5. A'spublickeyis(n,e, Ja); A'sprivatekey isa.

11.48 Algorithm GQ signature generation and verification

SUMMARY: entity A signsabinary messagem of arbitrary length. Any entity B can verify
this signature by using A’s public key.
1. Sgnature generation. Entity A should do the following:
(a) Select arandom integer & and computer = k€ mod n.
(b) Computel = h(m||r).
(c) Compute s = ka! mod n.
(d) A’ssignaturefor m isthepair (s,1).
2. Verification. To verify A’ssignature (s, ) onm, B should do the following:
(8) Obtain A’sauthentic publickey (n, e, Ja).
(b) Computeu = 5°J4" mod nand !’ = h(m/u).
(c) Accept thesignatureif andonlyifl =1".

Proof that signature verification works. Notethat v = s¢J4' = (kal)¢Ja' = k¢(a®Jy)!
= k° =r (mod n). Hence, u = r and thereforel = I’

11.49 Example (GQ signature generation with artificially small parameters)
Key generation. Entity A choosesprimesp = 20849, ¢ = 27457, and computesn = pq =
572450993. A selectsaninteger e = 47, an identifier J4 = 1091522, and solves the con-
gruence J4a® = 1 (mod n) to get a = 214611724. A’spublickey is(n = 572450993,
e =47, J4 = 1091522), while A’s privatekey isa = 214611724.
Sgnature generation. To sign the message m = 1101110001, A selects arandom integer

©1997 CRC PressLLC



Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:10 22 March 2017

k = 42134 and computes r = k¢ mod n = 297543350. A then computes! = h(m/||r) =
2713833 (the hash value has been contrived for this example) and s = ka! modn =
(42134)2146117242713833 mod n = 252000854. A’s signature for m is the pair (s =
252000854, 1 = 2713833).

Sgnature verification. B computes s® mod n = 252000854%7 mod n = 398641962,
Jat mod n = 1091522271383 ;mod n = 110523867, and finaly u = s¢J4' mod n =
297543350. Sincew = r, I’ = h(m||u) = h(m||r) = [, and so B acceptsthe signature. [

11.50 Note (security of GQ signaturescheme) In Algorithm 11.47, ¢ must be sufficiently largeto
exclude the possibility of forgery. The potential attack proceeds along the following
lines. The adversary selects a message m and computes | = h (m||Ja") for sufficiently
many values of t until | =t (mod e); thisis expected to occur within O (e) trials. Having
determined such a pair (I, t), the adversary determines an integer x such that t = xe + |
and computes s = Jo* mod n. Observe that $°J' = (Jx¥)%Ja = Ja*"' = Jal (mod n), and,
hence, h(m||Jat) = 1. Thus, (s, 1) isavalid (forged) signature for message m.

11.51 Note (parameter selection) Current methods (as of 1996) for integer factorization suggest
that amodulusn of size at least 768 hitsis prudent. Note 11.50 suggeststhat e should be at
least 128 bitsin size. Typical valuesfor the outputs of secure hash functionsare 128 or 160
bits. With a 768-bit modulus and a 128-hit e, the public key for the GQ schemeis 896 + u
bitsin size, where u isthe number of bits needed to represent J 4. The privatekey a is 768
bitsin size.

11.52 Note (performancecharacteristicsof GQ signatures) Signature generation for GQ (Algo-
rithm 11.48) requirestwo modul ar exponenti ationsand one modular multiplication. Usinga
768-bit modulusn, a 128-bit value e, and a hash function with a 128-bit output /, signature
generation (using naive techniques for exponentiation) requires on average 384 modular
multiplications (128 squarings and 64 multiplications for each of e and [). Signature veri-
fication requiresasimilar amount of work. Comparethiswith RSA (naively 1152 modular
multiplications) and Feige-Fiat-Shamir (64 modular multiplications) for signature genera-
tion (see: Note 11.46). GQ is computationally more intensive than Feige-Fiat-Shamir but
requires significantly smaller key storage space (see Note 11.51).

11.53 Note (message recovery variant of GQ signatures) Algorithm 11.48 can be modified as
follows to provide message recovery. Let the signing space be Ms = Z,, andlet m €
M. In signature generation, select a random & such that ged(k,n) = 1 and compute
r = k® mod n and [ = mr mod n. Thesignatureis s = ka'! mod n. Verification gives
seJal = ka'Js' = k¢ = r (mod n). Message m is recovered from ir—! mod n. As
for all digital signature schemes with message recovery, a suitable redundancy function R
isrequired to guard against existential forgery.

11.5 The DSA and related signature schemes

This section presents the Digital Signature Algorithm (DSA) and several related signature
schemes. Most of these are presented over Z,, for somelarge primep, but all of these mech-
anisms can be generalized to any finite cyclic group; thisisillustrated explicitly for the El-
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Gamal signature scheme in §11.5.2. All of the methods discussed in this section are ran-
domized digital signature schemes (see Definition 11.2). All give digital signatures with
appendix and can be modified to provide digital signatures with message recovery (see
Note11.14). A necessary conditionfor the security of all of the signature schemesdescribed
inthis section is that computing logarithmsin Z; be computationally infeasible. This con-
dition, however, isnot necessarily sufficient for the security of these schemes; analogoudly,
it remains unproven that RSA signatures are secure even if factoring integersis hard.

11.5.1 The Digital Signature Algorithm (DSA)

11.54

11.55

11.56

In August of 1991, the U.S. National Ingtitute of Standards and Technology (NIST) pro-
posed a digital signature algorithm (DSA). The DSA has become a U.S. Federal Informa-
tion Processing Standard (FIPS 186) called the Digital Sgnature Sandard (DSS), andisthe
first digital signature scheme recognized by any government. The algorithmisavariant of
the ElGamal scheme (§11.5.2), and is adigital signature scheme with appendix.

The signature mechanism requires a hash function ~: {0,1}* — Z, for someinte-
ger g. The DSS explicitly requires use of the Secure Hash Algorithm (SHA-1), given by
Algorithm 9.53.

Algorithm Key generation for the DSA

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:
1. Select a prime number ¢ such that 2159 < ¢ < 2160,
2. Chooset sothat 0 < t < 8, and select a prime number p where 2511464 <« p <
2512464t 'with the property that ¢ divides (p — 1).
3. (Select agenerator « of the unique cyclic group of order ¢ inZ;.)
3.1 Select andement g € Z7 and compute e = g*~1/% mod p.
3.2 If a« = 1thengotostep 3.1.
4. Select arandominteger a suchthat1 <a < ¢ — 1.
5. Compute y = a® mod p.
6. A'spublickeyis(p,q,a,y); A'sprivatekey isa.

Note (generation of DSA primesp and ¢) In Algorithm 11.54 one must select the prime ¢
first and then try to find aprime p such that ¢ divides (p — 1). The a gorithm recommended
by the DSS for accomplishing thisis Algorithm 4.56.

Algorithm DSA signature generation and verification

SUMMARY: entity A signsabinary messagem of arbitrary length. Any entity B canverify
this signature by using A’s public key.
1. Sgnature generation. Entity A should do the following:

(8) Select arandom secretinteger k,0 < k < g.

(b) Computer = (a* mod p) mod q (e.g., using Algorithm 2.143).
(c) Compute k! mod q (e.g., using Algorithm 2.142).

(d) Computes = k~1{h(m) + ar} mod q.

(e) A’ssignaturefor m isthepair (r, s).
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11.57

11.58

11.59

11.60

2. Verification. To verify A’ssignature (r, s) onm, B should do the following:

(a) Obtain A’sauthentic public key (p, q, o, y).

(b) Verifythat 0 < r < gand 0 < s < g; if not, then reject the signature.
(c) Computew = s~ mod q and h(m).

(d) Computeu; = w - h(m) mod ¢ and uy = rw mod gq.

(e) Computev = (a**y*2 mod p) mod g.

(f) Accept the signatureif and only if v = 7.

Proof that signature verification works. If (r, s) is a legitimate signature of entity A on
message m, then h(m) = —ar + ks (mod ¢) must hold. Multiplying both sides of this
congruence by w and rearranging givesw - h(m) + arw = k (mod ¢). But thisissimply
u; + aus = k (mod ¢). Raising « to both sides of this equation yields (a1 y*2 mod
p) mod ¢ = (a* mod p) mod ¢q. Hence, v = r, asrequired.

Example (DSA signature generation with artificially small parameters)

Key generation. A selects primesp = 124540019 and ¢ = 17389 such that ¢ divides (p —
1); here, (p — 1)/q = 7162. A selectsarandom element g = 110217528 € Z, and com-
putes o = ¢"'%2 mod p = 10083255. Since o # 1, a isagenerator for the unique cyclic
subgroup of order g in Z,,. A next selects arandom integer a = 12496 satisfying1 < a <
g — 1, and computesy = a® mod p = 100832552496 mod 124540019 = 119946265.
A’spublickey is (p = 124540019, ¢ = 17389, a = 10083255, y = 119946265), while
A’sprivatekey isa = 12496.

Sgnature generation. To signm, A selectsarandom integer k = 9557, and computesr =
(a* mod p) mod ¢ = (10083255957 mod 124540019) mod 17389 = 27039929 mod
17389 = 34. Athencomputesk—! mod q = 7631, h(m) = 5246 (thehashvaluehasbeen
contrivedfor thisexample), andfinally s = (7631){5246+(12496)(34)} mod g = 13049.
The signaturefor m isthe pair (r = 34, s = 13049).

Sgnature verification. B computesw = s !modq = 1799, u; = w - h(m) mod
g = (5246)(1799) mod 17389 = 12716, and uz = rw mod ¢ = (34)(1799) mod
17389 = 8999. B then computesv = (a“'y*2 mod p) mod ¢ = (1008325512716 .
1199462658999 mod 124540019) mod 17389 = 27039929 mod 17389 = 34. Sincev =
r, B acceptsthe signature. O

Note (security of DSA) The security of the DSA relies on two distinct but related discrete
logarithm problems. Oneisthelogarithm problemin Z; wherethe powerful index-calculus
methods apply; the other is the logarithm problem in the cyclic subgroup of order ¢, where
thebest current methodsrunin “ square-root” time. For further discussion, see §3.6.6. Since
the DSA isa specid case of EIGamal signatures (§11.5.2) with respect to the equation for
s, security considerationsfor the latter are pertinent here (see Note 11.66).

Note (recommended parameter sizes) The size of ¢ is fixed by Algorithm 11.54 (es per
FIPS 186) at 160 hits, while the size of p can be any multiple of 64 between 512 and 1024
bitsinclusive. A 512-bit prime p provides marginal security against a concerted attack. As
of 1996, amodulus of at least 768 bits is recommended. FIPS 186 does not permit primes
p larger than 1024 bits.

Note (performance characteristics of the DSA) For concreteness, suppose p is a 768-bit
integer. Signature generation requires one modular exponentiation, taking on average (us-
ing naive techniquesfor exponentiation) 240 modul ar multiplications, one modular inverse
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11.61

11.62

with a160-bit modulus, two 160-bit modular multiplications, and one addition. The 160-bit
operationsarerelatively minor compared to the exponentiation. The DSA hastheadvantage
that the exponentiation can be precomputed and need not be done at the time of signature
generation. By comparison, no precomputation is possiblewith the RSA signature scheme.
The major portion of the work for signature verification is two exponentiations modul o p,
each to 160-bit exponents. On average, these each require 240 modular multiplications or
480intotal. Some savingscan berealized by doing the two exponentiationssimultaneously
(cf. Note 14.91); the cost, on average, is then 280 modular multiplications.

Note (systemwide parameters) It is not necessary for each entity to select its own primes
p and g. The DSS permits p, ¢, and « to be system-wide parameters. This does, however,
present a more attractive target for an adversary.

Note (probabilityof failure) Verification requiresthe computationof s~ mod q. If s = 0,
then s—! does not exist. To avoid this situation, the signer may check that s # 0; but if s is
assumed to bearandom element in Z,, then the probability that s = 0is(1)1%°. Inpractice,
thisis extremely unlikely ever to occur. The signer may aso check that » £ 0. If the signer
detectsthat either » = 0 or s = 0, anew value of k& should be generated.

11.5.2 The ElGamal signature scheme

11.63

11.64

The EIGamal signature scheme is a randomized signature mechanism. It generates digital
signatures with appendix on binary messages of arbitrary length, and requires a hash func-
tionh: {0,1}* — Z, wherep isalarge primenumber. The DSA (§11.5.1) isavariant of
the ElGamal signature mechanism.

Algorithm Key generation for the EIGamal signature scheme

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:
1. Generate alarge random prime p and a generator « of the multiplicative group Z,,
(using Algorithm 4.84).
2. Selectarandomintegera,1 <a <p— 2.
3. Computey = a® mod p (e.g., using Algorithm 2.143).
4. A’spublickey is (p, o, y); A'sprivatekey isa.

Algorithm ElGamal signature generation and verification

SUMMARY: entity A signsabinary messagem of arbitrary length. Any entity B canverify
this signature by using A’s public key.
1. Sgnature generation. Entity A should do the following:
(8) Select arandom secretinteger k, 1 < k < p — 2, withged(k,p — 1) = 1.
(b) Computer = o* mod p (e.g., using Algorithm 2.143).
(c) Computek~! mod (p — 1) (e.g., using Algorithm 2.142).
(d) Computes = k~1{h(m) — ar} mod (p — 1).
(e) A’ssignaturefor m isthe pair (r, s).
2. Verification. To verify A’ssignature (r, s) onm, B should do the following:
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11.65

11.66

(8) Obtain A’sauthentic publickey (p, «, y).

(b) Verifythat1 < r < p — 1;if not, then reject the signature.
(¢) Computewv; = y"r* mod p.

(d) Compute h(m) and vy = o™ mod p.

(e) Accept thesignatureif and only if v; = vs.

Proof that signature verification works. If the signature was generated by A, thens = k!
{h(m)—ar} (mod p—1). Multiplyingbothsidesby k givesks = h(m)—ar (mod p—1),
and rearranging yields h(m) = ar + ks (mod p — 1). Thisimplies (™) = qortks =
(a®)"r® (mod p). Thus, v = v, asrequired.

Example (ElGamal signature generation with artificially small parameters)
Key generation. A selectsthe primep = 2357 and agenerator oo = 2 of Z3,-,. A chooses
the private key a = 1751 and computesy = a® mod p = 27! mod 2357 = 1185. A’s
publickey is(p = 2357, a = 2, y = 1185).

