
CHAPTER SEVEN

General Cryptographic Protocols

The design of secure protocols that implement arbitrarily desired functionalities is a
major part of modern cryptography. Taking the opposite perspective, the design of any
cryptographic scheme may be viewed as the design of a secure protocol for implement-
ing a suitable functionality. Still, we believe that it makes sense to differentiate between
basic cryptographic primitives (which involve little interaction) like encryption and
signature schemes, on the one hand, and general cryptographic protocols, on the other
hand.

In this chapter we consider general results concerning secure multi-party computa-
tions, where the two-party case is an important special case. In a nutshell, these results
assert that one can construct protocols for securely computing any desirable multi-party
functionality (see the following terminology). Indeed, what is striking about these re-
sults is their generality, and we believe that the wonder is not diminished by the (various
alternative) conditions under which these results hold.

Our focus on the general study of secure multi-party computation (rather than on
protocols for solving specific problems) is natural in the context of the theoretical
treatment of the subject matter. We wish to highlight the importance of this general
study to practice. Firstly, this study clarifies fundamental issues regarding security in
a multi-party environment. Secondly, it draws the lines between what is possible in
principle and what is not. Thirdly, it develops general techniques for designing secure
protocols. And last, sometimes it may even yield schemes (or modules) that may be
incorporated in practical systems. Thus, we believe that the current chapter is both of
theoretical and practical importance.

Terminology. The notion of a (multi-party) functionality is central to the current chap-
ter. By an m-ary functionality we mean a random process that maps m inputs to m
outputs, where functions mapping m inputs to m outputs are a special case (also re-
ferred to as deterministic functionalities). Thus, functionalities are randomized exten-
sions of ordinary functions. One may think of a functionality F as being a probability
distribution over (corresponding) functions (i.e., F equals the function f (i) with prob-
ability pi ). Alternatively, we think of F(x1, ..., xm) as selecting at random a string r ,
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GENERAL CRYPTOGRAPHIC PROTOCOLS

and outputting F ′(r, x1, ..., xm), where F ′ is a function mapping m + 1 inputs to m
outputs.

Teaching Tip. The contents of the current chapter are quite complex. We suggest
covering in class only the overview section (i.e., Section 7.1), and consider the rest of
this chapter to be advanced material. Furthermore, we assume that the reader is familiar
with the material in all the previous chapters. This familiarity is important, not only
because we use some of the notions and results presented in these chapters but also
because we use similar proof techniques (and do so while assuming that this is not the
reader’s first encounter with these techniques).

Organization. In addition to the overview section (i.e., Section 7.1), the current chapter
consists of two main parts:

The first part (i.e., Sections 7.2–7.4) consists of a detailed treatment of general secure
two-party protocols. Our ultimate goal in this part is to design two-party protocols
that withstand any feasible adversarial behavior. We proceed in two steps. First, we
consider a benign type of adversary, called semi-honest, and construct protocols that
are secure with respect to such an adversary (cf. Section 7.3). Next, we show how to
force parties to behave in a semi-honest manner (cf. Section 7.4). That is, we show
how to transform any protocol, secure in the semi-honest model, into a protocol
that is secure against any feasible adversarial behavior. But before presenting these
constructions, we present the relevant definitions (cf. Section 7.2).

The second part (i.e., Sections 7.5 and 7.6) deals with general secure multi-party pro-
tocols. Specifically, in Section 7.5 we extend the treatment presented in the first part
to multi-party protocols, whereas in Section 7.6 we consider the “private channel
model” and present alternative constructions for it.

Although it is possible to skip some of the earlier sections of this chapter before reading
a later section, we recommend not doing so. In particular, we recommend reading the
overview section (i.e., Section 7.1) before reading any later section.

7.1. Overview

A general framework for casting (m-party) cryptographic (protocol) problems consists
of specifying a random process that maps m inputs to m outputs. The inputs to the
process are to be thought of as local inputs of m parties, and the m outputs are their
corresponding (desired) local outputs. The random process describes the desired func-
tionality. That is, if the m parties were to trust each other (or trust some external party),
then they could each send their local input to the trusted party, who would compute
the outcome of the process and send to each party the corresponding output. A pivotal
question in the area of cryptographic protocols is the extent to which this (imaginary)
trusted party can be “emulated” by the mutually distrustful parties themselves. (See
illustration in Figure 7.1.)
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7.1 OVERVIEW

REAL   MODEL IDEAL   MODEL
Figure 7.1: Secure protocols emulate a trusted party: an illustration.

The results mentioned previously and surveyed later describe a variety of models in
which such an “emulation” is possible. The models vary by the underlying assumptions
regarding the communication channels, the numerous parameters relating to the extent
of adversarial behavior, and the desired level of emulation of the trusted party (i.e.,
level of “security”). We stress that unless stated differently, the two-party case is an
important special case of the treatment of the multi-party setting (i.e., we consider any
m ≥ 2).

7.1.1. The Definitional Approach and Some Models

Before describing the abovementioned results, we further discuss the notion of “emu-
lating a trusted party,” which underlies the definitional approach to secure multi-party
computation. The approach can be traced back to the definition of zero-knowledge (see
Section 4.3 of Volume 1), and even to the definition of semantic security (see Sec-
tion 5.2.1). The underlying paradigm (called the simulation paradigm) is that a scheme
is secure if whatever a feasible adversary can obtain after attacking it is also feasibly
attainable in an “ideal setting.” In the case of zero-knowledge, this amounts to say-
ing that whatever a (feasible) verifier can obtain after interacting with the prover on a
prescribed valid assertion can be (feasibly) computed from the assertion itself. In the
case of multi-party computation, we compare the effect of adversaries that participate
in the execution of the actual protocol to the effect of adversaries that participate in
an imaginary execution of a trivial (ideal) protocol for computing the desired func-
tionality with the help of a trusted party. If whatever adversaries can feasibly obtain
in the former real setting can also be feasibly obtained in the latter ideal setting, then
the protocol “emulates the ideal setting” (i.e., “emulates a trusted party”), and so is
deemed secure. This means that properties that are satisfied in the ideal setting are
also satisfied by a secure protocol that is executed in the real setting. For example,
security typically implies the preservation of the privacy of the parties’ local inputs
(beyond whatever is revealed by the local outputs provided to the adversary), and
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GENERAL CRYPTOGRAPHIC PROTOCOLS

the correctness of the honest parties’ local outputs (i.e., their consistency with the
functionality).

The approach outlined here can be applied in a variety of models, and is used to
define the goals of security in these models.1 We first discuss some of the parameters
used in defining various models, and next demonstrate the application of this approach
to a couple of important cases (cf. Sections 7.1.1.2 and 7.1.1.3).

7.1.1.1. Some Parameters Used in Defining Security Models

The following parameters are described in terms of the actual (or real) computation.
In some cases, the corresponding definition of security is obtained by some restric-
tions or provisions applied to the ideal model. In all cases, the desired notion of se-
curity is defined by requiring that for any adequate adversary in the real model, there
exists a corresponding adversary in the corresponding ideal model that obtains es-
sentially the same impact on the computation of the functionality (as the real-model
adversary).

� Set-up assumptions: Unless differently stated, we make no set-up assumptions (ex-
cept for the obvious assumption that all parties have copies of the protocol’s program).
However, in some cases it is assumed that each party knows some information (e.g.,
a verification-key) corresponding to each of the other parties (or, one may assume
the existence of a public-key infrastructure). Another assumption, made more rarely,
is that all parties have access to some common (trusted) random string.

� The communication channels: Here we refer to issues like the privacy and reliablity
of data sent over the channels, as well as to the availability and the communication
features of the channels.
The standard assumption in the area is that the adversary can tap all communication
channels (between honest parties); that is, the channels per se do not provide privacy
(i.e., privacy of the data sent over them). In contrast, one may postulate that the ad-
versary cannot obtain messages sent between honest parties, yielding the so-called
private-channel model. This postulate may be justified in some settings. Further-
more, it may be viewed as a useful abstraction that provides a clean model for study
and development of secure protocols. In this respect, it is important to mention that
in a variety of settings of the other parameters, the private-channel model can be
emulated by ordinary (i.e., “tapped” point-to-point) channels.
The standard assumption in the area is that the adversary cannot omit, modify, dupli-
cate, or generate messages sent over the communication channels (between honest

1 A few technical comments are in place. Firstly, we assume that the inputs of all parties are of the same length.
We comment that as long as the lengths of the inputs are polynomially related, this convention can be enforced
by padding. On the other hand, some length restriction is essential for the security results, because (in general)
it is impossible to hide all information regarding the length of the inputs to a protocol. Secondly, we assume that
the desired functionality is computable in probabilistic polynomial-time, because we wish the secure protocol to
run in probabilistic polynomial-time (and a protocol cannot be more efficient than the corresponding centralized
algorithm). Clearly, the results can be extended to functionalities that are computable within any given (time-
constructible) time bound, using adequate padding.
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7.1 OVERVIEW

parties); that is, the channels are postulated to be reliable (in the sense that they guar-
antee the authenticity of the data sent over them). Furthermore, one may postulate
the existence of a broadcast channel. Again, these assumptions can be justified in
some settings and emulated in others.
Most work in the area assumes that communication is synchronous and that point-
to-point channels exist between every pair of processors. However, one may also
consider asynchronous communication and arbitrary networks of point-to-point
channels.

� Computational limitations: Typically, we consider computationally bounded adver-
saries (e.g., probabilistic polynomial-time adversaries). However, the private-channel
model also allows for (meaningful) consideration of computationally unbounded ad-
versaries.
We stress that, also in the latter case, security should be defined by requiring
that for every real adversary, whatever the adversary can compute after partici-
pating in the execution of the actual protocol be computable within comparable
time (e.g., in polynomially related time) by an imaginary adversary participating
in an imaginary execution of the trivial ideal protocol (for computing the desired
functionality with the help of a trusted party). Thus, results in the computationally
unbounded–adversary model trivially imply results for computationally bounded
adversaries.

� Restricted adversarial behavior: The most general type of an adversary considered
in the literature is one that may corrupt parties to the protocol while the execution
goes on, and decide which parties to corrupt based on partial information it has
gathered so far. A somewhat more restricted model, which seems adequate in many
settings, postulates that the set of dishonest parties is fixed (arbitrarily) before the
execution starts (but this set is, of course, not known to the honest parties). The latter
model is called non-adaptive as opposed to the adaptive adversary mentioned
first.
An orthogonal parameter of restriction refers to whether a dishonest party takes
active steps to disrupt the execution of the protocol (i.e., sends messages that dif-
fer from those specified by the protocol), or merely gathers information (which it
may later share with the other dishonest parties). The latter adversary has been
given a variety of names, such as semi-honest, passive, and honest-but-curious.
This restricted model may be justified in certain settings, and certainly provides a
useful methodological locus (cf. Section 7.1.3). In the following, we refer to the
adversary of the unrestricted model as active; another commonly used name is
malicious.

� Restricted notions of security: One example is the willingness to tolerate “unfair”
protocols in which the execution can be suspended (at any time) by a dishonest
party, provided that it is detected doing so. We stress that in case the execution is
suspended, the dishonest party does not obtain more information than it could have
obtained if the execution were not suspended. What may happen is that some honest
parties will not obtain their desired outputs (although other parties did obtain their
corresponding outputs), but will rather detect that the execution was suspended. We
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GENERAL CRYPTOGRAPHIC PROTOCOLS

will say that this restricted notion of security allows abort (or allows premature
suspension of the execution).

� Upper bounds on the number of dishonest parties: In some models, secure multi-party
computation is possible only if a strict majority of the parties are honest.2 Some-
times even a special majority (e.g., 2/3) is required. General “resilient adversary-
structures” have been considered, too (i.e., security is guaranteed in the case that the
set of dishonest parties equals one of the sets specified in a predetermined family
of sets).

� Mobile adversary: In most works, once a party is said to be dishonest it remains
so throughout the execution. More generally, one may consider transient adversarial
behavior (e.g., an adversary seizes control of some site and later withdraws from
it). This model, which will not be further discussed in this work, allows for the
construction of protocols that remain secure, even in case the adversary may seize
control of all sites during the execution (but never control concurrently, say, more than
10 percent of the sites). We comment that schemes secure in this model were later
termed “proactive.”

In the rest of this chapter we will consider a few specific settings of these parameters.
Specifically, we will focus on non-adaptive, active, and computationally bounded ad-
versaries, and will not assume the existence of private channels. In Section 7.1.1.2 we
consider this setting while restricting the dishonest parties to a strict minority, whereas
in Section 7.1.1.3 we consider a restricted notion of security for two-party protocols
that allows “unfair suspension” of execution (or “allows abort”).

7.1.1.2. Example: Multi-Party Protocols with Honest Majority

We consider a non-adaptive, active, computationally bounded adversary, and do not
assume the existence of private channels. Our aim is to define multi-party protocols
that remain secure provided that the honest parties are in the majority. (The reason for
requiring an honest majority will be discussed at the end of this subsection.) For more
details about this model, see Section 7.5.1.

Consider any multi-party protocol. We first observe that each party may change its
local input before even entering the execution of the protocol. Furthermore, this is also
unavoidable when the parties utilize a trusted party Consequently, such an effect of the
adversary on the real execution (i.e., modification of its own input prior to entering the
actual execution) is not considered a breach of security. In general, whatever cannot
be avoided (even) when the parties utilize a trusted party is not considered a breach
of security. We wish secure protocols (in the real model) to suffer only from whatever
is also unavoidable when the parties utilize a trusted party. Thus, the basic paradigm
underlying the definitions of secure multi-party computations amounts to saying that
the only situations that may occur in the real execution of a secure protocol are those that
can also occur in a corresponding ideal model (where the parties may employ a trusted

2 Indeed, requiring an honest majority in the two-party case yields a meaningless model.
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7.1 OVERVIEW

party). In other words, the “effective malfunctioning” of parties in secure protocols is
restricted to what is postulated in the corresponding ideal model.

When defining secure multi-party protocols (with honest majority), we need to pin-
point what cannot be avoided in the ideal model (i.e., when the parties utilize a trusted
party). This is easy, because the ideal model is very simple. Since we are interested in
executions in which the majority of parties are honest, we consider an ideal model in
which any minority group (of the parties) may collude as follows:

1. Firstly, the dishonest minority parties share their original inputs and decide together
on replaced inputs to be sent to the trusted party. (The other parties send their
respective original inputs to the trusted party. We stress that the communication
between the honest parties and the trusted party is not seen by the dishonest colluding
minority parties.)

2. Upon receiving inputs from all parties, the trusted party determines the corresponding
outputs and sends them to the corresponding parties.

3. Upon receiving the “output message” from the trusted party, each honest party outputs
it locally, whereas the dishonest colluding minority parties may determine their
outputs based on all they know (i.e., their initial inputs and their received outputs).

Note that such behavior of the minority group is unavoidable in any execution of any
protocol (even in the presence of trusted parties). This is the reason that the ideal model
was so defined. Now, a secure multi-party computation with honest majority is required
to emulate this ideal model. That is, the effect of any feasible adversary that controls
a minority of the parties in a real execution of the actual protocol can be essentially
simulated by a (different) feasible adversary that controls the same parties in the ideal
model.

Definition 7.1.1 (secure protocols – a sketch): Let f be an m-ary functionality and �

be an m-party protocol operating in the real model.

� For a real-model adversary A, controlling some minority of the parties (and tapping
all communication channels), and an m-sequence x, we denote by real�, A(x) the
sequence of m outputs resulting from the execution of � on input x under attack of
the adversary A.

� For an ideal-model adversary A′, controlling some minority of the parties, and an
m-sequence x, we denote by ideal f, A′(x) the sequence of m outputs resulting from
the ideal process described previously, on input x under attack of the adversary A′.

We say that � securely implements f with honest majority if for every feasible real-
model adversary A, controlling some minority of the parties, there exists a feasible ideal-
model adversary A′, controlling the same parties, so that the probability ensembles
{real�, A(x)}x and {ideal f, A′(x)}x are computationally indistinguishable (as in Part 2
of Definition 3.2.7 in Volume 1).

Thus, security means that the effect of each minority group in a real execution of a secure
protocol is “essentially restricted” to replacing its own local inputs (independently of
the local inputs of the majority parties) before the protocol starts, and replacing its
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own local outputs (depending only on its local inputs and outputs) after the protocol
terminates. (We stress that in the real execution, the minority parties do obtain additional
pieces of information; yet in a secure protocol they gain nothing from these additional
pieces of information.)

The fact that Definition 7.1.1 refers to a model without private channels is reflected
in the set of possible ensembles {real�, A(x)}x that is determined by the (sketchy)
definition of the real-model adversary (which is allowed to tap all the communication
channels). When defining security in the private-channel model, the real-model adver-
sary is not allowed to tap channels between honest parties, which in turn restricts the
set of possible ensembles {real�, A(x)}x . Thus, the difference between the two models
is only reflected in the definition of the real-model adversary. On the other hand, when
we wish to define security with respect to passive adversaries, both the scope of the
real-model adversaries and the scope of the ideal-model adversaries change. In the real-
model execution, all parties follow the protocol, but the adversary may alter the output
of the dishonest parties arbitrarily, depending on all their intermediate internal states
(during the execution). In the corresponding ideal-model, the adversary is not allowed
to modify the inputs of dishonest parties (in Step 1), but is allowed to modify their
outputs (in Step 3).

We comment that a definition analogous to Definition 7.1.1 can also be presented
in case the dishonest parties are not in the minority. In fact, such a definition seems
more natural, but the problem is that such a definition cannot be satisfied. That is,
most natural functionalities do not have a protocol for computing them securely in case
at least half of the parties are dishonest and employ an adequate (active) adversarial
strategy. This follows from an impossibility result regarding two-party computation,
which essentially asserts that there is no way to prevent a party from prematurely
suspending the execution. On the other hand, secure multi-party computation with
dishonest majority is possible if (and only if) premature suspension of the execution is
not considered a breach of security.

7.1.1.3. Another Example: Two-Party Protocols Allowing Abort

In light of the last paragraph, we now consider multi-party computations in which
premature suspension of the execution is not considered a breach of security. For con-
creteness, we focus here on the special case of two-party computations.3 For more
details about this model, see Section 7.2.3.

Intuitively, in any two-party protocol, each party may suspend the execution at any
point in time, and furthermore, it may do so as soon as it learns the desired output.
Thus, in case the output of each parties depends on both inputs, it is always possible
for one of the parties to obtain the desired output while preventing the other party from
fully determining its own output. The same phenomenon occurs even in case the two
parties just wish to generate a common random value. Thus, when considering active
adversaries in the two-party setting, we do not consider such premature suspension of
the execution a breach of security. Consequently, we consider an ideal model where

3 As in Section 7.1.1.2, we consider a non-adaptive, active, computationally bounded adversary.
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each of the two parties may “shut down” the trusted (third) party at any point in time.
In particular, this may happen after the trusted party has supplied the outcome of the
computation to one party but before it has supplied it to the second. That is, an execution
in the ideal model proceeds as follows:

1. Each party sends its input to the trusted party, where the dishonest party may replace
its input or send no input at all (which may be viewed as aborting).

2. Upon receiving inputs from both parties, the trusted party determines the corre-
sponding outputs and sends the first output to the first party.

3. In case the first party is dishonest, it may instruct the trusted party to halt; otherwise
it always instructs the trusted party to proceed. If instructed to proceed, the trusted
party sends the second output to the second party.

4. Upon receiving the output message from the trusted party, the honest party outputs
it locally, whereas the dishonest party may determine its output based on all it knows
(i.e., its initial input and its received output).

A secure two-party computation allowing abort is required to emulate this ideal
model. That is, as in Definition 7.1.1, security is defined by requiring that for every
feasible real-model adversary A, there exists a feasible ideal-model adversary A′, con-
trolling the same party, so that the probability ensembles representing the corresponding
(real and ideal) executions are computationally indistinguishable. This means that each
party’s “effective malfunctioning” in a secure protocol is restricted to supplying an ini-
tial input of its choice and aborting the computation at any point in time. (Needless to
say, the choice of the initial input of each party may not depend on the input of the other
party.)

We mention that an alternative way of dealing with the problem of premature sus-
pension of execution (i.e., abort) is to restrict attention to single-output functionalities,
that is, functionalities in which only one party is supposed to obtain an output. The defi-
nition of secure computation of such functionalities can be identical to Definition 7.1.1,
with the exception that no restriction is made on the set of dishonest parties (and, in
particular, one may consider a single dishonest party in the case of two-party protocols).
For further details, see Section 7.2.3.2.

7.1.2. Some Known Results

We briefly mention some of the models for which general secure multi-party com-
putation is known to be attainable; that is, models in which one can construct secure
multi-party protocols for computing any desired functionality.

7.1.2.1. The Main Results Presented in This Chapter

We start with results that refer to secure two-party protocols, as well as to secure multi-
party protocols in the standard model (where the adversary may tap the communication
lines).
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Theorem 7.1.2 (the main feasibility results – a sketch): Assuming the existence of
enhanced trapdoor permutations (as in Definition C.1.1 in Appendix C), general secure
multi-party computation is possible in the following three models:

1. Passive adversary, for any number of dishonest parties.
2. Active adversary that may control only a strict minority of the parties.
3. Active adversary, controlling any number of bad parties, provided that suspension

of execution is not considered a violation of security.

In all these cases, the adversary is computationally bounded and non-adaptive. On the
other hand, the adversary may tap the communication lines between honest parties (i.e.,
we do not assume the existence of private channels). The results for active adversaries
assume a broadcast channel.

Recall that a broadcast channel can be implemented (while tolerating any num-
ber of bad parties) using a signature scheme and assuming a public-key infrastruc-
ture (i.e., each party knows the verification-key corresponding to each of the other
parties).4

Most of the current chapter will be devoted to proving Theorem 7.1.2. In Sections 7.3
and 7.4 we prove Theorem 7.1.2 for the special case of two parties: In that case, Part 2
is not relevant, Part 1 is proved in Section 7.3, and Part 3 is proved in Section 7.4. The
general case (i.e., of multi-party computation) is treated in Section 7.5.

7.1.2.2. Other Results

We next list some other models in which general secure multi-party computation is
attainable:

� Making no computational assumptions and allowing computationally unbounded
adversaries, but assuming the existence of private channels, general secure multi-
party computation is possible in the following models:

1. Passive adversary that may control only a (strict) minority of the parties.
2. Active adversary that may control only less than one third of the parties. (Fault-

tolerance can be increased to a regular minority if a broadcast channel exists.)

In both cases the adversary may be adaptive. For details, see Sections 7.6 and 7.7.1.2.
� General secure multi-party computation is possible against an active adaptive, and

mobile adversary that may control a small constant fraction of the parties at any point
in time. This result makes no computational assumptions, allows computationally
unbounded adversaries, but assumes the existence of private channels.

4 Note that the implementation of a broadcast channel can be cast as a cryptographic protocol problem (i.e., for
the functionality (v, λ, ..., λ) �→ (v, v, ..., v), where v ∈ {0, 1}∗ and λ denotes the empty string). Thus, it is not
surprising that the results regarding active adversaries assume the existence of either such a channel or a setting
in which such a channel can be implemented (e.g., either that less than a third of the parties are faulty or that a
public-key infrastructure exists). (This reasoning fails if the definition of secure protocols is relaxed such that
it does not imply agreement; see [122].)
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7.1 OVERVIEW

� Assuming the intractability of inverting RSA (or of the DLP), general secure
multi-party computation is possible in a model allowing an adaptive and active
computationally bounded adversary that may control only less than one third of the
parties. We stress that this result does not assume the existence of private channels.

Results for asynchronous communication and arbitrary networks of point-to-point chan-
nels are also known. For further details, see Section 7.7.5.

7.1.2.3. An Extension and Efficiency Considerations

Secure Reactive Computation. All the aforementioned results extend (easily) to a
reactive model of computation in which each party interacts with a high-level process
(or application). The high-level process adaptively supplies each party with a sequence
of inputs, one at a time, and expects to receive corresponding outputs from the parties.
That is, a reactive system goes through (a possibly unbounded number of) iterations of
the following type:

� Parties are given inputs for the current iteration.
� Depending on the current inputs, the parties are supposed to compute outputs for the

current iteration. That is, the outputs in iteration j are determined by the inputs of
the j-th iteration.

A more general formulation allows the outputs of each iteration to depend also on a
global state, which is possibly updated at each iteration. The global state may include all
inputs and outputs of previous iterations, and may only be partially known to individual
parties. (In a secure reactive computation, such a global state may be maintained by all
parties in a “secret sharing” manner.) For further discussion, see Section 7.7.1.3.

Efficiency considerations. One important efficiency measure regarding protocols is
the number of communication rounds in their execution. The results mentioned earlier
were originally obtained using protocols that use an unbounded number of rounds. In
some cases, subsequent works obtained secure constant-round protocols. Other im-
portant efficiency considerations include the total number of bits sent in the execution
of a protocol and the local computation time. The communication and computation
complexities of the aforementioned protocols are related to the computational com-
plexity of the desired functionalities, but alternative relations (e.g., referring to the
communication complexity of the latter) may be possible.

7.1.3. Construction Paradigms

We briefly sketch three paradigms used in the construction of secure multi-party pro-
tocols. We focus on the construction of secure protocols for the model of computa-
tionally bounded and non-adaptive adversaries. These constructions proceed in two
steps: First, a secure protocol is presented for the model of passive adversaries (for
any number of dishonest parties), and next, such a protocol is “compiled” into a
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protocol that is secure in one of the two models of active adversaries (i.e., either
in a model allowing the adversary to control only a minority of the parties or in a
model in which premature suspension of the execution is not considered a violation of
security).

Recall that in the model of passive adversaries, all parties follow the prescribed
protocol, but at termination, the adversary may alter the output of the dishonest parties
depending on all their intermediate internal states (during the execution). In the fol-
lowing, we refer to protocols that are secure in the model of passive (resp., general or
active) adversaries by the term passively secure (resp., actively secure).

7.1.3.1. From Passively Secure Protocols to Actively Secure Ones

We show how to transform any passively secure protocol into a corresponding ac-
tively secure protocol. The communication model in both protocols consists of a single
broadcast channel. Note that the messages of the original (passively secure) protocol
may be assumed to be sent over a broadcast channel, because the adversary may see
them anyhow (by tapping the point-to-point channels). As for the resulting actively se-
cure protocol, the broadcast channel it uses can be implemented via an (authenticated)
Byzantine Agreement protocol (cf. Section 7.5.3.2), thus providing an emulation of
this model on the standard point-to-point model (in which a broadcast channel does not
exist). We mention that authenticated Byzantine Agreement is typically implemented
using a signature scheme (and assuming that each party knows the verification-key
corresponding to each of the other parties).

Turning to the transformation itself, the main idea is to use zero-knowledge proofs
in order to force parties to behave in a way that is consistent with the (passively secure)
protocol. Actually, we need to confine each party to a unique consistent behavior (i.e.,
according to some fixed local input and a sequence of coin tosses), and to guarantee
that a party cannot fix its input (and/or its coins) in a way that depends on the inputs of
honest parties. Thus, some preliminary steps have to be taken before the step-by-step
emulation of the original protocol can take place. Specifically, the compiled protocol
(which, like the original protocol, is executed over a broadcast channel) proceeds as
follows:

1. Prior to the emulation of the original protocol, each party commits to its input (using
a commitment scheme). In addition, using a zero-knowledge proof-of-knowledge
(cf. Section 4.7 of Volume 1), each party also proves that it knows its own in-
put, that is, that it can properly decommit to the commitment it sent. (These
zero-knowledge proofs-of-knowledge are conducted sequentially to prevent dis-
honest parties from setting their inputs in a way that depends on inputs of honest
parties.)

2. Next, all parties jointly generate a sequence of random bits for each party such that
only this party knows the outcome of the random sequence generated for it, but
everybody gets a commitment to this outcome. These sequences will be used as the
random-inputs (i.e., sequence of coin tosses) for the original protocol. Each bit in
the random-sequence generated for Party X is determined as the exclusive-or of the
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7.1 OVERVIEW

outcomes of instances of an (augmented) coin-tossing protocol that Party X plays
with each of the other parties.

3. In addition, when compiling (the passively secure protocol to an actively secure
protocol) for the model that allows the adversary to control only a minority of the
parties, each party shares its input and random-input with all other parties using
a Verifiable Secret Sharing protocol (cf. Section 7.5.5). This will guarantee that if
some party prematurely suspends the execution, then all the parties can together
reconstruct all its secrets and carry on the execution while playing its role.

4. After all these steps have been completed, we turn to the main step in which the new
protocol emulates the original one. In each step, each party augments the message
determined by the original protocol with a zero-knowledge that asserts that the mes-
sage was indeed computed correctly. Recall that the next message (as determined
by the original protocol) is a function of the sender’s own input, its random-input,
and the messages it has received so far (where the latter are known to everybody
because they were sent over a broadcast channel). Furthermore, the sender’s input
is determined by its commitment (as sent in Step 1), and its random-input is simi-
larly determined (in Step 2). Thus, the next message (as determined by the original
protocol) is a function of publicly known strings (i.e., the said commitments as well
as the other messages sent over the broadcast channel). Moreover, the assertion that
the next message was indeed computed correctly is an NP-assertion, and the sender
knows a corresponding NP-witness (i.e., its own input and random-input, as well as
the corresponding decommitment information). Thus, the sender can prove (to each
of the other parties) in zero-knowledge that the message it is sending was indeed
computed according to the original protocol.

A detailed description is provided in Section 7.4 (see also Section 7.5.4).

7.1.3.2. Passively Secure Computation with “Scrambled Circuits”

The following technique refers mainly to two-party computation. Suppose that two
parties, each having a private input, wish to obtain the value of a predetermined two-
argument function evaluated at their corresponding inputs, that is, we consider only
functionalities of the form (x , y) �→ ( f (x , y), f (x , y)). Further suppose that the two
parties hold a circuit that computes the value of the function on inputs of the adequate
length. The idea is to have one party construct a “scrambled” form of the circuit so
that the other party can propagate encrypted values through the “scrambled gates” and
obtain the output in the clear (while all intermediate values remain secret). Note that the
roles of the two parties are not symmetric, and recall that we are describing a protocol
that is secure (only) with respect to passive adversaries. An implementation of this idea
proceeds as follows:

� Constructing a “scrambled” circuit: The first party constructs a scrambled form
of the original circuit. The scrambled circuit consists of pairs of encrypted secrets
that correspond to the wires of the original circuit and gadgets that correspond to
the gates of the original circuit. The secrets associated with the wires entering a
gate are used (in the gadget that corresponds to this gate) as keys in the encryption
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of the secrets associated with the wire exiting this gate. Furthermore, there is a
random correspondence between each pair of secrets and the Boolean values (of the
corresponding wire). That is, wire w is assigned a pair of secrets, denoted (s ′

w , s ′′
w ),

and there is a random 1-1 mapping, denoted νw , between this pair and the pair of
Boolean values (i.e., {νw (s ′

w ), νw (s ′′
w )} = {0, 1}).

Each gadget is constructed such that knowledge of a secret that corresponds to
each wire entering the corresponding gate (in the circuit) yields a secret corre-
sponding to the wire that exits this gate. Furthermore, the reconstruction of se-
crets using each gadget respects the functionality of the corresponding gate. For
example, if one knows the secret that corresponds to the 1-value of one entry-wire
and the secret that corresponds to the 0-value of the other entry-wire, and the gate
is an or-gate, then one obtains the secret that corresponds to the 1-value of the
exit-wire.
Specifically, each gadget consists of four templates that are presented in a random
order, where each template corresponds to one of the four possible values of the
two entry-wires. A template may be merely a double encryption of the secret that
corresponds to the appropriate output value, where the double encryption uses as
keys the two secrets that correspond to the input values. That is, suppose a gate
computing f : {0, 1}2 → {0, 1} has input wires w1 and w2, and output wire w3.
Then, each of the four templates of this gate has the form Esw1

(Esw2
(sw3 )), where

f (νw1 (sw1 ), νw2 (sw2 )) = νw3 (sw3 ).
� Sending the “scrambled” circuit: The first party sends the scrambled circuit to the

second party. In addition, the first party sends to the second party the secrets that
correspond to its own (i.e., the first party’s) input bits (but not the values of these bits).
The first party also reveals the correspondence between the pair of secrets associated
with each output (i.e., circuit-output wire) and the Boolean values.5 We stress that
the random correspondence between the pair of secrets associated with each other
wire and the Boolean values is kept secret (by the first party).

� Oblivious Transfer of adequate secrets: Next, the first party uses a (1-out-of-2) Obliv-
ious Transfer protocol in order to hand the second party the secrets corresponding
to the second party’s input bits (without the first party learning anything about these
bits).
Loosely speaking, a 1-out-of-k Oblivious Transfer is a protocol enabling one party to
obtain one of k secrets held by another party, without the second party learning which
secret was obtained by the first party. That is, we refer to the two-party functionality

(i, (s1, ..., sk)) �→ (si , λ) (7.1)

where λ denotes the empty string.
� Locally evaluating the “scrambled” circuit: Finally, the second party “evaluates” the

scrambled circuit gate-by-gate, starting from the top (circuit-input) gates (for which
it knows one secret per each wire) and ending at the bottom (circuit-output) gates

5 This can be done by providing, for each output wire, a succinct 2-partition (of all strings) that separates the two
secrets associated with this wire.
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7.1 OVERVIEW

(for which, by construction, the correspondence of secrets to values is known). Thus,
the second party obtains the output value of the circuit (but nothing else), and sends
it to the first party.

For further details, see Section 7.7.5.

7.1.3.3. Passively Secure Computation with Shares

For any m ≥ 2, suppose that m parties, each having a private input, wish to obtain the
value of a predetermined m-argument function evaluated at their sequence of inputs.
Further suppose that the parties hold a circuit that computes the value of the function
on inputs of the adequate length, and that the circuit contains only and- and not-
gates. Again, the idea is to propagate information from the top (circuit-input) gates
to the bottom (circuit-output) gates, but this time the information is different, and the
propagation is done jointly by all parties. The idea is to share the value of each wire
in the circuit such that all shares yield the value, whereas lacking even one of the
shares keeps the value totally undetermined. That is, we use a simple secret-sharing
scheme such that a bit b is shared by a random sequence of m bits that sum up to
b mod 2. First, each party shares each of its input bits with all parties (by sending
each party a random value and setting its own share accordingly).6 Next, all parties
jointly scan the circuit from its input wires to the output wires, processing each gate as
follows:

� When encountering a gate, the parties already hold shares of the values of the wires
entering the gate, and their aim is to obtain shares of the value of the wire exiting
the gate.

� For a not-gate, propagating shares through the gate is easy: The first party just flips
the value of its share, and all other parties maintain their shares.

� For an and-gate, propagating shares through the gate requires a secure (i.e., passively
secure) multi-party protocol. Since an and-gate corresponds to multiplication mod-
ulo 2, the parties need to securely compute the following randomized functionality
(in which the xi ’s denote shares of one entry-wire, the yi ’s denote shares of the second
entry-wire, the zi ’s denote shares of the exit-wire, and the shares indexed by i belong
to Party i):

((x1, y1), ..., (xm , ym)) �→ (z1, ..., z2) (7.2)

where
m∑

i=1

zi =
m∑

i=1

xi ·
m∑

i=1

yi (7.3)

That is, the zi ’s are random subject to Eq. (7.3).

At the end, each party holds a share of each output wire. The desired output is ob-
tained by letting each party send its share of each output wire to all parties. Thus,

6 For simplicity, we may assume the private-channel model, in which case a value sent to an honest party cannot
be read by the adversary.
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securely evaluating the entire (arbitrary) circuit “reduces” to securely conducting a
specific (very simple) multi-party computation. But things get even simpler: the key
observation is that(

m∑
i=1

xi

)
·
(

m∑
i=1

yi

)
=

m∑
i=1

xi yi +
∑

1≤i< j≤m

(
xi y j + x j yi

)
(7.4)

Thus, the m-ary functionality of Eq. (7.2) and Eq. (7.3) can be computed as follows
(where all arithmetic operations are mod 2):

1. Each Party i locally computes zi,i
def= xi yi .

2. Next, each pair of parties (i.e., Parties i and j) securely compute random shares of
xi y j + x j yi . That is, Parties i and j (holding (xi , yi ) and (x j , y j ), respectively), need
to securely compute the randomized two-party functionality ((xi , yi ), (x j , y j )) �→
(zi, j , z j,i ), where the z’s are random subject to zi, j + z j,i = xi y j + yi x j . The latter
(simple) two-party computation can be securely implemented using (a 1-out-of-4)
Oblivious Transfer. Specifically, Party i uniformly selects zi, j ∈ {0, 1}, and defines
its four secrets as follows:

Index of Corresponding Value of the secret
the secret value of (x j , y j ) (output of Party j)

1 (0, 0) zi, j

2 (0, 1) zi, j + xi

3 (1, 0) zi, j + yi

4 (1, 1) zi, j + xi + yi

Party j sets its input to 2x j + y j + 1, and obtains the secret zi, j + xi y j + yi x j .

(Indeed, for “small” B, any two-party functionality f : A × B → {λ} × {0, 1} can
be securely implemented by a single invocation of a 1-out-of-|B| Oblivious Transfer,
where the first party defines its |B| secrets in correspondence to the |B| possible
values of the input to the second party.)

3. Finally, for every i = 1, ..., m, the sum
∑m

j=1 zi, j yields the desired share of Party i .

A detailed description is provided in Section 7.3 (see also Section 7.5.2).

A related construction. We mention that an analogous construction has been subse-
quently used in the private-channel model and withstands computationally unbounded
active (resp., passive) adversaries that control less than one third (resp., a minority)
of the parties. The basic idea is to use a more sophisticated secret-sharing scheme,
specifically, via low-degree polynomials. That is, the Boolean circuit is viewed as an
arithmetic circuit over a finite field having more than m elements, and a secret element
s in the field is shared by selecting uniformly a polynomial of degree d = �(m − 1)/3	
(resp., degree d = �(m − 1)/2	) having a free-term equal to s, and handing each party
the value of this polynomial evaluated at a different (fixed) point (e.g., party i is
given the value at point i). Addition is emulated by (local) pointwise addition of the
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(secret-sharing) polynomials representing the two inputs (using the fact that for poly-
nomials p and q, and any field element e [and in particular e = 0, 1, ..., m], it holds
that p(e) + q(e) = (p + q)(e)). The emulation of multiplication is more involved and
requires interaction (because the product of polynomials yields a polynomial of higher
degree, and thus the polynomial representing the output cannot be the product of the
polynomials representing the two inputs). Indeed, the aim of the interaction is to turn
the shares of the product polynomial into shares of a degree d polynomial that has the
same free-term as the product polynomial (which is of degree 2d). This can be done
using the fact that the coefficients of a polynomial are a linear combination of its values
at sufficiently many arguments (and the other way around), and the fact that one can
privately compute any linear combination (of secret values). For further details, see
Section 7.6.

7.2.* The Two-Party Case: Definitions

In this section we define security for two models of adversaries for two-party proto-
cols. In both models, the adversary is non-adaptive and computationally bounded (i.e.,
restricted to probabilistic polynomial-time with [non-uniform] auxiliary inputs). In the
first model, presented in Section 7.2.2, we consider a restricted adversary called semi-
honest, whereas the general case of malicious adversary is considered in Section 7.2.3.
In addition to being of independent interest, the semi-honest model will play a major
role in the constructions of protocols for the malicious model (see Sections 7.3 and 7.4).

7.2.1. The Syntactic Framework

A two-party protocol problem is cast by specifying a random process that maps pairs
of inputs (one input per each party) to pairs of outputs (one per each party). We refer to
such a process as the desired functionality, denoted f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ×
{0, 1}∗. That is, for every pair of inputs (x , y), the desired output pair is a random
variable, f (x , y), ranging over pairs of strings. The first party, holding input x , wishes
to obtain the first element in f (x , y); whereas the second party, holding input y, wishes
to obtain the second element in f (x , y). A few interesting special cases are highlighted
next:

� Symmetric deterministic functionalities: This is the simplest general case often con-
sidered in the literature. In this case, for some predetermined function, g, both parties
wish to obtain the value of g evaluated at the input pair. That is, the functionality
they wish to (securely) compute is f (x , y)

def= (g(x , y), g(x , y)). For example, they
may be interested in determining whether their local inputs are equal (i.e., g(x , y) =
1 iff x = y) or whether their local inputs viewed as sets are disjoint (i.e., g(x , y) =
1 iff for every i either xi = 0 or yi = 0).