Signature generation. For simplicity, messages will be integers from Z,, and h(m) = m
(i.e., for this example only, take h to be the identity function). To sign the message m =
1463, A selects a random integer & = 1529, computesr = o* mod p = 2'52% mod
2357 = 1490, and k! mod (p — 1) = 245. Finally, A computes s = 245{1463 —
1751(1490)} mod 2356 = 1777. A’ssignaturefor m = 1463 isthe pair (r = 1490, s =
1777).

Sgnature verification. B computesv; = 118549 14901777 mod 2357 = 1072, h(m)
1463, and v, = 21463 mod 2357 = 1072. B accepts the signature since v; = vy.

Ol

Note (security of EIGamal signatures)

(i) An adversary might attempt to forge A’s signature (per Algorithm 11.64) cn m by
selecting a random integer k£ and computing r = o* mod p. The adversary must
thendetermines = k~'{h(m)—ar} mod (p — 1). If thediscretelogarithm problem
is computationally infeasible, the adversary can do no better than to choose an s at
random; the success probability is only ]l) , whichis negligiblefor large p.

(if) A different £ must be selected for each message signed; otherwise, the private key
can be determined with high probability as follows. Supposes; = k= {h(m1) —
ar} mod (p — 1) and s = k= {h(mz) — ar} mod (p — 1). Then (s; — s2)k =
(h(m1)—h(ms2))(mod p—1). If gcd (S;—S,, p—1) = 1, then k = ¢(s;—
$2)~Y(h(m1) — h(mz)) mod (p — 1). Once k isknown, a is easily found.

(iii) 1f nohashfunction 4 isused, thesigning equationiss = k~1{m—ar} mod (p — 1).
Itisthen easy for an adversary to mount an existential forgery attack asfollows. Se-
lect any pair of integers (u, v) with gcd(v,p—1) = 1. Computer = a“y* mod p =
a*t2 mod pand s = —rv~! mod (p — 1). The pair (r, s) isavalid signature for
the message m = su mod (p — 1), since (a™a™")% = %y’ =r.

(iv) Step2binAlgorithm 11.64 requirestheverifier tocheck that 0 < r < p. If thischeck
isnot done, then an adversary can sign messagesof itschoiceprovidedit hasonevalid
signature created by entity A, as follows. Supposethat (r, s) is asignature for mes-
sage m produced by A. The adversary selects a message m/’ of its choice and com-
putesh(m’) andu = h(m’)-[h(m)]~! mod (p—1) (assuming[h(m)]~* mod (p—1)
exists). It then computess’ = su mod (p—1) andr’ suchthat ' = ru (mod p—1)
andr’ = r (mod p). Thelatter is aways possible by the Chinese Remainder The-
orem (Fact 2.120). The pair (r', s’) is a signature for message m’ which would be
accepted by the verification algorithm (Algorithm 11.64) if step 2b were ignored.
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11.67 Note (security based on parameter selection)

(i) (index-calculusattack) The prime p should be sufficiently large to prevent efficient
use of the index-cal culus methods (§3.6.5).
(ii) (Pohlig-Hellman attack) p — 1 should be divisible by a prime number g sufficiently
large to prevent a Pohlig-Hellman discrete logarithm attack (§3.6.4).
(iii) (weak generators) Suppose that p = 1 (mod 4) and the generator « satisfies the
following conditions:

(@ «adivides(p —1); and
(b) computinglogarithmsin the subgroup S of order o in Z,, can beefficiently done
(for example, if a Pohlig-Hellman attack (§3.6.4) can be mounted in .S).

Itisthen possiblefor an adversary to construct signatures (without knowledgeof A’s
private key) which will be accepted by the verification algorithm (step 2 of Algo-
rithm 11.64). To seethis, supposethat p—1 = «q. To signamessagem theadversary
does the following:

(8 Computet = (p—3)/2andsetr = q.

(b) Determine z such that a«?* = y? (mod p) wherey is A’s public key. (Thisis

possible since a? and y? are elements of S and «? is agenerator of S.)
(c) Computes =t-{h(m)— gz} mod (p — 1).
(d) (r,s) isasignature on m which will be accepted by step 2 of Algorithm 11.64.

This attack works because the verification equation 7*y” = "™ (mod p) is
satisfied. To see this, first observethat ag = —1 (mod p), « = —¢~! (mod p),
andthat ¢»~1/2 = —1 (mod p). (Thelatter congruence follows from the fact that
« isagenerator of Z,, and g = —a~! (mod p).) From these, one deducesthat ¢t =
g V2 1= g l=q (mod p). Now r8y" = (qt)[h(M)*qZ]yq = oMM g a2y
= oMmy=ays = o™ (mod p). Notice in the case where o = 2 is a generator
that the conditions specified in (iii) above aretrivially satisfied.

Theattack can beavoidedif o isselected asagenerator for asubgroup of Z,, of prime
order rather than a generator for Z,, itself.

11.68 Note (performance characteristics of ElGamal signatures)

(i) Signature generation by Algorithm 11.64 is relatively fast, requiring one modu-
lar exponentiation (o* mod p), the extended Euclidean algorithm (for computing
k= mod (p — 1)), and two modular multiplications. (Modular subtraction is neg-
ligible when compared with modular multiplication.) The exponentiation and appli-
cation of the extended Euclidean algorithm can be done off-line, in which case sig-
nature generation (in instances where precomputation is possibl€) requires only two
(on-line) modular multiplications.

(if) Signatureverificationismore costly, requiring three exponentiations. Each exponen-
tiation (using naive techniques) requires 2 [lg p| modular multiplications, on aver-
age, for atotal cost of g [lg p] multiplications. The computing costs can be reduced
by modifying the verification dightly. Compute v; = a~"("™)y"r% mod p, and ac-
cept the signature as valid if and only if v; = 1. Now, v; can be computed more
efficiently by doing the three exponentiations smultaneously (see Note 14.91); the
total cost is now about <2 [1g p] modular multiplications, almost 2.5 times as cost &f-
ficient as before.

(iii) Signature verification calculations are all performed modulo p, while signature gen-
eration cal culations are done modulo p and modulo (p — 1).
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11.69

11.70

11.71

Note (recommended parameter sizes) Given the latest progress on the discrete logarithm
problemin Z,, (§3.6), a 512-bit modulus p provides only marginal security from concerted
attack. Asof 1996, amodulusp of at least 768 bitsisrecommended. For long-term security,
1024-bit or larger moduli should be used.

Note (systemwide parameters) All entities may elect to use the same prime number p
and generator «, in which case p and o are not required to be part of the public key (cf.
Note 11.61).

() Variations of the EIGamal scheme

Many variations of the basic ElGamal signature scheme (Algorithm 11.64) have been pro-
posed. Most of these alter what is commonly referred to as the signing equation (given
in step 1d o° Algorithm 11.64). After suitable rearrangement, this signing equation can
be written asu = av 4+ kw mod (p — 1) whereu = h(m),v = r,andw = s (i.e,
h(m) = ar + ks mod (p — 1)). Other signing equations can be obtained by permitting
u, v, and w to take on the values s, r, and h(m) in different orders. Table 11.5liststhe 6
possibilities.

| | w | v | w | Sgningequation | Verification |
1| h(m) r s h(m) = ar + ks | o™ = (a®)"r®
2 | h(m) s T h(m) = as + kr | o™ = (a®)*r"
3 s T h(m) | s =ar 4+ kh(m) | a® = (a®)"rh™)
4 s h(m) r s =ah(m) +kr | a® = (a®)Mm)pr
5 r s h(m) | r = as+ kh(m) | o" = (a®)*rh(m™)
6 r h(m) s r=ah(m)+ks | o = (a®)m)ys

Table 11.5: Variations of the ElGamal signing equation. Signing equations are computed modulo
(p — 1); verification is done modulo p.

Note (comparing variants of the ElIGamal signature scheme)

(i) Some of the signing equationslisted in Table 11.5 ere more efficient to compute than
the original EIGamal equation in Algorithm 11.64. For example, equations (3) and
(4) of Table 11.5 clo not require the computation of an inverse to determine the sig-
nature s. Equations (2) and (5) require the signer to compute e~ mod (p — 1), but
this fixed quantity need only be computed once.

(i) Verification equations (2) and (4) involve the expression »”. Part of the security of
signature schemes based on these signing equationsisthe intractability of finding so-
lutions to an expression of the form z® = ¢ (mod p) for fixed c. This problem ap-
pears to be intractable for large values of p, but has not received the same attention
as the discrete logarithm problem.

(i) The generalized ElIGamal signature scheme

The EIGamal digital signature scheme, originally described in the setting of the multiplica-
tivegroup Z”, can be generalized in a straightforward manner to work in any finite abelian
group G. The introductory remarks for §8.4.2 are pertinent to the algorithm presented in
this section. Algorithm 11.73 requires a cryptographic hash function ~: {0,1}* — Z,
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11.72

11.73

11.74

where n is the number of elementsin G. !t is assumed that each element » € G can be
represented in binary so that A(r) is defined ®

Algorithm Key generation for the generalized EIGamal signature scheme

SUMMARY: each entity selects afinite group G; generator of G; public and private keys.
Each entity A should do the following:
1. Select an appropriate cyclic group G of order n, with generator .. (Assume that G
iswritten multiplicatively.)
2. Selectarandomsecretintegera, 1 < a < n—1. Computethegroupelementy = .
3. A’spublickey is (a, y), together with a description of how to multiply elementsin
G, A'sprivatekey isa.

Algorithm Generalized EIGamal signature generation and verification

SUMMARY: entity A signsabinary messagem of arbitrary length. Any entity B can verify
this signature by using A’s public key.
1. Sgnature generation. Entity A should do the following:
(8) Select arandom secretinteger £, 1 < k < n — 1, with ged(k,n) = 1.
(b) Compute the group element = o*.
(c) Compute k! mod n.
(d) Compute h(m) and h(r).
(e) Computes = k~1{h(m) — ah(r)} mod n.
(f) A’ssignaturefor m isthepair (r, s).
2. Verification. To verify A’ssignature (r, s) onm, B should do the following:
(8) Obtain A’sauthentic public key (o, y).
(b) Compute h(m) and h(r).
(c) Computev, = y"(") . s,
(d) Computev, = /(™)
(e) Accept thesignatureif and only if v; = vs.

Example (generalized EIGamal signatureswith artificially small parameters)

Key generation. Consider the finite field IFys constructed from the irreducible polynomial
f(x) = 2° + 22 + 1 over F,. (See Example 2.231 for examples of arithmetic in the field
Fya.) The elements of this field are the 31 binary 5-tuples displayed in Table 11.6, slong
with 00000. Theelement o = (00010) isagenerator for G = [F35, themultiplicativecyclic
group of thefield. The order of thisgroup G isn = 31. Let h: {0,1}* — Z3;, beahash
function. Entity A selectsthe private key a = 19 and computesy = a® = (00010)*° =
(00110). A’spublickey is (a = (00010), y = (00110)).

Sgnature generation. To sign the message m = 10110101, A selects a random integer
k = 24, and computesr = a?* = (11110) and k! mod 31 = 22. A then computes
h(m) = 16 and h(r) = 7 (the hash values have been contrived for this example) and s =
22-{16 — (19)(7)} mod 31 = 30. A’ssignaturefor messagem is (r = (11110), s = 30).
Sgnature verification. B computes h(m) = 16, h(r) = 7, v; = y"rs = (00110)7-
(11110)%° = (11011), and vy = (™) = o6 = (11011). B accepts the signature since
V1 = V2. O

9More precisely, one would define afunction f: G — {0, 1}* and write h(f(r)) instead of h(r).
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11.75

11.76

11.77

0 | 00001 8 | 01101 16 | 11011 24 | 11110
1 | 00010 9 | 11010 17 | 10011 25 | 11001
2 | 00100 10 | 10001 18 | 00011 26 | 10111
3 | 01000 11 | 00111 19 | 00110 27 | 01011
4 | 10000 12 | 01110 20 | 01100 28 | 10110
5 | 00101 13 | 11100 21 | 11000 29 | 01001
6 | 01010 14 | 11101 22 | 10101 30 | 10010
7 | 10100 15 | 11111 23 | 01111

Table 11.6: The elements of Fys as powers of a generator a.

Note (security of generalized ElGamal) Much of the security of Algorithm 11.73rclieson
the intractability of the discrete logarithm problem in the group G (see §3.6). Most of the
security commentsir Note 11.66 apply to the generalized EIGamal scheme.

Note (signing and verification operations) Signature generation requires computationsin
the group G (i.e., r = o*) and computationsin Z,,. Signature verification only requires
computationsin the group G.

Note (generalized EIGamal using dlliptic curves) One of the most promising implemen-
tations o Algorithm 11.73 is the case where the finite abelian group G is constructed from
the set of points on an eliptic curve over afinite field IF,. The discrete logarithm problem
in groupsof thistype appearsto be more difficult than the discrete logarithm problemin the
multiplicative group of afinitefield IF,. Thisimpliesthat ¢ can be chosen smaller than for
corresponding implementationsin groups such as G = I;.

11.5.3 The Schnorr signature scheme

11.78

Another well-known variant of the EIGamal scheme (Algorithm 11.64) is the Schnorr sig-
nature scheme. Aswith the DSA (Algorithm 11.56) this technique employs a subgroup of
order ¢ in Z*, where p is some large prime number. The method also reguires a hash func-
tion h: {0,1}* — Z,. Key generation for the Schnorr signature scheme is the same as
DSA key generation (Algorithm 11.54), except that there are no constraints on the sizes of
pandg.

Algorithm Schnorr signature generation and verification

SUMMARY: entity A signsabinary messagem of arbitrary length. Any entity B can verify
this signature by using A’s public key.
1. Sgnature generation. Entity A should do the following:
(a) Select arandom secretintegerk,1 <k <q— 1.
(b) Computer = o* mod p, e = h(m||r), and s = ae + k mod q.
(c) A’ssignaturefor m isthepair (s, e).
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2. Verification. To verify A’ssignature (s, e) onm, B should do the following:
(a) Obtain A’sauthentic public key (p, q, o, y).
(b) Computev = a®y~° mod p and e’ = h(m||v).
(c) Accept thesignatureif and only if ¢/ = e.