� Input-oblivious randomized functionalities: Whereas input-oblivious deterministic
functionalities are trivial, some input-oblivious randomized functionalities are very
interesting. Suppose, for example, that the two parties wish to toss a fair coin (i.e.,

615

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.004
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:15, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.004
https:/www.cambridge.org/core


GENERAL CRYPTOGRAPHIC PROTOCOLS

such that no party can “influence the outcome” by itself). This task can be cast
by requiring that for every input pair (x , y), the output pair f (x , y) is uniformly
distributed over {(0, 0), (1, 1)}.

� Asymmetric functionalities: The general case of asymmetric functionalities is cap-
tured by functionalities of the form f (x , y)

def= ( f ′(x , y), λ), where f ′ : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ is a randomized process and λ denotes the empty string. A spe-
cial case of interest is when one party wishes to obtain some predetermined partial
information regarding the secret input of the other party, where the latter secret
is verifiable with respect to the input of the first party. This task is captured by a
functionality f such that f (x , y)

def= (R(y), λ) if V (x , y) = 1 and f (x , y)
def= (⊥, λ)

otherwise, where R represents the partial information to be revealed and V represents
the verification procedure.7

We stress that whenever we consider a protocol for securely computing f , it is implicitly
assumed that the protocol correctly computes f when both parties follow the prescribed
program. That is, the joint output distribution of the protocol, played by honest parties,
on input pair (x , y), equals the distribution of f (x , y).

Notation. We let λ denote the empty string and ⊥ denote a special error symbol.
That is, whereas λ ∈ {0, 1}∗ (and |λ| = 0), we postulate that ⊥ �∈ {0, 1}∗ (and is thus
distinguishable from any string in {0, 1}∗).

7.2.1.1. Simplifying Conventions

To simplify the exposition, we make the following three assumptions:

1. The protocol problem has to be solved only for inputs of the same length (i.e.,
|x | = |y|).

2. The functionality is computable in time polynomial in the length of the inputs.
3. Security is measured in terms of the length of the inputs.

As discussed next, these conventions (or assumptions) can be greatly relaxed, yet each
represents an essential issue that must be addressed.

We start with the first convention (or assumption). Observe that making no restriction
on the relationship among the lengths of the two inputs disallows the existence of
secure protocols for computing any “non-degenerate” functionality. The reason is that
the program of each party (in a protocol for computing the desired functionality) must
either depend only on the length of the party’s input or obtain information on the
counterpart’s input length. In case information of the latter type is not implied by the
output value, a secure protocol “cannot afford” to give it away.8 By using adequate

7 One may also consider the “non-verifiable” case (i.e., V ≡ 1), but in this case, nothing can prevent the second
party from acting as if its input is different from its “actual” secret input.

8 The situation is analogous to the definition of secure encryption, where it is required that the message length
be polynomially related to the key length. Actually, things become even worse in the current setting because of
the possible malicious behavior of parties.
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padding, any “natural” functionality can be cast as one satisfying the equal-length
convention.9

We now turn to the second convention. Certainly, the total running time of a secure
two-party protocol for computing the functionality cannot be smaller than the time re-
quired to compute the functionality (in the ordinary sense). Arguing as in the case of
input lengths, one can see that we need an a priori bound on the complexity of the func-
tionality. A more general approach would be to let such a bound be given explicitly to
both parties as an auxiliary input. In such a case, the protocol can be required to run for
a time that is bounded by a fixed polynomial in this auxiliary parameter (i.e., the time-
complexity bound of f ). Assuming that a good upper bound of the complexity of f is
time-constructible, and using standard padding techniques, we can reduce this general
case to the special case discussed previously: That is, given a general functionality, g,
and a time-bound t : N → N, we introduce the functionality

f ((x , 1i ), (y, 1 j ))
def=

{
g(x , y) if i = j = t(|x |) = t(|y|)
(⊥, ⊥) otherwise

where ⊥ is a special error symbol. Now, the problem of securely computing g reduces
to the problem of securely computing f , which in turn is polynomial-time computable.

Finally, we turn to the third convention. Indeed, a more general convention would
be to have an explicit security parameter that determines the security of the protocol.
This general alternative is essential for allowing “secure” computation of finite func-
tionalities (i.e., functionalities defined on finite input domains). We may accommodate
the general convention using the special case, postulated previously, as follows. Sup-
pose that we want to compute the functionality f , on input pair (x , y) with security
(polynomial in) the parameter s. Then we introduce the functionality

f ′((x , 1s), (y, 1s))
def= f (x , y) ,

and consider secure protocols for computing f ′. Indeed, this reduction corresponds to
the realistic setting where the parties first agree on the desired level of security, and
only then proceed to compute the function (using this level of security).

Partial functionalities. The first convention postulates that we are actually not con-
sidering mapping from the set of all pairs of bit strings, but rather mappings from a
certain (general) set of pairs of strings (i.e., ∪n∈N{0, 1}n × {0, 1}n). Taking this conven-
tion one step further, one may consider functionalities that are defined only over a set
R ⊆ ∪n∈N{0, 1}n × {0, 1}n . Clearly, securely computing such a functionality f ′ can be
reduced to computing any of its extensions to ∪n∈N{0, 1}n × {0, 1}n (e.g., computing
f such that f (x , y)

def= f ′(x , y) for (x , y) ∈ R and f (x , y)
def= (⊥, ⊥) otherwise). With

one exception (to be discussed explicitly), our exposition only refers to functionalities
that are defined over the set of all pairs of strings of equal length.

9 In the sequel, we sometimes take the liberty of presenting functionalities in a form that violates the equal-length
convention (e.g., in the case of Oblivious Transfer). Indeed, these formulations can be easily modified to fit the
equal-length convention.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

An alternative set of conventions. An alternative way of addressing all three concerns
discussed previously is to introduce an explicit security parameter, denoted n, and
consider the following sequence of functionalities 〈 f n〉n∈N. Each f n is defined over the
set of all pairs of bit strings, but typically one considers only the value of f n on strings
of poly(n) length. In particular, for a functionality f as in our main conventions, one
may consider f n(x , y)

def= f (x , y) if |x | = |y| = n and f n(x , y)
def= (⊥, ⊥) otherwise.

When following the alternative convention, one typically postulates that there exists a
poly(n)-time algorithm for computing f n (for a generic n), and security is also evaluated
with respect to the parameter n. We stress that in this case, the protocol’s running time
and its security guarantee are only related to the parameter n, and are independent of
the length of the input.10

7.2.1.2. Computational Indistinguishability: Conventions and Notation

As in Definition 7.1.1, we will often talk of the computational indistinguishability of
probability ensembles indexed by strings (as in Part 2 of Definition 3.2.7). Whenever
we do so, we refer to computational indistinguishability by (non-uniform) families
of polynomial-size circuits. That is, we say that the ensembles, X

def= {Xw }w∈S and
Y

def= {Yw }w∈S , are computationally indistinguishable, denoted X
c≡ Y , if the following

holds:

For every polynomial-size circuit family, {Cn}n∈N, every positive polynomial
p(·), every sufficiently large n, and every w ∈ S ∩ {0, 1}n ,

|Pr [Cn(Xw )=1] − Pr [Cn(Yw )=1] | <
1

p(n)
(7.5)

Note that an infinite sequence of w’s may be incorporated in the family; hence, the
definition is not strengthened by providing the circuit Cn with w as an additional input.11

Recall that computational indistinguishability is a relaxation of statistical indistin-
guishability, where here, the ensembles X

def= {Xw }w∈S and Y
def= {Yw }w∈S are statisti-

cally indistinguishable, denoted X
s≡ Y , if for every positive polynomial p(·), every

sufficiently large n and every w ∈ S ∩ {0, 1}n ,

∑
α∈{0,1}∗

|Pr [Xw =α] − Pr [Yw =α]| <
1

p(n)
(7.6)

In case the differences are all equal to zero, we say that the ensembles are identically
distributed (and denote this by X ≡ Y ).

10 Consequently, the value of f n(x , y) may depend only on poly(n)-long prefixes of x and y.
11 Indeed, here we capitalize on the non-uniformity of the class of potential distinguishers. In case one considers the

class of uniform (probabilistic polynomial-time) distinguishers, it is necessary to provide these distinguishers
with the distribution’s index (i.e., w); see (Part 2 of) Definition 3.2.2.
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7.2* THE TWO-PARTY CASE: DEFINITIONS

7.2.1.3. Representation of Parties’ Strategies

In Chapter 4, the parties’ strategies for executing a given protocol (e.g., a proof system)
were represented by interactive Turing machines. In this chapter, we prefer an equiva-
lent formulation, which is less formal and less cumbersome. Specifically, the parties’
strategies are presented as functions mapping the party’s current view of the interactive
execution to the next message to be sent. Recall that the party’s view consists of its
initial input, an auxiliary initial input (which is relevant only for modeling adversarial
strategies), its random-tape, and the sequence of messages it has received so far. A
strategy will be called feasible if it is implementable in probabilistic polynomial-time
(i.e., the function associated with it is computable in polynomial-time).

As in Chapter 4, it is typically important to allow the adversaries to obtain (non-
uniformly generated) auxiliary inputs (cf. Section 4.3.3). Recall that auxiliary inputs
play a key role in guaranteeing that zero-knowledge is closed under sequential compo-
sition (see Section 4.3.4). Similarly, auxiliary inputs to the adversaries will play a key
role in composition theorems for secure protocols, which are pivotal to our exposition
and very important in general. Nevertheless, for the sake of simplicity, we often omit
the auxiliary inputs from our notations and discussions (especially in places where they
do not play an “active” role).

Recall that considering auxiliary inputs (as well as ordinary inputs) without intro-
ducing any restrictions (other than on their length) means that we are actually presenting
a treatment in terms of non-uniform complexity. Thus, all our assumptions will refer
to non-uniform complexity.

7.2.2. The Semi-Honest Model

Loosely speaking, a semi-honest party is one who follows the protocol properly with
the exception that it keeps a record of all its intermediate computations. Actually, it
suffices to keep the internal coin tosses and all messages received from the other party. In
particular, a semi-honest party tosses fair coins (as instructed by its program) and sends
messages according to its specified program (i.e., as a function of its input, outcome of
coin tosses, and incoming messages). Note that a semi-honest party corresponds to the
“honest verifier” in the definitions of zero-knowledge (cf. Section 4.3.1.7).

In addition to the methodological role of semi-honest parties in our exposition, they
do constitute a model of independent interest. In particular, deviation from the specified
program, which may be invoked inside a complex software application, is more difficult
than merely recording the contents of some communication registers. Furthermore,
records of these registers may be available through some standard activities of the
operating system. Thus, whereas general malicious behavior may be infeasible for many
users, semi-honest behavior may be feasible for them (and one cannot assume that they
just behave in a totally honest way). Consequently, in many settings, one may assume
that although the users may wish to cheat, they actually behave in a semi-honest way.
(We mention that the “augmented semi-honest” model, introduced in Section 7.4.4.1,
may be more appealing and adequate for more settings.)
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GENERAL CRYPTOGRAPHIC PROTOCOLS

In the following, we present two equivalent formulations of security in the semi-
honest model. The first formulation capitalizes on the simplicity of the current model
and defines security in it by a straightforward extension of the definition of zero-
knowledge. The second formulation applies the general methodology outlined in Sec-
tion 7.1.1. Indeed, both formulations follow the simulation paradigm, but the first does
so by extending the definition of zero-knowledge, whereas the second does so by de-
generating the general “real-vs.-ideal” methodology.

7.2.2.1. The Simple Formulation of Privacy

Loosely speaking, a protocol privately computes f if whatever can be obtained from a
party’s view of a (semi-honest) execution could be essentially obtained from the input
and output available to that party. This extends the formulation of (honest-verifier)
zero-knowledge by providing the simulator also with the (proper) output. The essence
of the definition is captured by the simpler special case of deterministic functionalities,
highlighted in the first item.

Definition 7.2.1 (privacy with respect to semi-honest behavior): Let f : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality, and f1(x , y) (resp., f2(x , y)) denote
the first (resp., second) element of f (x , y). Let � be a two-party protocol for
computing f .12 The view of the first (resp., second) party during an execution of
� on (x , y), denoted view�

1 (x , y) (resp., view�
2 (x , y)), is (x , r, m1, ..., mt ) (resp.,

(y, r, m1, ..., mt )), where r represents the outcome of the first (resp., second) party’s
internal coin tosses, and mi represents the i-th message it has received. The output
of the first (resp., second) party after an execution of�on (x , y), denoted output�

1 (x , y)
(resp., output�

2 (x , y)), is implicit in the party’s own view of the execution, and
output�(x , y) = (output�

1 (x , y), output�
2 (x , y)).

� (deterministic case) For a deterministic functionality f , we say that � privately
computes f if there exist probabilistic polynomial-time algorithms, denoted S1 and
S2, such that

{S1(x , f1(x , y))}x , y∈{0,1}∗
c≡ {view�

1 (x , y)}x , y∈{0,1}∗ (7.7)

{S2(y, f2(x , y))}x , y∈{0,1}∗
c≡ {view�

2 (x , y)}x , y∈{0,1}∗ (7.8)

where |x | = |y|. (Recall that
c≡ denotes computational indistinguishability by (non-

uniform) families of polynomial-size circuits.)
� (general case) We say that � privately computes f if there exist probabilistic

polynomial-time algorithms, denoted S1 and S2, such that

{(S1(x , f1(x , y)), f (x , y))}x , y
c≡ {(view�

1 (x , y), output�(x , y))}x , y (7.9)

{(S2(y, f2(x , y)), f (x , y))}x , y
c≡ {(view�

2 (x , y), output�(x , y))}x , y (7.10)

12 By saying that � computes (rather than privately computes) f , we mean that the output distribution of the
protocol (when played by honest or semi-honest parties) on input pair (x , y) is distributed identically to f (x , y).
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We stress that view�
1 (x , y), view�

2 (x , y), output�
1 (x , y), and output�

2 (x , y) are
related random variables, defined as a function of the same random execution. In
particular, output�

i (x , y) is fully determined by view�
i (x , y).

Consider first the deterministic case: Eq. (7.7) (resp., Eq. (7.8)) asserts that the view of
the first (resp., second) party, on each possible pair of inputs, can be efficiently simulated
based solely on its own input and output. Thus, all that this party learns from the full tran-
script of the proper execution is effectively implied by its own output from this execution
(and its own input to it). In other words, all that the party learns from the (semi-honest)
execution is essentially implied by the output itself. Next, note that the formulation for
the deterministic case coincides with the general formulation as applied to deterministic
functionalities (because, in any protocol � that computes a deterministic functionality
f , it must hold that output�(x , y) = f (x , y), for each pair of inputs (x , y)).13

In contrast to the deterministic case, augmenting the view of the semi-honest party by
the output of the other party is essential when randomized functionalities are concerned.
Note that in this case, for any protocol � that computes a randomized functionality
f , it does not necessarily hold that output�(x , y) = f (x , y), because each of the two
objects is a random variable. Indeed, these two random variables must be identically (or
similarly) distributed, but this does not suffice for asserting, for example, that Eq. (7.7)
implies Eq. (7.9). Two disturbing counterexamples follow:

1. Consider the functionality (1n , 1n) �→ (r, λ), where r is uniformly distributed in
{0, 1}n , and a protocol in which Party 1 uniformly selects r ∈ {0, 1}n , sends it to
Party 2, and outputs r . Clearly, this protocol computes the said functionality; alas,
intuitively we should not consider this computation private (because Party 2 learns
the output of Party 1 although Party 2 is not supposed to learn anything about that
output). However, a simulator S2(1n) that outputs a uniformly chosen r ∈ {0, 1}n

satisfies Eq. (7.8) (but does not satisfy Eq. (7.10)).
The point is that Eq. (7.9) and Eq. (7.10) refer to the relation between a party’s
output and the other party’s view in the same execution of the protocol, and require
that this relation be maintained in the simulation. As is vividly demonstrated in
the aforementioned example, this relation is at the heart of the notion of security:
We should simulate a view (of the semi-honest party) that fits the actual output of the
honest party, and not merely simulate a view that fits the distribution of the possible
output of the honest party.

2. Furthermore, Eq. (7.9) and Eq. (7.10) require that the party’s simulated view fit its
actual output (which is given to the simulator). To demonstrate the issue at hand,
consider the foregoing functionality, and a protocol in which Party 1 uniformly selects
s ∈ {0, 1}n , and outputs r ← F(s), where F is a one-way permutation. Again, this
protocol computes the previous functionality, but it is not clear whether or not we
may consider this computation private (because Party 1 learns the pre-image of its
own output under F , something it could not have obtained if a trusted party were to

13 Recall that the input pairs (x , y) serve as indices to the distributions in the two ensembles under consideration,
and as such they are always given (or incorporated) in the potential distinguisher; see Section 7.2.1.2.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

give it the output). Note that a simulator S1(1n , r ) that uniformly selects s ∈ {0, 1}n

and outputs (s, F(s)) satisfies Eq. (7.7) (but does not satisfy Eq. (7.9)).

We comment that the current issue is less acute than the first one (i.e., the one raised
in Item 1). Indeed, consider the following alternative to both Eq. (7.7) and Eq. (7.9):

{(S1(x , f1(x , y)), f2(x , y))}x , y
c≡ {(view�

1 (x , y), output�
2 (x , y))}x , y (7.11)

Note that Eq. (7.11) addresses the problem raised in Item 1, but not the problem raised
in the current item. But is the current problem a real one? Note that the only difference
between Eq. (7.9) and Eq. (7.11) is that the former forces the simulated view to fit the
output given to the simulator, whereas this is not guaranteed in Eq. (7.11). Indeed,
in Eq. (7.11) the view simulated for Party 1 may not fit the output given to the
simulator, but the simulated view does fit the output given to the honest Party 2. Is
the former fact of real importance or is it the case that all that matters is the relation
of the simulated view to the honest party’s view? We are not sure, but (following a
general principle) when in doubt, we prefer to be more careful and adopt the more
stringent definition. Furthermore, the stronger definition simplifies the proof of the
Composition Theorem for the semi-honest model (i.e., Theorem 7.3.3).

What about Auxiliary Inputs? Auxiliary inputs are implicit in Definition 7.2.1. They
are represented by the fact that the definition asks for computational indistinguisha-
bility by non-uniform families of polynomial-size circuits (rather than computational
indistinguishability by probabilistic polynomial-time algorithms). In other words, in-
distinguishability also holds with respect to probabilistic polynomial-time machines
that obtain (non-uniform) auxiliary inputs.

Private Computation of Partial Functionalities. For functionalities that are defined
only for inputs pairs in some set R ⊂ {0, 1}∗ × {0, 1}∗ (see Section 7.2.1.1), private
computation is defined as in Definition 7.2.1, except that the ensembles are indexed by
pairs in R.

7.2.2.2. The Alternative Formulation

It is instructive to recast the previous definition in terms of the general (“real-vs.-ideal”)
framework discussed in Section 7.1.1 (and used extensively in the case of arbitrary
malicious behavior). In this framework, one first considers an ideal model in which the
(two) parties are joined by a (third) trusted party, and the computation is performed via
this trusted party. Next, one considers the real model in which a real (two-party) protocol
is executed (and there exist no trusted third parties). A protocol in the real model is said
to be secure with respect to certain adversarial behavior if the possible real executions
with such an adversary can be “simulated” in the corresponding ideal model. The notion
of simulation used here is different from the one used in Section 7.2.2.1: The simulation
is not of the view of one party via a traditional algorithm, but rather a simulation of the
joint view of both parties by the execution of an ideal-model protocol.

According to the general methodology (framework), we should first specify the
ideal-model protocol. In the case of semi-honest adversaries, the ideal model consists
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of each party sending its input to the trusted party (via a secure private channel), and
the third party computing the corresponding output pair and sending each output to the
corresponding party. The only adversarial behavior allowed here is for one of the parties
to determine its own output based on its input and the output it has received (from the
trusted party).14 This adversarial behavior represents the attempt to learn something
from the party’s view of a proper execution (which, in the ideal model, consists only of
its local input and output). The other (i.e., honest) party merely outputs the output that
it has received (from the trusted party).

Next, we turn to the real model. Here, there is a real two-party protocol and the
adversarial behavior is restricted to be semi-honest. That is, the protocol is executed
properly, but one party may produce its output based on (an arbitrary polynomial-
time computation applied to) its view of the execution (as defined earlier). We
stress that the only adversarial behavior allowed here is for one of the parties to
determine its own output based on its entire view of the proper execution of the
protocol.

Finally, we define security in the semi-honest model. A secure protocol for the real
(semi-honest) model is such that for every feasible semi-honest behavior of one of the
parties, we can simulate the joint outcome (of their real computation) by an execution in
the ideal model (where also one party is semi-honest and the other is honest). Actually,
we need to augment the definition to account for a priori information available to semi-
honest parties before the protocol starts. This is done by supplying these parties with
auxiliary inputs.

Note that in both (ideal and real) models, the (semi-honest) adversarial behavior
takes place only after the proper execution of the corresponding protocol. Thus, in the
ideal model, this behavior is captured by a computation applied to the local input–output
pair, whereas in the real model, this behavior is captured by a computation applied to
the party’s local view (of the execution).

Definition 7.2.2 (security in the semi-honest model): Let f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ × {0, 1}∗ be a functionality, where f1(x , y) (resp., f2(x , y)) denotes the first
(resp., second) element of f (x , y), and let � be a two-party protocol for computing f .

� Let B = (B1, B2) be a pair of probabilistic polynomial-time algorithms representing
parties’ strategies for the ideal model. Such a pair is admissible (in the ideal model)
if for at least one Bi we have Bi (u, v, z) = v, where u denotes the party’s local input,
v its local output, and z its auxiliary input. The joint execution of f under B in the
ideal model on input pair (x , y) and auxiliary input z, denoted ideal f, B(z)(x , y), is
defined as ( f (x , y), B1(x , f1(x , y), z), B2(y, f2(x , y), z)).

(That is, if Bi is honest, then it just outputs the value fi (x , y) obtained from the
trusted party, which is implicit in this definition. Thus, our peculiar choice to feed
both parties with the same auxiliary input is immaterial, because the honest party
ignores its auxiliary input.)

14 We stress that unlike in the malicious model, discussed in Section 7.2.3, here the dishonest (or rather semi-honest)
party is not allowed to modify its input (but must hand its actual input to the trusted party).

623

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.004
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:15, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.004
https:/www.cambridge.org/core


GENERAL CRYPTOGRAPHIC PROTOCOLS

� Let A = (A1, A2) be a pair of probabilistic polynomial-time algorithms representing
parties’ strategies for the real model. Such a pair is admissible (in the real model)
if for at least one i ∈ {1, 2} we have Ai (view, aux) = out for every view and aux,
whereout is the output implicit inview. The joint execution of�under A in the real
model on input pair (x , y) and auxiliary input z, denoted real�, A(z)(x , y), is defined
as (output�(x , y), A1(view�

1 (x , y), z), A2(view�
2 (x , y), z)), where output�(x , y)

and the view�
i (x , y)’s refer to the same execution and are defined as in Defini-

tion 7.2.1.

(Again, if Ai is honest, then it just outputs the value fi (x , y) obtained from the
execution of �, and we may feed both parties with the same auxiliary input.)

Protocol � is said to securely compute f in the semi-honest model (secure with
respect to f and semi-honest behavior) if for every probabilistic polynomial-time
pair of algorithms A = (A1, A2) that is admissible for the real model, there exists a
probabilistic polynomial-time pair of algorithms B = (B1, B2) that is admissible for
the ideal model such that

{ideal f, B(z)(x , y)}x , y,z
c≡ {real�, A(z)(x , y)}x , y,z (7.12)

where x , y, z ∈ {0, 1}∗ such that |x | = |y| and |z| = poly(|x |).

Observe that the definition of the joint execution in the real model prohibits both
parties (honest and semi-honest) from deviating from the strategies specified by �.
The difference between honest and semi-honest parties is merely in their actions on the
corresponding local views of the execution: An honest party outputs only the output part
of the view (as specified by �), whereas a semi-honest party may output an arbitrary
(feasibly computable) function of the view. Note that including the output f (x , y) (resp.,
output�(x , y)) in ideal f, B(z)(x , y) (resp., in real�, A(z)(x , y)) is meaningful only in
the case of a randomized functionality f , and is done in order to match the formulation
in Definition 7.2.1. We stress that the issue is the inclusion of the output of the dishonest
party (see Item 2 in the discussion that follows Definition 7.2.1).

We comment that, as will become clear in the proof of Proposition 7.2.3, omitting
the auxiliary input does not weaken Definition 7.2.2. Intuitively, since the adversary is
passive, the only affect of the auxiliary input is that it appears as part of the adversary’s
view. However, since Eq. (7.12) refers to the non-uniform formulation of computational
indistinguishability, augmenting the ensembles by auxiliary inputs has no affect.

7.2.2.3. Equivalence of the Two Formulations

It is not hard to see that Definitions 7.2.1 and 7.2.2 are equivalent. That is,

Proposition 7.2.3: Let � be a protocol for computing f . Then, � privately computes
f if and only if � securely computes f in the semi-honest model.

Proof Sketch: We first show that Definition 7.2.2 implies Definition 7.2.1. Suppose
that � securely computes f in the semi-honest model (i.e., satisfies Definition 7.2.2).
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Without loss of generality, we show how to simulate the first party’s view. Toward this
end, we define the following admissible pair A = (A1, A2) for the real model: A1 is
merely the identity transformation (i.e., it outputs the view given to it), whereas A2

(which represents an honest strategy for Party 2) produces an output as determined
by the view given to it. We stress that we consider an adversary A1 that does not
get an auxiliary input (or alternatively ignores it). Furthermore, the adversary merely
outputs the view given to it (and leaves the possible processing of this view to the
potential distinguisher). Let B = (B1, B2) be the ideal-model adversary guaranteed
by Definition 7.2.2. We claim that (using) B1 (in the role of S1) satisfies Eq. (7.9),
rather than only Eq. (7.7). Loosely speaking, the claim holds because Definition 7.2.2
guarantees that the relation between the view of Party 1 and the outputs of both parties
in a real execution is preserved in the ideal model. Specifically, since A1 is a passive
adversary (and � computes f ), the output of Party 1 in a real execution equals the
value that is determined in the view (of Party 1), which in turn fits the functionality.
Now, Definition 7.2.2 implies that the same relation between the (simulated) view of
Party 1 and the outputs must hold in the ideal model. It follows that using B1 in role of
S1 guarantees that the simulated view fits the output given to the simulator (as well as
the output not given to it).

We now show that Definition 7.2.1 implies Definition 7.2.2. Suppose that � privately
computes f , and let S1 and S2 be as guaranteed in Definition 7.2.1. Let A = (A1, A2) be
an admissible pair for the real-model adversaries. Without loss of generality, we assume
that A2 merely maps the view (of the second party) to the corresponding output (i.e.,
f2(x , y)); that is, Party 2 is honest (and Party 1 is semi-honest). Then, we define an ideal-

model pair B = (B1, B2) such that B1(x , v, z)
def= A1(S1(x , v), z) and B2(y, v, z)

def= v.
(Note that B is indeed admissible with respect to the ideal model.) The following holds
(for any infinite sequence of (x , y, z)’s):

real�, A(z)(x , y) = (output�(x , y), A1(view�
1 (x , y), z), A2(view�

2 (x , y), z))

= (output�(x , y), A1(view�
1 (x , y), z), output�

2 (x , y))
c≡ ( f (x , y), A1(S1(x , f1(x , y)), z), f2(x , y))

= ( f (x , y), B1(x , f1(x , y), z), B2(y, f2(x , y), z))

= ideal f, B(z)(x , y)

where the computational indistinguishability (i.e.,
c≡) is due to the guarantee re-

garding S1 (in its general form); that is, Eq. (7.9). Indeed, the latter only guaran-
tees (view�

1 (x , y), output�(x , y))
c≡ (S1(x , f1(x , y)), f (x , y)), but by incorporating

A1 and z in the potential distinguisher, the soft-equality follows.

Conclusion. This proof demonstrates that the alternative formulation of Definition 7.2.2
is merely a cumbersome form of the simpler Definition 7.2.1. We stress that the rea-
son we have presented the cumbersome form is the fact that it follows the general
framework of definitions of security that is used for the malicious adversarial behav-
ior. In the rest of this chapter, whenever we deal with the semi-honest model (for
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GENERAL CRYPTOGRAPHIC PROTOCOLS

two-party computation), we will use Definition 7.2.1. Furthermore, since much of the
text focuses on deterministic functionalities, we will be able to use the simpler case of
Definition 7.2.1.

7.2.3. The Malicious Model

We now turn to consider arbitrary feasible deviation from the specified program of a
two-party protocol. A few preliminary comments are in place. Firstly, there is no way to
force parties to participate in the protocol. That is, a possible malicious behavior may
consist of not starting the execution at all, or, more generally, suspending (or aborting)
the execution at any desired point in time. In particular, a party can abort at the first
moment when it obtains the desired result of the computed functionality. We stress that
our model of communication does not allow conditioning of the receipt of a message
by one party on the concurrent sending of a proper message by this party. Thus, no two-
party protocol can prevent one of the parties from aborting when obtaining the desired
result and before its counterpart also obtains the desired result. In other words, it can
be shown that perfect fairness – in the sense of both parties obtaining the outcome of
the computation concurrently – is not achievable in a two-party computation. We thus
give up on such fairness altogether. (We comment that partial fairness is achievable;
see Section 7.7.1.1).

Secondly, observe that when considering malicious adversaries, it is not clear what
their input to the protocol is. That is, a malicious party can enter the protocol with
arbitrary input, which may not equal its “true” local input. There is no way for a
protocol to tell the “true” local input from the one claimed by a party (or, in other
words, to prevent a malicious party from modifying its input). (We stress that these
phenomena did not occur in the semi-honest model, for the obvious reason that parties
were postulated not to deviate from the protocol.)

In view of this discussion, there are three things we cannot hope to avoid (no matter
what protocol we use):

1. Parties refusing to participate in the protocol (when the protocol is first invoked).
2. Parties substituting their local input (and entering the protocol with an input other

than the one provided to them).
3. Parties aborting the protocol prematurely (e.g., before sending their last message).

Thus, we shall consider a two-party protocol to be secure if the adversary’s behavior in it
is essentially restricted to these three actions. Following the real-vs.-ideal methodology
(of Section 7.1.1), this means that we should define an ideal model that corresponds to
these possible actions, and define security such that the execution of a secure protocol
in the real model can be simulated by the ideal model.

7.2.3.1. The Actual Definition

We start with a straightforward implementation of the previous discussion. An alterna-
tive approach, which is simpler but partial, is presented in Section 7.2.3.2. (Specifically,
the alternative approach is directly applicable only to single-output functionalities, in
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7.2* THE TWO-PARTY CASE: DEFINITIONS

which case the complications introduced by aborting do not arise. The interested reader
may proceed directly to Section 7.2.3.2, which is mostly self-contained.)

The Ideal Model. We first translate the previous discussion into a definition of an ideal
model. That is, we will allow in the ideal model whatever cannot possibly be prevented
in any real execution. An alternative way of looking at things is that we assume that the
the two parties have at their disposal a trusted third party, but even such a party cannot
prevent certain malicious behavior. Specifically, we allow a malicious party in the ideal
model to refuse to participate in the protocol or to substitute its local input. (Clearly,
neither can be prevented by a trusted third party.) In addition, we postulate that the
first party has the option of “stopping” the trusted party just after obtaining its part of
the output, and before the trusted party sends the other output part to the second party.
Such an option is not given to the second party.15 Thus, an execution in the ideal model
proceeds as follows (where all actions of both the honest and the malicious parties must
be feasible to implement):

Inputs: Each party obtains an input, denoted u.

Sending inputs to the trusted party: An honest party always sends u to the trusted party.
A malicious party may, depending on u (as well as on an auxiliary input and its coin
tosses), either abort or send some u′ ∈ {0, 1}|u| to the trusted party.16

The trusted party answers the first party: In case it has obtained an input pair, (x , y),
the trusted party (for computing f ) first replies to the first party with f1(x , y).
Otherwise (i.e., in case it receives only one input), the trusted party replies to both
parties with a special symbol, denoted ⊥.

The trusted party answers the second party: In case the first party is malicious, it may,
depending on its input and the trusted party’s answer, decide to stop the trusted
party. In this case, the trusted party sends ⊥ to the second party. Otherwise (i.e., if
not stopped), the trusted party sends f2(x , y) to the second party.

Outputs: An honest party always outputs the message it has obtained from the trusted
party. A malicious party may output an arbitrary (polynomial-time computable)
function of its initial input (auxiliary input and random-tape) and the message it has
obtained from the trusted party.

In fact, without loss of generality, we may assume that both parties send inputs to the
trusted party (rather than allowing the malicious party not to enter the protocol). This
assumption can be justified by letting the trusted party use some default value (or a

15 This asymmetry is due to the non-concurrent nature of communication in the model. Since we postulate that
the trusted party sends the answer first to the first party, the first party (but not the second) has the option of
stopping the trust party after obtaining its part of the output. The second party can only stop the trust party
before obtaining its output, but this is the same as refusing to participate. See further discussion at the end of
the current subsection.

16 We comment that restricting the ideal-model adversary (to replacing u by u′ of the same length) only strengthens
the definition of security. This restriction is essential to our formulation, because (by our convention) the
functionality f is defined only for pairs of strings of equal length.
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special abort symbol) in case it does not get an input from one of the parties.17 Thus, the
ideal model (computation) is captured by the following definition, where the algorithms
B1 and B2 represent all possible actions in the model.18 In particular, B1(x , z, r ) (resp.,
B2(y, z, r )) represents the input handed to the trusted party by Party 1 (resp., Party 2)
having local input x (resp., y) and auxiliary input z and using random-tape r . Indeed, if
Party 1 (resp., Party 2) is honest, then B1(x , z, r ) = x (resp., B2(y, z, r ) = y). Likewise,
B1(x , z, r, v) = ⊥ represents a decision of Party 1 to stop the trusted party, on input
x (auxiliary input z and random-tape r ), after receiving the (output) value v from the
trusted party. In this case, B1(x , z, r, v, ⊥) represents the party’s local output. Otherwise
(i.e., B1(x , z, r, v) �= ⊥), we let B1(x , z, r, v) itself represent the party’s local output.
The local output of Party 2 is always represented by B2(y, z, r, v), where y is the party’s
local input (z is the auxiliary input, r is the random-tape) and v is the value received from
the trusted party. Indeed, if Party 1 (resp., Party 2) is honest, then B1(x , z, r, v) = v

(resp., B2(y, z, r, v) = v).

Definition 7.2.4 (malicious adversaries, the ideal model): Let f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ × {0, 1}∗ be a functionality, where f1(x , y) (resp., f2(x , y)) denotes the first
(resp., second) element of f (x , y). Let B = (B1, B2) be a pair of probabilistic
polynomial-time algorithms representing strategies in the ideal model. Such a pair
is admissible (in the ideal malicious model) if for at least one i ∈ {1, 2}, called hon-
est, we have Bi (u, z, r ) = u and Bi (u, z, r, v) = v, for every possible value of u, z, r ,
and v. Furthermore, |Bi (u, z, r )| = |u| must hold for both i’s. The joint execution of
f under B in the ideal model (on input pair (x , y) and auxiliary input z), denoted
ideal f, B(z)(x , y), is defined by uniformly selecting a random-tape r for the adversary,

and letting ideal f, B(z)(x , y)
def= ϒ(x , y, z, r ), where ϒ(x , y, z, r ) is defined as follows:

� In case Party 1 is honest, ϒ(x , y, z, r ) equals

( f1(x , y′) , B2(y, z, r, f2(x , y′))), where y′ def= B2(y, z, r ). (7.13)

� In case Party 2 is honest, ϒ(x , y, z, r ) equals

(B1(x , z, r, f1(x ′, y), ⊥) , ⊥) if B1(x , z, r, f1(x ′, y)) = ⊥ (7.14)

(B1(x , z, r, f1(x ′, y)) , f2(x ′, y)) otherwise (7.15)

where, in both cases, x ′ def= B1(x , z, r ).

17 Both options (i.e., default value or a special abort symbol) are useful, and the choice depends on the protocol
designer. In case a special abort symbol is used, the functionality should be modified accordingly, such that if
one of the inputs equals the special abort symbol, then the output is a special abort symbol.

18 As in Definition 7.2.2, we make the peculiar choice of feeding both Bi ’s with the same auxiliary input z (and the
same random-tape r ). However, again, the honest strategy ignores this auxiliary input, which is only used by the
malicious strategy. Note that unlike in previous definitions, we make the random-tape (of the adversary) explicit
in the notation, the reason being that the same strategy is used to describe two different actions of the adversary
(rather than a single action, as in Definition 7.2.2). Since these actions may be probabilistically related, it is
important that they be determined based on the same random-tape.
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Eq. (7.14) and Eq. (7.15) refer to the case in which Party 2 is honest (and Party 1 may
be malicious). Specifically, Eq. (7.14) represents the sub-case where Party 1 invokes
the trusted party with a possibly substituted input, denoted B1(x , z, r ), and aborts while
stopping the trusted party right after obtaining the output, f1(B1(x , z, r ), y). In this
sub-case, Party 2 obtains no output (from the trusted party). Eq. (7.15) represents the
sub-case where Party 1 invokes the trusted party with a possibly substituted input, and
allows the trusted party to answer Party 2. In this sub-case, Party 2 obtains and outputs
f2(B1(x , z, r ), y). In both sub-cases, the trusted party computes f (B1(x , z, r ), y), and
Party 1 outputs a string that depends on both x , z, r and f1(B1(x , z, r ), y). Likewise,
Eq. (7.13) represents possible malicious behavior of Party 2; however, in accordance
with the previous discussion, the trusted party first supplies output to Party 1, and so
Party 2 does not have a “real” aborting option (analogous to Eq. (7.14)).

Execution in the Real Model. We next consider the real model in which a real (two-
party) protocol is executed (and there exist no trusted third parties). In this case, a
malicious party may follow an arbitrary feasible strategy, that is, any strategy imple-
mentable by a probabilistic polynomial-time algorithm (which gets an auxiliary input).
In particular, the malicious party may abort the execution at any point in time, and when
this happens prematurely, the other party is left with no output. In analogy to the ideal
case, we use algorithms to define strategies in a protocol, where these strategies (or
algorithms implementing them) map partial execution histories to the next message.

Definition 7.2.5 (malicious adversaries, the real model): Let f be as in Definition 7.2.4,
and � be a two-party protocol for computing f . Let A = (A1, A2) be a pair of prob-
abilistic polynomial-time algorithms representing strategies in the real model. Such a
pair is admissible (with respect to �) (for the real malicious model) if at least one Ai

coincides with the strategy specified by �. (In particular, this Ai ignores the auxiliary
input.) The joint execution of � under A in the real model (on input pair (x , y) and
auxiliary input z), denoted real�, A(z)(x , y), is defined as the output pair resulting from
the interaction between A1(x , z) and A2(y, z). (Recall that the honest Ai ignores the
auxiliary input z, and so our peculiar choice of providing both Ai ’s with the same z is
immaterial.)

In some places (in Section 7.4), we will assume that the algorithms representing the
real-model adversaries (i.e., the algorithm Ai that does not follow �) are deterministic.
This is justified by observing that one may just (consider and) fix the “best” possible
choice of coins for a randomized adversary and incorporate this choice in the auxiliary
input of a deterministic adversary (cf. Section 1.3.3 of Volume 1).