Proof that signature verification works. If the signaturewas created by A, thenv = oy ¢
=a’a" = o =r (mod p). Hence, h(m||v) = h(m/|r) ande’ = e.

11.79 Example (Schnorr’ssignature scheme with artificially small parameters)

Key generation. A selects primesp = 129841 and ¢ = 541; here, (p — 1)/q = 240. A
then selects arandom integer g = 26346 € Z;, and computes v = 26346°*° mod p = 26.
Since o # 1, o generates the unique cyclic subgroup of order 541 inZ,. A then selects
the private key a = 423 and computesy = 26423 mod p = 115917. A’s public key is
(p = 129841, g = 541, a = 26,y = 115917).

Sgnature generation. To sign the messagem = 11101101, A selects a random number
k = 327 suchthat 1 < k < 540, and computes r = 2632” mod p = 49375 ande =
h(m/||r) = 155 (the hash value has been contrived for this example). Finally, A computes
s =423 - 155+ 327 mod 541 = 431. The signaturefor m is (s = 431, e = 155).
Signature verification. B computesv = 26*3! - 115917715 mod p = 49375 and ¢/ =
h(m||lv) = 155. B acceptsthe signaturesincee = ¢’. O

11.80 Note (performance characteristics of the Schnorr scheme) Signature generationin Algo-
rithm 11.78 raquires one exponentiation modulo p and one multiplication modulo ¢g. The
exponentiation modulo p could be done off-line. Depending on the hash algorithm used,
thetimeto compute h(m||r) should be relatively small. Verification requirestwo exponen-
tiations modulo p. These two exponentiations can be computed by Algorithm 14.88 at a
cost of about 1.17 exponentiations. Using the subgroup of order ¢ does not significantly
enhance computational efficiency over the EIGamal scheme of Algorithm 11.64, but does
provide smaller signatures (for the same level of security) than those generated by the El-
Gamal method.

11.5.4 The ElGamal signature scheme with message recovery

The EIGamal scheme and its variants (§11.5.2) discussed so far are all randomized digital
signature schemes with appendix (i.e., the message is required as input to the verification
algorithm). In contrast, the signature mechanism of Algorithm 11.81 hasthefeaturethat the
message can be recovered from the signature itself. Hence, this EIGamal variant provides
arandomized digital signature with message recovery.

For this scheme, the signing spaceis Ms = Z,, p aprime, and the signature space is
S = Z, x Zg, g aprime, where ¢ divides (p — 1). Let R be aredundancy function from
the set of messages M to M s [see Table 11.1). Key generation for Algorithm 11.81 isthe
same as DSA key generation (Algorithm 11.54), except that there are no constraints on the
sizesof p and q.
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11.81 Algorithm Nyberg-Rueppel signature generation and verification

SUMMARY: entity A signsamessagem € M. Any entity B can verify A’ssignature and
recover the message m from the signature.

1. Sgnature generation. Entity A should do the following:
(8 Computem = R(m).
(b) Select arandom secretinteger k, 1 < k < ¢— 1, and computer = a~* mod p.
(¢) Computee = mr mod p.
(d) Compute s = ae + k mod gq.
(e) A’ssignaturefor m isthepair (e, s).
2. \erification. To verify A’ssignature (e, s) onm, B should do the following:
(a) Obtain A’'sauthentic public key (p, q, o, y).
(b) Verifythat 0 < e < p; if not, regject the signature.
(c) Verifythat 0 < s < g; if not, reject the signature.
(d) Computev = a*y~¢ mod p and m = ve mod p.
(e) Verify that m € Mg; if m ¢ Mg thenregect the signature.
(f) Recover m = R~1(m).

Proof that signature verification works. If A created the signature, thenv = a’y=—¢ =
a*~% = oF (mod p). Thusve = o*ma~* = m (mod p), asrequired.

11.82 Example (Nyberg-Rueppel signature generation with artificially small parameters)

Key generation. Entity A selects primesp = 1256993 and ¢ = 3571, where ¢ divides
(p—1); here, (p — 1) /q = 352. A then selects arandom number g = 42077 € Z;, and
computes o = 42077352 mod p = 441238. Since o # 1, a generates the unique cyclic
subgroup of order 3571 inZ,. Finaly, A selectsarandom integer a = 2774 and computes
y = a® mod p = 1013657. A’spublickey is (p = 1256993, ¢ = 3571, = 441238,y =
1013657), while A’s private key isa = 2774.

Sgnaturegeneration. Tosignamessagem, A computesm = R(m) = 1147892 (thevalue
R(m) has been contrived for this example). A then randomly selects £ = 1001, computes
r = a % mod p = 4412381991 mod p = 1188935, e = mr mod p = 138207, and s =
(2774)(138207) + 1001 mod ¢ = 1088. The signaturefor m is (e = 138207, s = 1088).
Signature verification. B computesv = 4412381088 . 1013657138207 mod 1256993 =
504308, and m = v - 138207 mod 1256993 = 1147892. B verifiesthat m € Mg and
recoversm = R~1(m). O

11.83 Note (security of the Nyberg-Rueppel signature scheme)

(i) Since Algorithm 11.81 i avariant of the basic EIGamal scheme (Algorithm 11.64),
the security considerations of Note 11.66 apply. Like DSA [Algorithm 11.56), this
ElGamal mechanism with message recovery relies on the difficulty of two related but
distinct discrete logarithm problems (see Note 11.58).

(if) Since Algorithm 11.81 provides message recovery, asuitable redundancy function R
isrequired (see Note 11.10) to guard against existential forgery. Asisthe case with
RSA, the multiplicative nature of this signature scheme must be carefully consid-
ered when choosing a redundancy function R. Thefollowing possible attack should
be kept in mind. Supposem € M, m = R(m), and (e, s) is a signature for m.
Then e = ma " mod p for some integer k and s = ae + k mod ¢q. Let m* =
ma! mod p for someinteger I. If s* = s + [ mod ¢ and m* € Mg, then (e, s*)
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isavalid signature for m* = R~1(m*). To see this, consider the verification algo-
rithm (step 2 of Algorithm 11.81). v = oy~ = a*Tla~% = o**' (mod p), and
ve = o**lma™* = ma! = m* (mod p). Sincem* € Mg, the forged signature
(e, s*) will be accepted asavalid signature for m*.

(ili) The verificationthat 0 < e < p givenin step 2b of Algorithm 11.81 is crucial.
Suppose (e, s) is A’s signature for the message m. Thene = mr mod p and s =
ae+ k mod q. An adversary can use this signature to compute a signature on ames-
sage m* of itschoice. It determinesan e* suchthat e* = m*r (mod p) ande* =e

(mod q). (Thisis possible by the Chinese Remainder Theorem (Fact 2.120).) The
pair (e*, s) will pass the verification algorithm provided that 0 < e* < pisnot
checked.

11.84 Note (ageneralization of ElIGamal signatureswith messagerecovery) Theexpressione =
mr mod pinstep 1c of Algorithm 11.81 providesarelatively simpleway to encrypt m with
key r and could be generalized to any symmetric-key algorithm. Let E = {E, : r € Z,}
be a set of encryption transformations where each E, is indexed by an element » € 7Z,
and is a bijection from Ms = Z; to Z,. For any m € M, select arandom integer ,
1 <k <gq—1,computer = o* mod p, e = E,.(m),and s = ae + k mod ¢. The pair
(e, s) isasignature for m. The fundamental signature equation s = ae + k mod g isa
meansto bind entity A’s private key and the message m to a symmetric key which can then
be used to recover the message by any other entity at some later time.

11.6 One-time digital signatures

One-time digital signature schemes are digital signature mechanisms which can be used
to sign, at most, one message; otherwise, signatures can be forged. A new public key is
required for each message that is signed. The public information necessary to verify one-
time signaturesis often referred to as validation parameters. When one-timesignaturesare
combined with techniquesfor authenticating validation parameters, multiple signaturesare
possible (see §11.6.3 for a description of authentication trees).

Most, but not al, one-time digital signature schemes have the advantage that signature
generationand verification arevery efficient. One-timedigital signature schemesare useful
in applications such as chipcards, where low computational complexity is required.

11.6.1 The Rabin one-time signature scheme

Rabin’'s one-time signature scheme was one of the first proposalsfor adigital signature of
any kind. It permitsthe signing of asingle message. The verification of asignaturerequires
interaction between the signer and verifier. Unlike other digital signature schemes, verifi-
cation can bedone only once. Whilenot practical, it is presented herefor historical reasons.
Notation used in this section is given in Table 11.7.
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11.85

11.86

11.87

11.88

| Symbol | Meaning |
M, 0! = the all 0’s string of bitlength /.

My(i) | 0V7¢||be_1 - - - bibg Where b._; - - - bybg isthe binary representation of 4.
K aset of [-bit strings.
E
E:

h
n

a set of encryption transformationsindexed by akey space K.

an encryption transformation belonging to £ with ¢t € K. Each E;
maps [-hit strings to I-bit strings.

apublicly-known one-way hash function from {0, 1}* to {0, 1}.
afixed positive integer which serves as a security parameter.

Table 11.7: Notation for the Rabin one-time signature scheme.

Algorithm Key generation for the Rabin one-time signature scheme

SUMMARY: each entity A selects a symmetric-key encryption scheme E, generates 2n
random bitstrings, and creates a set of validation parameters.
Each entity A should do the following:

1. Select asymmetric-key encryption scheme E (e.g., DES).

2. Generate 2n random secret strings k1, ko, . . . , ko, € KC, €ach of bitlength (.

3. Computey; = Ex, (My(i)),1 < i < 2n.

4. A'spublickeyis (y1,ya2,- .. ,yan); A'sprivatekey is (ki, ka, ... , kan).

Algorithm Rabin one-time signature generation and verification

SUMMARY: entity A signsabinary message m of arbitrary length. Signature verification
isinteractive with A.

1. Sgnature generation. Entity A should do the following:
(a) Compute h(m).
(b) Computes; = Ex, (h(m)), 1 <1i < 2n.
(c) A’ssignaturefor mis (s, sa,... ,San).
2. Verification. To verify A’ssignature (s1, sa, ... , S2,) Onm, B should:
(8) Obtain A’sauthentic publickey (y1,v2,- .. ,Y2n)-
(b) Compute h(m).
(c) Select n digtinct random numbersr;, 1 <r; <2n,forl <j <mn.
(d) Request from A thekeysk, , 1 < j <n.
(e) Verify the authenticity of the received keys by computing z; = Ek” (Mo(r5))
and checking that z; = y,,, foreach1 < j < n.
(f) Verifythat s, = Ey,, (h(m)), 1 <j<n.

Note (key sizes for Rabin’s one-time signatures) Since E; outputs! bits (see Table 11.7),
the public and private keysin Algorithm 11.86 each consist of 2nl bits. For n = 80 and
[ = 64, the keys are each 1280 byteslong.

Note (resolution of disputes) To resolve potential disputes between the signer A and the
verifier B using Alagorithm 11.86. the following procedureis followed:

1. B providesatrusted third party (TTP) with m and the signature (s1, sa, - - - , S2,,)-
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2. TheTTPobtainsky, ks, ... , ko, from A.

3. The TTP verifies the authenticity of the private key by computing z; = Ex, (My(%))
and checkingthat y; = z;, 1 <1 < 2n. If thisfails, the TTPrulesin favor of B (i.e.,
the signatureis deemed to be valid).

4. The TTP computesu; = Ey, (h(m)), 1 < ¢ < 2n. If u; = s; for a most n values
of 4,1 <1 < 2n, thesignature is declared aforgery and the TTPrulesin favor of A
(who denies having created the signature). If n + 1 or morevaluesof i giveu; = s;,
the signatureis deemed valid and the TTP rulesin favor of B.

11.89 Note (rationalefor dispute resolution protocol) Therationalefor adjudicating disputesin
Rabin’'s one-time signature scheme, as outlined in Note 11.88, is as follows. If B has at-
tempted to forge A’s signature on a new message m/, B either needs to determine at least
one morekey &’ so that at least n + 1 values of ¢ give u; = s;, or determine m’ such that
h(m) = h(m’). Thisshould beinfeasibleif the symmetric-key algorithm and hash function
are chosen appropriately. If A attemptsto create a signature which it can later disavow, A
must ensurethat u; = s; for precisely n values of ¢ and hopethat B choosesthesen values
in step 2c of the verification procedure, the probability of whichisonly 1/(*").

11.90 Note (one-timenessol Algorithm 11.86) A can sign at most one message with agiven pri-
vatekey in Rabin’s one-time scheme; otherwise, A will (with high probability) reveal n+1
or more of the private key values and enable B (and perhaps collaborators) to forge signa-
tures on new messages (see Note 11.89). A signature can only be verified once without
revealing (with high probability) more than n of the 2n private values.

11.6.2 The Merkle one-time signature scheme

Merkle's one-time digital signature scheme (Algorithm 11.92) differs substantially from
that of Rabin ‘Algorithm 11.86) in that signature verification is not interactive with the
signer. A TTP or some other trusted means is required to authenticate the validation pa-
rameters constructed in Algorithm 11.91.

11.91 Algorithm Key generation for the Merkle one-time signature scheme

SUMMARY: to sign n-bit messages, A generatest = n+ |lgn |+ 1 validation parameters.
Each entity A should do the following:
1. Selectt =n + |lgn| + 1 random secret strings k1, k2, . . . , k¢ each of bitlength {.
2. Computev; = h(k;), 1 < i < t. Here, h is a preimage-resistant hash function
h: {0,1}* — {0,1} (see§9.2.2).
3. A'spublickey is (vy,va,... ,v); A'sprivatekeyis (k1, ko, ... , kt).

To sign an n-bit message m, a bitstring w = m/||c is formed where ¢ is the binary
representation for the number of 0’sinm. cisassumedto beabitstring of bitlength |lgn |+
1 with high-order bits padded with 0's, if necessary. Hence, w is a bitstring of bitlength
t=n+|lgn|+1.
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11.92 Algorithm Merkle one-time signature generation and verification

SUMMARY: entity A signs a binary message m of bitlength n. Any entity B can verify
this signature by using A’s public key.
1. Sgnature generation. Entity A should do the following:

(8) Compute ¢, the binary representation for the number of 0'sin m.

(b) Formw = m||c = (a1az - - - az).

(c) Determinethe coordinate positionsi; < iz < --- < i, inw suchthat a;, =1,
1< <.

(d) LetSj Zk’ij,l S]Su

(e) A’ssignaturefor mis(s1,s2,.-. ,Su)-

2. Verification. To verify A’ssignature (s, S2, .- . , S) ON'm, B should:

(a) Obtain A’sauthentic public key (vy,va, ... ,vt).

(b) Compute ¢, the binary representation for the number of 0'sin m.

(¢) Formw = ml|c = (a1az2 - - - at).

(d) Determine the coordinate positionsiy < iz < --- <1, inw suchthata;, =1,
1< <.

(€) Accept thesignatureif and only if v;; = h(s;) foral 1 < j < w.

11.93 Note (security of Merkle's one-time signature scheme) Let m be a message, w = mljc
the bitstring formed in step 1b of Algorithm 11.92, and (s1, $2, . . . , S, ) @signature for m.
If h is apreimage-resistant hash function, the following argument shows that no signature
for amessage m’ # m can be forged. Let w' = m’||c’ where ¢’ isthe (|1gn| + 1)-hit
string which is the binary representation for the number of 0’'sin m’. Since an adversary
hasaccessto only that portion of thesigner’sprivate key which consistsof (s, s2, ... , Su),
the set of coordinate positionsinm’ having a1 must be a subset of the coordinate positions
in m having a1 (otherwise, m’ will have a 1 in some position where m has a 0 and the
adversary will require an element of the private key not revealed by the signer). But this
means that m’ has more 0’s than m and that ¢’ > ¢ (when considered as integers). In this
case, ¢’ will havealinsomepositionwherechasa(. Theadversary wouldrequireaprivate
key element, corresponding to this position, which was not revealed by the signer.

11.94 Note (storage and computational requirements of Algorithm 11.92)

(i) To sign an n-bit message m which has k onesrequiresi - (n + |lgn| + 1) bits of
storage for the validation parameters (publickey), and ! - (n + |lg n| + 1) bitsfor the
privatekey. Thesignaturerequires! - (k + k') bits of storage, where &’ isthe number
of 1'sin the binary representation of n — k. For example, if n = 128, = 64, and
k = 72, then the public and private keys each require 8704 bits (1088 bytes). The
signature requires 4800 hits (600 bytes).

(if) The private key can be made smaller by forming the &;’s from a single seed value.
For example, if £* isabitstring of bitlength at least [, then form k; = h(k*||i), 1 <
i < t. Since only the seed k£* need be stored, the size of the private key isdrastically
reduced.

(iii) Signature generation is very fast, requiring no computation. Signature verification
requires the evaluation of the hash function for fewer thann + [lgn| + 1 values.
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11.95

11.96

Note (improving efficiency of Merkie's one-time scheme) Algorithm 11.92 requires! - (n+
|lgn] + 1) bits for each of the public and private keys. The public key must necessarily
be this large because the signing algorithm considers individual bits of the message. The
scheme can be made more efficient if the signing algorithm considers more than one bit at
atime. Suppose entity A wishesto sign a kt-bit message m. Write m = my ||mea|| - - - ||mq
whereeachm; hasbitlength k and each representsaninteger between 0 and 2% —1 inclusive.
DefineU = 3°!_, (2F —m;) < 2%, U can berepresented by IgU < |lgt| + 1 + k bits.
Ifr = [(llgt] + 1 + k)/k], then U can be written in binary as U = wuq|Juz|| - - - ||ur,
where each w; has bitlength k. Form the bitstring w = mq||ma|| - - - my||ug||ue|| - - - |-
Generatet + r random bitstrings k1, k2, . . . , k¢» and compute v; = th—l(kzi), 1<i<
t + r. The private key for the modified schemeis (k1, ko, - . . , k++-) and the public key is
(v1,v2, ... ,Vi4,). Thesignaturefor mis(sy, sa, ..., Si+r) Wheres; = h™i(k;),1 <1i <
t, and s+t = hui(k,, ), 1<i<r. Here, he denotes the c-fold composition of 2 with itself.
As with the original scheme (Algorithm 11.92), the bits appended to the message act as a
check-sum (see Note 11.93) as follows. Given an element s; = h*(k;), an adversary can
easily compute ha (k;) for 0 < ¢ < 2* — a, butisunableto compute %~ for any § > 0
if h isaone-way hash function. To forge a signature on a new message, an adversary can
only reduce the value of the check-sum, which will make it impossible for him to compute
the required hash values on the appended kr hits.

Example (signing more than one hit at a time) This example illustrates the modification
of the Merkle scheme described ir Note 11.95. Let m = mq||mz||ms|ms wherem,; =
1011, mo = 0111, mg = 1010, and myg = 1101. mq, mo, mg, and my are the blnary
representationsof 11, 7, 10, and 13, respectively. U = (16 — my) + (16 — mga) + (16 —
m3)+ (16 —my) =5+9+6+3=23. Inbinary, U = 10111. Formw = m||0001 0111.
Thesignatureis (81, S92, 83, S4, S5, 86) where S1 = hll(kl), So = h7(k72), S3 = hlo(kg,),
sq4 = h'3(ky), s5 = h'(z5), and ss = h7(x¢). If an adversary triesto alter the message, he
can only apply the function A to some s;. This causes the sum of the exponents used (i.e.,
3" m;) to increase and, hence, t2¢ — " m; to decrease. An adversary would be unable
to modify the last two blocks since A1 is required to decrease the sum. But, since h is
preimage-resistant, h~! cannot be computed by the adversary. O

11.6.3 Authentication trees and one-time signatures

11.97

§13.4.1 describes the basic structure of an authentication tree and relates how such a tree
could be used, among other things, to authenticate alarge number of public validation pa-
rametersfor aone-timesignature scheme. This section describeshow an authenticationtree
can be used in conjunction with a one-time signature scheme to provide a schemewhich al-
lows multiple signatures. A small example will serveto illustrate how thisis done.

Example (an authentication tree for Merkle's one-time scheme) Consider the one-time
signature scheme of Algorithm 11.92 for signing n-bit messages. Let h: {0,1}* —
{0, 1}! be a preimage-resistant hash functionand ¢t = n + |lgn| + 1. Figure 11.7 il-
lustrates a 5-vertex binary tree created by an entity A in the course of signing five mes-
sagesmg, m1, me, m3, my. Each vertex in the tree is associated with one of the five mes-
sages. For the vertex associated with messagem;, A hasselected X; = (214, ©2i, . - . , T#4),
U, = (uli,u%... ,uti) and W; = (wli,w%... ,wti), 0 < i < 4, the elements of
which are random bitstrings. From these lists, A has computed Y; = (h(zj;): 1 < j <
1), Vi = (h(uj): 1 < j < t),andZ, = (h(wj;): 1 < j < t). Define h(Y;) =
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Figure 11.7: An authentication tree for the Merkle one-time signature scheme (cf Example 11.97).

h(h(x1)||h(z2:)]| - - - [|h(xe;)) for 0 < ¢ < 4, and define h(V;) and h(Z;) analogously.
Denote the Merkle one-time signature of m; using private key X; by S4(m;, X;), 0 <
i < 4. Y; isthe set of validation parameters for the signature S4(m;, X;). Finaly, let
R; = h(h(Y3)||h(Vi)||h(Z;)), 0 < i < 4. Table 11.8 summarizes the parameters asso-
ciated with the vertex R;. The sets U; and W; are used to sign the labels of the children

Table 11.8: Parameters and signature associated with vertex R;, 0 < ¢ < 4 (cf. Figure 11.7).

of vertex R;. The signature on vertex Ry isthat of atrusted third party (TTP). Table 11.9
summarizes the parameters and signatures associated with each vertex label of the binary
tree. To describe how the treeis used to verify signatures, consider message m,4 and sigha-

Table 11.9: Parameters and signatures associated with vertices of the binary tree (ci. Figure 11.7).

ture S4(ma4, X4). Thesigner A first providesthe verifier B with the validation parameters
Y,. The verifier checks the Merkle one-time signature using step 2 of Algorithm 11.92. 3
must then be convinced that Y} is an authentic set of validation parameters created by A.
To accomplishthis, A provides B with a sequence of values enumerated in the steps below:

1. h(V4), h(Z4); B computes h(Y,) and then Ry = h(h(Y4)||R(V4)||h(Z4)).
2. S4(R4,W1) and Zy; B verifiesthe signature on R, using Algorithm 11.92.
3. h(Y1), h(V1); B computes h(Z;) andthen Ry = h(h(Y1)||h(V1)||h(Z1)).

Ry

R3

R4

R2

message
private parameters
public parameters
hash values

R;

signature

validation parameters

Message | Vertex Signature on Authentication
Label Vertex Label Parameters
mo Ry Signature of TTP —
mi R1 SA(Rl, Uo) %, h(Yo), h(Zo)
ma RQ SA (RQ, Wo) Zo, h(l/o), h(Vo)
ms R3 Sa(Rs,Un) Vi, h(Y1), h(Z1)
my Ry Sa(Ra, Wh) Z1, h(Y1), h(V1)

4. Sa(R1,Up) and Vj; B verifiesthe signature using Algorithm 11.92.
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5. h(Yy), h(Zp); B computes h(Vy) and then Ry = h(h(Yo)||h(Vo)||R(Z0)).
6. the signature of the TTP for Ry; B verifies the TTP's signature using an agorithm
appropriate to the signature mechanism for the TTP.

The binary tree on 5 vertices (Figure 11.7) could be extended indefinitely from any leaf as
more signatures are created by A. The length of alongest authentication path (or equiva-
lently, the depth of the tree) determinesthe maximum amount of informationwhich A must
provide B in order for B to verify the signature of a message associated with avertex. [

11.6.4 The GMR one-time signature scheme

11.98

11.99

The Goldwasser, Micali, and Rivest (GMR) scheme (Algorithm 11.102) is a one-time sig-
nature schemewhich requiresapair of claw-free permutations(see Definition 11.98). ‘When
combined with a tree authentication procedure, it provides a mechanism for signing more
than onemessage. The GMR schemeisnoteworthy asit wasthefirst digital signaturemech-
anism proven to be secure against an adaptive chosen-message attack. Although the GMR
schemeis not practical, variations of it have been proposed which suggest that the concept
is not purely of theoretical importance.

Definition Letg;: X — X, i = 0,1, be two permutations defined on a finite set X.
go and g; are said to be a claw-free pair of permutationsif it is computationally infeasible
tofind z,y € X suchthat go(xz) = ¢1(y). A triple (z,y, z) of elements from X with
go(x) = g1(y) = ziscaled aclaw. If both g;, ¢ = 0, 1, have the property that given
additional information it is computationally feasible to determine g, L, 97!, respectively,
the permutations are called atrapdoor claw-free pair of permutations.

In order for go, g1 to be a claw-free pair, computing gi_l(x), for both7 = 0 and 1,
must be computationally infeasiblefor essentialy al = € X. For, if g;* (and similarly for
9o 1) could be efficiently computed, one could select an z € X, compute go(z) = z and
g7 1(?) = y, to obtain aclaw (z,y, 2).

Example (trapdoor claw-free permutation pair) Let n = pg wherep = 3 (mod 8) and
q =7 (mod 8). For thischoiceof pand ¢, (=) = 1 but —1 ¢ Q,,, and (2) = —1. Here,
() denotesthe Jacobi symbol (Definition 2.147). Define D,, = {z: (%) = 1and0 < z <
5}. Definego: D, — D, and g1: D,, — D, by
_ 22 mod n, if 22 mod n < 3,
90() = { —z?mod n, ifz>modn > 2%,

ISIRINTR

(z) = 422 mod n, if 422 mod n <
I = —422 mod n, if 422 mod n >

If factoring n isintractable, then gq, g1 form atrapdoor claw-free pair of permutations; this
can be seen asfollows.

(i) (go andg; arepermutationson D,,) If go(x) = go(y), thenz? = y? (mod n) (z? =
—y? (mod n) is not possible since -1 ¢ @Q,,), whencez = +y (mod n). Since
0 < z,y < n/2,thenz = y, and hence gy is a permutation on D,,. A similar
argument showsthat g, isapermutationon D,,.

(i) (go and g; are claw-free) Supposethat thereis an efficient method for finding z, y €
D,, suchthat go(z) = g1(y). Thenz? = 4y? (mod n) (z? = —4y? (mod n) is
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11.100

11.101

11.102

impossiblesince —1 ¢ Q,,), whence (z —2y)(z+2y) =0 (mod n). Since (%) =1
and (£2%) = —1,z # +2y (mod n) and, hence, ged(z — 2y, n) yieldsanon-trivial
factor of n. This contradicts the assumption that factoring n isintractable.

(iii) (9o, g1 isatrapdoor claw-free pair) Knowing the factorization of n permits one to

compute g; * and g; *. Hence, go, g1 isatrapdoor claw-free permutation pair. [

The following exampleillustrates the general construction given in Example 11.99.
Example (pair of claw-free permutations for artificially small parameters) Let p = 11,

g=T,andn =pq="77. Dy ={z: (£)=1and0 < z < 38} ={1,4,6,9,10, 13,15,
16,17,19,23, 24,25, 36, 37}. The following table describes go and g; .

T 1 4 6 9 10 13 15 16 17 19 23 24 25 36 37
go(z) || 1 16 36 4 23 15 6 25 19 24 10 37 9 13 17
gi(z) || 4 13 10 16 15 17 24 23 1 19 37 6 36 25 9

Noticethat gy and g; are permutationson D7. O

Algorithm Key generation for the GMR one-time signature scheme

SUMMARY: each entity selects a pair of trapdoor claw-free permutationsand a validation
parameter.
Each entity A should do the following:
1. Select apair gg, g1 of trapdoor claw-free permutations on some set X. (It is “trap-
door” in that A itself can compute g, * and g; *.)
2. Select arandom element r € X. (r is called avalidation parameter.)
3. A'spublickey is(go, g1,7); A'sprivatekey is (g ', 97 ).

Inthefollowing, the notation for the composition of functions gq, ¢g; usually denoted gg o g1
(see Definition 1.33) is simplified to gog:. Also, (gog1)(r) will bewritten as gog: (r). The
signing space M s consists of binary strings which are prefix-free (se2 Note 11.103).