Security as Emulation of Real Execution in the Ideal Model. Having defined the
ideal and real models, we obtain the corresponding definition of security. Loosely
speaking, the definition asserts that a secure two-party protocol (in the real model)
emulates the ideal model (in which a trusted party exists). This is formulated by saying
that admissible adversaries in the ideal model are able to simulate (in the ideal model)
the execution of a secure real-model protocol under any admissible adversaries.
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Definition 7.2.6 (security in the malicious model): Let f and � be as in Defini-
tion 7.2.5. Protocol � is said to securely compute f (in the malicious model) if for
every probabilistic polynomial-time pair of algorithms A = (A1, A2) that is admissible
for the real model (of Definition 7.2.5), there exists a probabilistic polynomial-time pair
of algorithms B = (B1, B2) that is admissible for the ideal model (of Definition 7.2.4)
such that

{ideal f, B(z)(x , y)}x , y,z
c≡ {real�, A(z)(x , y)}x , y,z

where x , y, z ∈ {0, 1}∗ such that |x | = |y| and |z| = poly(|x |). (Recall that
c≡ de-

notes computational indistinguishability by (non-uniform) families of polynomial-size
circuits.) When the context is clear, we sometimes refer to � as a secure implementa-
tion of f .

One important property that Definition 7.2.6 implies is privacy with respect to ma-
licious adversaries. That is, all that an adversary can learn by participating in the
protocol, while using an arbitrary (feasible) strategy, can be essentially inferred from
the corresponding output alone. Another property that is implied by Definition 7.2.6 is
correctness, which means that the output of the honest party must be consistent with
an input pair in which the element corresponding to the honest party equals the party’s
actual input. Furthermore, the element corresponding to the adversary must be chosen
obliviously of the honest party’s input. We stress that both properties are easily implied
by Definition 7.2.6, but the latter is not implied by combining the two properties. For
further discussion, see Exercise 3.

We wish to highlight another property that is implied by Definition 7.2.6: Loosely
speaking, this definition implies that at the end of the (real) execution of a secure pro-
tocol, each party “knows” the value of the corresponding input for which the output
is obtained.19 That is, when a malicious Party 1 obtains the output v, it knows an x ′

(which does not necessarily equal to its initial local input x) such that v = f1(x ′, y) for
some y (i.e., the local input of the honest Party 2). This “knowledge” is implied by the
equivalence to the ideal model, in which the party explicitly hands the (possibly modi-
fied) input to the trusted party. For example, say Party 1 uses the malicious strategy A1.
Then the output values (in real�, A(x , y)) correspond to the input pair (B1(x), y),
where B1 is the ideal-model adversary derived from the real-model adversarial
strategy A1.

We comment that although Definition 7.2.6 does not talk about transforming ad-
missible A’s to admissible B’s, we will often use such phrases. Furthermore, although
the definition does not even guarantee that such a transformation is effective (i.e.,
computable), the transformations used in this work are all polynomial-time com-
putable. Moreover, these transformations consist of generic programs for Bi that use

19 One concrete case where this property plays a central role is in the input-commitment functionality (of Sec-
tion 7.4.3.6). Specifically, if a secure implementation of this functionality is first used in order to let Party 1
commit to its input, and next, Party 2 uses it in order to commit to its own input, then this property implies that
Party 2 cannot just copy the “commitment” made by Party 1 (unless Party 2 knows the input of Party 1).
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subroutine (or oracle) calls to the corresponding Ai . Consequently, we sometimes
describe these transformations without referring to the auxiliary input, and the de-
scription can be completed by having Bi pass its auxiliary input to Ai (in each of its
invocations).

Further Discussion. As explained earlier, it is unavoidable that one party can abort the
real execution after it (fully) learns its output but before the other party (fully) learns
its own output. However, the convention by which this ability is designated to Party 1
(rather than to Party 2) is quite arbitrary. More general conventions (and corresponding
definitions of security) may be more appealing, but the current one seems simplest
and suffices for the rest of our exposition.20 An unrelated is issue is that unlike in
the treatment of the semi-honest model (cf. Definitions 7.2.1 and 7.2.2), we did not
explicitly include the output f (x , y) (resp., output�(x , y)) in ideal f, B(z)(x , y) (resp.,
in real�, A(z)(x , y)). Note that such an augmentation would not make much sense in the
current (malicious) context. Furthermore, recall that this issue is meaningful only in the
case of a randomized functionality f , and that its concrete motivation was to simplify
the proof of the composition theorem for the semi-honest model (which is irrelevant
here). Finally, referring to a third unrelated issue, we comment that the definitional
treatment can be extended to partial functionalities.

Remark 7.2.7 (security for partial functionalities): For functionalities that are defined
only for input pairs in some set R ⊂ {0, 1}∗ × {0, 1}∗ (see Section 7.2.1.1), security is
defined as in Definition 7.2.6 with the following two exceptions:

1. When defining the ideal model, the adversary is allowed to modify its input arbitrarily
as long as the modified input pair is in R.

2. The ensembles considered are indexed by triplets (x , y, z) that satisfy (x , y) ∈ R as
well as |x | = |y| and |z| = poly(|x |).

7.2.3.2. An Alternative Approach

A simpler definition of security may be used in the special case of single-output func-
tionalities (i.e., functionalities in which only one party obtains an output). Assume,
without loss of generality, that only the first party obtains an output (from the func-
tionality f ); that is, f (x , y) = ( f1(x , y), λ).21 In this case, we need not be concerned

20 One alternative convention is to associate with each protocol a binary value indicating which of the two parties is
allowed to meaningfully abort. This convention yields a more general (or less restrictive) definition of security,
where Definition 7.2.6 is obtained as a special case (in which this value is always required to equal 1). Yet the
protocols presented in this work are shown to be secure under the more restrictive definition.

21 Actually, the treatment of the case in which only the second party obtains an output (i.e., f (x , y) = (λ, f2(x , y)))
is slightly different. However, also in this case, the event in which the first party aborts after obtaining its (empty)
output can be discarded. In this case, this event (of obtaining an a priori fixed output) is essentially equivalent
to the party aborting before obtaining output, which in turn can be viewed as replacing its input by a special
symbol.
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with what happens after the first party obtains its output (because the second party has
no output), and thus the complications arising from the issue of aborting the execution
can be eliminated. Consequently, computation in the ideal model takes the following
form:

Inputs: Each party obtains an input, denoted u.

Sending inputs to the trusted party: An honest party always sends u to the trusted party.
A malicious party may, depending on u (as well as on an auxiliary input and its coin
tosses), either abort or send some u′ ∈ {0, 1}|u| to the trusted party. However, without
loss of generality, aborting at this stage may be treated as supplying the trusted party
with a special symbol.

The answer of the trusted party: Upon obtaining an input pair, (x , y), the trusted party
(for computing f ) replies to the first party with f1(x , y). Without loss of generality,
the trusted party only answers the first party, because the second party has no output
(or, alternatively, should always output λ).

Outputs: An honest party always outputs the message it has obtained from the trusted
party. A malicious party may output an arbitrary (polynomial-time computable)
function of its initial input (auxiliary input and its coin tosses) and the message it
has obtained from the trusted party.

Thus, the ideal model (computation) is captured by the following definition, where
the algorithms B1 and B2 represent all possible actions in the model. In particular,
B1(x , z, r ) (resp., B2(y, z, r )) represents the input handed to the trusted party by Party 1
(resp., Party 2) having local input x (resp., y), auxiliary input z, and random-tape r .
Indeed, if Party 1 (resp., Party 2) is honest, then B1(x , z, r ) = x (resp., B2(y, z, r ) = y).
Likewise, B1(x , z, r, v) represents the output of Party 1, when having local input x
(auxiliary input z and random-tape r ) and receiving the value v from the trusted party,
whereas the output of Party 2 is represented by B2(y, z, r, λ). Indeed, if Party 1 (resp.,
Party 2) is honest, then B1(x , z, r, v) = v (resp., B2(y, z, r, λ) = λ).

Definition 7.2.8 (the ideal model): Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {λ} be a
single-output functionality such that f (x , y) = ( f1(x , y), λ). Let B = (B1, B2) be a
pair of probabilistic polynomial-time algorithms representing strategies in the ideal
model. Such a pair is admissible (in the ideal malicious model) if for at least one
i ∈ {1, 2}, called honest, we have Bi (u, z, r ) = u and Bi (u, z, r, v) = v for all pos-
sible u, z, r , and v. Furthermore, |Bi (u, z, r )| = |u| must hold for both i’s. The joint
execution of f under B in the ideal model (on input pair (x , y) and auxiliary input
z), denoted ideal f, B(z)(x , y), is defined by uniformly selecting a random-tape r for the

adversary, and letting ideal f, B(z)(x , y)
def= ϒ(x , y, z, r ), where

ϒ(x , y, z, r )
def= (B1(x , z, r, f1(B1(x , z, r ), B2(y, z, r ))) , B2(y, z, r, λ)) (7.16)

632

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.004
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:15, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.004
https:/www.cambridge.org/core


7.2* THE TWO-PARTY CASE: DEFINITIONS

That is, ideal f, B(z)(x , y)
def= (B1(x , z, r, v), B2(y, z, r, λ)), where v ← f1(B1(x , z, r ),

B2(y, z, r )) and r is uniformly distributed among the set of strings of adequate length.22

We next consider the real model in which a real (two-party) protocol is executed (and
there exist no trusted third parties). In this case, a malicious party may follow an arbitrary
feasible strategy, that is, any strategy implementable by a probabilistic polynomial-time
algorithm. The definition is identical to Definition 7.2.5, and is reproduced here (for
the reader’s convenience).

Definition 7.2.9 (the real model): Let f be as in Definition 7.2.8, and � be a two-party
protocol for computing f . Let A = (A1, A2) be a pair of probabilistic polynomial-time
algorithms representing strategies in the real model. Such a pair is admissible (with
respect to �) (for the real malicious model) if at least one Ai coincides with the strategy
specified by �. The joint execution of � under A in the real model (on input pair
(x , y) and auxiliary input z), denoted real�, A(z)(x , y), is defined as the output pair
resulting from the interaction between A1(x , z) and A2(y, z). (Note that the honest Ai

ignores the auxiliary input z.)

Having defined the ideal and real models, we obtain the corresponding definition of
security. Loosely speaking, the definition asserts that a secure two-party protocol (in
the real model) emulates the ideal model (in which a trusted party exists). This is
formulated by saying that admissible adversaries in the ideal model are able to simulate
(in the ideal model) the execution of a secure real-model protocol under any admissible
adversaries. The definition is analogous to Definition 7.2.6.

Definition 7.2.10 (security): Let f and � be as in Definition 7.2.9. Protocol � is said
to securely compute f (in the malicious model) if for every probabilistic polynomial-
time pair of algorithms A = (A1, A2) that is admissible for the real model (of Defini-
tion 7.2.9), there exists a probabilistic polynomial-time pair of algorithms B = (B1, B2)
that is admissible for the ideal model (of Definition 7.2.8) such that

{ideal f, B(z)(x , y)}x , y,z
c≡ {real�, A(z)(x , y)}x , y,z

where x , y, z ∈ {0, 1}∗ such that |x | = |y| and |z| = poly(|x |).

Clearly, as far as single-output functionalities are concerned, Definitions 7.2.6
and 7.2.10 are equivalent (because in this case, the ideal-model definitions coincide).
It is also clear from the previous discussions that the two definitions are not equiv-
alent in general (i.e., with respect to two-output functionalities). Still, it is possible
to securely implement any (two-output) functionality by using a protocol for securely
computing a (related) single-output functionality. That is, the ability to construct secure
protocols under Definition 7.2.10 yields the ability to construct secure protocols under
Definition 7.2.6.

22 Recall that if Bi is honest, then it passes its input to the trusted party and outputs its response. Thus, our peculiar
choice to feed both parties with the same auxiliary input and same random-tape is immaterial, because the
honest party ignores both.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

Proposition 7.2.11: Suppose that there exist one-way functions and that any single-
output functionality can be securely computed as per Definition 7.2.10. Then any func-
tionality can be securely computed as per Definition 7.2.6.

Proof Sketch: Suppose that the parties wish to securely compute the (two-output)
functionality (x , y) �→ ( f1(x , y), f2(x , y)). The first idea that comes to mind is to
first let the parties (securely) compute the first output (i.e., by securely computing
(x , y) �→ ( f1(x , y), λ)) and next let them (securely) compute the second output (i.e.,
by securely computing (x , y) �→ (λ, f2(x , y))). This solution is insecure, because a
malicious party may enter different inputs in the two invocations (not to mention that
the approach will fail for randomized functionalities even if both parties are honest).
Instead, we are going to let the first party obtain its output as well as an (authenticated
and) encrypted version of the second party’s output, which it will send to the second
party (which will be able to decrypt and verify the value). That is, we will use private-
key encryption and authentication schemes, which exist under the first hypothesis, as
follows. First, the second party generates an encryption/decryption-key, denoted e, and
a signing/verification-key, denoted s. Next, the two parties securely compute the ran-
domized functionality ((x , (y, e, s)) �→ (( f1(x , y), c, t) , λ), where c is the ciphertext
obtained by encrypting the plaintext v = f2(x , y) under the encryption-key e, and t is
an authentication-tag of c under the signing-key s. Finally, the first party sends (c, t) to
the second party, which verifies that c is properly signed and (if so) recovers f2(x , y)
from it.

7.3.* Privately Computing (Two-Party) Functionalities

Recall that our ultimate goal is to design (two-party) protocols that withstand any
feasible adversarial behavior. We proceed in two steps. In this section, we show how
to construct protocols for privately computing any functionality, that is, protocols that
are secure with respect to the semi-honest model. In Section 7.4, we will show how to
compile these protocols into ones that are secure also in the malicious model.

Throughout the current section, we assume that the desired (two-party) functionality
(along with the desired input length) is represented by a Boolean circuit. We show how to
transform this circuit into a two-party protocol for evaluating the circuit on a given pair
of local inputs. The transformation follows the outline provided in in Section 7.1.3.3.23

The circuit-evaluation protocol, to be presented in Section 7.3.4, scans the circuit
from the input wires to the output wires, processing a single gate in each basic step.
When entering each basic step, the parties hold shares of the values of the input wires of
the gate, and when the step is completed, they hold shares of the output wire of the gate.
The shares held by each party yield no information about the corresponding values, but
combining the two shares of any value allows for reconstructing the value. Each basic
step is performed without yielding any additional information; that is, the generation
of shares for all wires (and in particular for the circuit’s output wires) is performed in

23 Indeed, the current section is essentially a detailed version of Section 7.1.3.3.
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7.3* PRIVATELY COMPUTING (TWO-PARTY) FUNCTIONALITIES

a private manner. Put in other words, we will show that privately evaluating the circuit
“reduces” to privately evaluating single gates on values shared by both parties.

Our presentation is modular, where the modularity is supported by an appropriate
notion of a reduction. Thus, we first define such notion, and show that indeed it is
suitable to our goals; that is, combining a reduction of (the private computation of) g
to (the private computation of) f and a protocol for privately computing f yields a
protocol for privately computing g. Applying this notion of a reduction, we reduce the
private computation of general functionalities to the private computation of determin-
istic functionalities, and thus focus on the latter.

We next consider, without loss of generality, the evaluation of Boolean circuits with
and and xor gates of fan-in 2.24 Actually, we find it more convenient to consider the
corresponding arithmetic circuits over GF(2), where multiplication corresponds to and

and addition to xor. A value v is shared by the two parties in the natural manner (i.e.,
the sum of the shares equals v mod 2). We show how to propagate shares of values
through any given gate (operation). Propagation through an addition gate is trivial, and
we concentrate on propagation through a multiplication gate. The generic case is that
the first party holds (a1, b1) and the second party holds (a2, b2), where a1 + a2 is the
value of one input wire and b1 + b2 is the value of the other input wire. What we want
is to provide each party with a random share of the value of the output wire, that is, a
share of the value (a1 + a2) · (b1 + b2). In other words, we are interested in privately
computing the following randomized functionality

((a1, b1), (a2, b2)) �→ (c1, c2) (7.17)

where c1 + c2 = (a1 + a2) · (b1 + b2). (7.18)

That is, (c1, c2) ought to be uniformly distributed among the pairs satisfying c1 + c2 =
(a1 + a2) · (b1 + b2). As shown in Section 7.3.3, this functionality can be privately
computed by reduction to a variant of Oblivious Transfer (OT). This variant is defined
in Section 7.3.2, where it is shown that this variant can be privately implemented
assuming the existence of (enhanced) trapdoor one-way permutations. We stress that
the specific functionalities mentioned here are relatively simple (e.g., they have a finite
domain). Thus, Section 7.3.4 reduces the private computation of arbitrary (complex)
functionalities to the construction of protocols for privately computing a specific simple
functionality (e.g., the one of Eq. (7.17) and Eq. (7.18)).

The actual presentation proceeds bottom-up. We first define reductions between (two-
party) protocol problems (in the semi-honest model). Next, we define and implement
OT, and show how to use OT for privately computing a single multiplication gate. Finally,
we show how to use the latter protocol to derive a protocol for privately evaluating the
entire circuit.

Teaching Tip. Some readers may prefer to see a concrete protocol (and its privacy
analysis) before coping with the abstract notion of a privacy reduction (and a corre-
sponding composition theorem). We advise such readers to read Section 7.3.2 before
reading Section 7.3.1.

24 Indeed, negation can be emulated by xoring the given bit with the constant true.
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7.3.1. Privacy Reductions and a Composition Theorem

It is time to define what we mean by saying that the private computation of one func-
tionality reduces to the private computation of another functionality. Our definition
is a natural extension of the standard notion of a reduction as used in the context of
ordinary (i.e., one-party) computation. Recall that standard reductions are defined in
terms of oracle machines. Thus, we need to consider two-party protocols with oracle
access. Here, the oracle is invoked by both parties, each supplying it with one input (or
query), and it responds with a pair of answers, one per each party. We stress that the
answer-pair depends on the (entire) query-pair.

Definition 7.3.1 (protocols with oracle access): An oracle-aided protocol is an or-
dinary protocol augmented by pairs of oracle-tapes, one pair per each party, and
oracle-call steps defined as follows. Each of the parties may send a special oracle
request message, to the other party. Such a message is typically sent after this party
writes a string, called its query, on its own write-only oracle-tape. In response, the
other party also writes a string, called its query, on its own oracle-tape and responds
to the requesting party with an oracle call message. At this point, the oracle is in-
voked and the result is that a string, not necessarily the same, is written by the oracle
on the read-only oracle-tape of each party. This pair of strings is called the oracle
answer.

We stress that the syntax of Definition 7.3.1 allows (only) sequential oracle calls (but
not parallel ones). We call the reader’s attention to the second item in Definition 7.3.2
that requires that the oracle-aided protocol privately compute the functionality, rather
than merely computes it.

Definition 7.3.2 (privacy reductions):

� An oracle-aided protocol is said to be using the oracle-functionality f if the
oracle answers are according to f . That is, when the oracle is invoked, such that the
requesting party writes the query q1 and responding party writes the query q2, the
answer-pair is distributed as f (q1, q2), where the requesting party gets the first part
(i.e., f1(q1, q2)).25

We require that the length of each query be polynomially related to the length of the
initial input.26

� An oracle-aided protocol using the oracle-functionality f is said to privately com-
pute g if there exist polynomial-time algorithms, denoted S1 and S2, satisfying
Eq. (7.9) and Eq. (7.10), respectively, where the corresponding views of the exe-
cution of the oracle-aided protocol are defined in the natural manner.

25 The identity of the requesting party may be determined by the two parties (according to interaction prior to the
request). In particular, as in all protocols used in this work, the identity of the requesting party may be fixed a
priori.

26 This requirement guarantees that the security of the oracle calls be related to the security of the high-level
protocol.
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7.3* PRIVATELY COMPUTING (TWO-PARTY) FUNCTIONALITIES

� An oracle-aided protocol is said to privately reduce g to f if it privately computes
g when using the oracle-functionality f . In such a case, we say that g is privately
reducible to f ,

We are now ready to state a composition theorem for the semi-honest model.

Theorem 7.3.3 (Composition Theorem for the semi-honest model): Suppose that g is
privately reducible to f and that there exists a protocol for privately computing f .
Then there exists a protocol for privately computing g.

Theorem 7.3.3 can be generalized to assert that if g is privately reducible to f , and f
is privately reducible to e, then g is privately reducible to e. See Exercise 5.

Proof Sketch: Let �g| f be a oracle-aided protocol that privately reduces g to f , and let
� f be a protocol that privately computes f . We construct a protocol � for computing
g in the natural manner; that is, starting with �g| f , we replace each invocation of the
oracle (i.e., of f ) by an execution of the protocol � f . Clearly, � computes g. We need
to show that � privately computes g.

For each i = 1, 2, let Sg| f
i and S f

i be the corresponding simulators for the view of
Party i (i.e., in �g| f and � f , respectively). We construct a simulator Si , for the view of
Party i in �, in the natural manner. That is, we first run Sg| f

i and obtain the (simulated)
view of Party i in �g| f . This (simulated) view includes queries made by Party i and
corresponding answers. (Recall, we have only the part of Party i in the query-answer
pair.) Invoking S f

i on each such “partial query-answer,” we fill in the view of Party i

for each of these invocations of � f . (Note that we rely on the fact that the simulator S f
i

outputs a view that fits the output given to it; see Item 2 in the discussion that follows
Definition 7.2.1.)

A minor technicality: There is a minor inaccuracy in this description, which pre-
supposes that Party i is the party that plays the i-th party in � f (i.e., Party 1 is the
party in �g| f that requests all oracle calls to f ). But, in general, it may be that, in
some invocations of � f , Party 2 plays the first party in � f (i.e., Party 1 is the party
in �g| f that requests this particular oracle call). In this case, we should simulate the
execution of � f by using the simulator that simulates the view of the corresponding
party in � f (rather than the corresponding party in �).
Advanced comment: Note that we capitalize on the fact that in the semi-honest
model, the execution of the steps of �g| f (inside �) is independent of the actual
executions of � f (and depends only on the outcomes of � f ). This fact allows us
to first simulate a transcript of �g| f , and next generate simulated transcripts of � f .
In contrast, in the malicious model, the adversary’s actions in �g| f may depend on
the transcript of previous executions of � f , and thus this simulation strategy will
not work in the malicious model (and a more complex simulation strategy will be
used).

It is left to show that Si indeed generates a distribution that (augmented by the value
of g) is indistinguishable from the view of Party i (augmented by the output of both
parties) in actual executions of �. Toward this end, we introduce a hybrid distribution,
denoted Hi . This hybrid distribution represents the view of Party i (and the output of
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both parties) in an execution of �g| f that is augmented by corresponding invocations of
S f

i . That is, for each query-answer pair, (q, a), viewed by Party i , we augment its view

with S f
i (q, a). In other words, Hi represents the execution of �, with the exception that

the invocations of � f are replaced by simulated transcripts.
Comment: We stress that since g may be a randomized functionality, we should
establish that the protocol satisfies the general form of Definition 7.2.1, rather than
its simplified form. That is, we consider the joint distribution consisting of the view
of Party i and the output of both parties (rather than merely the former). This fact
merely makes the phrases more cumbersome, and the essence of the argument may
be better captured by assuming that g is deterministic and using the special (simpler)
form of Definition 7.2.1. Likewise, in case f is randomized, we have to rely on the
general form of Definition 7.2.1 in order to show that the distributions represented
by Hi and � are computationally indistinguishable.

Using the guarantees regarding S f
i (resp., Sg| f

i ), we show that the distributions cor-
responding to Hi and � (resp., Hi and Si ) are computationally indistinguishable.
Specifically:

1. The distributions represented by Hi and � are computationally indistinguishable:
The reason is that these distributions differ only in that the invocations of � f in
� are replaced in Hi by S f

i -simulated transcripts. Thus, the hypothesis regarding

S f
i implies that the two distributions are computationally indistinguishable (where

indistinguishability is measured with respect to the length of the queries, and holds
also when measured with respect to the length of the initial inputs).27 Specifically,
one may consider hybrids of � and Hi such that in the j-th hybrid, the first j
invocations of � f are real and the rest are simulated. Then distinguishability of
neighboring hybrids contradicts the hypothesis regarding S f

i (by incorporating a
possible transcript of the rest of the execution into the distinguisher).

2. The distributions represented by Hi and Si are computationally indistinguishable:
The reason is that these distributions are obtained, respectively, from �g| f and Sg| f

i ,

by augmenting the latter with invocations of S f
i . Thus, indistinguishability follows

by the hypothesis regarding Sg| f
i . Specifically, distinguishing Hi and Si implies dis-

tinguishing �g| f and Sg| f
i (by incorporating the program S f

i into the distinguisher).

The theorem follows.

Application: Reducing Private Computation of General Functionalities to Deter-
ministic Ones. Given a general functionality g, we first write it in a way that makes
the randomization explicit. That is, we let g(r, (x , y)) denote the value of g(x , y) when
using coin tosses r ∈ {0, 1}poly(|x |); that is, g(x , y) is the randomized process consisting
of uniformly selecting r ∈ {0, 1}poly(|x |), and deterministically computing g(r, (x , y)).
Next, we privately reduce g to a deterministic f , where f is defined as follows:

f ((x1, r1), (x2, r2))
def= g(r1 ⊕ r2, (x1, x2)) (7.19)

27 Here we use the hypothesis (made in the first item of Definition 7.3.2) that the length of each query is polynomially
related to the length of the initial input.
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Applying Theorem 7.3.3 (while using a straightforward privacy reduction of g to f ),
we conclude that the existence of a protocol for privately computing the deterministic
functionality f implies the existence of a protocol for privately computing the ran-
domized functionality g. For sake of future reference, we explicitly state the privacy
reduction of g to f (i.e, the oracle-aided protocol for g given f ).

Proposition 7.3.4 (privately reducing a randomized functionality to a deterministic
one): Let g be a randomized functionality, and f be as defined in Eq. (7.19). Then the
following oracle-aided protocol privately reduces g to f .

Inputs: Party i gets input xi ∈ {0, 1}n.

Step 1: Party i uniformly selects ri ∈ {0, 1}poly(|xi |).

Step 2 – Reduction: Party i invokes the oracle with query (xi , ri ), and records the oracle
response.

Outputs: Each party outputs the oracle’s response.

We comment that this construction is also applicable in the case of malicious adver-
saries; see Section 7.4.2.

Proof: Clearly, this protocol, denoted�, computes g. To show that�privately computes
g, we need to present a simulator for each party view. The simulator for Party i , denoted
Si , is the obvious one. On input (xi , vi ), where xi is the local input to Party i and vi

is its local output, the simulator uniformly selects ri ∈ {0, 1}m , and outputs (xi , ri , vi ),
where m = poly(|xi |). The main observation underlying the analysis of this simulator
is that for every fixed x1, x2 and r ∈ {0, 1}m , we have v = g(r, (x1, x2)) if and only if
v = f ((x1, r1), (x2, r2)), for every pair (r1, r2) satisfying r1 ⊕ r2 = r . Now, let ζi be a
random variable representing the random choice of Party i in Step 1, and ζ ′

i denote the
corresponding choice made by the simulator Si . Then, referring to the general form of
Definition 7.2.1 (as we should, since g is a randomized functionality), we show that for
every fixed x1, x2, ri and v = (v1, v2), it holds that

Pr

[
view�

i (x1, x2) = (xi , ri , vi )
∧ output�(x1, x2) = (v1, v2)

]
= Pr[(ζi = ri ) ∧ ( f ((x1, ζ1), (x2, ζ2)) = v)]

= Pr[ζi = ri ] · |{r3−i : f ((x1, r1), (x2, r2)) = v}|
2m

= 2−m · |{r : g(r, (x1, x2)) = v}|
2m

= Pr[ζ ′
i = ri ] · Pr[g(x1, x2) = v]

= Pr[(ζ ′
i = ri ) ∧ (g(x1, x2) = v)]

= Pr

[
Si (xi , gi (x1, x2)) = (xi , ri , vi )
∧ g(x1, x2) = (v1, v2)

]
where the equalities are justified as follows: the 1st by definition of �, the 2nd by
independence of the ζi ’s, the 3rd by definition of ζi and f , the 4th by definition of
ζ ′

i and g, the 5th by independence of ζ ′
i and g, and the 6th by definition of Si . Thus,
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the simulated view (and output) is distributed identically to the view (and output) in a
real execution. The claim (which only requires these ensembles to be computationally
indistinguishable) follows.

7.3.2. The OTk
1 Protocol: Definition and Construction

The (following version of the) Oblivious Transfer functionality is a main ingredient
of our construction. Let k be a fixed integer (k = 4 will do for our purpose), and let
σ1, σ2, ..., σk ∈ {0, 1} and i ∈ {1, ..., k}. Then, the (single-output) functionality 1-out-
of-k Oblivious Transfer, denoted OTk

1, is defined as

OTk
1((σ1, σ2, ..., σk), i) = (λ, σi ) (7.20)

Indeed, 1-out-of-k Oblivious Transfer, is asymmetric. Traditionally, the first player,
holding input (σ1, σ2, ..., σk) is called the sender, whereas the second player, holding
the input i ∈ {1, ..., k} is called the receiver. Intuitively, the goal is to transfer the i-th bit
to the receiver, without letting the receiver obtain knowledge of any other bit and without
letting the sender obtain knowledge of the identity of the bit required by the receiver.

Using any enhanced trapdoor permutation, { fα : Dα → Dα}α∈I , we present a proto-
col for privately computing OTk

1. The following description refers to the algorithms
guaranteed by such a collection (see Definition 2.4.5 in Volume 1 and Definition C.1.1
in Appendix C) and to a hard-core predicate b for such a collection (see Section 2.5
of Volume 1). We denote the sender (i.e., the first party) by S and the receiver (i.e.,
the second party) by R. As discussed in Section 7.2.1, since we are dealing with a
finite functionality, we want the security to be stated in terms of an auxiliary security
parameter, n, presented to both parties in unary.

Construction 7.3.5 (Oblivious Transfer protocol for semi-honest model):

Inputs: The sender has input (σ1, σ2, ..., σk) ∈ {0, 1}k , the receiver has input i ∈
{1, 2, ..., k}, and both parties have the auxiliary security parameter 1n.

Step S1: The sender uniformly selects an index-trapdoor pair, (α, t), by running the
generation algorithm, G, on input 1n. That is, it uniformly selects a random-tape, r ,
for G and sets (α, t) = G(1n , r ). It sends the index α to the receiver.

Step R1: The receiver uniformly and independently selects x1, ..., xk ∈ Dα , sets yi =
fα(xi ) and y j = x j for every j �= i , and sends (y1, y2, ..., yk) to the sender. That is:

1. It uniformly and independently selects x1, ..., xk ∈ Dα , by invoking the domain-
sampling algorithm k times, on input α. Specifically, it selects random-tapes, r j ’s,
for D and sets x j = D(α, r j ), for j = 1, ..., k.

2. Using the evaluation algorithm, the receiver sets yi = fα(xi ).
3. For each j �= i , the receiver sets y j = x j .
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4. The receiver sends (y1, y2, ..., yk) to the sender.

(Thus, the receiver knows f −1
α (yi ) = xi , but cannot predict b( f −1

α (y j )) for any
j �= i .)

Step S2: Upon receiving (y1, y2, ..., yk), using the inverting-with-trapdoor algorithm
and the trapdoor t, the sender computes z j = f −1

α (y j ), for every j ∈ {1, ..., k}. It
sends (σ1 ⊕ b(z1), σ2 ⊕ b(z2), ..., σk ⊕ b(zk)) to the receiver.

Step R2: Upon receiving (c1, c2, ..., ck), the receiver locally outputs ci ⊕ b(xi ).

We first observe that this protocol correctly computes OTk
1: This is the case since the

receiver’s local output (i.e., ci ⊕ b(xi )) satisfies

ci ⊕ b(xi ) = (σi ⊕ b(zi )) ⊕ b(xi )

= σi ⊕ b( f −1
α (yi )) ⊕ b(xi )

= σi ⊕ b( f −1
α ( fα(xi ))) ⊕ b(xi )

= σi

We show next that the protocol indeed privately computes OTk
1. Intuitively, the sender

gets no information from the execution because, for any possible value of i , the senders
sees the same distribution; specifically, a sequence of k uniformly and independently
distributed elements of Dα . (Indeed, the key observation is that applying fα to a uni-
formly distributed element of Dα yields a uniformly distributed element of Dα .) In-
tuitively, the receiver gains no computational knowledge from the execution since, for
j �= i , the only data it has regarding σ j is the triplet (α, r j , σ j ⊕ b( f −1

α (x j ))), where
x j = D(α, r j ), from which it is infeasible to predict σ j better than by a random guess.
Specifically, we rely on the “enhanced one-way” hypothesis by which, given α and r j ,
it is infeasible to find f −1

α (x j ) (or guess b( f −1
α (x j )) better than at random). A formal

argument is indeed due and given next.

Proposition 7.3.6: Suppose that { fi : Di → Di }i∈I constitutes a collection of enhanced
trapdoor permutations (as in Definition C.1.1) and that b constitutes a hard-core predi-
cate for it. Then, Construction 7.3.5 constitutes a protocol for privately computing OTk

1

(in the semi-honest model).

We comment that the intractability assumption used in Proposition 7.3.6 will propagate
to all subsequent results in the current and next section (i.e., Sections 7.3 and 7.4).
In fact, the implementation of OTk

1 seems to be the bottleneck of the intractability
assumptions used in these sections.

Proof Sketch: Note that since we are dealing with a deterministic functionality, we
may use the special (simpler) form of Definition 7.2.1 (which only refers to each
party’s view). Thus, we will present a simulator for the view of each party. Recall that
these simulators are given the local input (which also includes the security parameter)
and the local output of the corresponding party. The following schematic depiction of
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GENERAL CRYPTOGRAPHIC PROTOCOLS

the information flow in Construction 7.3.5 may be useful toward the constructions of
these simulators:

Sender (S) Receiver (R)

input (σ1, ..., σk) i
Step S1 (α, t) ← G(1n)

−→ α −→
Step R1 generates y j ’s

←− (y1, ..., yk) ←− (knows xi = f −1
α (yi ))

Step S2 c j = σ j ⊕ b( f −1
α (y j ))

−→ (c1, ..., ck) −→
R2 (output) λ ci ⊕ b(xi )

We start by presenting a simulator for the sender’s view. On input (((σ1, ..., σk), 1n), λ),
this simulator randomly selects α (as in Step S1) and generates uniformly and inde-
pendently y1, ..., yk ∈ Dα . That is, let r denote the sequence of coins used to generate
α, and assume without loss of generality that the inverting-with-trapdoor algorithm
is deterministic (which is typically the case anyhow). Then the simulator outputs
(((σ1, ..., σk), 1n), r, (y1, ..., yk)), where the first element represents the party’s input,
the second its random choices, and the third the (single) message that the party
has received. Clearly, this output distribution is identical to the view of the sender
in the real execution. (This holds because fα is a permutation, and thus applying
it to a uniformly distributed element of Dα yields a uniformly distributed element
of Dα .)

We now turn to the receiver. On input ((i, 1n), σi ), the simulator (of the receiver’s
view) proceeds as follows:

1. Emulating Step S1, the simulator uniformly selects an index-trapdoor pair, (α, t), by
running the generation algorithm on input 1n .

2. As in Step R1, it uniformly and independently selects r1, ..., rk for the domain sampler
D, and sets x j = D(α, r j ) for j = 1, ..., k. Next, it sets yi = fα(xi ) and y j = x j , for
each j �= i .

3. It sets ci = σi ⊕ b(xi ), and uniformly selects c j ∈ {0, 1}, for each j �= i .
4. Finally, it outputs ((i, 1n), (r1, ..., rk), (α, (c1, ..., ck))), where the first element repre-

sents the party’s input, the second its random choices, and the third element represents
the two messages that the party has received.

Note that, except for the sequence of c j ’s, this output is distributed identically to the
corresponding prefix of the receiver’s view in the real execution. Furthermore, the said
equality holds even if we include the bit ci (which equals σi ⊕ b( f −1

α (yi )) = σi ⊕ b(xi )
in the real execution as well as in the simulation). Thus, the two distributions dif-
fer only in the values of the other c j ’s: For j �= i , in the simulation c j is uni-
form and independent of anything else, whereas in the real execution c j equals
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7.3* PRIVATELY COMPUTING (TWO-PARTY) FUNCTIONALITIES

b( f −1
α (y j )) = b( f −1

α (x j )) (and hence depends on r j , which determines x j ). However,
it is impossible to distinguish the two cases, because x j is uniformly distributed and
the distinguisher is only given α and r j (but not the trapdoor to fα). Here is where we
use the hypothesis that b is a hard-core of an enhanced collection of trapdoor permu-
tations (as in Definition C.1.1), rather than merely a standard collection of trapdoor
permutations.

Other Variants of Oblivious Transfer. A variety of different variants of the Oblivious
Transfer functionality were considered in the literature, but most treatments refer to the
(more challenging) problem of implementing these variants securely in the malicious
model (rather than in the semi-honest model). We briefly mention two of these other
variants:

1. Extensions of 1-out-of-k Oblivious Transfer to k secrets that are bit strings rather
than single bits.

2. Oblivious Transfer of a single secret (denoted σ ) that is to be delivered with prob-
ability 1/2. That is, the randomized functionality that maps (σ, λ) to (λ, σ ) with
probability 1/2 and to (λ, λ) otherwise.

Privacy reductions among these variants can be easily constructed (see Exercise 6).

7.3.3. Privately Computing c1 + c2 = (a1 + a2) · (b1 + b2)

We now turn to the functionality defined in Eq. (7.17) – (7.18). Recall that this func-
tionality is a randomized mapping ((a1, b1), (a2, b2)) �→ (c1, c2) satisfying c1 + c2 =
(a1 + a2) · (b1 + b2), where the arithmetic is in GF(2). We reduce the private compu-
tation of this (finite) functionality to (the private computation of) OT4

1.

Construction 7.3.7 (privately reducing the functionality of Eq. (7.17) – (7.18) to OT4
1):

Inputs: Party i holds (ai , bi ) ∈ {0, 1} × {0, 1}, for i = 1, 2.

Step 1: The first party uniformly selects c1 ∈ {0, 1}.
Step 2 – Reduction: The aim of this step is to privately compute the (residual)

deterministic functionality ((a1, b1, c1), (a2, b2)) �→ (λ, fa2,b2 (a1, b1, c1)), where
fa,b(x , y, z)

def= z + (x + a) · (y + b). The parties privately reduce the computation
of this functionality to OT4

1. Specifically, Party 1 plays the sender and Party 2 plays
the receiver. Using its input (a1, b1) and coin c1, Party 1 sets the sender’s input (in
the OT4

1) to equal the 4-tuple

( f0,0(a1, b1, c1) , f0,1(a1, b1, c1) , f1,0(a1, b1, c1) , f1,1(a1, b1, c1)) . (7.21)

Using its input (a2, b2), Party 2 sets the receiver’s input (in the OT4
1) to equal 1 +

2a2 + b2 ∈ {1, 2, 3, 4}.
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Thus, the receiver’s output will be the (1 + 2a2 + b2)th element in Eq. (7.21), which
in turn equals fa2,b2 (a1, b1, c1). That is:

Input of Party 2 Receiver’s input in OT4
1 Receiver’s output in OT4

1

(i.e., (a2, b2)) (i.e., 1 + 2a2 + b2) (i.e., fa2,b2 (a1, b1, c1))
(0, 0) 1 c1 + a1b1

(0, 1) 2 c1 + a1 · (b1 + 1)
(1, 0) 3 c1 + (a1 + 1) · b1

(1, 1) 4 c1 + (a1 + 1) · (b1 + 1)

Recall that fa2,b2 (a1, b1, c1) = c1 + (a1 + a2) · (b1 + b2).

Outputs: Party 1 outputs c1, whereas Party 2 outputs the result obtained from the OT4
1

invocation.

We first observe that the reduction is valid; that is, when Party i enters with input (ai , bi ),
the output of Party 2 equals fa2,b2 (a1, b1, c1) = c1 + (a1 + a2) · (b1 + b2), where c1

is the output of Party 1. That is, the output pair is uniformly distributed among the
pairs (c1, c2) for which c1 + c2 = (a1 + a2) · (b1 + b2) holds. Thus, each of the local
outputs (i.e, of either Party 1 or Party 2) is uniformly distributed, although the two local
outputs are dependent of one another (as in Eq. (7.18)). It is also easy to see that the
reduction is private. That is,

Proposition 7.3.8: Construction 7.3.7 privately reduces the computation of
Eq. (7.17) – (7.18) to OT4

1.