Algorithm GMR one-time signature generation and verification

SUMMARY: A signsabinary string m = mims - - -m;. B verifiesusing A’s public key.
1. Sgnature generation. Entity A should do the following:
(8) Compute S, (m) = [;— gr_, (r)-
(b) A’ssignaturefor m isS,.(m).
2. \erification. To verify A’ssignature S, (m) onm, B should do the following:
(8) Obtain A’sauthentic public key (go, g1, 7).
(b) Computer’ = [I:_; gm. (S-(m)).
(c) Acceptthesignatureif andonly if ' = r.

Proof that signature verification works.

t t—1
H 9m; H g;zi,j (r)
i=1  j=0
1 —1

= Gmy ©Gma© " O Gm, O Gmr O Gy, O O gt (r) =T

1" =TT gmi (1 m)

Thusr’ = r, asrequired.
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11.103

11.104

11.105

Note (messageencoding and security) The set of messageswhich can be signed using Al-
gorithm 11.102 must comefrom aset of binary stringswhich are prefix-free. (For example,
101 and 10111 cannot bein the same space since 101 isaprefix of 10111.) One method to
accomplish thisisto encode a binary string b1bs - - - b; @S byb1babs - - - byb;01. To see why
the prefix-free requirement is necessary, suppose m = myms - - - m; IS a message whose
signatureis S,.(m) = Hf;é gt (7). if m' = myma - --my, u < t, then an adversary
can easily find avalid signature for m’ from S,.(m) by computing

t

5em) =TT o, (8:0m) = [[ o0

J=u+1

Note (one-timenessof’ Algorithm 11.102) To see that the GMR signature schemeis a one-
time scheme, supposethat two prefix-freemessagesm = myms - - -my andm’ = nyng - - -

n,, are both signed with the same validation parameter ». Then S,.(m) = HZ;(I) It (1)

and S,.(m') = H?z_ol g;}_i(r). Therefore, Hle Gm; (Sr(m)) = r = [Ti2, gn: (Sr-(m)).
Sincethe message spaceis prefix-free, thereisasmallestindex h > 1 for whichmy, # ny,.
Since each g; isabijection, it follows that

H gm; (Sr(m)) = H 9n, (Sr(m"))
i=h i=h
or

Gmy, H gm; (Sr(m)) = gn, H gni (Sr(m)).

i=h+1 i=h+1

Teking z = [[;_s.1 9m. (Sr(m)), andy = T[], .1 gn. (S-(m')), the adversary has a
claw (z,y, gm, (x)). This violates the basic premise that it is computationally infeasible
to find aclaw. It should be noted that this does not necessarily mean that a signature for a
new message can be forged. In the particular case given in Example 11.99, finding a claw
factors the modulus n and permits anyone to sign an unlimited number of new messages
(i.e., atotal break of the system is possible).

Example (GMRwith artificially small parameters.)

Key generation. Let n, p, q, go, g1 bethose givenin Example 11.100. 4 selectsthe valida
tion parameter r = 15 € D77,

Sgnature generation. Let m = 1011000011 be the message to be signed. Then

Sp(m) = g; ogitogylogytogytogytog togr togy og (15) = 23.
A’s signature for message m is 23.
Sgnature verification. To verify the signature, B computes
7 = g1090°9g1°91°9g0°go°go©googiogi(23) = 15.
Sincer = r’, B acceptsthe signature. O

GMR scheme with authentication trees

In order to sign multiple messages using the GMR one-time signature scheme (Algorithm
11.102). euthentication trees (see §13.4.1) are required. Although conceptually similar to
the method described in §11.6.3, only the leaves are used to produce the signature. Before
giving details, an overview and some additional notation are necessary.
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11.106 Definition A full binarytreewith k levelsisabinary treewhich has 2++! — 1 verticesand
2% leaves. Theleaves are said to be at level k of the tree.

Let T beafull binary treewith k levels. Select public parametersYy, Ys, ... | Y, where
n = 2*. Form anauthenticationtree T* from T" withroot label R (seebelow). R iscertified
by aTTPand placed in apublicly availablefile. T* can now be used to authenticate any of
the Y; by providing the authentication path values associated with the authentication path
forY;. EachY; can now be used asthe public parameter » for the GMR scheme. Thedetails
for constructing the authentication tree 7* now follow.

Thetree T* is constructed recursively. For the root vertex, select avalue r and two ¢-
bit binary stringsrz, and rg. Signthe string 1 ||r g with the GMR scheme using the public
valuer. Thelabel for the root consists of thevaluesr, rr,, rg, and S,.(rz ||rg). To authen-
ticate the children of the root vertex, select ¢-bit binary stringsbor, b1, bor, and b1 . The
label for the left child of the root is the set of valuesry, bor, bir, Sr,, (bor||b1z) and the
label for theright childisrg, bor, b1r, Sr (bor||b1r). Usingthestringsbor,, b1 1, bor, and
b1 g aspublic valuesfor the signing mechanism, one can construct labelsfor the children of
the children of the root. Continuing in this manner, each vertex of T* can be labeled. The
method isillustrated in Figure 11.8.

L. TRSH(rLIITR)

rr.bor.b1r,Sry, (bor||b1r) rrRborb1Rr,Srg (bor|b1R)
bor,coL,C1LSby;, (corllcir) b1Rr,doRr:d1R S, 5 (dor||d1R)
K4 AN
b11,,c0RC1R S, ;. (CorlC1R) bor.dor,d1L,Sb, (dorlld1L)

Figure 11.8: Afull binary authentication tree of level 2 for the GMR scheme.

Each leaf of the authentication tree T* can be used to sign a different binary message
m. The signing procedure uses a pair of claw-free permutations gg, g;. If m isthe binary
message to be signed, and x is the public parameter in the label of aleaf which has not
been used to sign any other message, then the signature for m consists of both .S,,(m) and
the authentication path labels.

11.7 Other signature schemes
The signature schemes described in this section do not fall naturally into the general set-

tingscf §11.3 (RSA and related signature schemes), §11.4 (I-iat-Shamir signature schemes),
§11.5 (IDSA and related signature schemes), or §11.6 (one-time digital signatures).
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11.7.1 Arbitrated digital signatures

11.107

11.108

11.109

11.110

Definition An arbitrated digital signature scheme is a digital signature mechanism re-
quiring an unconditionally trusted third party (TTP) as part of the signature generation and
verification.

Algorithm 11.109 requires a symmetric-key encryption algorithm £ = {Ey: k € K}
where K isthe key space. Assume that the inputs and outputs of each Ey, arel-bit strings,
andlet h: {0,1}* — {0, 1} beaone-way hash function. The TTP selectsakey k7 € K
which it keeps secret. In order to verify asignature, an entity must share a symmetric key
withthe TTP.

Algorithm Key generation for arbitrated signatures

SUMMARY: each entity selectsakey and transportsit secretly with authenticity tothe TTP.
Each entity A should do the following:

1. Select arandom secret key k4 € K.
2. Secretly and by some authentic means, make k 4 availabletothe TTP.

Algorithm Signature generation and verification for arbitrated signatures

SUMMARY: entity A generatessignaturesusing Ey. , . Any entity B can verify A’s signa-
ture with the cooperation of the TTP.
1. Sgnature generation. To sign a message m, entity A should do the following:
(8 A computes H = h(m).
(b) A encrypts H with E'togetu = Ey, (H).
(c) A sendswu along with some identification string 74 tothe TTP.
(d) The TTPcomputes E, ! (u) to get H.
(€) TheTTPcomputess = Ey.,. (H||I4) and sends s to A.
(f) A’'ssignaturefor m iss.
2. Verification. Any entity B can verify A’s signature s on m by doing the following:
(8) B computesv = Ej,, (s).
(b) B sendswv and some identification string Ig tothe TTP.
() The TTP computes E, ! (v) to get s.
(d) The TTPcomputes E, ! (s) to get H||L4.
(€) The TTPcomputesw = Ej, (H||I4) and sendsw to B.
(f) B computes E;_* (w) to get H||L4.
(9) B computes H' = h(m) fromm.
(h) B acceptsthe signatureif andonly if H' = H.

Note (security of arbitrated signature scheme) The security of Algorithm 11.109 s based
on the symmetric-key encryption scheme chosen and the ability to distribute keysto par-
ticipants in an authentic manner. §13.3 discusses techniques for distributing confidential

keys.
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11.111

Note (performance characteristics of arbitrated signatures) Since symmetric-key algo-
rithms are typically much faster than public-key techniques, signature generation and veri-
fication by Algorithm 11.109 ere (relatively) very efficient. A drawback isthat interaction
with the TTPis required, which places a much higher burden on the TTP and requires ad-
ditional message exchanges between entitiesand the TTP.

11.7.2 ESIGN

11.112

11.113

ESIGN (an abbreviationfor Efficient digital SIGNature) isancther digital signature scheme
whose security relies on the difficulty of factoring integers. It is a signature scheme with
appendix and requires aone-way hash function h: {0,1}* — Z,.

Algorithm Key generation for ESIGN

SUMMARY: each entity creates a public key and corresponding private key.
Each entity A should do the following:
1. Select random primes p and ¢ such that p > ¢ and p, ¢ are roughly of the same
bitlength.
2. Computen = p2q.
3. Select apositiveinteger k > 4.
4. A’spublickeyis(n,k); A’sprivatekey is (p, q).

Algorithm ESIGN signature generation and verification

SUMMARY: the signing algorithm computes an integer s such that s* mod n liesin acer-
tain interval determined by the message. Verification demonstratesthat s* mod n doesin-
deed lie in the specified interval.
1. Sgnature generation. To sign amessage m which is a bitstring of arbitrary length,
entity A should do the following:
(8 Computev = h(m).
(b) Select arandom secret integer z, 0 < = < pg.
(c) Computew = [((v — x*) mod n)/(pq)] andy = w - (kx*~1)~1 mod p.
(d) Compute s = = + ypq mod n.
(e) A’'ssignaturefor m iss.
2. Verification. To verify A’ssignature s on m, B should do the following:
(8) Obtain A’sauthentic publickey (n, k).
(b) Computeu = s* mod n and z = h(m).
(©) If z <u < z+2[387] accept the signature; else reject it.

: o k —i ;
Proof that signatureverificationworks. Notethat s* = (z+ypg)* = 37 ()25~ (ypg)’
= 2% + kypgz*~! (mod n). But kz*~1y = w (mod p) and, thus, kx*~1y = w + Ip for

some! € Z. Hence, s¥ = z* + pg(w + Ip) = z* + pquw = z* + pq {W—‘ =

z® + pq (W)_:;ifﬁjw) (mod n), where e = (z* — h(m)) mod pq. Therefore, s* =
2F + h(m) — 2% + € = h(m) + € (mod n). Since0 < e < pq, it follows that h(m) <
2

s¥ mod n < h(m) +pg < h(m) + 9[31en] , asrequired.
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11.114 Example (ESIGN for artificially small parameters) In Algorithm 11.113, tiake messages
to beintegersm, 0 < m < n, and the hash function i to be h(m) = m.
Key generation. A selectsprimesp = 17389 and ¢ = 15401, ¥ = 4, and computes
n = pq = 4656913120721. A’spublickey is (n = 4656913120721, k = 4); A’s private
keyis (p = 17389, ¢ = 15401).
Sgnature generation. To sign the message m = 3111527988477, A computesv = h(m)
= 3111527988477, and selects x = 14222 suchthat 0 < x < pq. A then computesw =
[((v—2%) mod n)/(pq)| = [2848181921806/267807989] = [10635.16414] = 10636
andy = w(kz* 1)L mod p = 10636(4 x 14222%)~1 mod 17389 = 9567. Finally, A
computesthe signature s = x + ypg mod n = 2562119044985.
Sgnature verification. B obtains A’s public key (n = 4656913120721, k = 4), and com-
putesu = s¥ mod n = 3111751837675. Since 3111527988477 < 3111751837675 <
3111527988477 + 229, B accepts the signature (here, [2 1gn] = 29). O

11.115 Note (security of ESGN)

(i) Themodulusn = p?q in Algorithm 11.113 differsfrom an RSA modulus by having
arepeated factor of p. It isunknown whether or not moduli of thisform are easier to
factor than integers which are simply the product of two distinct primes.

(i) Given avalid signature s for a message m, an adversary could forge a signature for
amessage m’ if h(m/) issuch that h(m) < u < h(m’) + 2/3187] (wherew =
s® mod n). If anm’ with this property isfound, then s will beasignaturefor it. This
will occur if h(m) and h(m') agreein the high-order (1g n)/3 bits. Assuming that h
behaves like arandom function, one would expect to try 2(087)/3 different values of
m’ before observing this.

(iii) Another possible approach to forging is to find a pair of messages m and m' such
that h(m) and h(m') agreein the high-order (1gn)/3 bits. By the birthday paradox
(Fact 2.27(ii)), one can expect to find such apair in O (22 )/6) trials. 1f an adversary
is able to get the legitimate signer to sign m, the same signature will be a signature
form’.

(iv) For the size of the integer n necessary to make the factorization of n infeasible, (ii)
and (iii) above are extremely unlikely possibilities.

11.116 Note (performance characteristics of ESGN signatures) Signature generation in Algo-
rithm 11.113is very efficient. For small valuesof k (e.g., k = 4), the most computationally
intensive part isthe modular inverserequiredin step 1¢c. Depending on theimplementation,
this correspondsto a small number of modular multiplications with modulus p. For k = 4
and a 768-bit modulusn, ESIGN signature generation may be between one and two orders
of magnitude (10 to 100 times) faster than RSA signature generation with an equivalent
modulussize. Signature verification isalso very efficient and is comparableto RSA with a
small public exponent.

11.8 Signatures with additional functionality

The mechanisms described in this section provide functionality beyond authentication and
non-repudiation. In most instances, they combine a basic digital signature scheme (e.g.,
RSA) with a specific protocol to achieve additional features which the basic method does
not provide.
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11.8.1 Blind signature schemes

11.117

11.118

11.119

Rather than signature schemes as described in §11.2, klind signature schemes are two-party
protocols between a sender A and asigner B. The basic idea is the following. A sends
apiece of information to B which B signs and returnsto A. From this signature, A can
compute B’s signature on an a priori message m of A’s choice. At the completion of the
protocol, B knows neither the message m nor the signature associated with it.

The purpose of ablind signatureisto prevent the signer B from observing the message
it signs and the signature; hence, it is later unable to associate the signed message with the
sender A.

Example (applications of blind signatures) Blind signature schemes have applications
where the sender A (the customer) does not want the signer B (the bank) to be capable
of associating a postiori a message m and a signature Sg(m) to a specific instance of the
protocol. This may be important in electronic cash applications where a message m might
represent a monetary value which A can spend. When m and Sp(m) are presented to B
for payment, B is unableto deducewhich party wasoriginally giventhesigned value. This
allows A to remain anonymous so that spending patterns cannot be monitored. |

A blind signature protocol requires the following components:

1. A digital signature mechanism for signer B. Sgp(x) denotesthe signature of B on z.
2. Functions f and g (known only to the sender) such that g(Sg(f(m))) = Sg(m). f
iscalled a blinding function, g an unblinding function, and f(m) ablinded message.

Property 2 places many restrictions on the choice of Sg and g.

Example (blinding function based on RSA) Let n = pq be the product of two large ran-
dom primes. The signing algorithm S for entity B is the RSA signature scheme (Algo-
rithm 11.19) with public key (n, e) and private key d. Let k be some fixed integer with
ged(n, k) = 1. Theblinding function f: Z,, — Z,, isdefined by f(m) = m - k mod n
and the unblinding function g: Z,, — Z,, by g(m) = k~*m mod n. For this choice of
f,g,and Sz, g(Sp(f(m))) = g(Sp(mk® mod n)) = g(m?k mod n) = m? mod n =
Sp(m), asrequired by property 2. O

Protocol 11.119 presents a blind signature scheme which uses the digital signature
mechanism and functions f and g described ir Example 11.118.

Protocol Chaum’s blind signature protocol

SUMMARY: sender A recelvesasignature of B on ablinded message. From this, A com-
putes B’s signature on a message m chosen apriori by 4,0 < m < n — 1. B hasno
knowledge of m nor the signature associated with m.
1. Notation. B'sRSA public and private keysare (n, e) and d, respectively. k isaran-
dom secret integer chosen by A satisfying0 < £ <n — 1 and ged(n, k) = 1.
2. Protocol actions.
(@ (blinding) A computesm* = mk® mod n and sendsthisto B.
(b) (signing) B computes s* = (m*)¢ mod n which it sendsto A.
(c) (unblinding) A computes s = k~'s* mod n, which is B’s signature on m.
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11.8.2 Undeniable signature schemes

Undeniable signature schemes are distinct from digital signaturesin the sense of §11.2in
that the signature verification protocol requiresthe cooperation of the signer. Thefollowing
exampl e describes two scenarios where an undeniable signature could be applied.

11.120 Example (scenariosfor undeniable signatures)

(i) Entity A (the customer) wishes to gain access to a secured area controlled by entity
B (thebank). The secured areamight, for example, be a safety-deposit box room. B
requires A to sign atime and date document before access is granted. If A usesan
undeniable signature, then B isunableto prove (at somelater date) to anyonethat A
used thefacility without A’s direct involvement in the signature verification process.

(il) Suppose some large corporation A creates a software package. A signs the package
and sdllsit to entity B, who decides to make copies of this package and resell itto a
third party C. C isunableto verify the authenticity of the software without the coop-
eration of A. Of course, this scenario does not prevent B from re-signing the package
with its own signature but the marketing advantage associated with corporation A’s
nameislost to B. It will also be easier to trace the fraudulent activity of B. O

11.121 Algorithm Key generation for Algorithm 11.122

SUMMARY: each entity selects a private key and corresponding public key.
Each entity A should do the following:

1. Select arandom primep = 2q + 1 where g isalso aprime.
2. (Select agenerator o for the subgroup of order ¢ inZ;.)
2.1 Select arandom element 3 € Z and compute o = 3P~/ mod p.
22 If a = 1thengoto step 2.1.
3. Selectarandominteger a € {1,2,...,q — 1} and computey = a® mod p.
4. A'spublickeyis (p, o, y); A'sprivatekey isa.

11.122 Algorithm Chaum-van Antwerpen undeniable signature scheme

SUMMARY: A signs amessage m belonging to the subgroup of order ¢ in Z,,. Any entity
B can verify this signature with the cooperation of A.

1. Sgnature generation. Entity A should do the following:
(8 Computes = m® mod p.
(b) A’ssignature on message m is s.
2. Verification. The protocol for B to verify A’ssignature s on m is the following:

(8) B obtains A’sauthentic publickey (p, i, ).
(b) B selectsrandom secret integerszy, x2 € {1,2,... ,¢ —1}.
() B computes z = s¥1y*2 mod p and sends z to A.

(d) Acomputesw=(z)"  mod p (whereaa=! =1 (mod ¢)) and sendsw to B.
(e) B computesw’ =m*a®? mod p and accepts the signature if and only if w =
w'.
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Proof that signature verification works.

w= (z)‘f1 = (s‘“y‘“)‘f1 = (m‘““oz‘“”?)‘f1 =m” a” = w' mod p,

asrequired.

Fact 11.123 states that, with high probability, an adversary is unable to cause B to ac-
cept afraudulent signature.

11.123 Fact (detecting forgeries of undeniable signatures) Supposethat s isaforgery of A’ssig-
nature for amessage m, i.e., s 2 m® mod p. Then the probability of B accepting the sig-
nature in Algorithm 11.122 is only 1/g; this probability is independent of the adversary’s
computational resources.

11.124 Note (disavowing signatures) The signer A could attempt to disavow a (valid) signature
constructed by Algorithm 11.122 in one of three ways:
(i) refuseto participatein the verification protocol of Algorithm 11.122;

(i) perform the verification protocol incorrectly; or

(iii) claim asignature aforgery even though the verification protocol is successful.
Disavowing a signature by following (i) would be considered as an obvious attempt at
(wrongful) repudiation. (ii) and (iii) are more difficult to guard against, and require adis-
avowal protocol (Protocol 11.125).

Protocol 11.125 esssentially appliesthe verification protocol of Algorithm 11.122 twice
and then performs a check to verify that A has performed the protocol correctly.

11.125 Protocol Disavowal protocol for Chaum-van Antwerpen undeniable signature scheme

SUMMARY: thisprotocol determineswhether thesigner A isattemptingto disavow avalid

signature s using Algorithm 11.122, or whether the signature is a forgery.
1. B obtains A’sauthentic public key (p, a, y).
2. B selects random secret integers z1,22 € {1,2,...,q — 1}, and computes z =

s¥14*2 mod p, and sends z to A.

3. Acomputesw = ()% mod p (Whereaa=! = 1 (mod ¢)) and sends w to B.

If w = m®™ o mod p, B acceptsthe signature s and the protocol halts.

5. Blselgcts random secret integers =,z € {1,2,...,q — 1}, and computes 2’ =
s¥1y”2 mod p, and sends 2’ to A.

6. A computesw’ = (z')® " mod p and sendsw’ to B.

If w' = m*a”2 mod p, B accepts the signature s and the protocol halts.

8. B computesc = (wa*2)*1 mod pand ¢ = (w'a*2)** mod p. If ¢ = ¢/, then B
concludesthat s is aforgery; otherwise, B concludesthat the signature is valid and
A is attempting to disavow the signature s.

»

~

Fact 11.126 Slates that Protocol 11.125 echievesits desired objectives.

11.126 Fact Let m beamessage and supposethat s is A's (purported) signature on m.
(i) If sisaforgery,i.e, s # m® mod p, andif A and B follow Protocol 11.125 correctly,
then w = w’ (and hence, B’s conclusion that s isaforgery is correct).
(i) Suppose that s isindeed A’s signature for m, i.e.,, s = m® mod p. Suppose that
B follows Protocol 11.125 correctly, but that A does not. Then the probability that
w = w' (and hence A succeedsin disavowing the signature) isonly 1/g.
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11.127

Note (security of undeniable signatures)

(i) The security of Algorithm 11.122 is dependent on the intractability of the discrete
logarithm problem in the cyclic subgroup of order ¢ in Z, (see §3.6.6).

(i) Suppose verifier B records the messages exchanged in step 2 of Algorithm 11.122,
and also therandom values x1, z2 used in the protocol. A third party C' should never
accept this transcript from B as a verification of signature s. To see why thisisthe
case, it sufficesto show how B could contrive a successful transcript of step 2 o° Al-
gorithm 11.122 without the signer A’s participation. B chooses a message m, inte-
gerszy, z2 andlintheinterval [1, ¢ — 1], and computes s = ((ml’l<Jﬂ’2)l_1gf””2)””1_1
mod p. The protocol message from B to A would be z = s*'y*2 mod p, and from
A to Bwouldbew = 2! mod p. Algorithm 11.122 will accept s asavalid signature
of A for messagem. Thisargument demonstratesthat signatures can only beverified
by interacting directly with the signer.

11.8.3 Fail-stop signature schemes

11.128

Fail-stop digital signatures are digital signatures which permit an entity A to provethat a
signature purportedly (but not actually) signed by A isaforgery. Thisis done by showing
that the underlying assumption on which the signature mechanism is based has been com-
promised. Theability to proveaforgery doesnot rely onany cryptographi c assumption, but
may fail with some small probability; thisfailure probahility isindependent of the comput-
ing power of the forger. Fail-stop signature schemes have the advantage that even if avery
powerful adversary can forgeasingle signature, the forgery can be detected and the signing
mechanism no longer used. Hence, the term fail-then-stop is also appropriate. A fail-stop
signature scheme should have the following properties:

1. If asigner signsamessage according to the mechanism, then averifier upon checking
the signature should accept it.
2. A forger cannot construct signatures that pass the verification algorithm without do-
ing an exponential amount of work.
3. If aforger succeedsin constructing asignature which passesthe verificationtest then,
with high probability, the true signer can produce a proof of forgery.
4. A signer cannot construct signatures which are at some later time claimed to be for-
geries.
Algorithm 11.130isan exampleof afail-stop mechanism. Asdescribed, itisaone-timesig-
nature scheme, but there are waysto generalizeit to allow multiple signings; using authen-
tication trees is one possihility (se2 §11.6.3). The proof-of-forgery algorithm is presented
in Algorithm 11.134.

Algorithm Key generation for Algorithm 11.130

SUMMARY: key generation is divided between entity A and atrusted third party (TTP).
1. The TTP should do the following:
(8) Select primes p and ¢ such that ¢ divides (p — 1) and the discrete logarithm
problemin Z; isintractable.
(b) (Select agenerator o for the cyclic subgroup G of Z,, having order q.)

(i) Select arandom element g € Z? and computea = gP~1/% mod p.
(i) If o = 1thengoto step (i).
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(c) Select arandominteger a, 1 < a < ¢ — 1, and compute 8 = a® mod p. The
integer a is kept secret by the TTP.
(d) Send (p, q, o, B) in the clear to entity A.
2. Entity A should do the following:
(8) Select random secret integerszy, 2, y1, y2 intheinterval [0, ¢ — 1].
(b) Compute 81 = o®*3%2 and B2 = a¥*(3¥Y2 mod p.
(c) A’s public key is (51,02,p,q,a,0); A’s private key is the quadruple

Z = (x1,%2,Y1,Y2).

11.129 Note (TTP'ssecret information) Assuming that the discrete logarithm problemin the sub-
group of order g in Z;, isintractablein Algorithm 11.128, the only entity which knows a,
the discrete logarithm of 3 to the base o, isthe TTP.

11.130 Algorithm Fail-stop signature scheme (van Heijst-Pedersen)

SUMMARY: thisisaone-timedigital signature scheme whose security isbased onthedis-
crete logarithm problem in the subgroup of order ¢ in Z,.

1. Sgnaturegeneration. To sign amessagem € [0, ¢ — 1], A should do the following:
(@ Compute sy, = 1 + my; mod ¢ and sz, = z2 + mys mod q.
(b) A’ssignaturefor m is(s1,m, S2,m)-

2. Verification. To verify A’ssignature (s1,m, s2,m) 0n'm, B should do the following:

(a) Obtain A’sauthentic public key (51, 82, p, ¢, @, 3).
(b) Computev; = (165 mod p and ve = a°*™ (3%2™ mod p.
(c) Accept thesignatureif and only if v; = vs.

Proof that signature verification works.
v = 61/62 = (a$16$2)(ayll@y2)m = aacl—i-mylﬂxg-i-myg

= o™ p3%2m™ =vy  (mod p).

Algorithm 11.130is a one-time signature scheme since A’s private key T can be com-
puted if two messages are signed using . Before describing the algorithm for proof of
forgery (Algorithm 11.134), a number of facts are needed. These are givenin Fact 11.131
and illustrated in Example 11.132.

11.131 Fact (number of distinct quadruples representing a public key and a signature) Suppose
that A’spublickey in Algorithm 11.130i5 (54, 82, p, ¢, ., ) and private key isthe quadru-
pleZ = (x1, z2, y1, Y2).

(i) Thereareexactly ¢ quadruplesz’ = (o, 25, v}, vh) with !, 2%, y1, y4 € Z, which
yield the same portion (31, 32) of the public key.

(i) Let T be the set of ¢? quadruples which yield the same portion of the public key
(B1, B2). For eachm € Z,, thereare exactly ¢ quadruplesin T which give the same
signature (s1,m, S2,m ) for m (whereasignatureis asdescribed in Algorithm 11.130).
Hence, the ¢2 quadruplesin T give exactly ¢ different signatures for m.

(iii) Letm' € Z, beamessage different fromm. Then the ¢ quadruplesinT whichyield
A’ssignature (s1,m, s2,m) for m, yield ¢ different signaturesfor m/'.
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11.132 Example (illustration of Fact 11.131) l.etp = 29 and ¢ = 7. o = 16 is agenerator of
the subgroup of order ¢ in Z,,. Teke 8 = a® mod 29 = 23. Suppose A’s private key is
7 = (2,3,5,2); A'spublickey is 81 = a?3% mod 29 = 7, 32 = a°B3% mod 29 = 16.

The following table lists the ¢ = 49 quadruples which give the same public key.