Proof Sketch: Simulators for the oracle-aided protocol of Construction 7.3.7 are easily
constructed. Specifically, the simulator of the view of Party 1 has input ((a1, b1), c1)
(i.e., the input and output of Party 1), which is identical to the view of Party 1 in
the corresponding execution (where here c1 serves as coins to Party 1). Thus, the
simulation is trivial (i.e., by the identity transformation). The same also holds for
the simulator of the view of Party 2: It gets input ((a2, b2), c1 + (a1 + a2) · (b1 + b2))
(i.e., the input and output of Party 2), which is identical to the view of Party 2 in the
corresponding execution (where here c1 + (a1 + a2) · (b1 + b2) serves as the oracle
response to Party 2). Thus, again, the simulation is trivial. We conclude that the view of
each party can be perfectly simulated (rather than just be simulated in a computationally
indistinguishable manner). The same holds when we also account for the parties’ outputs
(as required in the general form of Definition 7.2.1), and the proposition follows.28

On the Generic Nature of Construction 7.3.7. The idea underlying Step 2 of Con-
struction 7.3.7 can be applied in order to reduce the computation of any determinis-
tic functionality of the form (x , y) �→ (λ, fy(x)) to 1-out-of-2|y| Oblivious Transfer.
Indeed, this reduction is applicable only when y is short (i.e., the number of pos-
sible y’s is at most polynomial in the security parameter). Specifically, consider the

28 An alternative proof is presented in Exercise 9.
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functions fy : {0, 1}k → {0, 1}, for y ∈ {0, 1}� (when in Construction 7.3.7 � = 2 (and
k = 3)). Then, privately computing (x , y) �→ (λ, fy(x)) is reduced to 1-out-of-2� Obliv-
ious Transfer by letting the first party play the sender with input set to the 2�-tuple
( f0�(x), ..., f1�(x)) and the second party play the receiver with input set to the index of
y among the �-bit long strings.

7.3.4. The Circuit Evaluation Protocol

We now show that the computation of any deterministic functionality, which is repre-
sented by an arithmetic circuit over GF(2), is privately reducible to the functionality of
Eq. (7.17) – (7.18). Recall that the latter functionality corresponds to a private compu-
tation of multiplication of inputs that are shared by the two parties. We thus refer to this
functionality as the multiplication-gate emulation.

Our reduction follows the overview presented in the beginning of this section (i.e.,
Section 7.3). In particular, the sharing of a bit-value v between the two parties
means a uniformly distributed pair of bits (v1, v2) such that v = v1 + v2, where the first
party holds v1 and the second holds v2. Our aim is to propagate, via private computation,
shares of the input-wires of the circuit to shares of all wires of the circuit, so that finally
we obtain shares of the output-wires of the circuit.

Arithmetic circuits – the basics: Recall that an arithmetic circuit over GF(2) is a
directed acyclic graph with internal vertices corresponding to gates, where inter-
nal vertices are vertices having both incoming and outgoing edges. Without loss
of generality, we will consider two types of gates, called addition and multiplica-
tion. We will assume that each internal vertex has two incoming edges, called its
input-wires, and several outgoing edges called its output-wires. Boolean values are
propagated through such gates in the natural manner (i.e., each outgoing wire holds
the sum or multiple of the values of the incoming wires of the gate). Vertices with no
incoming edges are called sources, and vertices with no outgoing edges are called
sinks. Without loss of generality, each source has a single outgoing edge, which
is called an input-wire of the circuit, and each sink has a single incoming edge,
which is called an output-wire of the circuit. When placing Boolean values on the
input-wires of the circuit, the propagation of values through the gates determines
values to all output-wires. The function from input values to output values defined
this way is called the function computed by the circuit.

A tedious comment: For the sake of simplicity, we do not provide the circuit with
constant values (i.e., 0 and 1). The constant 0 can be easily produced by adding
any GF(2) value to itself, but omitting the constant 1 weakens the power of such
circuits (because this constant is essential to the computation of non-monotone
functions). However, the evaluation of any circuit that uses the constant 1 can be
privately reduced to the evaluation of a corresponding circuit that does not use the
constant 1.29

29 Given a circuit C that uses the constant 1, we derive a circuit C ′ that lacks constant inputs by introducing an
auxiliary variable that is to be set to 1 (and replacing any occurrence of the constant 1 by an occurrence of
the new auxiliary variable). Thus, C(x) = C ′(x , 1) (or rather C(x1, x2) = C ′(1x1, σ x2), for any σ ∈ {0, 1}).
Clearly, the private evaluation of C (on the input pair (x1, x2)) is reducible to the private evaluation of C ′ (e.g.,
by a single oracle call that asks for the evaluation of C ′, say, on the input (1x1, 0x2)).
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We will consider an enumeration of all wires in the circuit. The input-wires of the
circuit, n per each party, will be numbered 1, 2...., 2n so that, for j = 1, ..., n, the j-th
input of party i corresponds to the (i − 1) · n + j-th wire. The wires will be numbered
so that the output-wires of each gate have a larger numbering than its input wires.
The output-wires of the circuit are clearly the last ones. For the sake of simplicity we
assume that each party obtains n output bits, and that the output bits of the second party
correspond to the last n wires of the circuit.

Construction 7.3.9 (reducing the evaluation of any circuit to the emulation of a
multiplication gate): For simplicity, we assume that the circuit is either fixed or can be
determined in poly(n)-time as a function of n, which denotes the length of the input to
each party.30

Inputs: Party i holds the bit string x1
i · · · xn

i ∈ {0, 1}n, for i = 1, 2.

Step 1 – Sharing the Inputs: Each party (splits and) shares each of its input bits with
the other party. That is, for every i = 1, 2 and j = 1, ..., n, Party i uniformly se-
lects a bit r j

i and sends it to the other party as the other party’s share of the input
wire (i − 1) · n + j . Party i sets its own share of the (i − 1) · n + j th input wire
to x j

i + r j
i .

Step 2 – Circuit Emulation: Proceeding by the order of wires, the parties use their
shares of the two input-wires to a gate in order to privately compute shares for the
output-wire(s) of the gate. Suppose that the parties hold shares to the two input-wires
of a gate; that is, Party 1 holds the shares a1, b1 and Party 2 holds the shares a2, b2,
where a1, a2 are the shares of the first wire and b1, b2 are the shares of the second
wire. We consider two cases.31

Emulation of an addition gate: Party 1 just sets its share of the output-wire of the
gate to be a1 + b1, and Party 2 sets its share of the output-wire to be a2 + b2.

Emulation of a multiplication gate: Shares of the output-wire of the gate are obtained
by invoking the oracle for the functionality of Eq. (7.17) – (7.18), where Party 1
supplies the input (query part) (a1, b1), and Party 2 supplies (a2, b2). When the
oracle responds, each party sets its share of the output-wire of the gate to equal
its part of the oracle answer. Recall that, by Eq. (7.18), the two parts of the oracle
answer sum up to (a1 + b1) · (a2 + b2).

Step 3 – Recovering the Output Bits: Once the shares of the circuit-output wires are
computed, each party sends its share of each such wire to the party with which the
wire is associated. That is, the shares of the last n wires are sent by Party 1 to Party 2,

30 Alternatively, we may let the circuit be part of the input to both parties, which essentially means that the protocol
is computing the “universal circuit-evaluation” function.

31 In the text, we implicitly assume that each gate has a single output wire, but this assumption is immaterial and
the treatment extends easily to the case that the gates have several output wires. In the case of a multiplication
gate, both the natural possibilities (which follow) are fine. The first (more natural) possibility is to invoke the
oracle once per each multiplication gate and have each party use the same share for all output wires. The second
possibility is to invoke the oracle once per each output-wire (of a multiplication gate).
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whereas the shares of the preceding n wires are sent by Party 2 to Party 1. Each
party recovers the corresponding output bits by adding up the two shares, that is,
the share it had obtained in Step 2 and the share it has obtained in the current step.

Outputs: Each party locally outputs the bits recovered in Step 3.

For starters, let us verify that the output is indeed correct. This can be shown by induction
on the wires of the circuits. The induction claim is that the shares of each wire sum up
to the correct value of the wire. The base case of the induction are the input-wires of the
circuits. Specifically, the (i − 1) · n + j-th wire has value x j

i , and its shares are r j
i and

r j
i + x j

i (indeed, summing up to x j
i ). For the induction step we consider the emulation

of a gate. Suppose that the values of the input-wires (to the gate) are a and b, and that
their shares a1, a2 and b1, b2 indeed satisfy a1 + a2 = a and b1 + b2 = b. In the case
of an addition gate, the shares of the output-wire were set to be a1 + b1 and a2 + b2,
indeed satisfying

(a1 + b1) + (a2 + b2) = (a1 + a2) + (b1 + b2) = a + b

In the case of a multiplication gate, the shares of the output-wire were set to be c1 and
c2 such that c1 + c2 = (a1 + a2) · (b1 + b2). Thus, c1 + c2 = a · b as required.

Privacy of the Reduction. We now turn to show that Construction 7.3.9 indeed
privately reduces the computation of a circuit to the multiplication-gate emulation.
That is,

Proposition 7.3.10 (privately reducing circuit evaluation to multiplication-gate emu-
lation): Construction 7.3.9 privately reduces the evaluation of arithmetic circuits over
GF(2) to the functionality of Eq. (7.17) – (7.18).

Proof Sketch: Note that since we are dealing with a deterministic functionality, we
may use the special (simpler) form of Definition 7.2.1 and only refer to simulating
the view of each party. Recall that these simulators should produce the view of the
party in an oracle-aided execution (i.e., an execution of Construction 7.3.9, which is an
oracle-aided protocol). Without loss of generality, we present a simulator for the view
of Party 1. This simulator gets the party’s input x1

1 , ..., xn
1 , as well as its output, denoted

y1, ..., yn . It operates as follows:

1. The simulator uniformly selects r1
1 , ..., rn

1 and r1
2 , ..., rn

2 , as in Step 1. (The r j
1 ’s will

be used as the coins of Party 1, which are part of the view of the execution, whereas
the r j

2 ’s will be used as the message Party 1 receives at Step 1.) For each j ≤ n, the
simulator sets x j

1 + r j
1 as the party’s share of the value of the j-th wire. Similarly,

for j ≤ n, the party’s share of the n + j-th wire is set to r j
2 .

This completes the computation of the party’s shares of all the 2n circuit-input wires.
2. The party’s shares for all other wires are computed, iteratively gate by gate, as

follows:

� The party’s share of the output-wire of an addition gate is set to be the sum of the
party’s shares of the input-wires of the gate.
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� The party’s share of the output-wire of a multiplication gate is selected uniformly
in {0, 1}.

(The shares computed for output-wires of multiplication gates will be used as the
answers obtained, by Party 1, from the oracle.)

3. For each wire corresponding to an output, denoted y j , that is available to Party 1, the
simulator sets the value z j to equal the sum of y j and the party’s share of that wire.

4. The simulator outputs

((x1
1 , ..., xn

1 ), (y1, ..., yn), (r1
1 , ..., rn

1 ), V 1, V 2, V 3)

where V 1 = (r1
2 , ..., rn

2 ) corresponds to the view of Party 1 in Step 1 of the protocol,
the string V 2 equals the concatenation of the bits selected for the output-wires of
multiplication gates (corresponding to the party’s view of the oracle answers in Step 2
of a real execution), and V 3 = (z1, ..., zn) corresponds to the party’s view in Step 3
(i.e., the messages it would have obtained from Party 2 in Step 3 of the execution).

We claim that the output of the simulation is distributed identically to the view of Party 1
in the execution of the oracle-aided protocol. The claim clearly holds with respect to
the first four parts of the view; that is, the claim holds with respect to the party’s input
(i.e., x1

1 , ..., xn
1 ), its output (i.e., y1, ..., yn), its internal coin-tosses (i.e., r1

1 , ..., rn
1 ), and

the message obtained from Party 2 in Step 1 (i.e., (r1
2 , ..., rn

2 ) = V 1). Also, by defi-
nition of the functionality of Eq. (7.17) – (7.18), the oracle answers to each party are
uniformly distributed independently of (the parts of) the party’s queries. Thus, this part
of the view of Party 1 is uniformly distributed, identically to V 2. It follows that all
shares held by Party 1 are set by the simulator to have exactly the same distribution
as they have in a real execution. This holds, in particular, for the shares of the output
wires held by Party 1. Finally, we observe that both in the real execution and in the
simulation, adding the latter shares (i.e., the shares of the output wires held by Party 1)
to the messages sent by Party 2 in Step 3 (resp., to V 3) yields the corresponding bits
of the local output of Party 1. Thus, conditioned on the view so far, V 3 is distributed
identically to the messages sent by Party 2 in Step 3. We conclude that the simu-
lation is perfect (not only computationally indistinguishable), and so the proposition
follows.

Conclusion. Combining Propositions 7.3.4, 7.3.10, and 7.3.8 with the transitivity of
privacy reductions (see Exercise 5), we obtain:

Theorem 7.3.11: Any functionality is privately reducible to OT4
1.

Combining Theorem 7.3.11 and Proposition 7.3.6 with the Composition Theorem (The-
orem 7.3.3), we obtain:32

32 Alternatively, one may avoid relying on the transitivity of privacy reductions by successively applying the Com-
position Theorem to derive private protocols first for the multiplication functionality, then for any deterministic
functionality, and finally for any functionality. That is, in the first application we use Propositions 7.3.8 and 7.3.6,
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Theorem 7.3.12: Suppose that there exist collections of enhanced trapdoor per-
mutations. Then any functionality can be privately computable (in the semi-honest
model).

For the sake of future usage (in Section 7.4), we point out a property of the protocols
underlying the proof of Theorem 7.3.12.

Definition 7.3.13 (canonical semi-honest protocols): A protocol � for privately com-
puting the functionality f is called canonical if it proceeds by executing the following
two stages:

Stage 1: The parties privately compute the functionality (x , y) �→ ((r1, r2), (s1, s2)),
where the ri ’s and si ’s are uniformly distributed among all possibilities that satisfy
(r1 ⊕ s1, r2 ⊕ s2) = f (x , y).

Stage 2: Party 2 sends s1 to Party 1, which responds with r2. Each party computes its
own output; that is, Party i outputs ri ⊕ si .

Indeed, the protocols underlying the proof of Theorem 7.3.12 are canonical. Hence,

Theorem 7.3.14: Suppose that there exist collections of enhanced trapdoor permuta-
tions. Then any functionality can be privately computable by a canonical protocol.

We present two alternative proofs of Theorem 7.3.14: The first proof depends on the
structure of the protocols used in establishing Theorem 7.3.11, whereas the second
proof is generic and uses an additional reduction.

First Proof of Theorem 7.3.14: Recall that the oracle-aided protocol claimed in The-
orem 7.3.11 is obtained by composing the reduction in Proposition 7.3.4 with Con-
structions 7.3.9 and 7.3.7. The high-level structure of the resulting protocol is induced
by the circuit-evaluation protocol (of Construction 7.3.9), which is clearly canonical
(with Step 3 fitting Stage 2 in Definition 7.3.13). Indeed, it is important that in Step 3
exactly two messages are sent and that Party 1 sends the last message. The fact that the
said oracle-aided protocol is canonical is also preserved when replacing the OT4

1 oracle
by an adequate sub-protocol.

Second Proof of Theorem 7.3.14: Using Theorem 7.3.12, we can first derive a protocol
for privately computing the functionality of Stage 1 (in Definition 7.3.13). Augment-
ing this protocol by the trivial Stage 2, we derive a canonical protocol for privately
computing the original functionality (i.e., f itself).

in the second we use Proposition 7.3.10 and the protocol resulting from the first application, and in the last
application we use Proposition 7.3.4 and the protocol resulting from the second application.

649

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.004
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:15, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.004
https:/www.cambridge.org/core


GENERAL CRYPTOGRAPHIC PROTOCOLS

7.4.* Forcing (Two-Party) Semi-Honest Behavior

Our aim is to use Theorem 7.3.12 (or rather Theorem 7.3.14) in order to establish the
main result of this chapter; that is,

Theorem 7.4.1 (main result for the two-party case): Suppose that there exist collections
of enhanced trapdoor permutations. Then any two-party functionality can be securely
computable (in the malicious model).

Theorem 7.4.1 will be established by compiling any protocol for the semi-honest model
into an “equivalent” protocol for the malicious model. The current section is devoted
to the construction of the said compiler, which was already outlined in Section 7.1.3.1.
Loosely speaking, the compiler works by replacing the original instructions by macros
that force each party to either effectively behave in a semi-honest manner (hence, the
title of the current section) or be detected as cheating (in which case, the protocol aborts).

Teaching Tip. Some readers may prefer to see a concrete protocol (and its security
analysis) before getting to the general protocol compiler (and coping with the abstrac-
tions used in its exposition). We advise such readers to read Section 7.4.3.1 before
reading Sections 7.4.1 and 7.4.2.

7.4.1. The Protocol Compiler: Motivation and Overview

We are given a protocol for the semi-honest model. In this protocol, each party has a
local input and uses a uniformly distributed local random-tape. Such a protocol may be
used to privately compute some functionality (either a deterministic or a probabilistic
one), but the compiler does not refer to this functionality. The compiler is supposed to
produce an “equivalent protocol” for the malicious model. That is, any input–output
behavior that a malicious adversary can induce by attacking the resulting protocol
can also be induced by a semi-honest adversary that attacks the original protocol. To
motivate the protocol compiler, let us start by considering what a malicious party may
do (beyond whatever a semi-honest party can do).

1. A malicious party may enter the actual execution of the protocol with an input differ-
ent from the one it is given (i.e., “substitute its input”). As discussed in Section 7.2.3,
this is unavoidable. What we need to guarantee is that this substitution is done obliv-
iously of the input of the other party, that is, that the substitution only depends on
the original input.
Jumping ahead, we mention that the input-commitment phase of the compiled proto-
col is aimed at achieving this goal. The tools used here are commitment schemes (see
Section 4.4.1) and strong zero-knowledge proofs-of-knowledge (see Section 4.7.6).
Sequential executions of these proofs-of-knowledge guarantee the effective indepen-
dence of the committed values.

2. A malicious party may enter the actual execution of the protocol with a random-
tape that is not uniformly distributed. What we need to do is force the party
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7.4* FORCING (TWO-PARTY) SEMI-HONEST BEHAVIOR

to use a random-tape (for the emulated semi-honest protocol) that is uniformly
distributed.
The coin-generation phase of the compiled protocol is aimed at achieving this goal.
The tool used here is an augmented coin-tossing into the well protocol, which in turn
uses tools as in Item 1.

3. A malicious party may try to send messages different from the ones specified by
the original (semi-honest model) protocol. So we need to force the party to send
messages as specified by its (already committed) local input and random-tape.
The protocol-emulation phase of the compiled protocol is aimed at achieving this
goal. The tool used here is zero-knowledge proof systems (for NP-statements). In fact,
forcing parties to act consistently with some known information is the archetypical
application of zero-knowledge proofs.

In accordance with this discussion, the protocols produced by the compiler consist of
three phases.

Input-Commitment Phase: Each of the parties commits to its input by using a
secure implementation of the input-commitment functionality (to be defined in
Section 7.4.3.6). The latter functionality guarantees that the committing party actu-
ally knows the value to which it has committed, and that the secrecy of the committed
value is preserved. It follows that each party commits to a value that is essentially
independent of the value committed to by the other party. Furthermore, the input-
commitment functionality provides the committer with the corresponding decom-
mitment information (to be used in the protocol-emulation phase).

Coin-Generation Phase: The parties generate random-tapes for the emulation of the
original protocol. Each party obtains the value of the random-tape to be held by it,
whereas the other party obtains a commitment to this value. The party holding the
value also obtains the corresponding decommitment information. All this is obtained
by using a secure implementation of the (augmented) coin-tossing functionality (to
be defined in Section 7.4.3.5). It follows that each party obtains a random-tape that
is essentially random and independent of anything else.

Protocol Emulation Phase: The parties use a secure implementation of the
authenticated-computation functionality (to be defined in Section 7.4.3.4) in order to
emulate each step of the original protocol. Specifically, each message transmission
in the original protocol is replaced by an invocation of the said sub-protocol (imple-
menting this functionality), where the roles played by the parties and the inputs fed
to the sub-protocol are as follows. The party that is supposed to send the message in
the original protocol invokes the sub-protocol with an input that consists of its initial
input (as committed in the first stage), its random-tape (as generated in the second
stage), the decommitment information provided to it in the two corresponding stages,
and the sequence of all incoming messages (of the original protocol as emulated so
far). The input provided by the other party (i.e., the designated receiver) consists of
the commitments it holds for the sender’s input and random-tape (received in the first
and second stage), as well as the sequence of all messages that it has previously sent

651

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.004
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:15, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.004
https:/www.cambridge.org/core


GENERAL CRYPTOGRAPHIC PROTOCOLS

to the sender. The functionality guarantees that either the corresponding (next-step)
message is delivered or the designated receiver detects cheating.

In order to allow a modular presentation of the compiled protocols, we start by defining
an adequate notion of reducibility (where here the oracle-aided protocol needs to be
secure in the malicious model rather than in the semi-honest one). We next turn to
constructing secure protocols for several basic functionalities, and use the latter to
construct secure protocols for the three main functionalities mentioned here. Finally,
we present and analyze the actual compiler.

7.4.2. Security Reductions and a Composition Theorem

Analogously to Section 7.3.1, we now define what we mean by saying that one func-
tionality securely reduces to another functionality. We use the same definition of an
oracle-aided protocol (i.e., Definition 7.3.1), but require such a protocol to be secure
in the malicious model (rather than secure in the semi-honest model, as required in
Definition 7.3.2). Recall that the basic syntax of an oracle-aided protocol allows se-
quential (but not parallel) oracle calls. For simplicity of our exposition, we require that
the length of each oracle-query can be determined from the length of the initial input
to the oracle-aided protocol.

Definition 7.4.2 (security reductions):

� As in Definition 7.3.2, an oracle-aided protocol is said to be using the oracle-
functionality f if the oracle answers are according to f . However, in accordance
with the definition of the ideal model (for the invoked functionality), the oracle does
not answer both parties concurrently, but rather answers first the real-model party
that requested this specific oracle call (in the oracle-aided protocol). When receiving
its part of the oracle answer, this party (i.e., the real-model party that requested the
oracle call) instructs the oracle whether or not to respond to the other party.

We consider only protocols in which the length of each oracle-query is a polynomial-
time computable function of the length of the initial input to the protocol. Further-
more, as in Definition 7.3.2, the length of each query must be polynomially related
to the length of the initial input.

We consider executions of such a protocol by a pair of parties, with strategies repre-
sented by probabilistic polynomial-time algorithms A1 and A2, such that one of the
parties follows the oracle-aided protocol. Such a pair is called admissible. Analo-
gously to Definition 7.2.5, the joint execution of an oracle-aided protocol � with
oracle f under A = (A1, A2) in the real model (on input pair (x , y) and auxiliary
input z), denoted real

f

�, A(z)
(x , y), is defined as the output pair resulting from the

interaction between A1(x , z) and A2(y, z), where oracle calls are answered using f .
We stress that here the real model corresponds to an execution of an oracle-aided
protocol.

� An oracle-aided protocol � using the oracle-functionality f is said to securely
compute g if a condition analogous to the one in Definition 7.2.6 holds. That is, the
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effect of any admissible real-model strategies as in the previous item can be simulated
by admissible strategies for the ideal model, where the ideal model for computing g
is exactly as in Definition 7.2.4.

More specifically, the oracle-aided protocol � (using oracle f ) is said to securely
compute g (in the malicious model) if for every probabilistic polynomial-time
pair A = (A1, A2) that is admissible for the real model of the oracle-aided com-
putation, there exists a probabilistic polynomial-time pair B = (B1, B2) that is
admissible for the ideal model (of Definition 7.2.4) such that

{idealg, B(z)(x , y)}x , y,z
c≡ {real

f

�, A(z)
(x , y)}x , y,z

where x , y, z ∈ {0, 1}∗ such that |x | = |y| and |z| = poly(|x |).
� An oracle-aided protocol is said to securely reduce g to f if it securely computes

g when using the oracle-functionality f . In such a case, we say that g is securely
reducible to f ,

We are now ready to state a composition theorem for the malicious model.

Theorem 7.4.3 (Composition Theorem for the malicious model): Suppose that g is
securely reducible to f and that there exists a protocol for securely computing f . Then
there exists a protocol for securely computing g.

Recall that the syntax of oracle-aided protocols disallows concurrent oracle calls, and
thus Theorem 7.4.3 is actually a sequential composition theorem. As in the semi-
honest case, the Composition Theorem can be generalized to yield transitivity of secure
reductions; that is, if g is securely reducible to f and f is securely reducible to e, then
g is securely reducible to e (see Exercise 13).

As hinted in Section 7.3.1, the proof of Theorem 7.4.3 is significantly more complex
than the proof of Theorem 7.3.3. This does not refer to the construction of the resulting
protocol, but rather to establishing its security.

Proof Sketch: Analogously to the proof of Theorem 7.3.3, we are given an oracle-aided
protocol, denoted �g| f , that securely reduces g to f , and an ordinary protocol � f that
securely computes f . Again, we construct a protocol � for computing g in the natural
manner; that is, starting with �g| f , we replace each invocation of the oracle (i.e., of f )
by an execution of the protocol � f .

Clearly, � computes g, and we need to show that � securely computes g. Specifically,
we should present a transformation of real-model adversaries for � into ideal-model
adversaries for g. We have at our disposal two transformations of real-model adver-
saries (for �g| f and for � f ) into corresponding ideal-model adversaries (for g and f ,
respectively). So the first thing we should do is derive, from the real-model adversaries
of �, real-model adversaries for �g| f and for � f .

We assume, without loss of generality, that all real-model adversaries output their
view of the execution. (Recall that any other output can be efficiently computed from
the view, and that any adversary can be easily modified to output its view.)
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Let A = (A1, A2) be an admissible pair of real-model strategies of �. We first derive
from it a pair of strategies A

′ = (A′
1, A′

2) that represents the behavior of A during (each
of) the invocations of � f . (We stress that we derive a single pair of real-model strategies
that represents the behavior of the adversary during all the invocations of � f .)33 Since
the honest Ai just behaves according to �, it follows that the induced A′

i just behaves
according to � f , which means that A′

i is honest. Thus, we focus on the other (i.e.,
dishonest) Ai . In this case, the derived A′

i is a real-model adversary of � f that gets as
auxiliary input the history of the execution of � up to the current invocation of � f .
Formally, A′

i takes two inputs, one representing (as usual) the history of the current
execution of � f , and the other (i.e., an auxiliary one) being the history of the execution
of � up to the current invocation of � f . When A′

i completes (or aborts) the current
execution of � f , it outputs its view of that execution. Loosely speaking, we derive
the corresponding ideal-model adversary for f , denoted B

′ = (B ′
1, B ′

2), by employing
the guaranteed transformation. A few technical difficulties arise and are resolved as
follows:

� Party i (i.e., A′
i ) is not necessarily the party that plays the i-th party in � f (i.e.,

Party 1 is not necessarily the party in �g| f that requests this particular oracle call
to f ). Furthermore, the identity of the party (in � f ) played by A′

i is not fixed,
but is rather determined by the history of the execution of � (which is given to
A′

i as auxiliary input). In contrast, our definitions refer to adversaries that play a
predetermined party. This technical discrepancy can be overcome by considering
two versions of A′

i , denoted A′
i,1 and A′

i,2, such that A′
i, j in used (instead of A′

i ) in
case Party i is the party that plays the j-th party in � f . Indeed, A′

i, j is always used
to plays the j-th party in � f .

� A minor problem is that Ai may have its own auxiliary input, in which case the
resulting A′

i will have two auxiliary inputs (i.e., the first identical to the one of
Ai , and the second representing a partial execution transcript of �). Clearly, these
two auxiliary inputs can be combined into a single auxiliary input. (This fact holds
generically, but more so in this specific setting in which it is anyhow natural to
incorporate the inputs to an adversary in its view of the execution transcript.)

� The last problem is that it is not clear what “initial input” should be given to the
adversary A′

i toward its current execution of � f (i.e., the input that is supposed to be
used for computing f ). However, this problem (which is more confusing than real)
has little impact on our argument, because what matters is the actual actions of A′

i

during the current execution of � f , and these are determined based on its (actual)
auxiliary input (which represent the history of the execution of �). Still, the initial
inputs for the executions of � f have to be defined so that they can be passed to
the ideal-model adversary that we derive from A′

i . We may almost set these initial
inputs arbitrarily, except that (by our conventions regarding functionalities) we must

33 The simpler alternative of deriving a different pair of (real-model) strategies for each invocation of � f would
have sufficed for handling oracle-aided protocols that make a constant number of oracle calls. The point is
that the corresponding ideal-model strategies (with respect to f ) need to be combined into a single real-model
strategy for �g| f .
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set them to strings of correct length (i.e., equal to the length of the other party’s
f -input). Here we use the hypothesis that this length can be determined from the
length of the input to � itself.34

Thus, we have obtained an (admissible) ideal-adversary pair B
′ = (B ′

1, B ′
2) correspond-

ing to f such that

{ideal f, B
′
(z′)(x

′, y′)}x ′, y′,z′
c≡ {real

� f , A
′
(z′)(x

′, y′)}x ′, y′,z′ (7.22)

We comment that when applying Eq. (7.22), we set the input of the honest party to
equal the value on which the sub-protocol (or functionality) was invoked, and set the
auxiliary input to equal the current execution transcript of the high-level protocol (as
seen by the adversary). (As explained earlier, the setting of the primary input to the
dishonest party is immaterial, because the latter determines its actions according to its
auxiliary input.)

Our next step is to derive from A = (A1, A2) a pair of strategies A
′′ = (A′′

1, A′′
2) that

represents the behavior of A during the �g| f -part of �. Again, the honest Ai induces
a corresponding A′′

i that just behaves according to �g| f . Turning to the dishonest Ai ,
we derive A′′

i by replacing the (real) actions of A′
i that take place in Ai by simulated

actions of the ideal-model B ′
i . That is, the adversary A′′

i runs machine Ai locally, while
interacting with the actual other party of �g| f , obtaining the messages that Ai would
have sent in a real execution of �, and feeding Ai with messages that it expects to
receive (i.e., messages that Ai would have received in a real execution of �). The
handling of Ai ’s messages depends on whether they belong to the �g| f -part or to one
of the invocations of � f . The key point is the handling of the latter messages.

Handling Messages of �g| f : These messages are forwarded to/from the other party
without change. That is, A′′

i uses Ai in order to determine the next message to be
sent, and does so by feeding Ai with the history of the execution so far (which
contains �g| f -part messages that A′′

i has received before, as well as the � f -
parts that it has generated so far by itself). In particular, if Ai aborts, then so
does A′′

i .

Handling Messages of � f : Upon entering a new invocation of � f , the adversary A′′
i

sets hi to record the history of the execution of � so far. Now, rather than executing
� f using A′

i (hi ) (as Ai would have done), the adversary A′′
i invokes B ′

i (hi ), where
B ′

i is the ideal-model adversary for f (derived from A′
i , which in turn was derived

from Ai ). Recall that B ′
i sends no messages and makes a single oracle-query (which it

views as sending a message to its imaginary trusted party). The real-model adversary
A′′

i (for the oracle-aided protocol �g| f ) forwards this query to its own oracle (i.e.,

34 We comment that when using the alternative conventions discussed at the end of Section 7.2.1.1, we may waive
the requirement that the query length be determined by the input length. Instead, we postulate that all oracle
calls made by the oracle-aided program use the same security parameter as the one with which the program is
invoked. On the other hand, under the current conventions, when trying to extend the composition theorem to
partial functionalities (or when removing the “length determination” hypothesis), we run into trouble because
we need to determine some f -input that fits the unknown f -input of the other party. (This problem can be
resolved by introducing an adequate interface to oracle calls.)
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f ), and feeds B ′
i with the oracle answer. At some point B ′

i terminates, and A′′
i uses

its output to update the simulated history of the execution of �. In particular, oracle-
stopping events caused by B ′

i (hi ) (in case Party i requested this specific oracle call)
and ⊥-answers of the oracle (in the other case) are handled in the straightforward
manner.

On stopping the oracle and ⊥-answers: Suppose first that Party i has re-
quested this specific oracle call. In this case, after receiving the oracle answer
(which it views as the answer of its trusted party), the ideal-model adversary B ′

i

may stop its trusted party. If this happens, then machine A′′
i instructs its own

oracle (i.e., f ) not to respond to the other party. Next, suppose that Party i is
the party responding to this specific oracle call (rather than requesting it). In this
case, it may happen that the oracle is stopped by the other party (i.e., the oracle
is not allowed to answer Party i). When notified of this event (i.e., receiving a
⊥-answer from its oracle), machine A′′

i feeds ⊥ as answer to B ′
i .

This completes the handling of the current invocation of � f .

When Ai halts with some output, A′′
i halts with the same output. Note that A

′′ = (A′′
1, A′′

2)
is admissible as a real-model adversary for the oracle-aided protocol �g| f (which
computes g with oracle to f ). Thus, we can derive from A

′′
a corresponding ideal-

model adversary for g, denoted B
′′ = (B ′′

1 , B ′′
2 ), by employing the second guaranteed

transformation, such that

{idealg, B
′′
(z)(x , y)}x , y,z

c≡ {real
f

�g| f , A
′′
(z)

(x , y)}x , y,z (7.23)

Thus, given a real-model adversary A for �, we have derived an ideal-model adversary

B
def= B

′′
for g. It is left to show that indeed the following holds:

{idealg, B(z)(x , y)}x , y,z
c≡ {real�, A(z)(x , y)}x , y,z (7.24)

Note that the left-hand side of Eq. (7.24) equals the left-hand side of Eq. (7.23), so
it suffices to show that their corresponding right-hand sides are computationally in-
distinguishable. But real�, A(z)(x , y) differs from real

f

�g| f , A
′′
(z)

(x , y) only in that the

� f - invocations in the former are replaced in the latter by ideal calls to f . However,
by Eq. (7.22), each � f invocation is computationally indistinguishable from an ideal
call to f , where computational indistinguishability holds also with respect to auxiliary
inputs (which are used here to represent the execution transcript upto the point of the
current invocation). Using a hybrid argument (corresponding to a gradual substitution
of � f -invocations by ideal calls to f ), one can show that {real

f

�g| f , A
′′
(z)

(x , y)}x , y,z

and {real�, A(z)(x , y)}x , y,z are computationally indistinguishable.35 This establishes
Eq. (7.24), and the theorem follows.

35 Here we use the hypothesis that the query lengths are polynomially related to the length of the input. The issue is
that in Eq. (7.22), computational indistinguishability is with respect to the length of the queries (to f ), whereas
we need computational indistinguishability with respect to the length of the initial inputs. We also highlight the
key role of the auxiliary inputs to A

′
and B

′
in this argument (cf. the analysis of the sequential composition of

zero-knowledge [i.e., proof of Lemma 4.3.11]).
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Security Reduction of General Functionalities to Deterministic Ones. The follow-
ing reduction will not be used in our compiler, because the compiler refers to protocols
(rather to functionalities), and we have already obtained protocols for privately com-
puting general functionalities (by privately reducing them to deterministic ones). Still,
we consider it of interest to state that the reduction presented in Proposition 7.3.4 is, in
fact, secure in the malicious model.

Proposition 7.4.4 (securely reducing a randomized Functionality to a Deterministic
One): Let g be a randomized functionality, f be as defined in Eq. (7.19), and � be the
oracle-aided protocol for g using the oracle f as presented in Proposition 7.3.4. Then
� securely computes g.

Proof Sketch: Suppose, without loss of generality, that Party 1 is malicious, and denote
by (x ′

1, r ′
1) the query it makes to f . Denoting by xi the initial input of Party i (in �), it

follows that the oracle answer is f ((x ′
1, r ′

1), (x2, r2)), where r2 is uniformly distributed
(because Party 2 is honest). Recalling that f ((x ′

1, r ′
1), (x2, r2)) = g(r ′

1 ⊕ r2, (x ′
1, x2)), it

follows that the oracle answer is distributed identically to g(x ′
1, x2). Furthermore, by

the definition of �, all that Party 1 gets is f1((x ′
1, r ′

1), (x2, U|r ′
1|)) ≡ g1(x ′

1, x2). This is
easily simulated by a corresponding ideal-model adversary that sets x ′

1 according to the
real-model adversary, and sends x ′

1 to the trusted third party (which answers according
to g).

Remark 7.4.5 (reductions to a set of functionalities): We extend the notion of se-
curity reductions to account for protocols that use several oracles rather than one.
Specifically, g is securely reducible to a set of functionalities F = { f 1, ..., f t} if there
exists an oracle-aided protocol that securely computes g when given oracles f 1, ..., f t .
Theorem 7.4.3 also extends to assert that if g is securely reducible to F , and each
functionality in F can be securely computed, then so can g. We comment that the
entire remark is a matter of semantics, because one can “pack” the set F in one func-
tionality f (e.g., f ((i, x), (i, y))

def= f i (x , y)).

7.4.3. The Compiler: Functionalities in Use

As stated in Section 7.4.1, the protocols produced by our compiler make extensive use
of protocols that securely compute three functionalities that are the core of the three
corresponding phases of the compiled protocols. In the current section, we explicitly
define these functionalities and present protocols for securely computing them.

We start by considering three natural functionalities that are related to the functional-
ities used by the compiler. Specifically, we first consider the coin-tossing functionality
(see Section 7.4.3.1), a restricted notion of the authenticated-computation functional-
ity (Section 7.4.3.2), and an “unauthenticated-computation functionality” (called image
transmission in Section 7.4.3.3). Next, using these three functionalities, we present se-
cure protocols for a general notion of authenticated-computation functionality (see
Section 7.4.3.4), for an augmented notion of coin-tossing (Section 7.4.3.5), and for the
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Figure 7.2: The functionalities used in the compiled protocol.

input-commitment functionality (Section 7.4.3.6). The latter three functionalities will
be used directly in the compiled protocols (see Figure 7.2, where solid arrows indicate
direct and essential use). We comment that although the material in Section 7.4.3.2
is not used directly in the rest of this work, it is instructive to the rest of the current
section.

We comment that it is easy to present protocols for privately computing all the
abovementioned functionalities (in the semi-honest model; see Exercise 11). Our aim,
however, is to present (for later use in the compiler) protocols for securely computing
these functionalities in the malicious model.

Basic Tools and Conventions Regarding Them. Let us recall some facts and notations
regarding three tools that we will use:

� Commitment schemes (as defined in Definition 4.4.1). For the sake of simplicity, we
will use a non-interactive commitment scheme (as in Construction 4.4.2). We assume,
for simplicity, that on security parameter n, the commitment scheme utilizes exactly
n random bits. We denote by Cr (b) the commitment to the bit b using (security
parameter n and) randomness r ∈ {0, 1}n , and by C(b) the value of Cr (b) for a
uniformly distributed r ∈ {0, 1}n (where n is understood from the context).

� Zero-knowledge proofs of NP-assertions. We rely on the fact (cf. Theorem 4.4.11)
that there exist such proof systems in which the prover strategy can be implemented
in probabilistic polynomial-time, when given an NP-witness as auxiliary input. We
stress that by this we mean (zero-knowledge) proof systems with negligible sound-
ness error. Furthermore, we rely on the fact that these proof systems have perfect
completeness (i.e., the verifier accepts a valid statement with probability 1).
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� Zero-knowledge proofs-of-knowledge of NP-witnesses. We will use the definition of
a strong proof of knowledge (see Definition 4.7.13). We again rely on the analogous
fact regarding the complexity of adequate prover strategies: That is, strong proofs-
of-knowledge that are zero-knowledge exist for any NP-relation, and furthermore,
the prover strategy can be implemented in probabilistic polynomial-time, when given
an NP-witness as auxiliary input (see Construction 4.7.14).

All these tools are known to exist assuming the existence of one-way 1-1 functions. In
fact, the 1-1 requirement can be avoided at the cost of using an interactive commitment
scheme.