1603 | 2303
1610 | 2310
1624 | 2324
1631 | 2331
1645 | 2345
1652 | 2352
1666 | 2366

3003
3010
3024
3031
3045
3052
3066

4403
4410
4424
4431
4445
4452
4466

5103
5110
5124
5131
5145
5152
5166

6503
6510
6524
6531
6545
6552

6566

0203
0210
0224
0231
0245
0252
0266

If the 49 quadruples of this table are used to sign the messagem = 1, exactly ¢ = 7 Sig-
nature pairs (s1,m, s2,m) arise. The next table lists the possibilities and those quadruples
which generate each signature.

| signature pair [| (2,6) [ 3,3) [ (4,00 [ (5,49 [ (6,1) [ (0,5) [ (1,2)
quadruples 1610 | 1624 | 1631 | 1645 | 1652 | 1666 | 1603
2303 | 2310 | 2324 | 2331 | 2345 | 2352 | 2366

3066 | 3003 | 3010 | 3024 | 3031 | 3045 | 3052

4452 | 4466 | 4403 | 4410 | 4424 | 4431 | 4445

5145 | 5152 | 5166 | 5103 | 5110 | 5124 | 5131

6531 | 6545 | 6552 | 6566 | 6503 | 6510 | 6524

0224 | 0231 | 0245 | 0252 | 0266 | 0203 | 0210

The next table lists, for each message m’ € Z-, all signature pairs for the 7 quadruples
whichyield A’s signature (0, 5) for m = 1.

m/
quadruple 0 | 1 | 2 | 3 | 4 | 5 | 6
1666 16 | 05 | 64 | 53 | 42 | 31 | 20
2352 23 105 |50 |32 14|66 |41
3045 30|05 | 43 | 11 | 56 | 24 | 62
4431 44 | 05 | 36 | 60 | 21 | 52 | 13
5124 51 | 05 | 22 | 46 | 63 | 10 | 34
6510 65 | 05 | 15 | 25 | 35 | 45 | 55
0203 02 [ 05|01 |04 ]| 00 | 03] 06

O

11.133 Note (probability of successful forgery in Algorithm 11.130) Suppose that an adversary
(theforger) wishesto derive A’s signature on some message . Therearetwo possibilities

to consider.

(i) The forger has access only to the signer’s public kev (i.e.. the forger is not in pos-
session of a message and valid signature). By Fact 11.131(ii), the probability that
the signature created by the adversary is the same as A’s signature for m’ is only
q/q*> = 1/g; this probability is independent of the adversary’s computational re-

sources.

(ii) The forger has access to a message m and a signature (s1,.m,, S2,m) created by the
signer. By Fact 11.131(iii), the probability that the signature created by the adversary
isthesameas A’ssignaturefor m’ isonly 1/¢; again, this probability isindependent

of the adversary’s computational resources.
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11.9
§11.1

§11.2

Suppose now that an adversary has forged A's signature on a message, and the signa-
ture passed the verification stage in Algorithm 11.130. The objectiveis that A should be
able to prove that this signature is a forgery. The following algorithm shows how A can,
with high probability, use the forged signature to derive the secret a. Since a was supposed
to have been known only to the TTP (Note 11.129), it serves as proof of forgery.

Algorithm Proof-of-forgery algorithm for Algorithm 11.130

SUMMARY: to prove that a signature s = (s} ,,, 55 ,,,) On amessage m is aforgery, the
signer derivestheinteger a = log,, 8 which serves as proof of forgery.
The signer (entity A) should do the following:
1. Compute a signature pair s = (s1,1m, S2,m) fOr message m using its private key =
(see Algorithm 11.128).
2. If s = s’ returnto step 1.
3. Computea = (s1,m — 81.,,) - (S2,m — $5,,) " mod q.

Proof that Algorithm 11.134 works. By Fact 11.131(iii), the probability that s = s’ in
step 1 of Algorithm 11.134 is1/q. From the verification algorithm (Algorithm 11.130),
Qstm @s2m = aS'l,mﬂS'z,m (mod p) or st 1m = (s2,m—52.m) (mod p) Or $1,m —
81 m = a(8y, — S2,m) (mod q). Hence, a = (s1,m — 81,,) - (S2,m — 5’2,m)_1 mod gq.

Remark (disavowingsignatures) Inorder for asigner to disavow asignaturethat it created
with Algorithm 11.134, an efficient method for computing logarithmsis required.

Notes and further references

The concept of a digital signature was introduced in 1976 by Diffie and Hellman [344,
345]. Althoughtheideaof adigital signaturewasclearly articulated, no practical realization
emerged until the 1978 paper by Rivest, Shamir, and Adleman [1060]. Digital signatures
appear to have been independently discovered by Merkle[849, 850] but not published until
1978. One of Merkle's contributionsis discussed in §11.6.2. Other early research was due
to Lamport [738], Rabin [1022, 1023], and Matyas[801].

A detailed survey on digital signaturesisgiven by Mitchell, Piper, and Wild [882]. A thor-
ough discussion of a selected subset of topics in the area is provided by Stinson [1178].
Other sources which provide a good overview are Meyer and Matyas [859], Goldwasser,
Micali, and Rivest [484], Rivest [1054], and Schneier [1094].

The original proposal for adigital signature scheme by Diffie and Hellman [344] consid-
ered only digital signatureswith message recovery. Thefirst discussion of digital signature
schemes with appendix (although the term was not used per se) appearsto be in the patent
by Merkle and Hellman [553]. Davies and Price [308] and Denning [326] give brief intro-
ductions to digital signatures but restrict the discussion to digital signature schemes with
message recovery and one-time digital signature schemes. Mitchell, Piper, and Wild [882]
and Stinson [1178] giveabstract definitionsof digital signature schemessomewhat lessgen-
eral than those givenin §11.2.

©1997 CRC PressLLC


http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch11&iName=master.img-1067.png&w=394&h=2
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781439821916.ch11&iName=master.img-1067.png&w=394&h=2

Downloaded by [ETH BIBLIOTHEK (Zurich)] at 06:10 22 March 2017

§11.3

Excellent discussions on attacks against signature schemes are provided by Goldwasser,
Micali, and Rivest [484] and Rivest [1054]. The former refersto the discovery of afunc-
tionally equivalent signing algorithm as universal forgery, and separates chosen-message
attacks into generic chosen-message attacks and directed chosen-message attacks.

Many proposed digital signature schemes have been shownto beinsecure. Among the most
prominent of these arethe M erkle-Hellman knapsack scheme proposed by Merkleand Hell-
man [857], shown to be totally breakable by Shamir [1114]; the Shamir fast signature sch-
eme[1109], shown to be totally breakable by Odlyzko [939]; and the Ong-Schnorr-Shamir
(OSS) scheme [958], shown to be totally breakable by Pollard (see Pollard and Schnorr
[988]). Naccache [914] proposed a modification of the Ong-Schnorr-Shamir scheme to
avoid the earlier attacks.

TheRSA signature scheme (Algorithm 11.19), discovered by Rivest, Shamir, and Adleman
[1060], wasthe first practical signature scheme based on public-key techniques.

The multiplicative property of RSA (§11.3.2(ii)) wasfirst exploited by Davida[302]. Den-
ning [327] reports and expands on Davida's attack and credits M oore with asimplification.
Gordon [515] usesthe multiplicative property of RSA to show how to create public-key pa-
rameters and associated (forged) certificatesif the signing authority does not take adequate
precautions. The existential attack on RSA signatures having certain types of redundancy
(Example11.21) isdueto de Jongeand Chaum[313]. Evertseand van Heijst [381] consider
other types of attacks on RSA signatures which also rely on the multiplicative property.

The reblocking problen (§11.3.3(i)) is discussed by Davies and Price [308], who attribute
the method of prescribing the form of the modulus to Guillou. An alternate way of con-
structing an (even) ¢-bit modulusn = pq having a 1 in the high-order position followed by
k O’sisthe following. Construct an integer u = 2¢ + w2!/2 for some randomly selected
(t/2 — k)-bit integer w. Select a (t/2)-bit prime p, and divide p into u to get a quotient
q and aremainder r (i.e, v = pq + 7). If ¢ isaprime number, thenn = pq isan RSA
modulus of the required type. For example, if t = 14 and k = 3, let u = 2™ + w27 where
w=11. If p = 89, then¢ = 199 and n = pqg = 17711. The binary representation of n is
100010100101111.

TheRabin public-key signature scheme: (Algorithm 11.25) isdueto Rabin [1023]. Verifica
tion of signaturesusing the Rabin schemeis efficient since only one modul ar multiplication
isrequired (clf. Note 11.33). Beller and Yacobi [101] take advantage of this aspect in their
authenticated key transport protocol (see §12.5.3).

The modified-Rabin signature scheme (Algorithm 11.30) i s derived from the RSA variant
proposed by Williams [1246] (see also page 315). The purpose of the modification is to
provide a deterministic procedure for signing. A similar methodology is incorporated in
ISO/IEC 9796 (§11.3.5). The modified scheme can be generalized to other even public ex-
ponents besidese = 2. If ged(e, (p — 1)(g — 1)/4) = 1, then exponentiation by e isa
permutation of Q,,.

ISO/IEC 9796 [596] became an international standard in October of 1991. This standard
provides examples based on both the RSA and Rabin digital signature mechanisms. Al-
though the standard permitsthe use of any digital signature scheme with message recovery
which providesat-bit signaturefor a L%J -bit message, the design was specifically tailored
for the RSA and Rabin mechanisms. For design motivation, see Guillou et a. [525]. At the
time of publication of 1SO/IEC 9796, no other digital signature schemes providing message
recovery were known, but since then several have been found; see Koyamaet al. [708].
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ISO/IEC 9796 is effective for signing messages which do not exceed a length determined
by the signature process. Quisquater [1015] proposed a method for extending the utility of
I SO/IEC 9796 to longer messages. Briefly, the modified schemeisasfollows. Select aone-
way hash function ~ which maps bitstrings of arbitrary length to k-bitstrings. If the signing
capability of ISO/IEC 9796 is ¢ bits and m is an n-bit message wheren > t, then m is
partitioned into two bitstringsm. and m,, wherem, is (n — t + k) bitslong. Computed =
h(m) and formm’ = my||d; m’ isastring of bitlength ¢. Sign m’ using ISO/IEC 9796 to
get J. The signature on message m ism.||J. Thisprovidesarandomized digital signature
mechanism with message recovery, where the hash function provides the randomization.

§11.3.6 isfrom PKCS #1 [1072]. This document describes formatting for both encryption
and digital signatures but only those details pertinent to digital signatures are mentioned
here. The specification does not include message recovery as | SO/IEC 9796 does. It also
doesnot specify the size of the primes, how they should be generated, nor the size of public
and private keys. Itissuggestedthat e = 3 or e = 2'6 + 1 are widely used. The only
attacks mentioned in PK CS #1 (which the formatting attempts to prevent) are those by den
Boer and Bosselaers [324], and Desmedt and Odlyzko [341].

The Feige-Fiat-Shamir digital signature scheme (Algorithm 11.40), proposed by Feige,
Fiat, and Shamir [383], isaminor improvement of the Fiat-Shamir signature scheme[395],
requiring less computation and providing a smaller signature. Fiat and Shamir [395] prove
that their schemeis secure against existential forgery provided that factoring isintractable
and that & isatruly random function. Feige, Fiat, and Shamir [383] prove that their modi-
fication has the same property.

Note 11.44 was suggested by Fiat and Shamir [395]. Note 11.45isdueto Micali and Shamir
| 868|, who suggest that only the modulusn 4 of entity A needsto bepublicif vy, vs,... , v
are system-wide parameters. Since all entities have distinct moduli, it is unlikely that v; €
Qn, 1 < j < E, for many different values of n. To overcome this problem, Micali and
Shamir claim that some perturbation of & public valuesis possibleto ensure that the result-
ing values are quadratic residues with respect to a particular modulus, but do not specify
any method which provides the necessary perturbation.

The GQ signature scheme (Algorithm 11.48) is due to Guillou and Quisguater [524].

TheDSA (Algorithm 11.56) isdueto Kravitz [ 711] and was proposed as aFedera Informa:
tion Processing Standard in August of 1991 by the U.S. National Institute for Science and
Technology. It became the Digital Signature Standard (DSS) in May 1994, as specified in
FIPS 186 [406]. Smid and Branstad [1157] comment that the DSA was selected based on
anumber of important factors: the level of security provided, the applicability of patents,
the ease of export from the U.S., theimpact on national security and law enforcement, and
the efficiency in a number of government and commercial applications. They provide a
comparison of the computational efficiencies of DSA and RSA and address a number of
negative responses received during the FIPS public comment period.

Naccache et al. [916] describe a number of techniques for improving the efficiency of the
DSA. For example, the computation of £~ mod ¢ in step 1c of Algorithm 11.56 can bere-
placed by the random generation of an integer b, the computation of v = bk mod gand s =
b-{h(m) + ar} mod ¢. Thesignatureis (r, s,u). The verifier computesu~! mod ¢ and
u~1s mod ¢ = 3. Verification of the signature (r, ) now proceeds asin Algorithm 11.56.
This variant might be useful for signature generation in chipcard applications where com-
puting power is limited. Naccache et al. also propose the idea of use and throw coupons
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which eliminate the need to compute r = (a* mod p) mod ¢. Since this exponentiation
isthe most computationally intensive portion of DSA signature generation, use and throw
coupons greatly improve efficiency. Coupons require storage, and only one signature can
be created for each coupon. If storageislimited (asis often the case), only afixed number
of DSA signatures can be created with this method.

Béguin and Quisquater [82] show how to use an insecure server to aid in computations asso-
ciated with DSA signature generation and verification. The method accel erates the compu-
tation of modular multiplication and exponentiation by using an untrusted auxiliary device
to provide the magjority of the computing. As such, it also applies to schemes other than
DSA. Arazi [54] shows how to integrate a Diffie-Hellman key exchange into the DSA.

TheElGamal digital signature scheme (Algorithm 11.64) was proposed in 1984 by EIGamal
[368]. ElGamal [368], Mitchell, Piper, and Wild [882], and Stinson [1178] comment further
on its security.

Note 11.66(iv) is dueto Bleichenbacher [153], asis Note 11.67(iii), which isaspecial case
of the following more general result. Suppose p isaprime, a is agenerator of Z”, and y
is the public key of entity A for an instance of the EIGamal signature scheme. Suppose
p — 1 = bg and logarithmsin the subgroup of order b in Z, can be efficiently computed.
Finally, supposethat agenerator 8 = cq for somec, 0 < ¢ < b, and an integer ¢ are known
suchthat 3¢ = o (mod p). For messagem, thepair (r, s) withr = Bands =t {h(m) —
cqz} mod (p—1) wherez satisfiesa?* = y? (mod p) isasignaturefor message m which
will be accepted by Algorithm 11.64. Bleichenbacher also describes how a trapdoor could
be constructed for the ElIGamal signature scheme when system-wide parameters p and «
are selected by afraudulent trusted third party.