On the Adversaries Being Considered. For the sake of simplicity, in all the proofs of
security presented in this section, we only refer to malicious (real-model) adversaries
with no auxiliary input. Furthermore, we will assume that these malicious (real-model)
adversaries are deterministic. As discussed in Section 7.2.3.1 (see text following Def-
inition 7.2.5), the treatment of randomized adversaries (with auxiliary inputs) can be
reduced to the treatment of deterministic adversaries with auxiliary inputs, and so the
issue here is actually the fact that we ignore auxiliary inputs. However, in all cases,
the extension of our treatment to malicious adversaries with auxiliary input is straight-
forward. Specifically, in all cases, we construct ideal-model adversaries by using the
real-model adversaries as subroutines. This black-box usage easily supports the ex-
tension to adversaries with auxiliary inputs, because all that is needed is to pass the
auxiliary-input (given to the ideal-model adversary) to the real-model adversary (which
is invoked as a subroutine).

Comments Regarding the Following Exposition. All protocols are presented by spec-
ifying the behavior of honest parties, while keeping in mind that dishonest parties may
deviate from the specified behavior. Thus, we may instruct one party to send a specific
message that satisfies some property and next instruct the other party to check that the
message received indeed satisfies this property. When transforming real-model adver-
saries to ideal-model adversaries, we sometimes allow the latter to halt before invoking
the trusted party. As discussed in Section 7.2.3.1 (see text preceding Definition 7.2.4),
this can be viewed as invoking the trusted party with a special abort symbol, where in
this case, the latter responds to all parties with a special abort symbol.

7.4.3.1. Coin-Tossing

We start our assembly of functionalities that are useful for the compiler by presenting
and implementing a very natural functionality, which is of independent interest. Specif-
ically, we refer to the coin-tossing functionality (1n , 1n) �→ (b, b), where b is uniformly
distributed in {0, 1}. This functionality allows a pair of distrustful parties to agree on a
common random value.36

36 Actually, in order to conform with the convention that the functionality has to be defined for any input pair, we
may consider the formulation (x , y) �→ (b, b).
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Definition 7.4.6 (coin-tossing into the well, basic version): A coin-tossing-into-the-
well protocol is a two-party protocol for securely computing (in the malicious model) the
randomized functionality (1n , 1n) �→ (b, b), where b is uniformly distributed in {0, 1}.
That is, in spite of malicious behavior by any one party, a non-aborting execution of a
coin-tossing-into-the-well protocol ends with both parties holding the same uniformly
distributed bit, b. Recall that our definition of security allows (b, ⊥) to appear as output
in case Party 1 aborts. (It would have been impossible to securely implement the coin-
tossing functionality if the definition had not allowed this slackness; see Section 7.7.1.1.)
The coin-tossing functionality will not be used directly in the compiled protocols, but
it will be used to implement an augmented notion of coin-tossing (see Section 7.4.3.5),
which in turn will be used directly in these protocols.

Construction 7.4.7 (a coin-tossing-into-the-well protocol): For every r , let Cr :
{0, 1} → {0, 1}∗.

Inputs: Both parties get security parameter 1n.

Step C1: Party 1 uniformly selects σ ∈ {0, 1} and s ∈ {0, 1}n, and sends c
def= Cs(σ ) to

Party 2.

To simplify the exposition, we adopt the convention by which failure of Party 1 to
send a message (i.e., aborting) is interpreted as an arbitrary bit string, say C0n (0).

Step C2: Party 2 uniformly selects σ ′ ∈ {0, 1}, and sends σ ′ to Party 1.

Similarly, any possible response of Party 2, including abort, will be interpreted by
Party 1 as a bit.37

Step C3: Party 1 outputs the value σ ⊕ σ ′, and sends (σ, s) to Party 2.

Step C4: Party 2 checks whether or not c = Cs(σ ). It outputs σ ⊕ σ ′ if c = Cs(σ ) and
halts with output ⊥ otherwise.

In contrast to Steps C1–C2, here any illegal answer is interpreted as abort.

Outputs: Party 1 always outputs b
def= σ ⊕ σ ′, whereas Party 2 either outputs b

or ⊥.

Intuitively, Steps C1–C2 may be viewed as “tossing a coin into the well.” At this point,
the value of the coin is determined (essentially as a random value), but only one party
knows (“can see”) this value. Clearly, if both parties are honest, then they both output
the same uniformly chosen bit, recovered in Steps C3 and C4, respectively.

Proposition 7.4.8: Suppose that C is a bit commitment scheme. Then, Construc-
tion 7.4.7 constitutes a coin-tossing-into-the-well protocol.

Proof Sketch: We need to transform any admissible pair, (A1, A2), for the real model
into a corresponding pair, (B1, B2), for the ideal model. We treat separately each of the

37 These two conventions prevent the parties from aborting the execution before Step C3.
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two cases corresponding to the identity of the honest party. Recall that we may assume,
for simplicity, that the adversary is deterministic (see discussion toward the end of the
preamble of Section 7.4.3). Also, for simplicity, we omit the input 1n in some places.
The following schematic depiction of the information flow in Construction 7.4.7 may
be useful toward the following analysis:

Party 1 Party 2
C1 selects (σ, s)

c ← Cs(σ ) −→ c −→
C2 selects σ ′ ∈ {0, 1}

←− σ ′ ←−
C3 b ← σ ⊕ σ ′

−→ (σ, s) −→
output b b or ⊥

(depending on whether c = Cs(σ ))

We start with the case where the first party is honest. In this case, B1 is determined
(by the protocol), and we transform the real-model adversary A2 into an ideal-model
adversary B2. Machine B2 will run machine A2 locally, obtaining the single message that
A2 would have sent in a real execution of the protocol (i.e., σ ′ ∈ {0, 1}) and feeding A2

with the messages that it expects to receive. Recall that A2 expects to see the messages
Cs(σ ) and (σ, s) (and that B2 gets input 1n).

1. B2 sends 1n to the trusted party and obtains an answer (bit), denoted b, which is
uniformly distributed. (Recall that b is also handed to Party 1.)

2. B2 tries to generate an execution view (of A2) ending with output b. This is done by
repeating the following steps at most n times:

(a) B2 uniformly select σ ∈ {0, 1} and s ∈ {0, 1}n , and feeds A2 with c
def= Cs(σ ).

Recall that A2 always responds with a bit, denoted σ ′, which may depend on c
(i.e., σ ′ ← A2(c)).

(b) If σ ⊕ σ ′ = b, then B2 feeds A2 with the execution view (c, (σ, s)), and outputs
whatever A2 does. Otherwise, it continues to the next iteration.

In case all n iterations were completed unsuccessfully (i.e., without output), B2

outputs a special failure symbol.

We need to show that for the coin-tossing functionality, denoted f , and for Construc-
tion 7.4.7, denoted �, it holds that

{ideal f, B(1n , 1n)}n∈N

c≡ {real�, A(1n , 1n)}n∈N

In fact, we will show that the two ensembles are statistically indistinguishable. We start
by showing that the probability that B2 outputs failure is exponentially small. This
is shown by proving that for every b ∈ {0, 1}, each iteration of Step 2 succeeds with
probability approximately 1/2. Such an iteration succeeds if and only if σ ⊕ σ ′ = b,
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that is, if A2(Cs(σ )) = b ⊕ σ , where (σ, s) ∈ {0, 1} × {0, 1}n is uniformly chosen.
We have

Prσ,s[A2(Cs(σ )) = b ⊕ σ ]

= 1

2
· Pr[A2(C(0)) = b] + 1

2
· Pr[A2(C(1)) = b ⊕ 1]

= 1

2
+ 1

2
· (Pr[A2(C(0)) = b] − Pr[A2(C(1)) = b])

Using the hypothesis that C is a commitment scheme, the second term is a negligible
function in n, and so our claim regarding the probability that B2 outputs failure
follows. Letting µ denote an appropriate negligible function, we state the following for
future reference:

Prσ,s[A2(Cs(σ )) = b ⊕ σ ] = 1

2
± µ(n) (7.25)

Next, we show that conditioned on B2 not outputting failure, the distribution
ideal f, B(1n , 1n) is statistically indistinguishable from the distribution real�, A(1n , 1n).
Both distributions have the form (b , A2(Cs(σ ), (σ, s))), with b = σ ⊕ A2(Cs(σ )), and
thus both are determined by the (σ, s)-pairs. In real�, A(1n , 1n), all (σ, s)-pairs are
equally likely (i.e., each appears with probability 2−(n+1)); whereas (as proven next) in
ideal f, B(1n , 1n), each pair (σ, s) appears with probability

1

2
· 1

|Sσ⊕A2(Cs (σ ))| (7.26)

where Sb
def= {(x , y) ∈ {0, 1} × {0, 1}n : x ⊕ A2(Cy(x)) = b} is the set of pairs that pass

the condition in Step 2b (with respect to the value b obtained in Step 1). To justify
Eq. (7.26), observe that the pair (σ, s) appears as output if and only if it is selected
in Step 2a and the trusted party answers with σ ⊕ A2(Cs(σ )), where the latter event
occurs with probability 1/2. Furthermore, the successful pairs, selected in Step 2a and
passing the condition in Step 2b, are uniformly distributed in Sσ⊕A2(Cs (σ )), which justifies
Eq. (7.26). We next show that |Sb| ≈ 2n , for every b ∈ {0, 1}. By Eq. (7.25), for every
fixed b ∈ {0, 1} and uniformly distributed (σ, s) ∈ {0, 1} × {0, 1}n , the event (σ, s) ∈ Sb

(i.e., σ ⊕ A2(Cs(σ )) = b) occurs with probability that is negligibly close to 1/2, and
so |Sb| = (1 ± µ(n)) · 1

2 · 2n+1, where µ is a negligible function. Thus, for every pair
(σ, s), it holds that |Sσ⊕A2(Cs (σ ))| ∈ {|S0|, |S1|} resides in the interval (1 ± µ(n)) · 2n . It
follows that the value of Eq. (7.26) is (1 ± µ(n)) · 2−(n+1), and so real�, A(1n , 1n) and
ideal f, B(1n , 1n) are statistically indistinguishable.

We now turn to the case where the second party is honest. In this case, B2 is de-
termined, and we transform A1 into B1 (for the ideal model). On input 1n , machine
B1 runs machine A1 locally, obtaining the messages that A1 would have sent in a real
execution of the protocol and feeding A1 with the single message (i.e., σ ′ ∈ {0, 1}) that
it expects to receive.

1. B1 invokes A1 (on input 1n). Recall that by our conventions, A1 always sends a mes-
sage in Step C1. Let us denote this message (which is supposedly a commitment
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using C) by c. Recall that c may be in the range of C(σ ) for at most one
σ ∈ {0, 1}.

2. Machine B1 tries to obtain the answers of A1 (in Step C3) to both possible messages
that could be sent in Step C2:

(a) B1 feeds A1 with the (Step C2) message 0 and records the answer, which is either
abort or (σ0, s0). The case in which c �= Cs0 (σ0) is treated as if A1 has aborted.

(b) Rewinding A1 to the beginning of Step C2, machine B1 feeds A1 with the message
1 and records the answer, which is either abort or (σ1, s1). (Again, the case in
which c �= Cs1 (σ1) is treated as abort.)

If A1 aborts in both cases, then machine B1 aborts with output A1(1n , σ ′), for a
uniformly chosen σ ′ ∈ {0, 1} (and does so without invoking the trusted party, which
means that the honest Party 2 receives ⊥ from the latter).38 (In the following, we refer
to this case as to Case 0.) Otherwise, B1 proceed as follows, distinguishing two cases:
Case 1: A1 answers properly (in the previous experiment) for a single 0-1 value,

denoted σ ′. In this case, we define σ
def= σσ ′ .

Case 2: A1 answers properly for both values. In this case, the values σ0 and σ1

(defined in Step 1) must be identical, because Cs0 (σ0) = c = Cs1 (σ1), whereas the

ranges of C(0) and C(1) are disjoint. In this case, we define σ
def= σ0 (= σ1).

3. Machine B1 sends 1n to the trusted party, which responds with a uniformly selected
value b ∈ {0, 1}. Recall that the trusted party has not responded to Party 2 yet, and
that B1 still has the option of stopping the trusted party before it responds to Party 2.

4. In Case 1, machine B1 stops the trusted party if b �= σ ⊕ σ ′ (where σ ′ is as defined
in Case 1), and otherwise allows it to send b to Party 2 (in which case b = σ ⊕ σ ′

holds). In Case 2, machine B1 sets σ ′ = b ⊕ σ and allows the trusted party to send
b to Party 2. Next, in both cases, B1 feeds σ ′ to A1, which responds with the Step C3
message (σ, sσ ′). Note that if the trusted party sent b to Party 2, then indeed σ ⊕ σ ′ =
b holds (in both Case 1 and Case 2).

5. Finally, B1 feeds A1 with the execution view, (1n , σ ′), and outputs whatever A1 does.

We now show that ideal f, B(1n , 1n) and real�, A(1n , 1n) are actually identically dis-
tributed. Consider first the case where A1 (and so B1) never aborts (i.e., Case 2). In this
case, we have

ideal f, B(1n , 1n) = (A1(1n , σ ⊕ b) , b)

real�, A(1n , 1n) = (A1(1n , σ ′) , σ ⊕ σ ′)

where σ ′ and b are uniformly distributed in {0, 1}, and σ is determined by c = A1(1n)
(i.e., σ = C−1(c)). Observe that σ ′ is distributed uniformly independently of σ , and so

38 We comment that whenever B1 is determined to abort, it need not invoke the trusted party at all, because it (i.e.,
B1) can simulate the trusted party’s answer by itself. The only reason to invoke the trusted party is to provide
Party 2 with an answer that is related to the output of B1.
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σ ⊕ σ ′ is uniformly distributed over {0, 1}. We conclude that (A1(1n , σ ⊕ b) , b) and
(A1(1n , σ ⊕ (σ ⊕ σ ′)) , σ ⊕ σ ′) are identically distributed.

Next, consider the case that B1 always aborts (due to improper A1 behavior in
Step C3). In this case (i.e., the previous Case 0), B1 aborts before invoking the trusted
party, and so both ensembles are identical (i.e., both equal (A1(1n , σ ′), ⊥) for a random
σ ′). Since A1 is deterministic (see beginning of the proof), the only case left to consider
is where A1 responds properly (in Step C3) to a single value, denoted σ ′. In this case
(i.e., Case 1), the real execution of � is completed only if Party 2 sends σ ′ as its Step C2
message (which happens with probability 1/2), and is aborted otherwise. Similarly, in
the ideal model, the execution is completed (without B1 aborting) if the trusted party
answers with b = σ ⊕ σ ′ (which happens with probability 1/2).39 In both models,
the joint non-aborted execution equals (A1(1n , σ ′) , σ ⊕ σ ′), whereas the joint aborted
execution equals (A1(1n , σ ′ ⊕ 1) , ⊥).

7.4.3.2. Authenticated Computation (Partial Version)

We continue our assembly of functionalities that are useful for the compiler by pre-
senting and implementing another natural functionality, which is of independent in-
terest. Specifically, we refer to the archetypical application of zero-knowledge proofs
(cf. Section 4.4.3), which is to solve the following problem. For two predetermined
(polynomial-time computable) functions, f and h, a party holding a secret α should
send the correct value of f (α) to the other party, which holds h(α), while not revealing
anything else to the other party. That is, we are talking about securely computing the
functionality (α, h(α)) �→ (λ, f (α)), where typically h is 1-1 (and so the value of its
image uniquely determines its preimage).

We stress that the functionality described here has a partial domain; that is, it is not
defined over all pairs of inputs (of equal length), but rather only for pairs of the form
(α, h(α)). This restriction (i.e., definability over a partial domain) coincides with the
standard archetypical application of zero-knowledge proofs and is easier to implement.
However, this restriction does not suffice for a modular exposition of the compiled
protocols (because composition of partial functionalities is more complex than the
composition result captured by Theorem 7.4.3). Indeed, in Section 7.4.3.4 we waive
the restriction (to the partial domain) and consider an extension of the authenticated
computation functionality to arbitrary pairs of (equal-length) strings.

Definition 7.4.9 (authenticated computation, partial version): Let f : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ and h : {0, 1}∗ → {0, 1}∗ be polynomial-time computable. The h-
authenticated f -computation functionality is defined by

(α, h(α)) �→ (λ, f (α)) (7.27)

We assume, for simplicity, that h is length preserving. Otherwise, the definition may
be modified to consider the functionality ((α, 1|h(α)|) , (h(α), 1|α|)) �→ (λ, f (α)). To

39 Recall that, in this case, σ and σ ′ are determined by the Step C1 message.
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facilitate the implementation, we assume that the function h is one-to-one, as is the case
in typical applications. This allows us to use (ordinary) zero-knowledge proofs, rather
than strong (zero-knowledge) proofs-of-knowledge. The issue is further discussed in
Section 7.4.3.3.

The functionality of Eq. (7.27) is implemented by having Party 1 send f (α) to
Party 2, and then prove in zero-knowledge the correctness of the value sent (with
respect to the common input h(α)). Note that this statement is of the NP type and
that Party 1 has the corresponding NP-witness. Actually, the following protocol is the
archetypical application of zero-knowledge proof systems.

Construction 7.4.10 (authenticated computation protocol, partial version): Let L be
the set of pairs (u, v) satisfying Eq. (7.28) to follow, and (P, V ) be an interactive proof
for L. Furthermore, suppose that P can be implemented in probabilistic polynomial-
time when given an adequate auxiliary-input (i.e., an NP-witness for membership of
the common input in L).

Inputs: Party 1 gets input α ∈ {0, 1}∗, and Party 2 gets input u = h(α).

Step C1: Party 1 sends v
def= f (α) to Party 2.

Step C2: The parties invoke the proof system (P, V ) such that Party 1 plays the prover
and Party 2 plays the verifier. The common input to the proof system is (u, v), the
prover gets auxiliary input α, and its objective is to prove that

∃x s.t. (u = h(x)) ∧ (v = f (x)) (7.28)

(Each party locally determines the common input (u, v) according to its own view of
the execution so far.)40 In case the verifier rejects the proof, Party 2 halts with output
⊥ (otherwise the output will be v).

(Any possible response – including abort – of Party 2 during the execution of this
step will be interpreted by Party 1 as a canonical legitimate message.)

Outputs: In case Party 2 has not halted with output ⊥ (indicating improper behavior of
Party 1), Party 2 sets its local output to v. (Party 1 has no output [or, alternatively,
always outputs λ].)

Observe that the specified strategies are indeed implementable in polynomial-time. In
particular, in Step C2, Party 1 supplies the prover subroutine with the NP-witness α such
that Eq. (7.28) is satisfied with x = α. Also, using the perfect completeness condition
of the proof system, it follows that if both parties are honest, then neither aborts and
the output is as required.

Proposition 7.4.11: Suppose that the function h is one-to-one and that (P, V ) is
a zero-knowledge interactive proof (with negligible soundness error) for L. Then,
Construction 7.4.10 securely computes (in the malicious model) the h-authenticated
f -computation functionality of Eq. (7.27).

40 In particular, Party 1 sets (u, v) = (h(α), f (α)), whereas Party 2 sets u according to its own input and v according
to the message received in Step C1.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

We stress that Proposition 7.4.11 refers to the security of a protocol for computing a
partial functionality, as discussed in Remark 7.2.7. In the case of Eq. (7.27), this means
that the ideal-model adversary is not allowed to “modify its input” (i.e., it must pass its
initial input to the trusted party), because its initial input is the unique value that fits
the other party’s input.

Proof Sketch: Again, we need to transform any admissible pair, (A1, A2), for the real
model into a corresponding pair, (B1, B2), for the ideal model. We treat separately each
of the two cases, corresponding to the identity of the honest party.

We start with the case where the first party is honest. In this case, B1 is determined,
and we transform (the real-model adversary) A2 into (an ideal-model adversary) B2,
which uses A2 as a subroutine. Recall that B2 gets input u = h(α), where α is the input
of the honest Party 1.

1. B2 sends u to the trusted party and obtains the value v, which equals f (α) for α

handed by (the honest) Party 1 to the trusted party. Thus, indeed, B2 does not modify
its input and (u, v) ∈ L . (Recall that Party 1 always obtains λ from the trusted party.)

2. B2 invokes the simulator guaranteed for the zero-knowledge proof system (P, V ), on
input (u, v), using (the residual) A2 as a possible malicious verifier.41 Note that we are
simulating the actions of the prescribed prover P , which in the real protocol is played
by the honest Party 1. Denote the obtained simulation transcript by S = S(u, v),
where (indeed) A2 is implicit in the notation.

3. Finally, B2 feeds A2 with the alleged execution view (v, S), and outputs whatever A2

does.

We need to show that for the functionality, denoted F , of Eq. (7.27) and for Construc-
tion 7.4.10, denoted �, it holds that

{idealF, B(α, h(α))}α∈{0,1}∗
c≡ {real�, A(α, h(α))}α∈{0,1}∗ (7.29)

Let R(α) denote the verifier’s view of the real interaction with P on common input
(h(α), f (α)) and prover’s auxiliary input α, where the verifier is played by A2. Then,

real�, A(α, h(α)) = (λ , A2(h(α), f (α), R(α)))

idealF, B(α, h(α)) = (λ , A2(h(α), f (α), S(h(α), f (α))))

However, by the standard formulation of zero-knowledge, it follows that {R(α)}α∈{0,1}∗
and {S(h(α), f (α))}α∈{0,1}∗ are computationally indistinguishable (also when given α

as auxiliary input), and so Eq. (7.29) follows.
We now turn to the case where the second party is honest. In this case, B2 is deter-

mined, and we transform (real-model) A1 into (ideal-model) B1, which uses A1 as a
subroutine. Recall that B1 gets input α ∈ {0, 1}n .

1. B1 invokes A1 on input α. As (implicit) in the protocol, any action of A1 in Step C1
(including abort) is interpreted as sending a string. Let us denote by v the message
sent by A1 (i.e., v ← A1(α)).

41 The case in which A2 executes Step C2 with respect to a different common input is just a special case of a
malicious behavior.
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2. Intuitively, machine B1 checks whether or not v = f (α), where α is as in Step 1
(i.e., the input to B1). Actually, B1 checks whether or not an honest verifier would
have been convinced by (the residual) A1 that v = f (α) holds, which is equivalent
to being convinced that (h(α), v) ∈ L . Specifically, B1 emulates the execution of
Step C2 (i.e., the execution of the proof system (P, V ) on common input (h(α), v)),
while using the strategy A1 to determine the moves of the (possibly cheating) prover
(and playing the honest verifier in a straightforward manner).42

Recall that this proof system has negligible soundness error, and so if (h(α), v) does
not satisfy Eq. (7.28), this fact is detected with probability 1 − µ(n), where µ is
some negligible function. If the verifier (played by B1 itself) rejects, then machine
B1 aborts (without invoking the trusted party).43 Otherwise, we proceed assuming
that (h(α), v) satisfies Eq. (7.28). Note that since h is 1-1 and Eq. (7.28) is satisfied,
it must be the case that v = f (h−1(h(α))) = f (α).44

3. Assuming that machine B1 has not aborted, it sends α to the trusted party and allows
the latter to respond to Party 2. (The trusted party’s response will be f (α) = v. Again,
note that, indeed, B1 does not modify its input.)

4. Finally, B1 feeds A1 with the execution view, which consists of the prover’s view of
the emulation of Step C2 (produced in Step 2), and outputs whatever A1 does.

We now show that

{idealF, B(α, h(α))}α∈{0,1}∗
c≡ {real�, A(α, h(α))}α∈{0,1}∗ (7.30)

Actually, we will show that these two ensembles are statistically indistinguishable,
where the statistical difference is due to the case where the real adversary A1 succeeds
in convincing the verifier (played by the honest Party 2) that (u, v) satisfies Eq. (7.28),
and yet this claim is false. By the soundness of the proof system, this event happens only
with negligible probability. On the other hand, in case (u, v) satisfies Eq. (7.28), we show
that idealF, B(α, h(α)) and real�, A(α, h(α)) are identically distributed. Details follow.
One key observation is that the emulation of the proof system (with prover strategy
A1(α)) performed in Step 2 by B1 is distributed identically to the real execution of the
proof system that takes place in Step C2 of �.

Fixing any α, recall that v
def= A1(α) need not equal f (α), and that u

def= h(α) uniquely
determines α (because h is 1-1). We denote by p the probability that A1(α) (playing a
possibly cheating prover) convinces the verifier (played in Step C2 by Party 2) that (u, v)
satisfies Eq. (7.28). (Since A1 is deterministic, v = A1(α) is fixed and the probability
is only taken over the moves of Party 2.) We consider two cases corresponding to the

42 In particular, if A1 aborts the execution of Step C2, then the honest verifier will not be convinced.
43 Alternatively, machine B1 may invoke the trusted party but prevent it from answering Party 2. The difference

is immaterial, because Party 1 gets nothing from the trusted party. What matters is that (in either case) Party 2
will get an abort symbol (i.e., ⊥).

44 We comment that even if h were not 1-1 but a strong proof-of-knowledge (rather than an ordinary proof system)
was used in Step C2, then one could have inferred that Party 1 knows an α′ so that h(α′) = u and v = f (α′),
whereas α′ does not necessarily equal α. Sending α′ to the trusted party in the next (emulation) step, we would
have been fine, as it would have (also) meant that the trusted party’s response to Party 2 is v.
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relation between p and the soundness error-bound function µ associated with the proof
system (P, V ).45

1. Suppose p > µ(n). In this case, by the soundness condition, it must be the
case that A1(α) = v = f (α), because in this case (u, v) satisfies Eq. (7.28) and
so v = f (h−1(u)) = f (h−1(h(α))) = f (α). Thus, in both the real and the ideal
model, with probability p, the joint execution view is non-aborting and equals
(A1(α, T ), A1(α)) = (A1(α, T ), f (α)), where T represents the prover’s view of the
execution of Step C2 (on common input (h(α), f (α)), where the prover is played by
A1(α), and the verifier is honest). On the other hand, in both models, with proba-
bility 1 − p, the joint execution is aborting and equals (A1(α, T ), ⊥), where T is as
before (except that here it is a rejecting execution transcript). Thus, in this case, the
distributions in Eq. (7.30) are identical.
We call the reader’s attention to the reliance of our analysis on the fact that the
emulation of the proof system (with prover A1(α)) that is performed in Step 2 by B1

is distributed identically to the real execution of the proof system that takes place in
Step C2 of �.

2. Suppose that p ≤ µ(n). Again, in both models, aborting executions are identical
and occur with probability 1 − p. However, in this case, we have no handle on
the non-aborting executions in the real model (because it is no longer guaranteed
that A1(α) = f (h−1(u)) holds in the real non-aborting execution, whereas in the
ideal model it still holds that in non-aborting executions, Party 2 outputs f (α) =
f (h−1(u))). But we do not care, because (in this case) these non-aborting executions
occur with negligible probability (i.e., p ≤ µ(n)). Thus, in this case, the distribution
ensembles in Eq. (7.30) are statistically indistinguishable.

The proposition follows.

We comment that this treatment can be extended to the case that h is a randomized
process, rather than a function (as long as the image of h uniquely determines its pre-
image). Details are omitted in view of the fact that a much more general treatment will
be provided in Section 7.4.3.4.

7.4.3.3. Image Transmission

We now consider the following functionality, called image transmission (or unauthen-
ticated computation):

(α, 1|α|) �→ (λ, f (α)) (7.31)

where (as in Section 7.4.3.2) the function f is polynomial-time computable.46 In con-
trast to Section 7.4.3.2, the value f (α) is not verifiable (with respect to a value h(α)

45 We stress that an explicit error-bound can be associated with all standard zero-knowledge proof systems, and
that here we use a system for which µ is negligible. Furthermore, we may use a proof system with error-bound

µ(n)
def= 2−n .

46 Actually, in order to conform with the convention that the functionality has to be defined for any input pair, we
may consider the formulation (α, β) �→ (λ, f (α)).

668

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.004
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:15, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.004
https:/www.cambridge.org/core


7.4* FORCING (TWO-PARTY) SEMI-HONEST BEHAVIOR

that is known to the second party and uniquely determines α). In other words, the value
output by Party 2 is only required to be an image of f (corresponding to a pre-image of
a given length). Thus, at first glance, one may think that securely computing Eq. (7.31)
should be easier than securely computing Eq. (7.27), especially in case f is onto (in
which case any string is an f -image). This impression is wrong, because securely com-
puting Eq. (7.31) means emulating an ideal model in which Party 1 knows the string
it sends to the trusted party. That is, in a secure protocol for Eq. (7.31), whenever
Party 2 outputs some image (of f ), Party 1 must know a corresponding pre-image
(under f ).47 Still, proving knowledge of a pre-image (and doing so in zero-knowledge)
is what a zero-knowledge proof-of-knowledge is all about. Actually, in order to avoid
expected probabilistic polynomial-time adversaries, we use zero-knowledge strong-
proof-of-knowledge (as defined and constructed in Section 4.7.6). We will show that
Construction 7.4.10 can be easily adapted in order to yield a secure implementation
of Eq. (7.31). Specifically, all that is needed is to use (in Step C2) a zero-knowledge
strong-proof-of-knowledge (rather than an ordinary zero-knowledge proof), and set h
to be a constant function.

Proposition 7.4.12: Suppose that (P, V ) is a zero-knowledge strong-proof-of-

knowledge for the relation R
def= {(v, w) : v = f (w)}, and let h be a constant function.

Then, Construction 7.4.10 securely computes (in the malicious model) the functionality
of Eq. (7.31).

Proof Sketch: Recall that P is postulated to be implemented in probabilistic
polynomial-time when given an adequate auxiliary-input (i.e., a pre-image under f
of the common input). For clarity, we reproduce the modified protocol, omitting all
mention of the (constant) function h.

Inputs: Party 1 gets input α ∈ {0, 1}∗, and Party 2 gets input 1|α|.

Step C1: Party 1 sends v
def= f (α) to Party 2.

Step C2: Analogously to Construction 7.4.10, the parties invoke the zero-knowledge
strong-proof-of-knowledge (for R) such that Party 1 plays the prover and Party 2
plays the verifier. The common input to the proof system is v, the prover gets α as
auxiliary input, and its objective is to prove that it knows a w such that (v, w) ∈ R
(i.e., v = f (w)). In case the verifier rejects the proof, Party 2 halts with output ⊥
(otherwise the output will be v).

Outputs: In case Party 2 did not output ⊥, it halts with output v. (Party 1 has no output.)

The analysis of this protocol, denoted �, follows the ideas underlying the proof of
Proposition 7.4.11. The only significant modification is in the construction of ideal-
model adversaries for Party 1.

47 We comment that the same also holds with respect to Eq. (7.27). But there, the knowledge of a pre-image (of
the output v under f ) is guaranteed by the fact that security implies that the pre-image of v under f must be
consistent with h(α), whereas the only such pre-image is α itself, which in turn is the initial input of Party 1
and thus known to it.
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Let us first justify why the treatment of the case in which Party 1 is honest is
exactly as in the proof of Proposition 7.4.11. In this case, we can use exactly the
same transformation of the real-model adversary A2 into an ideal-model adversary B2,
because what this transformation does is essentially invoke the simulator associated
with (the residual prover) A2 on input the string v = f (α) that it obtains from the
trusted party. Furthermore, the adequateness of this transformation is established by
only referring to the adequateness of the (zero-knowledge) simulator, which holds also
here.

We now turn to the case where the second party is honest. In this case, B2 is deter-
mined, and we transform (real-model) A1 into (ideal-model) B1, which uses A1 as a
subroutine. Recall that B1 gets input α ∈ {0, 1}n:

1. B1 invokes A1 on input α. As (implicit) in the protocol, any action of A1 in Step C1
(including abort) is interpreted as sending a string. Let us denote by v the message
sent by A1 (i.e., v ← A1(α)).

2. Machine B1 tries to obtain a pre-image of v under f . Toward this end, B1 uses the
(strong) knowledge-extractor associated with the proof system of Step C2. Specif-
ically, providing the strong knowledge-extractor with oracle access to (the residual
prover) A1(α), machine B1 tries to extract (from A1) a string w such that f (w) = v.
In case the extractor succeeds, B1 sets α′ def= w . Otherwise, B1 sets α′ def= ⊥.

3. Machine B1 now emulates an execution of Step C2. Specifically, it lets A1(α) play
the prover and emulates by itself the (honest) verifier interacting with A1(α) (i.e., B1

behaves like A2).

� In case the emulated verifier rejects, machine B1 aborts (without invoking the
trusted party), and outputs whatever A1 does (when fed with this emulated proof
transcript).

� Otherwise (i.e., the emulated verifier accepts), if α′ �= ⊥, then B1 sends α′ to the
trusted party and allows it to respond to Party 2. (The response will be f (α′),
which by Step 2 must equal v.) In case α′ = ⊥, this sub-step will fail, and B1

aborts as in the case that the emulated verifier rejects.

4. Finally, B1 feeds A1 with the execution view, which consists of the prover’s view of
the emulation of Step C2 (produced in Step 3), and outputs whatever A1 does.

Denoting the functionality of Eq. (7.31) by F , we now show that

{idealF, B(α, 1|α|)}α∈{0,1}∗
c≡ {real�, A(α, 1|α|)}α∈{0,1}∗ (7.32)

Actually, we will show that these two ensembles are statistically indistinguishable, where
the statistical difference is due to the case where the real-model adversary A1 succeeds
in convincing the knowledge-verifier (played by the honest A2) that it knows a pre-
image of v under f , and yet the knowledge-extractor failed to find such a preimage. By
definition of strong knowledge-verifiers, such an event may occur only with negligible
probability. Loosely speaking, ignoring the rare case in which extraction fails although
the knowledge-verifier (played by A2) is convinced, it can be shown that the distributions
ideal f, B((σ, r ), 1n) and real�, A((σ, r ), 1n) are identical. Details follow.
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Fixing any α, recall that v
def= A1(α) need not be an image of f (let alone that it may

not equal f (α)). We denote by p the probability that A1(α), playing a possibly cheating
prover, convinces the knowledge-verifier (played in Step C2 by Party 2) that it knows a
pre-image of v under f . We consider two cases corresponding to the relation between
p and the error-bound function µ referred to in Definition 4.7.13:

1. Suppose that p > µ(n). In this case, by Definition 4.7.13, with probability at least
1 − µ(n), machine B1 has successfully extracted a pre-image α′ (of v = A1(α) under
f ). In the real model, with probability p, the joint execution ends up non-aborting.
By the aforementioned extraction property, in the ideal model, a joint execution is
non-aborting with probability p ± µ(n) (actually, the probability is at least p − µ(n)
and at most p). Thus, in both models, with probability p ± µ(n), a joint execution is
non-aborting and equals (A1(α, T ), A1(α)) = (A1(α, T ), f (α′)), where T represents
the prover’s view of an execution of Step C2 (on common input f (α′) = v = A1(α),
where the role of the prover is played by the residual strategy A1(α) and the verifier is
honest). On the other hand, in both models, with probability 1 − p ± µ(n), the joint
execution is aborting and equals (A1(α, T ), ⊥), where T is as before (except that
here it is a rejecting execution transcript). Thus, the statistical difference between the
two models is due only to the difference in the probability of producing an aborting
execution in the two models, which in turn is negligible.
We call the reader’s attention to the reliance of our analysis on the fact that the
emulation of the proof system (with prover A1(α)) performed in Step 2 by B1 is
distributed identically to the real execution of the proof system that takes place in
Step C2 of �.

2. Suppose that p ≤ µ(n). Again, in the real model the non-aborting probability is p,
which in this case is negligible. Thus, we ignore these executions and focus on the
aborting executions, which occur with probability at least 1 − p ≥ 1 − µ(n) in both
models. Recalling that aborting executions are identically distributed in both models,
we conclude that the statistical difference between the two models is at most µ(n).

Thus, in both case, the distribution ensembles in Eq. (7.32) are statistically indistin-
guishable. The proposition follows.

7.4.3.4. Authenticated Computation, Revisited

We now generalize the image-transmission functionality to treat the case where Party 2
has some partial information of the input of Party 1. In the extreme case, the informa-
tion available to Party 2 uniquely determines the input of Party 1 (although obtaining
the latter from the former may be infeasible). Thus, in a sense, we revisit the authenti-
cated computation functionality, which was considered in Section 7.4.3.2. The impor-
tant aspect of the current treatment is that we consider a functionality that is defined
on all pairs of (equal-length) strings, rather than a partial functionality (as treated in
Section 7.4.3.2).
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Definition 7.4.13 (authenticated computation, revisited): Let f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ and h : {0, 1}∗ → {0, 1}∗ be polynomial-time computable. The h-authen-
ticated f -computation functionality is redefined by

(α, β) �→
{

(λ , f (α)) if β = h(α)
(λ , (h(α), f (α))) otherwise

(7.33)

In the intended applications of the h-authenticated f -computation functionality, Party 2
is supposed to input β = h(α), and so the first case in Eq. (7.33) holds, provided
that both parties are honest. Indeed, if Party 2 is honest, then either it gets the cor-
rect value of f (α) (i.e., which fits h(α) known to it) or it gets an indication that
Party 1 is cheating. The specific form of the second case was designed to facil-
itate the implementation, while not causing any harm.48 What matters is that the
outputs in the two cases are different, and so Party 2 can tell whether or not it re-
ceived the correct value of f (α). We stress that in the intended applications, Party 2
knows h(α) and is supposed to obtain f (α), and so it causes no harm to provide
Party 2 with both of them (even in case Party 2 misbehaves and enters an input other
than h(α)).

We assume again, for simplicity, that h is length preserving, which again can be
“enforced” by considering α′ = (α, 1|h(α)|) and h′(α′) = (h(α), 1|α|). However, we make
no further assumptions concerning the function h, and thus Eq. (7.31) is essentially a
special case (obtained by setting h(α) = 1|α|).

The functionality of Eq. (7.33) is implemented by having Party 1 use the image-
transmission functionality to send the pair (h(α), f (α)) to Party 2, which compares
the first element to its own input and acts accordingly. That is, we use the following
(oracle-aided) protocol:

Construction 7.4.14 (authenticated computation protocol, general version):

Inputs: Party 1 gets input α ∈ {0, 1}∗, and Party 2 gets input β ∈ {0, 1}|α|.

Step C1: Party 1 uses the image-transmission functionality to send the pair (u, v)
def=

(h(α), f (α)) to Party 2. That is, the parties invoke the functionality of Eq. (7.31) with

respect to the function g(α)
def= (h(α), f (α)), where Party 1 enters the input α and

Party 2 is to obtain g(α).

Step C2: Assuming that Step C1 was not aborted by Party 1 and that Party 2 receives
the pair (u, v) in Step C1, Party 2 outputs v if u = β and (u, v) otherwise.

Outputs: If not aborted (with output ⊥), Party 2 sets its local output as directed in
Step C2. (Party 1 has no output.)

We stress that in the oracle invocation (of Step C1), Party i plays the i-th party (with
respect to the oracle call). Recall that (unlike Party 2), Party 1 may abort and in particular

48 In contrast, even privately computing the more natural functionality (α, β) �→ (λ , v), where v = f (α) if β =
h(α) and v = λ otherwise, is significantly harder than (securely or privately) implementing Eq. (7.33); see
Exercise 12. The difference is that Eq. (7.33) allows for revealing h(α) to Party 2 (specifically in case h(α) �= β),
whereas the more natural functionality does not allow this.
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do so during Step C1. Since Step C1 consists of an oracle invocation, aborting during
Step C1 means instructing the oracle not to answer Party 2.

Proposition 7.4.15: Construction 7.4.14 securely reduces the h-authenticated f -
computation functionality of Eq. (7.33) to the image-transmission functionality of
Eq. (7.31).

Proof Sketch: We need to transform any admissible pair, (A1, A2), for the real oracle-
aided model into a corresponding pair, (B1, B2), for the ideal model. We start by assum-
ing that the first party is honest and by transforming the real-model adversary A2 (for
the oracle-aided execution) into a corresponding ideal-model adversary B2. On input
β, the latter proceeds as follows:

1. Machine B2 sends β to the trusted party and obtains the answer, which equals v
def=

f (α) if β = h(α) and (u, v)
def= (h(α), f (α)) otherwise, where α is the (unknown

to B2) input of Party 1.49 In the first case, B2 sets u
def= β, and so in both cases

(u, v) = (h(α), f (α)).
2. Machine B2 emulates the protocol, by feeding A2 with β and the pair (u, v),

which A2 expects to get in Step C1, and outputting whatever the latter outputs (in
Step C2).

Note that both the ideal execution under (B1, B2) and the real execution (in the oracle-
aided model) under (A1, A2) yield the output pair (λ , A2(β, (h(α), f (α)))). Thus, the
ideal and real ensembles are identical.

We now turn to the case where the second party is honest and transform the real-
model adversary A1 into a corresponding ideal-model adversary B1. On input α,
the latter proceeds as follows:

1. Machine B1 emulates Step C1 of the protocol, by obtaining from A1 the input α′ ←
A1(α) (that A1 wishes to transmit via Eq. (7.31)) and feeding A1 with the expected
answer λ.

2. If A1 instructs the oracle not to answer Party 2, then B1 halts without invoking the
trusted party. Otherwise, B1 sends α′ to the trusted party and lets it answer Party 2.
In both cases, B1 halts with output equal to the corresponding output of A1.

Note that if h(α′) = β, where β is the (unknown to B1) input of Party 2, then the
trusted party answers Party 2 with f (α′), and otherwise it answers Party 2 with
(h(α′), f (α′)).

Note that both the ideal execution under (B1, B2) and the real execution (in the oracle-
aided model) under (A1, A2) yield the output pair (A1(α, λ, ⊥) , ⊥) if A1(α, λ) = ⊥
and (A1(α, λ) , F(A1(α), β) otherwise, where F(α′, β) is as in Eq. (7.33); that is,

49 Recall that, in either case, the trusted party will send Party 1 the answer λ. Also note that the emulation will
remain valid regardless of which |β|-bit long string B2 sends to the trusted party (because, for any such choice,
B2 will [explicitly] receive f (α), as well as [explicitly or implicitly] receive h(α)).
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F(α′, β) = f (α′) if h(α′) = β and F(α′, β) = (h(α′), f (α′)) otherwise. Thus, also here
the ideal and real ensembles are identical.

7.4.3.5. Augmented Coin-Tossing

In this section, we generalize the coin-tossing functionality (of Section 7.4.3.1) in two
ways. Firstly, we consider the generation of a random �(n)-bit long string, rather than a
single bit. Secondly, we provide the second party with a function of the coin-outcomes
obtained by the first party, rather than providing it with the outcomes themselves. That
is, for any positive polynomial � : N → N and a polynomial-time computable function
g, we consider the randomized functionality

(1n , 1n) �→ (r, g(r )), where r is uniformly distributed in {0, 1}�(n). (7.34)

Indeed, Definition 7.4.6 is a special case (obtained by setting �(n)
def= 1 and g(r )

def= r ).
The augmented coin-tossing functionality (mentioned in Section 7.4.1) will be derived
as a special case (see Proposition 7.4.19). But first we show that Eq. (7.34) can be
securely reduced to the set of functionalities presented earlier (see discussion of this
notion of a reduction in Remark 7.4.5). That is, we present an oracle-aided protocol that
uses two of the latter functionalities (i.e., basic coin-tossing and general authenticated
computation), as well as a commitment scheme C . The protocol can be viewed as
a “robust” version of Construction 7.4.7 (i.e., simple operations, such as sending a
commitment to a value and tossing a coin, are replaced by corresponding functionalities
that prevent various abuses).

Construction 7.4.16 (an oracle-aided protocol for Eq. (7.34)): For r1, ..., r� ∈ {0, 1}n

and σ1, ..., σ� ∈ {0, 1}, we let Cr1,...,r�
(σ1, ..., σ�) = (Cr1 (σ1), ..., Cr�

(σ�)).

Inputs: Both parties get security parameter 1n, and set �
def= �(n).

Step C1: Party 1 uniformly selects σ1, ..., σ� ∈ {0, 1} and s1, ..., s� ∈ {0, 1}n, and lets
r ′ = σ1 · · · σ� and s = s1 · · · s�.

Step C2: Party 1 uses the image-transmission functionality to send c
def= Cs(r ′) to

Party 2. Actually, since image-transmission functionality is a special case of the
general authenticated-computation functionality, we use the latter. That is, Party 1
enters Eq. (7.33) with input (r ′, s), Party 2 enters with input 1�+�·n, and Party 2 is

supposed to obtain f (C2)(r ′, s)
def= Cs(r ′).

Recall that, by definition, a party cannot abort the execution of an oracle call that
was not initiated (requested) by it, and so Party 2 cannot abort Steps C2–C4. For
simplicity, we assume that Party 1 does not abort Steps C2 and C3, but it may abort
Step C4.

Step C3: The parties invoke the basic coin-tossing functionality � times to generate a
common random string r ′′ ∈ {0, 1}�. That is, in the i-th invocation of the functionality
of Definition 7.4.6, the parties obtain the i-th bit of r ′′.

Step C4: Party 1 sets r
def= r ′ ⊕ r ′′, and uses the authenticated-computation functional-

ity to send g(r ) to Party 2. Specifically, Party 1 enters Eq. (7.33) with input (r ′, s, r ′′),

674

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.004
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:15, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.004
https:/www.cambridge.org/core


7.4* FORCING (TWO-PARTY) SEMI-HONEST BEHAVIOR

Party 2 enters with input (c, r ′′), where (c, r ′′) is supposed to equal h (C4)(r ′, s, r ′′) def=
(Cs(r ′), r ′′), and Party 2 is supposed to obtain f (C4)(r ′, s, r ′′) def= g(r ′ ⊕ r ′′). In case
Party 1 aborts or Party 2 obtains an answer of a different format, which happens if
the inputs to the functionality do not match, Party 2 halts with output ⊥ (indicating
that Party 1 misbehaved).

We comment that r = r ′ ⊕ r ′′ is uniquely determined by c and r ′′.

Outputs: Party 1 outputs r , and Party 2 outputs the value determined in Step C4, which
is either g(r ) or ⊥.

We stress that, in all oracle calls, Party 1 is the party initiating (requesting) the call. We
comment that more efficient alternatives to Construction 7.4.16 do exist; it is just that
we find Construction 7.4.16 easiest to analyze.

Proposition 7.4.17: Let F be the set of functionalities defined in Definition 7.4.6 and
Eq. (7.33), respectively. Then Construction 7.4.16 constitutes a security reduction from
the generalized coin-tossing functionality of Eq. (7.34) to F.

Proof Sketch: We start by assuming that the first party is honest and by transforming
the real-model adversary A2 (for the oracle-aided execution) into a corresponding ideal-
model adversary B2. On input 1n , the latter proceeds as follows:

1. Machine B2 emulates the local actions of the honest Party 1 in Step C1 of the protocol,
by uniformly selecting r ′ ∈ {0, 1}� and s ∈ {0, 1}�·n .

2. Machine B2 emulates Step C2 of the protocol, by feeding A2 with c
def= Cs(r ′). (Recall

that by our convention, A2 never aborts.)
3. Machine B2 emulates Step C3 of the protocol, by uniformly selecting r ′′ ∈ {0, 1}�

and feeding A2 with it.
4. Machine B2 invokes the trusted party with input 1n and obtains the answer g(r ),

for a uniformly distributed r ∈ {0, 1}� that is handed to Party 1.50 Next, machine
B2 obtains the input (or query) of A2 to the functionality of Step C4. If this input
(i.e., A2(λ, Cs(r ′), r ′′), where λ represents the Step 1 emulation of Step C1) does not
equal the pair of values (Cs(r ′), r ′′) fed to A2 in Steps 2–3, then B2 halts with output
A2(λ, c, r ′′, ((c, r ′′), g(r ))). Otherwise, B2 halts with output A2(λ, c, r ′′, g(r )).

Note that in both cases, the output of B2 corresponds to the output of A2 when
fed with the corresponding emulation of Steps C1–C4. In particular, B2 emulates
Step C4 by feeding A2 either with g(r ) or with (h (C4)(r ′, s, r ′′), g(r )), where the
decision depends on whether or not A2(λ, Cs(r ′), r ′′) = (Cs(r ′), r ′′). (Recall that
(Cs(r ′), r ′′) = h (C4)(r ′, s, r ′′).) Indeed, B2 is cheating (in the emulation of Step C4),
because A2 expects to get either f (C4)(r ′, s, r ′′) = g(r ′ ⊕ r ′′) or (h (C4)(r ′, s, r ′′), g(r ′ ⊕
r ′′)), but (as we shall see) this cheating is undetectable.

Let us first assume that the input entered by A2 to the functionality of Step C4
does fit its view of Steps C2 and C3, an event that occurs with equal probability

50 Indeed, this part of the current step could also take place at an earlier stage.
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in both models (because the emulation of Steps C2–C3 is perfect). In this case,
the ideal-model execution under (B1, B2) yields the pair (r , A2(λ, C(r ′), r ′′, g(r ))),
where r ′, r ′′, r are uniformly and independently distributed. On the other hand, the
real-model execution (in the oracle-aided model) under (A1, A2) yields the pair
(r ′ ⊕ r ′′ , A2(λ, C(r ′), r ′′, g(r ′ ⊕ r ′′))), where r ′ and r ′′ are as before, which (for
r = r ′ ⊕ r ′′) is distributed identically to (r , A2(λ, C(r ⊕ r ′′), r ′′, g(r ))). However, due
to the hiding property of C , the two ensembles are computationally indistinguish-
able. In case the input entered by A2 to the functionality of Step C4 does not fit
its view of Steps C2 and C3, the ideal-model execution under (B1, B2) yields the
pair (r , A2(λ, C(r ′), r ′′, ((C(r ′), r ′′), g(r )))), whereas the real-model execution under
(A1, A2) yields the pair (r ′ ⊕ r ′′ , A2(λ, C(r ′), r ′′, ((C(r ′), r ′′), g(r ′ ⊕ r ′′)))), which is
distributed identically to (r , A2(λ, C(r ⊕ r ′′), r ′′, ((C(r ⊕ r ′′), r ′′), g(r )))). Again, the
two ensembles are computationally indistinguishable.

We now turn to the case where the second party is honest and transform the real-
model adversary A1 into a corresponding ideal-model adversary B1. On input 1n , the
latter proceeds as follows:

1. Machine B1 emulates Step C1 of the protocol, by obtaining (r ′, s) ← A1(1n), which
is the query that A1 will use in Step C2.

2. Machine B1 emulates Step C2 by doing nothing.
Note that the real-model adversary A1 would have made the oracle query (r ′, s) and
would have obtained λ as an answer.

3. Machine B1 invokes the trusted party (on input 1n) and obtains a uniformly distributed
r ∈ {0, 1}�. We stress that at this time, B1 does not instruct the trusted party whether

or not to answer Party 2. Machine B1 emulates Step C3, by feeding r ′′ def= r ⊕ r ′ to
A1.

4. Machine B1 starts its emulation of Step C4, by checking whether or not the query
that A1 wishes to make (i.e., A1(1n , λ, r ′′)) fits the tuple (r ′, s, r ′′) in the sense

that it yields the same value (Cs(r ′), r ′′). That is, let (q ′, q, q ′′) def= A1(1n , λ, r ′′). If
(Cq (q ′), q ′′) = (Cs(r ′), r ′′), then B1 instructs the trusted party to answer Party 2,
or else B1 instructs the trusted party to stop (without answering Party 2).51 Finally,
B1 outputs whatever A1 does (i.e., A1(1n , λ, r ′′, λ), where the four inputs of A1

correspond to its view in each of the four steps).

Note that the output of Party 1 in both the real model (under the Ai ’s) and the ideal model
(under the Bi ’s) equals A1(1n , λ, r ′′, λ), where r ′′ is uniformly distributed (in both mod-
els). The issue is the correlation of this output to the output of Party 2, which is relevant
only if Party 2 does have an output. Recall that Party 2 obtains an output (in both models)
only if the corresponding Party 1 does not abort (or stops the trusted party). Furthermore,
in both models, an output is obtained if and only if (Cq (q ′), q ′′) = (Cs(r ′), r ′′) holds,

where (r ′, s)
def= A1(1n), and (q ′, q, q ′′) def= A1(1n , λ, r ′′). In particular, (Cq (q ′), q ′′) =

51 In particular, if (in contrary to our simplifying assumption) A1 aborts before Step C4, then the sequence
(q ′, q, q ′′) equals ⊥ and does not fit (Cs (r ′), r ′′).
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(Cs(r ′), r ′′) implies that (q ′, q ′′) = (r ′, r ′′) and that the inputs entered in Step C4 do
match (i.e., h (C4)(q ′, q, q ′′) = (Cs(r ′), r ′′)). This means that in the real model, the output
of Party 2 is f (C4)(q ′, q, q ′′) = f (C4)(r ′, q, r ′′) = g(r ′ ⊕ r ′′), whereas in the ideal model,
it equals g(r ) = g(r ′ ⊕ r ′′). We conclude that the ideal model perfectly emulates the
real model, and the proposition follows.

An Important Special Case. An important special case of Eq. (7.34) is when g(r, s) =
Cs(r ), where |s| = n · |r |. This special case will be called the augmented coin-tossing
functionality.

Definition 7.4.18 (coin-tossing into the well, augmented): An augmented coin-
tossing-into-the-well protocol is a two-party protocol for securely computing the
following randomized functionality with respect to some fixed commitment scheme,
C, and a positive polynomial �:

(1n , 1n) �→ ((r, s), Cs(r )) (7.35)

where (r, s) is uniformly distributed in {0, 1}�(n) × {0, 1}�(n)·n.

An augmented coin-tossing protocol is exactly what is needed for the implementation
of the coin-generation phase of the compiler. In particular, the string s, included in the
output of Party 1, allows it to (later) prove in zero-knowledge statements regarding the
actual value, r , committed (to Party 2). This fact will be used in the protocol emulation
phase of the compiler.

Proposition 7.4.19: Let F be as in Proposition 7.4.17, and suppose that C is a commit-
ment scheme. Then Construction 7.4.16, when applied to g = C, constitutes a secure
reduction of the augmented coin-tossing functionality Eq. (7.35) to the set of function-
alities F.

7.4.3.6. Input Commitment

The last component needed for the compiler is a functionality that captures what is
required in the input-commitment phase of the compiler. Specifically, we want to force
Party 1 to make a random commitment to an input of its choice, while knowing the com-
mitted value and the corresponding decommitment. Knowledge of the latter will allow
the party to (later) prove in zero-knowledge statements regarding the actual committed
value, and this fact will be used in the protocol-emulation phase of the compiler.

Let C be a commitment scheme, and let C be defined as in Section 7.4.3.5. We
consider the input commitment functionality

(x , 1|x |) �→ (r, Cr (x)), where r is uniformly distributed in {0, 1}|x |2 (7.36)

Certainly, the naive protocol of just letting Party 1 send Party 2 a commitment to x does
not constitute a secure implementation of Eq. (7.36): This naive suggestion does not
guarantee that the output is in the range of the commitment scheme, let alone that it is a
random commitment for which Party 1 knows a corresponding decommitment. Thus,
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the naive protocol must be augmented by mechanisms that address all these concerns.
We show that Eq. (7.36) can be securely reduced to the set of functionalities presented
in previous subsections.

Construction 7.4.20 (an oracle-aided protocol for Eq. (7.36)):

Inputs: Party 1 has input x ∈ {0, 1}n, whereas Party 2 gets input 1n.

Step C1: Party 1 selects uniformly r ′ ∈ {0, 1}n2
.

Step C2: Party 1 uses the image-transmission functionality to send c′ def= Cr ′(x) to
Party 2. Again, we actually use the authenticated-computation functionality, where
Party 1 enters Eq. (7.33) with input (x , r ′), Party 2 inputs 1n+n2

, and Party 2 is sup-
posed to obtain f (C2)(x , r ′) def= Cr ′(x). Thus, Steps C1–C2 yield an initial commitment
to the input.
As in Construction 7.4.16, we recall that Party 2 cannot abort Steps C2–C4, and
assume that Party 1 does not abort Steps C2 and C3.

Step C3: Generating coins for the final commitment. The parties use the augmented
coin-tossing functionality to obtain the outputs (r, r ′′) and c′′ def= Cr ′′(r ), respectively,
where r ∈ {0, 1}n2

and r ′′ ∈ {0, 1}n3
are uniformly and independently distributed.

That is, Party 1 gets (r, r ′′), while Party 2 gets c′′.

Step C4: Sending the final commitment. Party 1 uses the authenticated-computation
functionality to send Cr (x) to Party 2, where (x , r ) is uniquely determined by (c′, c′′).
Specifically, Party 1 enters Eq. (7.33) with input (x , r, r ′, r ′′), Party 2 enters with input
(c′, c′′), where (c′, c′′) is supposed to equal h (C4)(x , r, r ′, r ′′) def= (Cr ′(x), Cr ′′(r )), and
Party 2 is supposed to obtain f (C4)(x , r, r ′, r ′′) def= Cr (x).
In case Party 1 aborts or Party 2 obtains an answer of a different format, which
happens if the inputs to the functionality do not match, Party 2 halts with output ⊥
(indicating that Party 1 misbehaved).

Outputs: Party 1 outputs r , and Party 2 outputs the value determined in Step C4, which
is either Cr (x) or ⊥.

Again, more efficient alternatives to Construction 7.4.20 do exist, but we prefer to
analyze the one here.

Proposition 7.4.21: Construction 7.4.20 constitutes a security reduction from
Eq. (7.36) to the set of two functionalities defined in Eq. (7.35) and Eq. (7.33),
respectively.

Proof Sketch: We start by assuming that the first party is honest and by transforming
the real-model adversary A2 (for the oracle-aided execution) into a corresponding ideal-
model adversary B2. On input 1n , the latter proceeds as follows:

1. Machine B2 emulates (the actions of the honest Party 1 in) Step C1 of the protocol,
by uniformly selecting r ′ ∈ {0, 1}n2

.
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2. Machine B2 emulates Step C2 of the protocol, by feeding A2 with c′ def= Cr ′(0n).
(Clearly, B2 is cheating, because A2 is supposed to be fed with C(x), where x is the
(unknown to B2) input of Party 1. However, A2 cannot detect this cheating.)

3. Machine B2 emulates Step C3 of the protocol, by uniformly selecting s ∈ {0, 1}n2

and r ′′ ∈ {0, 1}n3
, and feeding A2 with c′′ def= Cr ′′(s).

4. Machine B2 invokes the trusted party with input 1n and obtains the answer Cr (x),
for a uniformly distributed r ∈ {0, 1}n2

that is handed to Party 1.52 Next, machine B2

obtains the input (or query) of A2 to the functionality of Step C4. If this input (i.e.,
A2(λ, c′, c′′)) does not equal the pair of values (c′, c′′) = (Cr ′(0n), Cr ′′(s)) fed to A2

in Steps 2–3, then B2 halts with output A2(λ, c′, c′′, ((c′, c′′), Cr (x))). Otherwise, B2

halts with output A2(λ, c′, c′′, Cr (x)).

Note that in both cases, the output of B2 corresponds to the output of A2 when
fed with the corresponding emulation of Steps C1–C4. In particular, B2 emulates
Step C4 by feeding A2 with either Cr (x) or with ((C(0n), C(s)), Cr (x)), where the
decision depends on whether or not A2(λ, Cr ′(0n), Cr ′′(s)) = (Cr ′(0n), Cr ′′(s)). (Re-
call that (Cr ′(0n), Cr ′′(s)) = h (C4)(0n , s, r ′, r ′′).) Indeed, on top of cheating in the
emulation of Step C2, machine B2 cheats in the emulation of Step C4, firstly be-
cause the decision is supposed to depend on whether or not A2(λ, Cr ′(x), Cr ′′(r )) =
(Cr ′(x), Cr ′′(r )), where (Cr ′(x), Cr ′′(r )) = h (C4)(x , r, r ′, r ′′), and secondly because
A2 expects to get either Cr (x) = f (C4)(x , r, r ′, r ′′) or ((C(x), C(r )), Cr (x)) ≡
(h (C4)(x , r, r ′, r ′′), f (C4)(x , r, r ′, r ′′)). However, as we shall see, this cheating is
undetectable.

Let us first assume that the input entered by A2 to the functionality of Step C4 does
fit its view of Steps C2 and C3. In this case, the ideal-model execution under (B1, B2)
yields the pair (r , A2(λ, C(0n), C(s), Cr (x))), where r and s are uniformly and inde-
pendently distributed. On the other hand, the corresponding real-model execution (in
the oracle-aided model) under (A1, A2) yields the pair (r , A2(λ, C(x), C(r ), Cr (x))),
where r is as before. However, due to the hiding property of C , the two ensembles
are computationally indistinguishable.53 In case the input entered by A2 to the func-
tionality of Step C4 does not fit its view of Steps C2 and C3, the ideal-model exe-
cution under (B1, B2) yields the pair (r , A2(λ, C(0n), C(s), ((C(0n), C(s)), Cr (x)))),
whereas the corresponding real-model execution under (A1, A2) yields the pair
(r , A2(λ, C(x), C(r ), ((C(x), C(r )), Cr (x)))). Again, the two ensembles are com-
putationally indistinguishable. Since the two cases occur with almost the same
probability in both models (because the decision depends on A2(λ, c′, c′′), where
(c′, c′′) is either (C(0n), C(s)) or (C(x), C(r ))), the outputs in the two models are
indistinguishable.

52 Indeed, this part of the current step could also take place at an earlier stage.
53 In fact, the said ensembles are computationally indistinguishable even when r and s are fixed, rather than being

random. That is, the ensembles {(C(0|x |), C(s), Cr (x))}x ,r,s and {(C(x), C(r ), Cr (x))}x ,r,s are computationally
indistinguishable, where (as usual) the distribution’s index (x , r, s) is also given to the potential distinguisher.
This follows from the computational indistinguishability of {(C(0|x |), C(s))}x ,r,s and {(C(x), C(r ))}x ,r,s , which
in turn follows from the hiding property of C .
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We now turn to the case where the second party is honest and transform the real-
model adversary A1 into a corresponding ideal-model adversary B1. On input x , the
latter proceeds as follows:

1. Machine B1 emulates Step C1 of the protocol, by obtaining r ′ from A1(x). Actually,
B1 obtains (x ′, r ′) ← A1(x), which is the query that A1 will use in Step C2.

2. Machine B1 emulates Step C2 by doing nothing.
Note that the real-model adversary A1 would have made the oracle query (x ′, r ′) and
would have obtained λ as an answer.

3. Machine B1 invokes the trusted party on input x ′, and obtains a uniformly distributed
r ∈ {0, 1}n2

. We stress that at this time, B1 does not instruct the trusted party whether
or not to answer Party 2. Machine B1 emulates Step C3, by uniformly selecting
r ′′ ∈ {0, 1}n3

and feeding (r, r ′′) to A1.
4. Machine B1 starts its emulation of Step C4, by checking whether or not the query that

A1 wishes to make (i.e., A1(x , λ, (r, r ′′))) fits the tuple (x ′, r, r ′, r ′′) in the sense that it
yields the same value (Cr ′(x ′), Cr ′′(r )). That is, let (q1, q2, s1, s2)

def= A1(x , λ, (r, r ′′)).
If (Cs1 (q1), Cs2 (q2)) = (Cr ′(x ′), Cr ′′(r )), then B1 instructs the trusted party to answer
Party 2; otherwise B1 instructs the trusted party to stop (without answering Party 2).
Finally, B1 outputs whatever A1 does (i.e., A1(x , λ, (r, r ′′), λ), where the four inputs
of A1 correspond to its view in each of the four steps).

Note that the output of Party 1 in both the real model (under the Ai ’s) and the ideal model
(under the Bi ’s) equals A1(x , λ, (r, r ′′), λ), where r ∈ {0, 1}n2

and r ′′ ∈ {0, 1}n3
are uni-

formly and independently distributed (in both models). The issue is the correlation of
this output to the output of Party 2, which is relevant only if Party 2 does have an output.
Recall that Party 2 obtains an output (in both models) only if the corresponding Party 1
does not abort (or stops the trusted party). Furthermore, in both models, an output is ob-
tained if and only if (Cs1 (q1), Cs2 (q2)) = (Cr ′(x ′), Cr ′′(r )), where (x ′, r ′) = A1(x) and
(q1, q2, s1, s2) = A1(x , λ, (r, r ′′)). In particular, (Cs1 (q1), Cs2 (q2)) = (Cr ′(x ′), Cr ′′(r ))
implies that (q1, q2) = (x ′, r ) and that the inputs entered in Step C4 do match (i.e.,
h (C4)(q1, q2, s1, s2) = (Cr ′(x ′), Cr ′′(r ))), which means that in the real model, the output
of Party 2 is f (C4)(q1, q2, s1, s2) = f (C4)(x ′, r, s1, s2) = Cr (x ′) (exactly as in the ideal
model). We conclude that the ideal model perfectly emulates the real model, and the
proposition follows.

7.4.3.7. Summary

Combining Proposition 7.4.8 (resp., Proposition 7.4.12) with suitable results regarding
the underlying primitives, we conclude that coin-tossing (resp., image transmission
as in Eq. (7.31)) can be securely implemented based on any 1-1 one-way function.
Combining Proposition 7.4.15 (resp., Proposition 7.4.19) [resp., Proposition 7.4.21]
with the previous results, by using the Composition Theorem (i.e., Theorem 7.4.3 or
Remark 7.4.5), we obtain secure implementations of the authenticated-computation
functionality (resp., augmented coin-tossing) [resp., input-commitment functionality].
The 1-1 restriction can be waived by using a slightly more cumbersome construction that
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utilizes the commitment scheme of Construction 4.4.4 (instead of the simple scheme
of Construction 4.4.2). We thus state the following for future reference:

Proposition 7.4.22: Assuming the existence of (non-uniformly strong) one-way func-
tions, the following three functionalities can be securely computed:

1. The input-commitment functionality as defined in Eq. (7.36).
2. The augmented coin-tossing functionality as defined in Eq. (7.35).
3. The authenticated-computation functionality as defined in Eq. (7.33).

7.4.4. The Compiler Itself

We are now ready to present the compiler. Recall that we are given a protocol, �, for the
semi-honest model, and we want to generate an equivalent protocol �′ for the malicious
model. The meaning of the term “equivalent” will be clarified in Section 7.4.4.1. We
start by compiling � into an oracle-aided protocol �′ that uses the three functionalities
referred to in Proposition 7.4.22.

We assume, without loss of generality, that on any input of length n, each party to
� tosses �(n) = poly(n) coins. Recall that C is a (non-interactive) (string) commit-
ment scheme, derived from the bit commitment scheme C , and that Cr (v) denotes the
commitment to value v using the random-tape r .

Construction 7.4.23 (the compiled protocol, oracle-aided version): Given a protocol,
�, for the semi-honest model, we consider the following oracle-aided protocol, �′, for
the malicious model:

Inputs: Party 1 gets input x ∈ {0, 1}n and Party 2 gets input y ∈ {0, 1}n.

Input-Commitment Phase: Each of the two parties commits to its input by using the
input-commitment functionality of Eq. (7.36). Recall that Eq. (7.36) maps the input
pair (u, 1n) to the output pair (s, Cs(u)), where s is uniformly distributed in {0, 1}n2

.
Thus, each of the parties obtains decommitment information that will allow it to
perform its role in the protocol-emulation phase.

Specifically, we are talking about two invocations of Eq. (7.36). In the first invocation,
Party 1 wishing to commit to x, plays the role of the first party in Eq. (7.36), and
obtains a uniformly distributed ρ1 ∈ {0, 1}n2

, whereas Party 2 (which plays the role
of the second party in Eq. (7.36)) obtains γ 1 def= Cρ1 (x). Likewise, in the second
invocation, Party 2, wishing to commit to y, plays the role of the first party in
Eq. (7.36), and obtains a uniformly distributed ρ2 ∈ {0, 1}n2

, whereas Party 1 (which

plays the role of the second party in Eq. (7.36)) obtains γ 2 def= Cρ2 (y).

Coin-Generation Phase: Each of the parties generates a random-tape for the emula-
tion of �, by invoking the augmented coin-tossing functionality of Eq. (7.35). Recall
that this functionality maps the input pair (1n , 1n) to the output pair ((r, s), Cs(r )),
where (r, s) is uniformly distributed in {0, 1}�(n) × {0, 1}n·�(n). Thus, each party
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obtains the random-tape to be held by it, whereas the other party obtains a commit-
ment to this value. The party holding the random-tape also obtains the randomization
used in the corresponding commitment, which it will use in performing its role in the
protocol-emulation phase.

Specifically, we are talking about two invocations of Eq. (7.35). In the first (resp.,
second) invocation, Party 1 (resp., Party 2) plays the role of the first party in
Eq. (7.35), and obtains a uniformly distributed (r1, ω1) ∈ {0, 1}�(n) × {0, 1}n·�(n)

(resp., (r2, ω2) ∈ {0, 1}�(n) × {0, 1}n·�(n)), whereas Party 2 (resp., Party 1) which plays

the other role, obtains δ1 def= Cω1 (r1) (resp., δ2 def= Cω2 (r2)).

Protocol-Emulation Phase: The parties use the authenticated-computation function-
ality of Eq. (7.33) in order to emulate each step of protocol �. Recall that, for
predetermined functions h and f , this functionality maps the input pair (α, β) to
the output pair (λ, f (α)) if β = h(α) and to (λ , (h(α), f (α))) otherwise, where the
second case is treated as abort.

The party that is supposed to send a message plays the role of the first (i.e., initiating)
party in Eq. (7.33), and the party that is supposed to receive the message plays the
role of the second party. Suppose that the current message in � is to be sent by

Party j , and let u
def= x if j = 1 and u

def= y otherwise. Then the functions h, f and
the inputs α, β, for the functionality of Eq. (7.33), are set as follows:

� The string α is set to equal (α1, α2, α3), where α1 = (u, ρ j ) is the query and
answer of Party j in the oracle call that it initiated in the input-commitment
phase, α2 = (r j , ω j ) is the answer that Party j obtained in the oracle call that
it initiated in the coin-generation phase, and α3 is the sequence of messages that
Party j obtained so far in the emulation of �. The string β equals (γ j , δ j , α3),
where γ j and δ j are the answers that the other party obtained in the same oracle
calls in the first two phases (and α3 is as before).
In particular, u is the input to which Party j committed in the input-commitment
phase, and r j is the random-tape generated for it in the coin-generation phase.
Together with α3, they determine the message that is to be sent by Party j in �.
The auxiliary strings ρ j and ω j will be used to authenticate u and r j , as reflected
in the following definition of h.

� The function h is defined such that h((v1, s1), (v2, s2), v3) equals
(Cs1 (v1), Cs2 (v2), v3). Indeed, it holds that h(α1, α2, α3) = (Cρ j (u), Cω j (r j ),
α3) = β.

� The function f equals the computation that determines the message to be sent
in �. Note that this message is computable in polynomial-time from the party’s
input (denoted u and being part of α1), its random-tape (denoted r j and being
part of α2), and the messages it has received so far (i.e., α3). Indeed, it holds that
f (α1, α2, α3) is the message that Party j should send in �.

Recall that the party that plays the receiver in the current oracle call obtains either
f (α) or (h(α), f (α)). It treats the second case as if the other party has aborted,
which is also possible per se.
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Aborting: In case any of the functionalities invoked in any of these phases terminates in
an abort state, the party (or parties) obtaining this indication aborts the execution,
and sets its output to ⊥. Otherwise, outputs are as follows.

Outputs: At the end of the emulation phase, each party holds the corresponding output
of the party in protocol �. The party just locally outputs this value.

Clearly, in case both parties are honest, the input–output relation of �′ is identical
to that of �. (We will show that essentially the same also holds in general.) We note
that the transformation of � to �′ can be implemented in polynomial-time. Finally,
replacing the oracle calls by the sub-protocols provided in Proposition 7.4.22 yields a
standard protocol for the malicious model.

7.4.4.1. The Effect of the Compiler

As will be shown, given a protocol as constructed in the proof of Theorem 7.3.12, the
compiler produces a protocol that securely computes the same functionality. Thus, for
any functionality f , the compiler transforms a specific protocol for privately computing
f (in the semi-honest model) into a protocol for securely computing f (in the malicious
model). This suffices to establish our main result (i.e., Theorem 7.4.1), yet it does not
say what the compiler does when given an arbitrary protocol (i.e., one not constructed
as in the proof of Theorem 7.3.12). In order to analyze the action of the compiler,
in general, we introduce the following model that is a hybrid of the semi-honest and
the malicious models.54 We call this new model, which is of independent interest, the
augmented semi-honest model.

Definition 7.4.24 (the augmented semi-honest model): Let � be a two-party protocol.
An augmented semi-honest behavior (with respect to �) is a (feasible) strategy that
satisfies the following conditions:

Entering the execution: Depending on its initial input, denoted u, the party may abort
before taking any step in the execution of �. Otherwise, again depending on u, it
enters the execution with any input u′ ∈ {0, 1}|u| of its choice. From this point on, u′

is fixed.

Proper selection of a random-tape: The party selects the random-tape to be used in �

uniformly among all strings of the length specified by �. That is, the selection of the
random-tape is exactly as specified by �.

Proper message transmission or abort: In each step of �, depending on its view of the
execution so far, the party may either abort or send a message as instructed by �.
We stress that the message is computed as � instructs based on input u′, the selected
random-tape, and all messages received so far.

54 Indeed, Theorem 7.4.1 will follow as a special case of the general analysis of the compiler (as provided later).
See further discussion following the statement of Proposition 7.4.25.
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Output: At the end of the interaction, the party produces an output depending on its
entire view of the interaction. We stress that the view consists of the initial input u,
the selected random-tape, and all messages received so far.

A pair of probabilistic polynomial-time strategies, C = (C1, C2), is admissible with
respect to � in the augmented semi-honest model if one strategy implements � and
the other implements an augmented semi-honest behavior with respect to �.

The augmented semi-honest model extends the ordinary semi-honest model in allowing
adversaries to modify their initial input and to abort the execution at an arbitrary time.
The augmented semi-honest model is arguably more appealing than the semi-honest
model because in many settings, input modification and aborting can also be performed
at a high level, without modifying the prescribed program. In contrast, implementing
an effective malicious adversary may require some insight into the original protocol,
and it typically requires substitution of the program’s code.

Intuitively, the compiler transforms any protocol � into an (oracle-aided) protocol
�′, such that executions of �′ in the malicious model correspond to executions of �

in the augmented semi-honest model. That is:

Proposition 7.4.25 (general analysis of the two-party compiler): Let �′ be the (oracle-
aided) protocol produced by Construction 7.4.23 when given the protocol �, and let G
denote the set of the three oracle functionalities that are used by protocol �′. Then, for
every pair of probabilistic polynomial-time strategies A = (A1, A2) that are admissible
(with respect to �′) for the (real) malicious model (of Definition 7.4.2),55 there exists a
pair of probabilistic polynomial-time strategies B = (B1, B2) that are admissible with
respect to � for the augmented semi-honest model (of Definition 7.4.24), such that

{real�, B(z)(x , y)}x , y,z
c≡ {realG

�′, A(z)
(x , y)}x , y,z

where x , y, z ∈ {0, 1}∗ such that |x | = |y| and |z| = poly(|x |).

Proposition 7.4.25 will be applied to protocols as constructed in the proof of Theo-
rem 7.3.12. Actually, we will apply Proposition 7.4.25 to Theorem 7.3.14 (which pro-
vides canonical protocols for privately computing any functionality). As we shall see
(in Section 7.4.4.2), for these specific protocols, the augmented semi-honest model (of
Definition 7.4.24) can be emulated by the ideal malicious model (of Definition 7.2.4).
Thus, we obtain secure (oracle-aided) protocols (with oracle to G) for any functional-
ity, because (schematically speaking) for every functionality f , there exist � and �′

such that ideal f,malicious(x , y) equals real�,aug−semi−honest(x , y), which in turn equals
realG

�′,malicious(x , y). (Ordinary secure protocols are obtained by using secure imple-
mentations of the oracles in G (which are provided by Proposition 7.4.22).) Thus,
Theorem 7.4.1 is proven by combining the properties of the compiler, as stated in

55 Recall the definition of real-model adversaries for an oracle-aided protocol (i.e., Definition 7.4.2) extends the
definition of real-model adversaries for ordinary protocols (i.e., Definition 7.2.5).
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Proposition 7.4.25, with the properties of specific protocols to be compiled by it. We
start by establishing Proposition 7.4.25.

Proof Sketch: Given a pair of strategies, (A1, A2), which is admissible with respect
to �′ for the real malicious model, we present a corresponding pair, (B1, B2), that
is admissible with respect to � for the augmented semi-honest model. In the current
proof, the treatment of the two cases for the identity of the honest party is symmetric.
Hence, we use a generic symbol for the said identity. (Alternatively, without loss of
generality, one may assume that Party 1 is honest.)

We denote by hon the identity of the honest party and by mal the identity of the
malicious party (i.e., {hon, mal} = {1, 2}). Thus, Bhon is determined by �, and we
transform (the malicious adversary) Amal into (an augmented semi-honest adversary)
Bmal, which uses Amal as a subroutine. In particular, machine Bmal will emulate all
the oracles that are used in �′ (which is an oracle-aided protocol compiled out of the
ordinary protocol �). On input u ∈ {0, 1}n , machine Bmal behaves as follows:

Entering the execution: Machine Bmal invokes Amal on input u, and decides whether
to enter the protocol, and if so, with what input. Toward this end, machine Bmal

emulates the input-committing phase of �′, using Amal (as subroutine). Machine Bmal

obtains from Amal the oracle-query that it makes to the input-committing functionality
(initiated by it), and uses this query to determine the replaced input u′ (to be used
in the rest of the execution). It also provides Amal with the oracle answers that Amal

expects to get. Details follow.

Recall that the the input-committing phase consists of two invocations of the input-
committing functionality, one by Partyhon and the other by Partymal. In each invoca-
tion, one party supplies an input and the other party gets a commitment to it (while
the first party gets the corresponding commitment coins).

� In the invocation of the input-committing functionality in which Partyhon commits
to its input, machine Bmal generates a dummy commitment (supposedly to the
input of Partyhon) and feeds it to Amal, which expects to get a commitment (as
answer from the oracle). Specifically, Bmal uniformly selects ρhon ∈ {0, 1}n2

, and

computes the commitment γ hon def= Cρhon(0n), where 0n is an arbitrary (dummy)
value (which replaces the unknown input of Partyhon). Machine Bmal feeds Amal

with γ hon (as if γ hon were the oracle answer).
� In the invocation of the input-committing functionality in which Partymal com-

mits to its input, machine Bmal tries to obtain the committed value (provided by
Partymal) and feeds Amal with decommitment information (which it expects to
get). Specifically, Bmal obtains the query, denoted u′, that Amal makes to the input-
committing functionality, and feeds it with a uniformly selected ρmal ∈ {0, 1}n2

.
We stress that Bmal will use this u′ as its modified input in its (augmented semi-
honest) execution of �.
In case Amal has aborted this oracle call, machine Bmal aborts (i.e., does not enter
the execution of �).
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In case Bmal did not abort, it enters protocol � with input u′. Note that this entire
step is implemented in polynomial-time, and the resulting u′ depends only on u (the
initial input of Bmal).

Selection of random-tape: Bmal selects its random-tape uniformly in {0, 1}�(n) (as spec-
ified by �), and emulates the execution of the coin-generation phase of �′ ending
with this outcome, so as to place Amal in the appropriate state toward the protocol-
emulation phase. To achieve the latter goal, machine Bmal supplies Amal with the
oracle answers that it expects to see. Again, we distinguish between the two oracle
calls (to the augmented coin-tossing functionality) made during the coin-generation
phase of �′:
� In the invocation of the augmented coin-tossing functionality in which Partyhon ob-

tains the outcome of the coin-toss, machine Bmal generates a dummy commitment
(supposedly to the random-tape of Partyhon) and feeds it to Amal, which expects
to get a commitment (as answer from the oracle). Specifically, Bmal uniformly se-
lects ωhon ∈ {0, 1}n·�(n), and computes the commitment δhon

def= Cωhon(0�(n)), where
0�(n) is an arbitrary (dummy) value (which replaces the unknown random-tape of
Partyhon). Machine Bmal feeds Amal with δhon (as if δhon were the oracle answer).