Variationsof the EIGamal signing equation describedin §11.5.2 were proposed by ElGamal
[366], Agnew, Mullin, and Vanstone[19], Kravitz [ 711], Schnorr [1098], and Yen and Laih
[1259]. Nyberg and Rueppel [938] and, independently, Horster and Petersen [564], placed
these variationsin amuch more general framework and compared their various properties.

ElGamal signaturesbased on elliptic curvesover finite fieldswerefirst proposed by Koblitz
[695] and independently by Miller [878] in 1985. A variation of the DSA based on elliptic
curves and referred to asthe ECDSA is currently being drafted for an |EEE standard.

The Schnorr signature scheme (Algorithm 11.78). due to Schnorr [1098], is derived from
an identification protocol giveninthe same paper (see §10.4.4). Schnorr proposed aprepro-
cessing method to improve the efficiency of the signature generation in Algorithm 11.78.
Instead of generating a random integer k£ and computing o* mod p for each signature, a
small number of integers k; and o** mod p, 1 < i < t, are precomputed and stored, and
subsequently combined and refreshed for each signature. De Rooij [315] showed that this
preprocessing isinsecureif ¢ issmall.

Brickell and McCurley [207] proposed avariant of the Schnorr scheme. Their method uses
aprimep suchthat p—1 ishardtofactor, aprimedivisor g of p—1, and an element « of order
qinZ,. Thesigningequationiss = ae+k mod (p — 1) asopposed to the Schnorr equation
s = ae+k mod ¢. While computationally less efficient than Schnorr’s, thisvariant hasthe
advantage that its security is based on the difficulty of two hard problems: (i) computing
logarithmsin the cyclic subgroup of order g in Z*; and (ii) factoring p — 1. If either of these
problemsis hard, then the problem of computing logarithmsin Z,, is also hard.

Okamoto [949] describes a variant of the Schnorr scheme which he proves to be secure,
provided that the discrete logarithm problemin Z, is intractable and that correlation-free
hash functions exist (no instance of a correlation-free hash function is yet known). Signa-
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ture generation and verification are not significantly more computationally intensive than
in the Schnorr scheme; however, the public key islarger.

The Nyberg-Rueppel scheme (Algorithm 11.81) is due to Nyberg and Rueppel [936]. For
an extensive treatment including variants, see Nyberg and Rueppel [938]. They note that
unlike RSA, this signature scheme cannot be used for encryption since the signing trans-
formation S has aleft inverse, namely, the verification transformation V, but S is not the
left inverse of V; in other words, V' (S(m)) = m foral m € Z,, but S(V(m)) # m for
most m € Z,. The second paper also defines the notion of strong equivalence between
signature schemes (two signature schemes are called strongly equivalent if the signature
on amessage m in one scheme can be transformed into the corresponding signature in the
other scheme, without knowledge of the private key), and discusses how to modify DSA to
provide message recovery.

Some digital signature schemes makeit easy to conceal information in the signature which
can only be recovered by entities privy to the conceal ment method. Information communi-
cated thisway is said to be subliminal and the conveying mechanismis called a subliminal
channel. Among the paperson this subject are those of Simmons[1139, 1140, 1147, 1149].
Simmons [1139] shows that if a signature requiresi; bitsto convey and provides!; bits of
security, then [; — [, bitsare available for the subliminal channel. This does not imply that
al I; — I, bitscan, infact, be used by the channel; this depends on the signature mechanism.
If alarge proportion of these bits are available, the subliminal channel is said to be broad-
band; otherwise, it is narrowband. Simmons|[1149] points out that ElGamal-like signature
schemes provide a broadband subliminal channel. For example, if the signing equation is
s=k=1.{h(m) — ar} mod (p — 1) where a is the private key known to both the signer
and the recipient of the signature, then k can be used to carry the subliminal message. This
has the disadvantage that the signer must provide the recipient with the private key, allow-
ing the recipient to sign messagesthat will be accepted as having originated with the signer.
Simmons [1147] describes narrowband channelsfor the DSA.

Rabin [1022] proposed the first one-time signature scheme (Algorithm 11.86) in 1978.
Lamport [738] proposed a similar mechanism, popularized by Diffie and Hellman [345],
which does not requireinteraction with the signer for verification. Diffie suggested the use
of aone-way hash function to improve the efficiency of the method. For this reason, the
mechanism is often referred to as the Diffie-Lamport scheme. Lamport [ 738] also describes
a more efficient method for one-time digital signatures, which was rediscovered by Bos
and Chaum [172]. Bos and Chaum provide more substantial modificationswhich lead to a
scheme that can be proven to be existentially unforgeable under adaptive chosen-message
attack, provided RSA is secure.

Merkle's one-time signature scheme (Algorithm 11.92) is due to Merkle [853]; see also
§15.2.3(vi). Themodification described in Note 11.95is attributed by Merkle [853] to Win-
ternitz. Bleichenbacher and Maurer [155] generalize the methods of Lamport, Merkle, and
Winternitz through directed acyclic graphs and one-way functions.

Authentication trees were introduced by Merkle [850, 852, 853] at the time when public-
key cryptography wasin itsinfancy. Since public-key cryptography and, in particular, dig-
ital signatures had not yet been carefully scrutinized, it seemed prudent to devise alternate
methods for providing authentication over insecure channels. Merkle [853] suggests that
authentication trees provide as much versatility as public-key techniques and can be quite
practical. An authentication tree, constructed by a single user to authenticate alarge num-
ber of public values, requires the user to either regenerate the authentication path values
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at the time of use or to store all authentication paths and values in advance. Merkle [853]
describes amethod to minimize the storage requirementsif public valuesare used in apre-
scribed order.

The GMR scheme (Algorithm 11.102) is due to Goldwasser, Micali, and Rivest [484], who
introduced the notion of aclaw-free pair of permutations, and described the construction of
aclaw-free pair of permutations (Example 11.99) based on the integer factorization prob-
lem. Combining the one-time signature scheme with tree authentication givesadigital sig-
nature mechanismwhich Goldwasser, Micali and Rivest proveexistentially unforgeableun-
der an adaptive chosen-message attack. In order to make their scheme more practical, the
tree authentication structure is constructed in such away that the system must retain some
information about preceding signatures (i.e., memory history is required). Goldreich [465]
suggested modifications to both the general scheme and the example based on integer fac-
torization (Example 11.99), removing the memory constraint and, in the latter, improving
the efficiency of the signing procedure. Bellare and Micali [92] generalized the GMR sch-
eme by replacing the claw-free pair of permutations by any trapdoor one-way permutation
(thelatter requiring aweaker cryptographic assumption). Naor and Yung [920] further gen-
eralized the scheme by requiring only the existence of a one-way permutation. The most
general result is due to Rompel [1068], who proved that digital signature schemes which
are secure against an adaptive chosen-message attack exist if and only if one-way functions
exist. Although attractive in theory (dueto the fact that secure digital signatures can bere-
duced to the study of asingle structure), none of these methods seem to providetechniques
as efficient as RSA and other methods which, although their security has yet to be proven
rigorously, have withstood all attacks to date.

On-line/off-line digital signatures (see also §15.2.3(ix)) were introduced by Even, Goldre-
ich, and Micali [377, 378] asameansto speed up the signing processin applicationswhere
computing resourcesarelimited andtimeto signiscritical (e.g., chipcard applications). The
method uses both one-time digital signaturesand digital signaturesarising from public-key
techniques (e.g., RSA, Rabin, DSA). The off-line portion of the signature generation is to
createaset of validation parametersfor aone-timesignature scheme such asthe Merkle sch-
eme (Algorithm 11.92), and to hash this set and sign the resulting hash value using apublic-
key signature scheme. Since the public-key signature scheme is computationally morein-
tensive, it is done off-line. The off-line computations are independent of the message to be
signed. Theon-line portionisto sign the message using the one-time signature scheme and
the validation parameterswhich were constructed off-line; this part of the signature process
isvery efficient. Signatures are much longer than would be the case if only the public-key
signature mechanism were used to sign the message directly and, consequently, bandwidth
requirements are a disadvantage of this procedure.

Thearbitrated digital signature schemeof Algorithm 11.109isfrom Daviesand Price[308],
based on work by Needham and Schroeder [923].

ESIGN (Algorithm 11.113; s2e also §15.2.2(i)), proposed by Okamoto and Shiraishi [953],
was moativated by the signature mechanism OSS devised earlier by Ong, Schnorr, and Sha-
mir [958]. The OSS scheme was shown to be insecure by Pollard in a private communi-
cation. Ong, Schnorr, and Shamir [958] modified their original scheme but this too was
shown insecure by Estes et al. [374]. ESIGN bases its security on the integer factorization
problem and the problem of solving polynomial inequalities. The original version [953]
proposed k = 2 asthe appropriatevalue for the public key. Brickell and DeLaurentis[202]
demonstrated that this choice was insecure. Their attack also extendsto thecase k = 3;
see Brickell and Odlyzko [209, p.516]. Okamoto [948] revised the method by requiring
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k > 4. No weaknesses for these values of k£ have been reported in the literature. Fujioka,
Okamoto, and Miyaguchi [428] describe an implementation of ESIGN which suggests that
it istwenty times faster than RSA signatures with comparable key and signature lengths.

Blind signatures (§11.8.1) were introduced by Chaum [242], who described the concept,
desired properties, and a protocol for untraceable payments. The first concrete realization
of the protocol (Protocol 11.119) was by Chaum [243]. Chaum and Pedersen [251] provide
adigita signature schemewhichisavariant of the ElGamal signaturemechanism (§11.5.2),
using asigning equation similar to the Schnorr scheme (§11.5.3), but computationally more
intensivefor both signing and verification. Thissignature techniqueisthen used to provide
ablind signature scheme.

The concept of a blind signature was extended by Chaum [245] to blinding for unantici-
pated signatures. Camenisch, Piveteau, and Stadler [228] describe a blind signature pro-
tocol based on the DSA (Algorithm 11.56) and one based on the Nyberg-Rueppel scheme
(Algorithm 11.81). Horster, Petersen, and Michels [563] consider a number of variants of
these protocols. Stadler, Piveteau, and Camenisch [1166] extend the idea of ablind signa
tureto afair blind signature where the signer in cooperation with atrusted third party can
link the message and signature, and trace the sender.

Chaum, Fiat, and Naor [250] propose a scheme for untraceable electronic cash, which al-
lows a participant A to receive an electronic cash token from a bank. A can subsequently
spend the token at a shop B, which need not be on-line with the bank to accept and verify
the authenticity of the token. When the token is cashed at the bank by B, the bank isunable
to associate it with A. If, however, A attemptsto spend the token twice (double-spending),
A’sidentity isrevealed. Okamoto [951] proposesadivisible electronic cash scheme. A di-
visible electronic coin is an e ement which has some monetary val ue associated with it, and
which can be used to make el ectronic purchases many times, provided the total value of all
transactions does not exceed the value of the coin.

Undeniablesignatures (§11.8.2) werefirst introduced by Chaum and van Antwerpen [252],
along with a disavowal protocol (Protocol 11.125). Chaum [246] shows how to modify
the verification protocol for undeniable signatures (step 2 of Algorithm 11.122) to obtaina
zero-knowledge verification.

One shortcoming of undeniable signature schemes is the possibility that the signer is un-
available or refuses to co-operate so that the signature cannot be verified by a recipient.
Chaum [247] proposed the idea of a designated confirmer signature where the signer des-
ignates some entity as a confirmer of its signature. If the signer is unavailable or refusesto
co-operate, the confirmer hasthe ability to interact with arecipient of asignaturein order to
verify it. The confirmer isunableto create signaturesfor the signer. Chaum [247] describes
an exampl e of designated confirmer signatures based on RSA encryption. Okamoto [950]
provides a moreindepth analysis of this technique and gives other realizations.

A convertible undeniable digital signature, introduced by Boyar et al. [181], is an unde-
niable signature (§11.8.2) with the property that the signer A can reveal a secret piece of
information, causing all undeniable signatures signed by A to become ordinary digital sig-
natures. These ordinary digital signatures can be verified by anyone using only the public
key of A and requiring no interaction with A in the verification process; i.e., the signatures
become self-authenticating. This secret information which is made available should not
permit anyone to create new signatures which will be accepted as originating from A. As
an application of thistype of signature, consider the following scenario. Entity A signsall
documents during her lifetime with convertible undeniable signatures. The secret piece of
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information needed to convert these signaturesto self-authenticating signaturesisplaced in
trust with her lawyer B. After the death of A, the lawyer can make the secret information
public knowledge and all signatures can be verified. B does not have the ability to alter
or create new signatures on behalf of A. Boyar et al. [181] give arealization of the con-
cept of convertible undeniable signatures using EIGamal signatures; (§11.5.2) and describe
how one can reveal information selectively to convert some, but not all, previously created
signatures to self-authenticating ones.

Chaum, van Heijst, and Pfitzmann [254] provide amethod for constructing undeniable sig-
natures which are unconditionally secure for the signer.

Fail-stop signatures were introduced by Waidner and Pfitzmann [1227] and formally de-
fined by Pfitzmann and Waidner [971]. Thefirst constructionsfor fail-stop signatures used
claw-free pairs of permutations (Definition 11.98) and one-time signature methods (see
Pfitzmann and Waidner [972]). More efficient techniques were provided by van Heijst and
Pedersen [1201], whose construction is the basis for Alagorithm 11.130; they describe three
methods for extending the one-time nature of the scheme to multiple signings. Van Heljt,
Pedersen, and Pfitzmann [1202] extended the idea of van Heljst and Pedersen to fail-stop
signatures based on the integer factorization problem.

Damgard [298] proposed a signature scheme in which the signer can gradually and verifi-
ably release the signature to a verifier.

Chaum and van Heijst [ 253] introduced the concept of agroup signature. A group signature
hasthefollowing properties: (i) only membersof apredefined group can sign messages; (ii)
anyonecan verify the validity of asignature but no oneis ableto identify which member of
the group signed; and (iii) in case of disputes, the signature can be opened (with or without
the help of group members) to reveal theidentity of the group member who signedit. Chen
and Pedersen [ 255] extended thisideato provide group signatureswith additional function-
ality.
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