� In the invocation of the augmented coin-tossing functionality in which Partymal
obtains the outcome of the coin-toss, machine Bmal first selects uniformly rmal ∈
{0, 1}�(n) and ωmal ∈ {0, 1}n·�(n), and feeds Amal with the pair (rmal, ωmal). Machine
Bmal will use rmal as its random-tape in its (augmented semi-honest) execution of
�. If Amal aborts this oracle call, then Bmal aborts.

In case Bmal did not abort, it will use rmal as its random-tape in the subsequent steps
of protocol �. Note that this entire step is implemented in polynomial-time, and that
rmal is selected uniformly in {0, 1}�(n) independent of anything else.

Subsequent steps – message transmission: Machine Bmal now enters the actual execu-
tion of �. It proceeds in this real execution along with emulating the correspond-
ing oracle answers of the authenticated-computation functionality. In a message-
transmission step by Partyhon (in �), machine Bmal obtains from Partyhon (in the
real execution of �) a message, and emulates the answer given to Partymal by the
authenticated-computation functionality. In a message-transmission step by Partymal
in �, machine Bmal computes the message to be sent to Partyhon (in �) as instructed
by �, based on the input u′ determined earlier, the random-tape rmal selected earlier,
and the messages obtained so far from Partyhon (in �). It then checks if Amal makes
the correct oracle-query, in which case it sends Partyhon the message just computed,
and otherwise it aborts. Details follow:

� In a message-transmission step by Partyhon (in �), machine Bmal first obtains
from Partyhon (in the real execution of �) a message, denoted msg. Next, ma-
chine Bmal obtains from Amal the query that Amal makes to the authenticated-
computation functionality. Let us denote this query by β = (q1, q2, q3). If
(q1, q2) = (γ hon, δhon) and q3 equals the sequence of messages sent so far (by
Bmal to Partyhon), then Bmal feeds Amal with the received message msg. Other-
wise, Bmal feeds Amal with ((γ hon, δhon, α3), msg), where α3 is the sequence of
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messages sent so far (by Bmal to Partyhon). (The latter case means that Amal is
cheating, but Partyhon does not detect this fact (because it obtains no answer from
the authenticated-computation functionality).)

� In a message-transmission step by Partymal (in �), machine Bmal first computes
the message, denoted msg, that it should send (according to �) on input u′ (as de-
termined earlier), random-tape rmal (as recorded earlier), and the messages re-
ceived so far (from Partyhon in execution of �). Next, machine Bmal obtains
from Amal the query that Amal makes to the authenticated-computation function-
ality. Let us denote this query by ((u′′, ρ ′′), (r ′′, ω′′), α′′

3 ). If Cρ ′′(u′′) = Cρmal(u′),
Cω′′(r ′′) = Cωmal(rmal), and α′′

3 equals the sequence of messages received so far
(from Partyhon), then Bmal sends the message msg to Partyhon. Otherwise, Bmal

aborts �. (The latter case means that Amal is cheating in �′, and Partyhon detects
this fact and treats it as if Partymal has aborted in �′.)

Output: Machine Bmal just outputs, whatever machine Amal outputs, given the execution
history (in �′) emulated earlier.

Clearly, machine Bmal (as described) implements an augmented semi-honest behavior
with respect to �. It is left to show that

{realG
�′, A(z)

(x , y)}x , y,z
c≡ {real�, B(z)(x , y)}x , y,z (7.37)

There is only one difference between the two ensembles referred to in Eq. (7.37): In
the first distribution (i.e., realG

�′, A(z)
(x , y)), the commitments obtained by Amal in the

input-commitment and coin-generation phases are to the true input and true random-
tape of Partyhon. On the other hand, in the second distribution (i.e., real�, B(z)(x , y)),
the emulated machine Amal is given commitments to dummy values (and the ac-
tions of Bmal are determined accordingly). We stress that, other than this differ-
ence, Bmal perfectly emulates Amal. However, the difference is “undetectable” (i.e.,
computationally indistinguishable) due to the hiding property of the commitment
scheme.

Composing the oracle-aided protocols produced by the compiler with secure imple-
mentations of these oracles (as provided by Proposition 7.4.22), and using the Compo-
sition Theorem and Proposition 7.4.25, we obtain:

Corollary 7.4.26 (compilation of two-party protocols): Assuming the existence of
(non-uniformly strong) one-way functions, any two-party protocol � can be efficiently
transformed into a two-party protocol �′ such that the following holds. For every pair
of probabilistic polynomial-time strategies A = (A1, A2) that are admissible (with re-
spect to �′) for the (real) malicious model (of Definition 7.2.5), there exists a pair of
probabilistic polynomial-time strategies B = (B1, B2) that are admissible with respect
to � for the augmented semi-honest model (of Definition 7.4.24), such that

{real�, B(z)(x , y)}x , y,z
c≡ {real�′, A(z)(x , y)}x , y,z

where x , y, z ∈ {0, 1}∗ such that |x | = |y| and |z| = poly(|x |).
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GENERAL CRYPTOGRAPHIC PROTOCOLS

7.4.4.2. Canonical Protocols and the Augmented Semi-Honest Model

Recall that a protocol for privately computing some functionality is guaranteed to be
secure with respect to semi-honest behavior. Thus, a real semi-honest execution of this
protocol can be emulated by an ideal semi-honest computation of the functionality. The
question is what happens to such a protocol when it is run under the augmented semi-
honest model. We now show that for canonical protocols (e.g., the protocols constructed
in the proof of Theorem 7.3.12), a real augmented semi-honest execution of such a
protocol can be emulated by an ideal malicious computation of the functionality. That
is, these protocols have the salient property of allowing emulatation of the (wider)
class of real augmented semi-honest executions by the (wider) class of ideal malicious
computations. Combined with Corollary 7.4.26, this fact means that if one applies
the compiler to a canonical protocol � that privately computes f , then the resulting
protocol �′ securely computes f (because malicious executions of �′ can be emulated
by augmented semi-honest executions of �, which in turn can be emulated by the ideal
malicious model for f ).

Recall that the augmented semi-honest model allows two things that go beyond the
semi-honest model: (1) oblivious substitution of inputs, and (2) abort. The first type of
behavior has a correspondence in the malicious ideal model, and so poses no problem.
To account for the second type of behavior, we need to match an aborting execution
in the augmented semi-honest model with an aborting execution in the ideal malicious
model. Here is where the extra property of the specific protocols, constructed in the
proof of Theorem 7.3.12, comes to help. Specifically, we refer to the fact that these
protocols are canonical, which means that the output of each party is determined only
after it receives the very last message (and no knowledge of the output is obtained
before). Thus, aborting before this stage is essentially equivalent to not entering the
execution at all, whereas aborting at the last stage is accounted for by the malicious
ideal model.

Proposition 7.4.27 (on canonical protocols): Let � be a canonical protocol that pri-
vately computes the functionality f . Then, for every probabilistic polynomial-time pair
B = (B1, B2) that is admissible for the (real) augmented semi-honest model (of Def-
inition 7.4.24), there exists a probabilistic polynomial-time pair C = (C1, C2) that is
admissible for the ideal malicious model (of Definition 7.2.4) such that

{real�, B(z)(x , y)}x , y,z
c≡ {ideal f,C(z)(x , y)}x , y,z

where x , y, z ∈ {0, 1}∗ such that |x | = |y| and |z| = poly(|x |).

We comment that the statement of Proposition 7.4.27 implicitly introduces a notion of
security in the augmented semi-honest model. Indeed, if the real-model adversary is
allowed augmented semi-honest behavior, then it is natural to allow a corresponding
behavior in the ideal model, which then coincides with the ideal malicious model.
Viewed in these terms, Proposition 7.4.27 asserts that canonical protocols are secure
in the augmented semi-honest model.
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7.4* FORCING (TWO-PARTY) SEMI-HONEST BEHAVIOR

Proof Sketch: Recall that canonical protocols (cf. Definition 7.3.13) proceed in two
stages, where the first stage yields no information at all (to any semi-honest party) and
the second phase consists of the exchange of a single pair of messages (i.e., each party
sends a single message). We use the fact that canonical protocols admit a two-stage
simulation procedure (for the view of a semi-honest party). Such two-stage simulators
act as follows:

Input to simulator: A pair (u, v), where u is the initial input of the semi-honest party
and v the corresponding local output.

Simulation Stage 1: Based (only) on u, the simulator generates a transcript corre-
sponding to the view of the semi-honest party in the first stage of the canonical
protocol �.

Recall that this is a truncated execution of �, where the execution is truncated just
before the very last message is received by the semi-honest party. We stress that this
truncated view, denoted T , is produced without using v.

Simulation Stage 2: Based on T and v, the simulator produces a string corresponding
to the last message received by the semi-honest party. The simulator then outputs the
concatenation of T and this (last) message.

The reader may easily verify that any canonical protocol has two-stage simulators.
Loosely speaking, a simulator as required in Stage 1 is implicit in the definition of
a canonical protocol (cf. Definition 7.3.13), and the simulation of Stage 2 is trivial
(because Stage 1 in a canonical protocol ends with the parties holding shares of the
desired outputs, and Stage 2 consists of each party sending the share required by the
other party).

Next, for any protocol having two-stage simulators, given a pair (B1, B2) that is
admissible with respect to � for the augmented semi-honest model, we construct a
pair, (C1, C2) that is admissible for the ideal malicious model. We distinguish two
cases, corresponding to the identity of the honest party. The difference between these
cases amounts to the possibility of (meaningfully) aborting the execution after receiving
the last message (and just before sending the last message). This possibility exists for
a dishonest Party 1 but not for a dishonest Party 2 (see Figure 7.3).

We start with the case where Party 1 is honest (and Party 2 is dishonest). In this
case, C1 is determined (by �), and we need to transform the augmented semi-honest
real adversary B2 into a malicious ideal-model adversary C2. The latter operates as
follows, using the two-stage simulator, denoted S2, provided for the view of Party 2 in
semi-honest executions of � (which privately computes f ). Recall that C2 gets input
y ∈ {0, 1}n .

1. Machine C2 first determines the input y′ to be sent to the trusted party, where y′

is determined according to the behavior of B2 during the entire emulation of the
(canonical) protocol �. In addition, C2 emulates the messages sent and received by
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Party  1 Party  2

Stage   2

(r1,r2) (s1,s2)

r1 + s1 r2+ s2

meaningful
abort

r2

s1

Stage   1

Figure 7.3: Schematic depiction of a canonical protocol.

B2 during the first phase of �, and also determines the last message of B2 (i.e., its
single Stage 2-message). This is done as follows:

(a) First, C2 computes the substituted input with which (the augmented semi-honest
adversary) B2 enters �. That is, y′ ← B2(y). In case B2 aborts, machine C2 sets
y′ = ⊥ (so as to conform with the [simplifying] convention that the ideal-model
adversary always sends input to the trusted party).

(b) Next, C2 invokes the first stage of the simulator S2 in order to obtain the view of
the execution of the first stage of � as seen by a semi-honest party having input
y′. Denote this view by T , and note that T includes y′. Machine C2 extracts from
T the random-tape, denoted r , of Party 2. This random-tape will be fixed for the
use of B2.

(c) Using T , machine C2 emulates the execution of B2 on input y′ and random-tape
r , up to the point where Party 2 is to receive the last message (in �). We stress
that this point is just after Party 2 has sent its last message. Thus, the last message
of Party 2 (in �) is determined at this step. To perform the emulation, C2 feeds
B2 with input y′ and random-tape r , and iteratively feeds B2 with the sequence
of (incoming) messages as appearing in the corresponding locations in T . We
stress that although T is only the transcript of Stage 1 in �, it determines all
messages of Party 2 in � (including its single Stage 2 message).
Note that the augmented semi-honest strategy B2 may abort in such an execution,
but in case it does not abort, the messages it sends fit the transcript T . Conse-
quently, the view of (the augmented semi-honest adversary) B2 in an execution
of the first stage of � is emulated by a prefix of T (which in turn represents the
simulated view of a semi-honest party on input y′).
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7.4* FORCING (TWO-PARTY) SEMI-HONEST BEHAVIOR

In case B2 has aborted the execution (even just before sending the last message,
which belongs to Stage 2), machine C2 resets y′ to ⊥.

We stress that y′ is determined based only on y, and that C2 never aborts.

2. Machine C2 invokes the trusted party with input y′ and obtains a response, denoted v.
(Since the trusted party answers Party 1 first, Party 2 does not have the option of
stopping the trusted party before it answers Party 1. But this option is not needed
because Party 2 cannot meaningfully abort � after receiving the last message in it.
That is, if B2 has not aborted so far, then it cannot (meaningfully) abort now, because
it has already sent (or rather determined) its last message.)

3. Finally, C2 determines its output as follows:

(a) C2 invokes the second stage of the simulator S2 in order to obtain the last message
sent to Party 2. That is, C2 supplies the simulator with the first-stage transcript
T and the output v, and obtains the last message, denoted msg.

(b) C2 now emulates the last step of B2 (i.e., its output computation) by supplying
it with the message msg.
(Note that the last message of B2 was already determined in Step 1, and so the
execution of C2 ends here.)

The output of C2 is set to be the output of B2, regardless if B2 has aborted or completed
the execution.

We need to show that

{real�, B(z)(x , y)}x , y,z
c≡ {ideal f,C(z)(x , y)}x , y,z (7.38)

Abusing notation, we replace the final value of y′ by B2(y), and get:

{real�, B(x , y)}x , y ≡ {(output�
1 (x , B2(y)) , B2(view�

2 (x , B2(y))))}x , y

c≡ {( f1(x , B2(y)) , B2(S2(y, f2(x , B2(y)))))}x , y

≡ {( f1(x , C2(y)) , C2(y, f2(x , C2(y))))}x , y

≡ {ideal f,C (x , y)}x , y

where S2(y, v) denotes the result of the two-stage simulation. Eq. (7.38) follows. We
stress that the first stage of the simulator S2 is used to determine the value of y′ = B2(y),
but unfortunately this fact is not explicit in our notation. An analogous comment holds
with respect to the case treated next (where Party 1 is dishonest).

We now turn to the case where Party 2 is totally honest (and Party 1 possibly dishonest).
In this case, C2 is determined, and we need to transform the augmented semi-honest
real adversary B1 into a malicious ideal-model adversary C1. The latter operates as
follows, using the simulator, denoted S1, provided for the view of Party 1. Recall that
C1 gets input x ∈ {0, 1}n .

1. Machine C1 first determines the input x ′ to be sent to the trusted party, where x ′

is determined according to the behavior of B1 during Stage 1 of the (canonical)
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GENERAL CRYPTOGRAPHIC PROTOCOLS

protocol �. In addition, C1 emulates the messages sent and received by B1 during
the first phase of �. This is done as in the previous transformation of B2 to C2, except
that here, the last message of B1 (i.e., its Stage 2 message) is still undetermined at
this step (and can be determined only when given the last message of Party 2, which
in turn is obtained only at Step 3).

2. Machine C1 invokes the trusted party with input x ′ and obtains a response,
denoted v.
We stress that, unlike in the case where Party 2 is dishonest, Party 1 (i.e., C1) still
has the option of stopping the trusted party before it answers Party 2.

3. Next, C1 invokes the second stage of the simulator S1 in order to obtain the last
message sent (by Party 2) to Party 1. It supplies the simulator with the transcript of
the first stage and the output v, and obtains the last message, denoted msg.

4. Machine C1 now emulates the last step of B1 by supplying it with the message msg.
In case B1 aborts, machine C1 prevents the trusted party from answering Party 2 and
aborts. Otherwise, machine C1 allows the trusted party to answer Party 2. We stress
that C1 does not abort in any prior step.
The output of C1 is set to be the output of B1, regardless if B1 has aborted or completed
the execution.

We again need to show that Eq. (7.38) holds. The argument is analogous to the one
applied for a dishonest Party 2. Suppose first, for simplicity, that machine B1 never
aborts. In such a case, by definition of S1,

{real�, B(x , y)}x , y ≡ {(B1(view�
1 (B1(x), y)) , output�

2 (B1(x), y))}x , y

c≡ {(B1(S1(B1(x), f1(B1(x), y))) , f2(B1(x), y))}x , y

≡ {(C1(x , f1(C1(x), y)) , f2(C1(x), y))}x , y

≡ {ideal f,C (x , y)}x , y

Next, suppose that B1 always aborts after receiving the last message, and before sending
its last message to Party 2. In this case, we have

{real�, B(x , y)}x , y ≡ {(B1(view�
1 (B1(x), y)) , ⊥)}x , y

c≡ {(B1(S1(B1(x), f1(B1(x), y))) , ⊥)}x , y

≡ {(C1(x , f1(C1(x), y), ⊥) , ⊥)}x , y

≡ {ideal f,C (x , y)}x , y

In the general case, machine B1 may abort in some executions and not abort in others.
Whenever B1 aborts, it does so before sending its last message (possibly just after
receiving the last message). However, both the decision of whether or not to abort and
the output at such a case are determined by B1 based on its view of the execution so
far. This view can be simulated by S1(B1(x), f1(B1(x), y)), which in turn is invoked by
C1 in two stages (in Steps 1 and 3, respectively). Thus, Eq. (7.38) holds in this case,
too.
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7.5* EXTENSION TO THE MULTI-PARTY CASE

7.4.4.3. Conclusion: Proof of Theorem 7.4.1

Essentially, Theorem 7.4.1 follows by combining the following three results: (1) The-
orem 7.3.14 providing canonical protocols for privately computing any functionality,
(2) the general analysis of the compiler (i.e., Corollary 7.4.26), and (3) the special
properties of canonical protocols (i.e., Proposition 7.4.27). Specifically, let f be an ar-
bitrary functionality, � be a canonical protocol for privately computing f (guaranteed
by Theorem 7.3.14), and �′ be the protocol compiled from � by Construction 7.4.23
(using secure implementations of the functionalities in G). Now, let A be admissible
for the real malicious model (with respect to �′), let B be the real-model adversary
(which is admissible with respect to � in the augmented semi-honest model) derived
by Corollary 7.4.26, and C be the ideal-model adversary (which is admissible for the
malicious model) derived by Proposition 7.4.27. Then

{real�′, A(z)(x , y)}x , y,z
c≡ {real�, B(z)(x , y)}x , y,z

c≡ {ideal f,C(z)(x , y)}x , y,z

Theorem 7.4.1 follows.

7.5.* Extension to the Multi-Party Case

In this section, we extend the treatment of general secure protocols from the two-
party case to the multi-party case. Again, our ultimate goal is to design protocols that
withstand any feasible adversarial behavior, and again we proceed in two steps. We first
consider a benign type of adversary, called semi-honest, and construct protocols that
are secure with respect to such an adversary. The definition of this type of adversary
is very much the same as in the two-party case. Next, we turn to the case of general
adversary behavior, but here (unlike in the two-party case) we consider two different
models. The first model of malicious behavior mimics the treatment of adversaries in
the two-party case; it allows the adversary to control even a majority of the parties, but
it does not view the (unavoidable) early abort phenomena as a violation of security.
In the second model of malicious behavior, we assume that the adversary can control
only a strict minority of the parties. In this model, which would have been vacuous in
the two-party case, the early abort phenomena can be effectively prevented. We show
how to transform protocols secure in the semi-honest model into protocols secure in
each of the two malicious-behavior models. As in the two-party case, this is done by
forcing parties (in each of the latter models) to behave in an effectively semi-honest
manner.

The constructions are obtained by suitable modifications of the constructions used
in the two-party case. In fact, the construction of multi-party protocols for the semi-
honest model is a minor modification of the construction used in the two-party case. The
same holds for the compilation of protocols for the semi-honest model into protocols
for the first malicious model. When compiling protocols for the semi-honest model
into protocols for the second malicious model, we will use a new primitive, called
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Verifiable Secret Sharing (VSS), in order to “effectively prevent” minority parties from
aborting the protocol prematurely. Actually, we shall compile protocols secure in the
first malicious model into protocols secure in the second malicious model.

Our treatment touches upon a variety of issues that were ignored (or are inapplicable)
in the two-party case. These issues include the communication model (i.e., the type of
communication channels), the consideration of an external adversary, and the way the
latter selects dishonest parties (or corrupts parties). In particular, in some models (i.e.,
postulating private channels and a majority of honest participants), it is possible to obtain
secure protocols without relying on any intractability assumptions: See Section 7.6.

Teaching Tip. We strongly recommend reading Sections 7.2–7.4 before reading the
current section. In many places in the current section, motivating discussions and
technical details are omitted, while relying on the fact that analogue elaboration has
appeared in the treatment of the two-party case (i.e., in Sections 7.2–7.4).

7.5.1. Definitions

A multi-party protocol problem is cast by specifying a random process that maps se-
quences of inputs (one input per each party) to corresponding sequences of outputs.
Let m denote the number of parties. It will be convenient to think of m as being fixed,
yet one can certainly think of it as an additional parameter. An m-ary functionality, de-
noted f : ({0, 1}∗)m → ({0, 1}∗)m , is thus a random process mapping sequences of the
form x = (x1, ..., xm) into sequences of random variables, f (x) = ( f1(x), ..., fm(x)).
The semantics is that for every i , the i-th party, initially holds an input xi , and wishes to
obtain the i-th element in f (x1, ..., xm), denoted fi (x1, ..., xm). For example, consider
deterministic functionalities for computing the maximum, average, or any other statis-
tics of the individual values held by the parties (and see more examples in Exercises 14
and 15). The discussions and simplifying conventions made in Section 7.2.1 apply in
the current context, too. Most importantly, we assume throughout this section that all
parties hold inputs of equal length; that is, |xi | = |x j |.

Conventions Regarding the Number of Parties. For simplicity of exposition, we
assume throughout our exposition that m is fixed. From time to time, we comment
on what is needed in order to derive definitions (and constructions) for the case that
m is a parameter. We comment that it is natural to discuss multi-party functionalities
that are “uniform,” in the sense that there exist (uniform) algorithms for computing
them for each value of m (and of course each m-sequence). One such functionality
is the “universal functionality” that is given a description of a circuit, as well as a
corresponding sequence of inputs. (For example, the circuit may be part of the input of
each party, and in case these circuits are not identical, the value of the functionality is
defined as a sequence of ⊥’s.) Indeed, a universal functionality is natural to consider
also in the two-party case, but here (in view of the extra parameter m) its appeal is
enhanced.
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7.5* EXTENSION TO THE MULTI-PARTY CASE

7.5.1.1. The Communication Model and External Adversaries

In the definitional treatment of the two-party case, we viewed one of the communicating
parties as an adversary and considered its effect on the protocol’s execution. This
approach can be extended to the multi-party case, except that here, we may consider
coalitions of dishonest parties and their effect on the execution. Alternatively, we may
consider an (external) adversary that controls a subset of the parties that participate
in the execution. A variety of issues that arise includes the size of this subset, the
way it is selected (by the adversary), and the possible effect of the adversary on the
communication channels.

The Number of Parties Controlled by the Adversary. In the two-party case, we have
focused on the case in which the adversary is identified with one of the participants
in the execution. Clearly, the case in which the adversary controls both participants is
of no interest, but the case in which the adversary controls none of the participants
may be of interest in case the adversary can wire-tap the communication line (as will
be discussed). In the multi-party case, we will consider adversaries that control any
number of participants.56 (Of course, when defining security following the “ideal-vs.-
real” paradigm, we should insist that the corresponding ideal adversary controls the
same set of participants.)

The Selection of Parties Controlled by the Adversary. The notion of an external
adversary naturally leads to the issue of how this adversary selects the set of parties that
it controls. The basic (and simpler) model postulates that this set is determined before
the execution starts (and is, of course, not known to the honest parties). This model
is called non-adaptive as opposed to the adaptive model in which the adversary may
select the set of parties that it controls adaptively, during the execution of the protocol
and depending on information it has gathered so far. In this section, we only consider the
non-adaptive model, and defer the treatment of the adaptive model to Section 7.7.1.2.
We comment that the difference between the non-adaptive model and the adaptive
model becomes crucial when the number of parties (i.e., m) is treated as a parameter,
rather than being fixed.

The Communication Channels. Throughout this section, we assume a model of syn-
chronous communication. It is natural to assume that the external adversary may tap all
communication channels (i.e., specifically, the channels between honest parties). In such
a case, even an adversary that controls none of the participants is of interest, because it
may potentially gain information about the execution by wire-tapping. However, for the
sake of simplicity, we sometimes prefer to present and use definitions that refer to the
“private-channel model” (see also Section 7.6); that is, we sometimes presuppose that
honest parties may communicate in secrecy (or, put differently, we sometimes assume
that adversaries do not tap communication lines between honest parties). We comment
that in the non-adaptive model, the issue of implementing the private-channel model

56 Indeed, the case in which the adversary controls all parties is of no interest, and is often ignored.
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over the “standard model” (i.e., providing secret communication) is well understood,
and can be (easily) decoupled from the main treatment. Specifically, protocols secure in
the private-channel model can be compiled to withstand wire-tapping adversaries (by
using encryption schemes). Similarly, we assume that messages sent between honest
parties arrive intact, whereas one may want to consider adversaries that may inject mes-
sages on the communication line between honest parties. Again, this can be counteracted
by the use of well-understood paradigms, in this case, the use of signature schemes.

7.5.1.2. The Semi-Honest Model

This model is defined exactly as in the two-party case (see Section 7.2.2.1). Recall that
a semi-honest party is one who follows the protocol properly, with the exception that
it keeps a record of all its intermediate computations. Loosely speaking, a multi-party
protocol privately computes f if whatever a set (or a coalition) of semi-honest parties
can obtain after participating in the protocol could be essentially obtained from the
input and output of these very parties. Thus, the only difference between the current
definition and the one used in the two-party case is that we consider the gain of a
coalition (rather than of a single party) from participating in the protocol.

Definition 7.5.1 (privacy with respect to semi-honest behavior, without wire-tapping):
Let f : ({0, 1}∗)m → ({0, 1}∗)m be an m-ary functionality, where fi (x1, ..., xm) de-

notes the i-th element of f (x1, .., xm). For I = {i1, ..., it} ⊆ [m]
def= {1, ..., m}, we let

f I (x1, ..., xm) denote the subsequence fi1 (x1, ..., xm), ..., fit (x1, ..., xm). Let � be an
m-party protocol for computing f .57 The view of the i-th party during an execution
of � on x = (x1, ..., xm), denoted view�

i (x), is defined as in Definition 7.2.1, and for

I = {i1, ..., it}, we let view�
I (x)

def= (I , view�
i1

(x), ..., view�
it

(x)).

� (deterministic case) In case f is a deterministic m-ary functionality, we say that
� privately computes f if there exists a probabilistic polynomial-time algorithm,
denoted S, such that for every I ⊆ [m], it holds that

{S(I , (xi1 , ..., xit ), f I (x))}x∈({0,1}∗)m
c≡ {view�

I (x)}x∈({0,1}∗)m (7.39)

� (general case) We say that � privately computes f if there exists a probabilis-
tic polynomial-time algorithm, denoted S, such that for every I ⊆ [m], it holds
that

{(S(I , (xi1 , ..., xit ), f I (x)) , f (x))}x∈({0,1}∗)m (7.40)
c≡ {(view�

I (x) , output�(x))}x∈({0,1}∗)m

where output�(x) denotes the output sequence of all parties during the execution
represented in view�

I (x).

57 As in Section 7.2, by saying that � computes (rather than privately computes) f , we mean that the output
distribution of the protocol (when played by honest or semi-honest parties) on the input sequence (x1, ..., xm )
is distributed identically to f (x1, ..., xm ).
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7.5* EXTENSION TO THE MULTI-PARTY CASE

Eq. (7.40) asserts that the view of the parties in I can be efficiently simulated based
solely on their inputs and outputs. Note that view�

I (x) includes only the local views of
parties in I , and does not include the messages sent between pairs of honest parties.
Thus, Definition 7.5.1 refers to the case in which the semi-honest parties do not (or
cannot) wire-tap the channels between honest parties (and, hence, is labeled “without
wire-tapping”), which is equivalent to assuming the existence of “private channels.”
To deal with the case of wire-tapping, one just needs to augment view�

I (x) with the
transcript of the messages sent between all the pairs of honest parties. In this case, it is
more natural to consider an external adversary that obtains the views of all parties in
I , as well as all messages sent over all channels.

Definition 7.5.1 can be easily adapted to deal with a varying parameter m, by taking
advantage of the current order of quantifiers (i.e., “there exists an algorithm S such that
for every I ”).58 We also note that the simulator can certainly handle the trivial cases in
which either I = [m] or I = ∅. (The case I = [m] is always trivial, whereas the case
I = ∅ is trivial only because here we consider the case of no wire-tapping.)

As in the two-party case, Definition 7.5.1 is equivalent to a definition that can
be derived by following the real-vs.-ideal paradigm (analogously to the treatment in
Section 7.2.2.2).

7.5.1.3. The Two Malicious Models

We now turn to consider arbitrary feasible deviation of parties from a specified multi-
party protocol. As mentioned earlier, one may consider two alternative models:

1. A model in which the number of parties that deviate from the protocol is arbitrary.
The treatment of this case extends the treatment given in the two-party case. In
particular, in this model, one cannot prevent malicious parties from aborting the
protocol prematurely, and the definition of security has to account for this fact (if it
is to have a chance of being met).

2. A model in which the number of parties that deviate from the protocol is strictly less
than half the total number of parties. The definitional treatment of this case is sim-
pler than the treatment given in the two-party case. In particular, one may – in
some sense – (effectively) prevent malicious parties from aborting the protocol
prematurely.59 Consequently, the definition of security is “freed” from the need to
account for early stopping, and thus is simpler.

We further assume (toward achieving a higher level of security) that malicious parties
may communicate (without being detected by the honest parties), and may thus coor-
dinate their malicious actions. Actually, it will be instructive to think of all malicious
parties as being controlled by one (external) adversary. Our presentation follows the

58 Note that for a fixed m, it may make as much sense to reverse the order of quantifiers (i.e., require that “for
every I there exists an algorithm SI ”).

59 As we shall see, the assumption that malicious parties are in a minority opens the door to effectively preventing
them from aborting the protocol immaturely. This will be achieved by letting the majority parties have (together!)
enough information so as to be able to emulate the minority parties in case the latter abort.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

ideal-vs.-real emulation paradigm introduced and used in the previous sections. The
difference between the two malicious models is reflected in a difference in the corre-
sponding ideal models, which captures the different types of benign behaviors that a
secure protocol is aimed at achieving. Another difference is in the number of malicious
parties considered in each model.

The first malicious model. Following the discussion in Section 7.2.3, we conclude
that three things cannot be avoided in the first malicious model:

1. Malicious parties may refuse to participate in the protocol (when the protocol is first
invoked). Actually, as explained in Section 7.2.3, this behavior may be viewed as a
special case of input substitution (as discussed in the next item).

2. Malicious parties may substitute their local inputs (and enter the protocol with inputs
other than the ones provided to them from the outside).

3. Malicious parties may abort the protocol prematurely (e.g., before sending their last
message).

Accordingly, the ideal model is derived by a straightforward generalization of Defini-
tion 7.2.4. In light of this similarity, we allow ourselves to be quite terse. To simplify
the exposition, we assume that for every I , first the trusted party supplies the adversary
with the I -part of the output (i.e., the value of f I ), and only next is it possibly allowed
(at the adversary’s discretion) to answer the other parties. Actually, as in the two-party
case, the adversary has the ability to prevent the trusted party from answering all parties
only in the case where it controls Party 1.60

Definition 7.5.2 (the ideal model – first malicious model): Let f : ({0, 1}∗)m →
({0, 1}∗)m be an m-ary functionality. For I = {i1, ..., it} ⊆ [m]

def= {1, ..., m}, let I =
[m] \ I and (x1, ..., xm)I = (xi1 , ..., xit ). A pair (I , B), where I ⊆ [m] and B is a prob-
abilistic polynomial-time algorithm, represents an adversary in the ideal model. The
joint execution of f under (I , B) in the ideal model (on input x = (x1, ..., xm) and
auxiliary input z), denoted ideal

(1)
f, I , B(z)(x), is defined by uniformly selecting a random-

tape r for the adversary, and letting ideal
(1)
f, I , B(z)(x)

def= ϒ(x , I , z, r ), where ϒ(x , I , z, r )
is defined as follows:

� In case Party 1 is honest (i.e., 1 �∈ I ),

ϒ(x , I , z, r )
def= ( f I (x ′) , B(x I , I , z, r, f I (x ′)), (7.41)

where x ′ def= (x ′
1, ..., x ′

m) such that x ′
i = B(x I , I , z, r )i for i ∈ I and x ′

i = xi other-
wise.

� In case Party 1 is not honest (i.e., 1 ∈ I ), ϒ(x , I , z, r ) equals

(⊥|I | , B(x I , I , z, r, f I (x ′), ⊥)) if B(x I , I , z, r, f I (x ′)) = ⊥ (7.42)

( f I (x ′) , B(x , I , z, r, f I (x ′))) otherwise (7.43)

60 As in the two-party case, this convention is rather arbitrary; see the discussion at the end of Section 7.2.3.1.
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7.5* EXTENSION TO THE MULTI-PARTY CASE

where, in both cases, x ′ def= (x ′
1, ..., x ′

m) such that x ′
i = B(x I , I , z, r )i for i ∈ I and

x ′
i = xi otherwise.

In all cases, the trusted party is invoked with possibly substituted inputs, denoted
x ′ = (x ′

1, ..., x ′
m), where x ′

i �= xi only if i ∈ I . Eq. (7.42) represents the case where
the trusted party is stopped right after supplying the adversary with the I -part of the
output (i.e., f I (x ′)). This case is allowed only when 1 ∈ I , and so Party 1 can always
be “blamed” when this happens.61 Equations (7.41) and (7.43) represent the cases
where the trusted party is invoked with possibly substituted inputs, but is allowed to
answer all parties. We stress that either all honest parties get their output or all are
notified that the trusted party was stopped by the adversary. As usual, the definition of
security is obtained by requiring that for every feasible adversary in the real model,
there exists a corresponding adversary in the ideal model that achieves the same effect.
Specifically, in the real model, the adversary may tap all communication lines and
determine (adaptively) all the outgoing messages of all dishonest parties.

Definition 7.5.3 (Security in the first malicious model): Let f be as in Definition 7.5.2,
and � be an m-party protocol for computing f .

� The joint execution of � under (I , A) in the real model (on input a sequence
x = (x1, ..., xm) and auxiliary input z), denoted real�, I , A(z)(x), is defined as the
output sequence resulting from the interaction between the m parties, where the
messages of parties in I are computed according to A(x I , I , z) and the messages of

parties in Ī
def= [m] \ I are computed according to �.62 Specifically, the messages of

malicious parties (i.e., parties in I ) are determined by the adversary A based on the
initial inputs of the parties in I , the auxiliary input z, and all messages sent so far
by all parties (including messages received by the honest parties [i.e., parties in Ī ]).

� Protocol � is said to securely compute f (in the first malicious model) if for ev-
ery probabilistic polynomial-time algorithm A (representing a real-model adversary
strategy), there exists a probabilistic polynomial-time algorithm B (representing an
ideal-model adversary strategy), such that for every I ⊆ [m]

{ideal
(1)
f, I , B(z)(x)}x ,z

c≡ {real�, I , A(z)(x)}x ,z

When the context is clear, we sometimes refer to � as an implementation of f .

We stress that the ideal-model adversary (i.e., B) controls exactly the same set of parties
(i.e., I ) as the the real-model adversary (i.e., A). Definition 7.5.3 (as well as the following
Definition 7.5.4) refers to an adversary that may wire-tap all communication channels.
This is reflected in the definition of real�, I , A(z)(x), which allows A to determine its
actions based on all messages communicated so far. (Thus, for m = 2, Definition 7.5.3
is stronger than Definition 7.2.6, because [unlike the latter] the former also refers to the

61 In fact, in the protocols presented in this work, early abort is always due to malicious behavior of Party 1. By
Definition 7.5.3, this translates to malicious behavior of Party 1 in the ideal model.

62 To fit the format used in Definition 7.5.2, the outputs of the parties (in real�, I , A(z)(x)) are arranged such that
the outputs of the honest parties appear on the left-hand side.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

case I = ∅, which is non-trivial because it refers to an adversary that may wire-tap the
communication channel.) In order to derive a definition for the private-channel model,
one should modify the definition of real�, I , A(z)(x), such that A’s actions may depend
only on the messages received by parties in I .

The Second Malicious Model. In the second model, where malicious parties are in
a strict minority, the early-abort, phenomena can be effectively prevented. Thus, in
this case, there is no need to “tolerate” early-abort, and consequently our definition of
security requires “proper termination” of executions. This is reflected in the definition
of the ideal model, which actually becomes simpler.63

Definition 7.5.4 (security in the second malicious model, assuming an honest
majority): Let f and � be as in Definition 7.5.3:

� The ideal-model adversary is defined as in Definition 7.5.2, except that the abort
case captured by Eq. (7.42) is not allowed. The corresponding joint computation in
the ideal model, under (I , B), is denoted by ideal

(2)
f, I , B(z)(x).

� The real-model adversary is defined exactly as in Definition 7.5.3. However, we will
only consider the case where such adversary controls strictly less than m/2 parties.

� Protocol � is said to securely compute f (in the second malicious model) if for ev-
ery probabilistic polynomial-time algorithm A (representing a real-model adversary
strategy), there exists a probabilistic polynomial-time algorithm B (representing an
ideal-model adversary strategy), such that for every I ⊂ [m] such that |I | < m/2, it
holds that

{ideal
(2)
f, I , B(z)(x)}x ,z

c≡ {real�, I , A(z)(x)}x ,z

When the context is clear, we sometimes refer to � as an implementation of f .

We stress that in Definition 7.5.4, we consider only adversaries that control a strict
minority of the parties.

Discussion. The two alternative malicious models give rise to two appealing and yet
fundamentally incomparable notions of security. Put in other words, there is a trade-
off between the willingness to put up with early-abort (i.e., not consider it a breach
of security) and requiring the protocol to be robust also against malicious coalitions
controlling a majority of all parties. The question of which notion of security is prefer-
able depends on the application (or on the setting). In some settings, one may prefer
to be protected from malicious majorities, while giving up the guarantee that parties
cannot abort the protocol prematurely (while being detected doing so). On the other
hand, in settings in which a strict majority of the parties can be trusted to follow the
protocol, one may obtain the benefit of effectively preventing parties to abort the proto-
col prematurely. We stress that all definitions are easily adapted to deal with a varying
parameter m.

63 In this case, the definition extends the one presented in Section 7.2.3.2.
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7.5* EXTENSION TO THE MULTI-PARTY CASE

7.5.2. Security in the Semi-Honest Model

Our construction of private multi-party protocols (i.e., secure versus semi-honest behav-
ior) for any given multi-argument functionality follows the presentation of the two-party
case. For simplicity, we think of the number of parties m as being fixed. The reader may
verify that the dependence of our constructions on m is at most polynomial.

Our protocol construction adapts the one used in the two-party case (see Section 7.3).
That is, we consider a GF(2) circuit for evaluating the (deterministic) m-ary function-
ality f , and start by letting each party share its input bits with all other parties, such
that the sum of all shares equals the input bit. Next, scanning the circuit from its input
wires to its output wires, we propagate shares through the circuit gates, by using a
suitable private computation. As in the two-party case, we focus on the propagation of
shares through multiplication gates. That is, for Party i holding bits ai and bi , we wish
to conduct a private computation such that this party ends up with a random bit ci and
(
∑m

i=1 ai ) · (
∑m

i=1 bi ) = ∑m
i=1 ci holds. More precisely, we are interested in privately

computing the following randomized m-ary functionality:

((a1, b1), ..., (am , bm)) �→ (c1, ..., cm) uniformly in {0, 1}m (7.44)

subject to
m∑

i=1

ci =
m∑

i=1

ai ·
m∑

i=1

bi . (7.45)

Thus, all that we need to do on top of Section 7.3 is to provide a private m-party
computation of this functionality. This is done by privately reducing, for arbitrary m,
the computation of Eq. (7.44) – (7.45) to the computation of the same functionality for
the case m = 2, which in turn coincides with Eq. (7.17) – (7.18). But first we need to
define an appropriate notion of a reduction. Indeed, the new notion of a reduction is
merely a generalization of the notion presented in Section 7.3.1.

7.5.2.1. A Composition Theorem

We wish to generalize the notion of privacy reduction presented in Section 7.3.1 (in
the context of two-party [semi-honest] computation). Here, the reduction is an m-party
protocol that may invoke a k-ary functionality in its oracle calls, where k ≤ m. In case
k < m, an oracle call also needs to specify the set of parties who are to provide the
corresponding k inputs. Actually, the oracle call needs to specify the order of these
parties (i.e., which party should supply which input, etc.). (We note that the ordering of
parties also needs to be specified in case k = 2, and indeed this was done implicitly in
Section 7.3.1, where the convention was that the party who makes the oracle request is
the one supplying the first input. In case k > 2, such a convention does not determine
the correspondence between parties and roles, and thus in the following we use an
explicit mechanism for defining the correspondence.)

Definition 7.5.5 (m-party protocols with k-ary oracle access): As in the two-party
case, an oracle-aided protocol is an ordinary protocol augmented by a pair of oracle-
tapes per each party, and oracle-call steps defined as follows. Each of the m parties
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may send a special oracle-request message to all other parties. The oracle-request
message contains a sequence of k distinct parties, called the request sequence, that
are to supply queries in the current oracle call. In response, each party specified in the
request sequence writes a string, called its query, on its own write-only oracle-tape, and
responds to the requesting party with an oracle-call message. At this point, the oracle
is invoked and the result is that a string, not necessarily the same, is written by the
oracle on the read-only oracle-tape of each of the k specified parties. This k-sequence
of strings is called the oracle answer.

One may assume, without loss of generality, that the party who invokes the oracle is
the one who plays the role of the first party in the reduction (i.e., the first element in
the request sequence is always the identity of the party that requests the current oracle
call).

Definition 7.5.6 (multi-party privacy reductions):

� An m-party oracle-aided protocol is said to be using the k-ary oracle-functionality
f if the oracle answers are according to f . That is, when the oracle is invoked with
request sequence (i1, ..., ik), and the query sequence q1, ..., qk is supplied by parties
i1, ..., ik , the answer sequence is distributed as f (q1, ..., qk). Specifically, party i j

in the m-party protocol (the one which supplied q j ), is the one which obtains the
answer part f j (q1, ..., qk). As in Definition 7.3.2, we require that the length of each
query be polynomially related to the length of the initial input.

� An m-party oracle-aided protocol using the k-ary oracle-functionality f is said to
privately compute g if there exists a polynomial-time algorithm, denoted S, satis-
fying Eq. (7.40), where the corresponding views are defined in the natural manner.

� An m-party oracle-aided protocol is said to privately reduce the m-ary func-
tionality g to the k-ary functionality f if it privately computes g when using
the oracle-functionality f . In such a case, we say that g is privately reducible
to f ,

We are now ready to generalize Theorem 7.3.3:

Theorem 7.5.7 (Composition Theorem for the multi-party semi-honest model): Sup-
pose that the m-ary functionality g is privately reducible to the k-ary functionality f ,
and that there exists a k-party protocol for privately computing f . Then there exists an
m-party protocol for privately computing g.

As in the two-party case, the Composition Theorem can be generalized to yield tran-
sitivity of privacy reductions; that is, if g is privately reducible to f and f is privately
reducible to e, then g is privately reducible to e.

Proof Sketch: The construction supporting the theorem is identical to the one used in
the proof of Theorem 7.3.3: Let �g| f be an oracle-aided protocol that privately reduces
g to f , and let � f be a protocol that privately computes f . Then, a protocol � for
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7.5* EXTENSION TO THE MULTI-PARTY CASE

computing g is derived by starting with �g| f , and replacing each invocation of the
oracle by an execution of � f . Clearly, � computes g. We need to show that it privately
computes g (as per Definition 7.5.1).

We consider an arbitrary (non-trivial) set I ⊆ [m] of semi-honest parties in the
execution of �, where the trivial cases (i.e., I = ∅ and I = [m]) are treated (differently)
in a straightforward manner. Note that for k < m (unlike the situation in the two-
party case), the set I may induce different sets of semi-honest parties in the different
executions of � f (replacing different invocations of the oracle). Still, our “uniform”
definition of simulation (i.e., uniform over all possible sets of semi-honest parties)
keeps us away from trouble. Specifically, let Sg| f and S f be the simulators guaranteed
for �g| f and � f , respectively. We construct a simulation S, for �, in the natural
manner. On input (I , x I , f I (x)), we first run Sg| f (I , x I , f I (x)), and obtain the view
of the semi-honest coalition I �= ∅ in �g| f . This view includes the sequence of all
oracle-call requests made during the execution, which in turn consists of the sequence
of parties that supply query-parts in each such call. The view also contains the query-
parts supplied by the parties in I , as well as the corresponding answer-parts. For each
such oracle call, we denote by J the subset of I that supplied query-parts in this
call and invoke S f , providing it with the subset J , as well as with the corresponding
J -parts of the queries and answers. Thus, we fill up the view of I in the current
execution of � f . (Recall that S f can also handle the trivial cases in which either |J | = k
or |J | = 0.)

It is left to show that S indeed generates a distribution indistinguishable from the
view of semi-honest parties in actual executions of �. As in the proof of Theorem 7.3.3,
this is done by introducing a hybrid distribution, denoted H . This hybrid distribution
represents the view of the parties in I (and output of all parties) in an execution of �g| f

that is augmented by corresponding invocations of S f . In other words, H represents
the execution of �, with the exception that the invocations of � f are replaced by
simulated transcripts. Using the guarantees regarding S f (resp., Sg| f ), we show that
the distributions corresponding to H and � (resp., H and S) are computationally
indistinguishable. The theorem follows.

7.5.2.2. Privately Computing
∑

i ci = (
∑

i ai ) · (
∑

i bi )

We now turn to the m-ary functionality defined in Eq. (7.44) – (7.45). Recall that the
arithmetic is that of GF(2), and so −1 = +1, and so forth. The key observation is that(

m∑
i=1

ai

)
·
(

m∑
i=1

bi

)
=

m∑
i=1

ai bi +
∑

1≤i< j≤m

(
ai b j + a j bi

)
(7.46)

= (1 − (m − 1)) ·
m∑

i=1

ai bi +
∑

1≤i< j≤m

(ai + a j ) · (bi + b j )

= m ·
m∑

i=1

ai bi +
∑

1≤i< j≤m

(ai + a j ) · (bi + b j ) (7.47)
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where the last equality relies on the specifics of GF(2). Now, looking at Eq. (7.47),
we observe that each party, i , can compute (by itself) the term m · ai bi , whereas each
2-subset, {i, j}, can privately compute shares to the term (ai + a j ) · (bi + b j ) by in-
voking the two-party functionality of Eq. (7.17) – (7.18). This leads to the following
construction:

Construction 7.5.8 (privately reducing the m-party computation of Eq. (7.44) – (7.45)
to the two-party computation of Eq. (7.17) – (7.18)):

Inputs: Party i holds (ai , bi ) ∈ {0, 1} × {0, 1}, for i = 1, ..., m.

Step 1 – Reduction: Each pair of parties, (i, j), where i < j , invokes the 2-ary func-
tionality of Eq. (7.17)–(7.18). Party i provides the input pair, (ai , bi ), whereas Party j
provides (a j , b j ). Let us denote the oracle response to Party i by c{i, j}

i , and the re-

sponse to Party j by c{i, j}
j .

Step 2: Party i sets ci = mai bi + ∑
j �=i c{i, j}

i .
Indeed, mai bi = 0 if m is even and mai bi = ai bi otherwise.

Outputs: Party i outputs ci .

We first observe that this reduction is valid; that is, the output of all parties indeed sum
up to what they should. It is also easy to see that the reduction is private. That is,

Proposition 7.5.9: Construction 7.5.8 privately reduces the computation of the m-ary
functionality given by Eq. (7.44)–(7.45) to the computation of the 2-ary functionality
given by Eq. (7.17)–(7.18).

Proof Sketch: We construct a simulator, denoted S, for the view of the parties in the
oracle-aided protocol, denoted �, of Construction 7.3.7. Given a set of semi-honest
parties, I = {i1, ..., it} (with t < m), and a sequence of inputs (ai1 , bi1 ), ...., (ait , bit )
and outputs ci1 , ..., cit , the simulator proceeds as follows:

1. For each pair, (i, j) ∈ I × I where i < j , the simulator uniformly selects c{i, j}
i ∈

{0, 1} and sets c{i, j}
j = c{i, j}

i + (ai + a j ) · (bi + b j ).
2. Let Ī

def= [m] \ I , and let � be the largest element in Ī . (Such an � ∈ [m] exists since
|I | < m).

(a) For each i ∈ I and each j ∈ Ī \ {�}, the simulator uniformly selects c{i, j}
i ∈

{0, 1}.
(b) For each i ∈ I , the simulator sets c{i,�}

i = ci + mai bi + ∑
j �∈{i,�} c{i, j}

i , where the

latter c{i, j}
i ’s are as generated in Steps 1 and 2a.

3. The simulator outputs all c{i, j}
i ’s generated here. That is, it outputs the sequence of

c{i, j}
i ’s corresponding to all i ∈ I and j ∈ [m] \ {i}.

We claim that the output of the simulator is distributed identically to the view of the
parties in I during the execution of the oracle-aided protocol. Furthermore, we claim
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7.5* EXTENSION TO THE MULTI-PARTY CASE

that for every such I , every x = ((a1, b1), ..., (am , bm)), and every possible outcome
(c1, ..., cm) of the functionality f of Eq. (7.44)–(7.45), it holds that the conditional
distribution of S(I , x I , f I (x)) is distributed identically to the conditional distribution
of view�

I (x).
To prove this claim, we first note that f (x) is uniformly distributed over the m-

bit, long sequences that sum up to c
def= (

∑
i ai ) · (

∑
i bi ). The same holds also for

the outputs of the parties in protocol �, because the sequence of the outputs of Par-
ties 1, ..., m − 1 is uniformly distributed over {0, 1}m−1 (due to the contribution of
c{i,m}

i to the output of Party i), whereas the sum of all m outputs equals c. Turning to
the conditional distributions (i.e., conditioning on f (x) = (c1, ..., cm) = output�(x)),
we show that the sequence of c{i, j}

i ’s (for i ∈ I ) is distributed identically in both distri-
butions (i.e., in the execution view and in the simulation). Specifically, in both cases,
the sequence (c{i, j}

i )i∈I , j∈[m]\{i} is uniformly distributed among the sequences satisfy-

ing c{i, j}
i + c{i, j}

j = (ai + a j ) · (bi + b j ) (for each i ∈ I and j �= i) and
∑

j �=i c{i, j}
i =

ci + mai bi (for each i ∈ I ).

Details: Consider the distribution of the sub-sequence (c{i, j}
i )i∈I , j∈[m]\{i,�}, where

� ∈ Ī is as in the preceding. In both cases, the conditioning (on f (x) = (c1, ..., cm) =
output�(x)) does not affect this distribution, because the c{i,�}

i ’s are missing. Thus,
in both cases, this sub-sequence is uniformly distributed among the sequences sat-
isfying c{i, j}

i + c{i, j}
j = (ai + a j ) · (bi + b j ) (for each i �= j ∈ I ). Furthermore, in

both cases, the c{i,�}
i ’s are set such that

∑
j �=i c{i, j}

i = ci + mai bi holds.

The proposition follows.

7.5.2.3. The Multi-Party Circuit-Evaluation Protocol

For sake of completeness, we explicitly present the m-party analogue of the protocol
of Section 7.3.4. Specifically, we show that the computation of any deterministic func-
tionality, which is expressed by an arithmetic circuit over GF(2), is privately reducible
to the functionality of Eq. (7.44) – (7.45).

Our reduction follows the overview presented in the beginning of this section. In
particular, the sharing of a bit-value v between m parties means a uniformly selected
m-sequence of bits (v1, ..., vm) satisfying v = ∑m

i=1 vi , where the i-th party holds vi .
Our aim is to propagate, via private computation, shares of the input wires of the circuit
to shares of all wires of the circuit, so that finally we obtain shares of the output-wires
of the circuit.

We will consider an enumeration of all wires in the circuit. The input-wires of the
circuit, n per each party, will be numbered 1, 2...., m · n such that, for j = 1, ..., n,
the j-th input of Party i corresponds to the (i − 1) · n + j th wire. The wires will be
numbered so that the output-wires of each gate have a larger numbering than its input
wires. The output-wires of the circuit are the last ones. For the sake of simplicity, we
assume that each party obtains n output bits, and that the j-th output bit of the i-th
party corresponds to wire N − (m + 1 − i) · n + j , where N denotes the size of the
circuit.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

Construction 7.5.10 (privately reducing any deterministic m-ary functionality to the
functionality of Eq. (7.44) – (7.45), for any m ≥ 2): For simplicity, we assume that the
circuit is either fixed or can be determined in poly(n + m)-time as a function of n and
m, where n denotes the length of the input to each party.

Inputs: Party i holds the bit string xi = x1
i · · · xn

i ∈ {0, 1}n, for i = 1, ..., m.

Step 1 – Sharing the Inputs: Each party splits and shares each of its input bits with
all other parties. That is, for every i = 1, ..., m and j = 1, ..., n, and every k �= i ,
Party i uniformly selects a bit r (i−1)n+ j

k and sends it to Party k as the party’s share
of input-wire (i − 1) · n + j . Party i sets its own share of the (i − 1) · n + j th input
wire to x j

i + ∑
k �=i r (i−1)n+ j

k .

Step 2 – Circuit Emulation: Proceeding by the order of wires, the parties use their
shares of the two input wires to a gate in order to privately compute shares for the
Output-wire of the gate. Suppose that the parties hold shares to the two input-wires
of some gate; that is, for i = 1, ..., m, Party i holds the shares ai , bi , where a1, ..., am

are the shares of the first wire and b1, ..., bm are the shares of the second wire. We
consider two cases:
Emulation of an addition gate: Each party, i , just sets its share of the output-wire of
the gate to be ai + bi .
Emulation of a multiplication gate: Shares of the output-wire of the gate are ob-
tained by invoking the oracle for the functionality of Eq. (7.44) – (7.45), where
Party i supplies the input (query-part) (ai , bi ). When the oracle responds, each
party sets its share of the output-wire of the gate to equal its part of the oracle
answer.

Step 3 – Recovering the Output Bits: Once the shares of the circuit-output wires are
computed, each party sends its share of each such wire to the party with which the
wire is associated. That is, for i = 1, ..., m and j = 1, ..., n, each party sends its share
of wire N − (m + 1 − i) · n + j to Party i . Each party recovers the corresponding
output bits by adding up the corresponding m shares; that is, it adds the share it had
obtained in Step 2 to the m − 1 shares it has obtained in the current step.

Outputs: Each party locally outputs the bits recovered in Step 3.

As in the two-party case, one can easily verify that the output of the protocol is indeed
correct. Specifically, by using induction on the wires of the circuits, one can show that
the shares of each wire sum up to the correct value of the wire. Indeed, for m = 2, Con-
struction 7.5.10 coincides with Construction 7.3.9. The privacy of Construction 7.5.10
is also shown by extending the analysis of the two-party case; that is, analogously to
Proposition 7.3.10, one can show that Construction 7.5.10 privately reduces the com-
putation of a circuit to the multiplication-gate emulation.

Proposition 7.5.11: Construction 7.5.10 privately reduces the evaluation of arithmetic
circuits over GF(2), representing an m-ary deterministic functionality, to the function-
ality of Eq. (7.44) – (7.45).
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7.5* EXTENSION TO THE MULTI-PARTY CASE

Proof Sketch: Just follow the proof of Proposition 7.3.10, treating the parties in I
analogously to the way that Party 1 is treated there. In treating the output wires of
parties in I (i.e., Step 3 in the simulation), note that the shares of parties in I and the
known output value uniquely determine the shares received in Step 3 of the protocol
only if |I | = m − 1 (as was the case in the proof of Proposition 7.3.10). Otherwise (i.e.,
for |I | < m − 1), the shares sent (in Step 3 of the protocol) by parties in Ī should be
selected uniformly among all sequences that (together with the shares of parties in I )
add up to the given output value.

7.5.2.4. Conclusion: Private Computation of Any Functionality

As in Section 7.3, we may privately reduce the computation of a general (randomized)
m-ary functionality, g, to the computation of the deterministic m-ary functionality, f ,
defined by

f ((x1, r1), ..., (xm , rm))
def= g(⊕m

i=1ri , (x1, ..., xm)) (7.48)

where g(r, x) denotes the value of g(x) when using coin-tosses r ∈ {0, 1}poly(|x |)

(i.e., g(x) is the randomized process consisting of uniformly selecting r ∈
{0, 1}poly(|x |), and deterministically computing g(r, x)). Combining this fact with Propo-
sitions 7.5.11, 7.5.9, and 7.3.8 (and using the transitivity of privacy reductions),
we obtain:

Theorem 7.5.12: Any m-ary functionality is privately reducible to OT4
1.

Combining Theorem 7.5.12 and Proposition 7.3.6 with the Composition Theorem (The-
orem 7.5.7), we conclude that if enhanced trapdoor permutations exist, then any m-ary
functionality is privately computable. As in the two-party case, we wish to highlight a
useful property of the protocols underlying the latter fact. Indeed, we refer to a notion
of canonical m-party computation that extends Definition 7.3.13.

Definition 7.5.13 (canonical semi-honest multi-party protocols): A protocol � for
privately computing the m-ary functionality f is called canonical if it proceeds by
executing the following two stages:

Stage 1: The parties privately compute the functionality x �→ ((r1
1 , ..., r1

m), ...,
(rm

1 , ..., rm
m )), where the r i

j ’s are uniformly distributed among all possibilities that

satisfy (⊕m
i=1r i

1, ..., ⊕m
i=1r i

m) = f (x).

Stage 2: For i = 2, ..., m and j ∈ [m] \ {i}, Party i sends r i
j to Party j . Next, Party 1

sends r1
j to Party j , for j = 2..., m. Finally, each party computes its own output; that

is, for j = 1..., m, Party j outputs ⊕m
i=1r i

j .
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Indeed, the protocols underlying the proof of Theorem 7.5.12 are essentially
canonical.64 Hence,

Theorem 7.5.14: Suppose that there exist collections of enhanced trapdoor permuta-
tions. Then any functionality can be privately computable by a canonical protocol.

We comment that the said protocols happen to maintain their security even if the adver-
sary can wire-tap all communication lines. This follows from the fact that privacy with
respect to wire-tapping adversaries happens to hold for all privacy reductions presented
in the current section, as well as for the protocols presented in Section 7.3.

7.5.3. The Malicious Models: Overview and Preliminaries

Our aim is to use Theorem 7.5.14 in order to establish the main result of this section;
that is,

Theorem 7.5.15 (main result for the multi-party case): Suppose that there exist collec-
tions of enhanced trapdoor permutations. Then any m-ary functionality can be securely
computable in each of the two malicious models, provided that a public-key infrastruc-
ture exists in the network.65

The theorem will be established in two steps. First, we compile any protocol for the
semi-honest model into an “equivalent” protocol for the first malicious model. This
compiler is very similar to the one used in the two-party case. Next, we compile any
protocol for the first malicious model into an “equivalent” protocol for the second
malicious model. The heart of the second compiler is a primitive, which is alien to
the two-party case, called Verifiable Secret Sharing (VSS). For simplicity, we again
think of the number of parties m as being fixed. The reader may again verify that the
dependence of our constructions on m is at most polynomial.

To simplify the exposition of the multi-party compilers, we describe them as pro-
ducing protocols for a communication model consisting of a single broadcast channel
(and no point-to-point links). In this model, in each communication round, only one
(predetermined) party may send a message, and this message arrives to all parties. We
stress that only this predetermined party may send a message in the said round (i.e.,
the message is “authenticated” in the sense that each other party can verify that, in-
deed, the message was sent by the designated sender). Such a broadcast channel can
be implemented via an (authenticated) Byzantine Agreement protocol, thus providing
an emulation of the broadcast model on the standard point-to-point model (in which a
broadcast channel does not exist).

64 This assertion depends on the exact implementation of Step 3 of Construction 7.5.10, and holds provided that
Party 1 is the last party to send its shares to all other parties.

65 That is, we assume that each party has generated a pair of keys for a signature scheme and has publicized its
verification-key (so that it is known to all other parties). This set-up assumption can be avoided if the network
is augmented with a broadcast channel.
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Recall that our goal is to transform protocols that are secure in the semi-honest
point-to-point model into protocols that are secure in the two malicious broadcast
models. Starting with (semi-honestly secure) protocols that operate in the point-to-
point communication model, we first derive equivalent protocols for the broadcast-
channel model, and only next we apply the two compilers, where each compiler takes
and produces protocols in the broadcast-channel model (which are secure with respect
to a corresponding type of adversaries). Thus, the full sequence of transformations
establishing Theorem 7.5.15 (based on Theorem 7.5.14) is as follows:

� We first use the pre-compiler (of Section 7.5.3.1) to transform a protocol �0 that
privately computes a functionality f in the (private-channel) point-to-point model
into a protocol �′

0 that privately computes f in the broadcast model (where no private
point-to-point channels exist).
Note that, since we refer to semi-honest behavior, we do not gain by having a broad-
cast channel, and we may only lose by the elimination of the private point-to-point
channels (because this allows the adversary to obtain all messages sent). However,
the protocols presented in Section 7.5.2 happen to be secure in the semi-honest
broadcast model,66 and so this pre-compiler is actually not needed (provided we
start with these specific protocols, rather than with arbitrary semi-honestly secure
protocols).

� Using the first compiler (of Section 7.5.4), we transform �′
0 (which is secure in

the semi-honest model) into a protocol �′
1 that is secure in the first malicious

model.
We stress that both �′

0 and �′
1 operate and are evaluated for security in a communi-

cation model consisting of a single broadcast channel. The same holds also for �′
2

mentioned next.
� Using the second compiler (of Section 7.5.5), we transform �′

1 (which is secure in
the first malicious model) into a protocol �′

2 that is secure in the second malicious
model.

� Finally, we use the post-compiler (of Section 7.5.3.2) to transform each of the pro-
tocols �′

1 and �′
2, which are secure in the first and second malicious models when

communication is via a broadcast channel, into corresponding protocols, �1 and �2,
for the standard point-to-point model. That is, �1 (resp., �2) securely computes f
in the first (resp., second) malicious model in which communication is via standard
point-to-point channels.
We stress that security holds even if the adversary is allowed to wire-tap the (point-
to-point) communication lines between honest parties.

We start by discussing the security definitions for the broadcast communication model
and by presenting the aforementioned pre-compiler and the post-compiler. Once this is

66 As noted at the very end of Section 7.5.2, these protocols also happen to be secure against semi-honest adversaries
that do wire-tape all communication channels. These protocols can be trivially converted to work in the broadcast
model by letting the honest parties ignore broadcast messages that are not intended for them. Indeed, in the
resulting protocol, the adversary receives all messages (including those intended for other parties), but it could
also obtain these messages in the original protocol by wire-tapping all point-to-point channels.
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done, we turn to the real core of this section: the two compilers (which are applied to
protocols that operate in the broadcast model).

Definitions. Indeed, security in the broadcast model was not defined so far. However,
the three relevant definitions for the broadcast communication model are easily de-
rived from the corresponding definitions given in Section 7.5.1, where a point-to-point
communication model was used. Specifically, in defining security in the semi-honest
model, one merely includes the entire transcript of the communication over the (single)
broadcast channel in each party’s view. Similarly, when defining security in the two
malicious models, one merely notes that the “real execution model” (i.e., real�, I , A)
changes (since the protocol is now executed over a different communication media),
whereas the “ideal model” (i.e., ideal

(1)
f, I , B or ideal

(2)
f, I , B) remains intact.

7.5.3.1. Pre-Compiler (Emulating Private Channels)

It is easy to (securely) emulate a set of (private) point-to-point communication channels
over a (single) broadcast channel. All that one needs to do is use a secure public-key en-
cryption scheme. Specifically, a protocol � that operates in the (private) point-to-point
communication model is emulated as follows. First, each party randomly generates a
pair of encryption/decryption keys, posts the encryption-key on the broadcast chan-
nel, and keeps the decryption-key secret. Next, any party instructed (by �) to send a
message, msg, to Party i encrypts msg using the encryption-key posted by Party i , and
places the resulting ciphertext on the broadcast channel (indicating that it is intended
for Party i). Party i recovers msg by using its decryption-key and proceeds as directed
by �. Denote the resulting protocol by �′. In the following, we merely consider the
effect of this transformation in the semi-honest model.

Proposition 7.5.16 (pre-compiler): Suppose that there exist collections of enhanced
trapdoor permutations. Then any m-ary functionality is privately computable in the
broadcast communication model. Furthermore, the protocol is canonical.

Proof Sketch: Let f be an m-ary functionality, and � be a protocol (guaranteed
by Theorem 7.5.14) for privately computing f in the (private-channel) point-to-point
communication model. Given a trapdoor permutation, we construct a secure public-key
encryption scheme and use it to transform � into �′ as described previously.

To simulate the view of parties in an execution of �′ (taking place in the broadcast
communication model), we first simulate their view in an execution of � (taking place
in the point-to-point communication model). We then encrypt each message sent by a
party that belongs to the semi-honest coalition, as this would be done in an execution
of �′. Note that we know both the message and the corresponding encryption-key.
We do the same for messages received by semi-honest parties. All that remains is to
deal with messages, which we do not know, sent between two honest parties. Here, we
merely place an encryption of an arbitrary message. This concludes the description of
the “broadcast-model” simulator.
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7.5* EXTENSION TO THE MULTI-PARTY CASE

The analysis of the latter simulator combines the guarantee given for the “point-to-
point simulator” and the guarantee that the encryption scheme is secure. That is, the
ability to distinguish the output of the broadcast-model simulator from the execution
view (in the broadcast model) yields either (1) the ability to distinguish the output of
the “point-to-point” simulator from the execution view (in the point-to-point model) or
(2) the ability to distinguish encryptions under the public-key encryption scheme being
used. In both cases we reach contradiction to our hypothesis.

7.5.3.2. Post-Compiler (Emulating a Broadcast Channel)

Here we go the other way around (i.e., from the broadcast model to the point-to-point
model). We are given a protocol that securely computes (in one of the two malicious
models) some functionality, where the protocol uses a broadcast channel. We wish to
convert this protocol into an equivalent one that works in a point-to-point communi-
cation model. (Actually, we do not go all the way back, because we do not assume
these point-to-point lines to provide private communication.) Thus, all we need to do
is emulate a broadcast channel over a point-to-point network and do so in the presence
of malicious parties, which reduces to solving the celebrated Byzantine Agreement
problem. However, we have signature schemes at our disposal, and so we merely need
to solve the much easier problem known as authenticated Byzantine Agreement. For
the sake of self-containment, we define the problem and present a solution.

Authenticated Byzantine Agreement. We presuppose a synchronous point-to-point
model of communication and a signature scheme infrastructure. That is, each party
knows the verification-key of all other parties. Party 1 has an input bit, denoted σ , and
its objective is to let all honest parties agree on the value of this bit. In case Party 1 is
honest, the other parties must agree on its actual input, but otherwise they may agree
on any value (as long as they agree).

Construction 7.5.17 (Authenticated Byzantine Agreement): Let m denote the number
of parties. We assume that the signature scheme in use has signature of length that
depends only on the security parameter, and not on the length of the message to be
signed.67

Phase 1: Party 1 signs its input and sends the resulting input-signature pair to all
parties. Party 1 may terminate at this point.

Definition: A message is called (v, i)-authentic if it has the form (v, sp1 , ..., spi ), where
p1 = 1, all p j ’s are distinct, and for every j = 1, ..., i , the string sp j is accepted as
a signature to (v, sp1 , ..., sp j−1 ) relative to the verification-key of party p j .

Observe that when Party 1 follows the protocol with input v, at Phase 1 it sends a
(v, 1)-authentic message to each party. For every i ≥ 2, if (v, sp1 , ..., spi ) is (v, i)-
authentic, then (v, sp1 , ..., spi−1 ) is (v, i − 1)-authentic.

67 Such a signature scheme can be constructed given any one-way function. In particular, one may use Construc-
tion 6.4.30. Maintaining short signatures is important in this application, because we are going to iteratively
sign messages consisting of (the concatenation of an original message and) prior signatures.
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Phase i = 2, ..., m: Each honest party (other than Party 1) inspects the messages it
has received at Phase i − 1, and forwards signed versions of the (·, i − 1)-authentic
messages that it has received. Specifically, for every v ∈ {0, 1}, if Party j has received
a (v, i − 1)-authentic message (v, sp1 , ..., spi−1 ) such that all pk’s are different from
j, then it appends its signature to the message and sends the resulting (v, i)-authentic
message to all parties.

We stress that for each value of v, Party j sends at most one (v, i)-authentic message
to all parties. Actually, it may refrain from sending (v, i)-authentic messages if it has
already sent (v, i ′)-authentic messages for some i ′ < i .

Termination: Each honest party (other than Party 1) evaluates the situation as follows:

1. If, for some i0, i1 ∈ [m] (which are not necessarily different), it has received both
a (0, i0)-authentic message and a (1, i1)-authentic message, then it decides that
Party 1 is malicious and outputs an error symbol, say ⊥.

2. If, for a single v ∈ {0, 1} and some i, it has received a (v, i)-authentic message,
then it outputs the value v.

3. If it has never received a (v, i)-authentic message, for any v ∈ {0, 1} and i , then
it decides that Party 1 is malicious and outputs an error symbol, say ⊥.

We comment that in the Distributed Computing literature, an alternative presentation
is preferred in which if a party detects cheating by Party 1 (i.e., in Cases 1 and 3),
then the party outputs a default value, say 0, rather than the error symbol ⊥.

The protocol can be easily adapted to handle non-binary input values. For the sake of
efficiency, one may instruct honest parties to forward at most two authentic messages
that refer to different values (because this suffices to establish that Party 1 is malicious).

Proposition 7.5.18: Assuming that the signature scheme in use is unforgeable, Con-
struction 7.5.17 satisfies the following two conditions:

1. It is infeasible to make any two honest parties output different values.
2. If Party 1 is honest, then it is infeasible to make any honest party output a value

different from the input of Party 1.

The claim holds regardless of the number of dishonest parties and even if dishonest
parties abort the execution.

In other words, Proposition 7.5.18 asserts that Construction 7.5.17 is essentially a
secure implementation of the (“broadcast”) functionality (v, λ, ..., λ) �→ (v, v, ..., v).
In particular, the case in which the honest parties output ⊥ can be accounted for by
the abort of an ideal-model adversary playing Party 1. We note that security as used
here is incomparable to security in either of the two malicious models. On the one
hand, we do not provide security with respect to an external adversary that only taps
the communication lines while not controlling any of the parties. That is, we do not
provide secrecy with respect to an external adversary, and indeed, this feature is not
required by the post-compiler (presented in the proof of Proposition 7.5.19). On the
other hand, we do provide security in the (stronger) sense of the second malicious model
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7.5* EXTENSION TO THE MULTI-PARTY CASE

but do so without limiting the number of dishonest parties. That is, for any number of
dishonest parties, the protocol effectively prevents dishonest parties from aborting (be-
cause abort is treated as sending some illegal message). In particular, the case in which
Party 1 does not even enter the execution is treated as the case in which it sent illegal
messages.

Proof Sketch: Fixing any j and v, suppose that in Phase i − 1, Party j receives a
(v, i − 1)-authentic message, and assume that i is the smallest integer for which this
happens. For this event to happen, it must be that i ≤ m, because the message must
contain i − 1 signatures from different parties (other than Party j itself).68 In such
a case, if Party j is honest, then it will send an authentic (v, i)-message in Phase i
(i ≤ m), and so all parties will receive an authentic (v, i)-message in Phase i . Thus, for
every v, if an honest party sees a (v, ·)-authentic message, then so do all other honest
parties, and Part 1 follows. Part 2 follows by observing that if Party 1 is honest and has
input v, then all honest parties see a (v, 1)-authentic message. Furthermore, none can
see a (v′, i)-authentic message, for v′ �= v and any i .

Proposition 7.5.19 (post-compiler): Suppose that one-way functions exist. Then any
m-ary functionality that is securely computable in the first (resp., second) malicious
broadcast model is also securely computable in the first (resp., second) malicious point-
to-point model, provided that a public-key infrastructure exists in the network.

Proof Sketch: The idea is to replace any broadcast message sent in the original protocol
by an execution of the Authenticated Byzantine Agreement (AuthBA) protocol. This
idea needs to be carefully implemented because it is not clear that the security of
AuthBA is preserved under multiple executions, and thus applying Proposition 7.5.18
per se will not do. The problem is that the adversary may use authenticated messages
sent in one execution of the protocol in order to fool some parties in a different execution.
This attack can be avoided in the current context by using identifiers (which can be
assigned consistently by the higher-level protocol) for each of the executions of the
AuthBA protocol. That is, authentic messages will be required to bear the distinct
identifier of the corresponding AuthBA execution (and all signatures will be applied to
that identifier as well). Thus, authentic messages of one AuthBA execution will not be
authentic in any other AuthBA execution. It follows that the proof of Proposition 7.5.18
can be extended to our context, where sequential executions of AuthBA (with externally
assigned distinct identifiers) take place.

The proof of security transforms any real-model adversary for the point-to-point
protocol to a real-model adversary for the broadcast-channel protocol. In particular,
the latter determines the messages posted on the broadcast channel exactly as an hon-
est party determines the values delivered by the various executions of AuthBA. In
the transformation, we assume that each instance of the AuthBA sub-protocol satis-
fies the conditions stated in Proposition 7.5.18 (i.e., it delivers the same value to all

68 Note that the said message cannot contain a signature of Party j due to the minimality of i : If the (v, i − 1)-
authentic message had contained a signature of Party j , then for some i ′ < i , Party j would have received a
(v, i ′ − 1)-authentic message in Phase i ′ − 1.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

honest parties, and this value equals the one entered by the honest sender). In case the
assumption does not hold, we derive a forger for the underlying signature scheme.

7.5.4. The First Compiler: Forcing Semi-Honest Behavior

We follow the basic structure of the compiler presented in Section 7.4 for the two-party
case. Adapting that compiler to the multi-party setting merely requires generalizing
the implementation of each of the three phases (of the compiled two-party protocols).
Following is a high-level description of the multi-party protocols generated by the
corresponding compiler. Recall that all communication, both in the input protocol as
well as in the one resulting from the compilation, is conducted merely by posting
messages on a single broadcast channel.

Input-commitment phase: Each of the parties commits to its input bits. This will be
done using a multi-party version of the input-commitment functionality of Eq. (7.36).

Intuitively, malicious parties may (abort or) substitute their inputs during this phase,
but they may do so depending only on the value of the inputs held by malicious
parties.

Coin-generation phase: The parties generate random-tapes for each of the parties.
These random-tapes are intended to serve as the coins of the corresponding parties
in their emulation of the semi-honest protocol. Each party obtains the random-tape
to be held by it, whereas the other parties obtain commitments to this value. This
will be done using a multi-party version of the augmented coin-tossing functionality
of Eq. (7.35).

Intuitively, malicious parties may abort during this phase, but otherwise they end up
with a uniformly distributed random-tape.

Protocol emulation phase: The parties emulate the execution of the semi-honest pro-
tocol with respect to the inputs committed in the first phase and the random-tapes
selected in the second phase. This will be done using a multi-party version of the
authenticated-computation functionality of Eq. (7.33). The fact that the original pro-
tocol is executed over a broadcast channel is used here.

Intuitively, malicious parties may abort during this phase, but otherwise they end up
sending messages as directed by the semi-honest protocol.

In order to implement these phases, we define natural generalizations of the input-
commitment, coin-tossing, and authenticated-computation functionalities (of the two-
party case), and present secure implementations of them in the current (first malicious)
multi-party model. The original definitions and constructions are obtained by setting
m = 2. We start again by defining an adequate notion of reducibility, which allows a
modular presentation of the compiled protocols.

7.5.4.1. Security Reductions and a Composition Theorem

Analogously to Section 7.5.2.1, we now define what we mean by saying that one func-
tionality is securely reducible to another functionality. We use the same definition of an
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oracle-aided protocol (i.e., Definition 7.5.5), but require such a protocol to be secure
in the first malicious model (rather than be secure in the semi-honest model). As in the
two-party case, we require that the length of each oracle-query can be determined from
the length of the initial input to the oracle-aided protocol.

Definition 7.5.20 (Security Reductions in the First Malicious Model):

� As in Definition 7.5.6, an m-party oracle-aided protocol is said to be using the k-
party oracle-functionality f if the oracle answers are according to f . However, in
accordance with the definition of the (first) ideal model (for the invoked functionality),
the oracle does not answer all parties concurrently, but rather answers first the real-
model party that requested this specific oracle call (in the oracle-aided protocol).
When receiving its part of the oracle answer, the party that requested the oracle call
instructs the oracle whether or not to respond to the other parties.

We consider only protocols in which the length of each oracle-query is a polynomial-
time computable function of the length of the initial input to the protocol. Further-
more, the length of each query must be polynomially related to the length of the
initial input.

Analogously to Definition 7.5.3, the joint execution of an oracle-aided protocol �
with oracle f under (I , A) in the real model (on input sequence x = (x1, ..., xm) and
auxiliary input z), denoted real

f
�, I , A(z)(x), is defined as the output sequence resulting

from the interaction between the m parties, where the messages of parties in I are
computed according to A(x I , z), the messages of parties not in I are computed
according to �, and the oracle calls are answered according to f .

� An oracle-aided protocol �, using the oracle-functionality f , is said to securely
compute g (in the first malicious model) if a condition analogous to the one in
Definition 7.5.3 holds. That is, the effect of any efficient real-model adversary as in
the previous item can be simulated by a corresponding ideal-model adversary, where
the ideal model for computing g is exactly as in Definition 7.5.2.

More specifically, the oracle-aided protocol � (using oracle f ) is said to securely
compute g (in the first malicious model) if for every probabilistic polynomial-
time A, there exists a probabilistic polynomial-time B such that for every I ⊆ [m]

{ideal
(1)
g, I , B(z)(x)}x ,z

c≡ {real
f
�, I , A(z)(x)}x ,z

� An oracle-aided protocol is said to securely reduce g to f (in the first malicious
model) if it securely computes g (in the first malicious model) when using the oracle-
functionality f . In such a case, we say that g is securely reducible to f ,

Indeed, when it is clear from the context, we often omit the qualifier “in the first malicious
model.”

We are now ready to state a composition theorem for the first multi-party malicious
model.
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Theorem 7.5.21 (Composition Theorem for the first multi-party malicious model):
Suppose that the m-ary functionality g is securely reducible to the k-ary functionality
f and that there exists a k-party protocol for securely computing f . Then there exists
an m-party protocol for securely computing g.

Recall that the syntax of oracle-aided protocols disallows concurrent oracle calls, and
thus Theorem 7.5.21 is actually a sequential composition theorem. As in the two-
party case, the Composition Theorem can be generalized to yield transitivity of secure
reductions and to account for reductions that use several oracles rather than one.

Proof Sketch: Analogously to the proof of previous composition theorems, we are given
an oracle-aided protocol, denoted �g| f , that securely reduces g to f , and an ordinary
protocol � f that securely computes f . Again, we construct a protocol � for computing
g in the natural manner; that is, starting with �g| f , we replace each invocation of the
oracle (i.e., of f ) by an execution of the protocol � f . Clearly, � computes g, and
we need to show that � securely computes g. This is proven by merely generalizing
the proof of Theorem 7.4.3 (i.e., the two-party case). The only point that is worthwhile
stressing is that the real-model adversary for � f , derived from the real-model adversary
for �, is constructed obliviously of the set of parties I that the adversary controls.69 As
in the proof of Theorem 7.5.7, we determine the set of parties for every such invocation
of � f , and rely on the fact that security holds with respect to adversaries controlling
any subset of the k parties participating in an execution of � f . In particular, the security
of an invocation of � f by parties P = {p1, ..., pk} holds also in case I ∩ P = ∅, where
it means that a real-model adversary (which controls no party in P) learns nothing by
merely tapping the broadcast channel.70

7.5.4.2. Secret Broadcast

In order to facilitate the implementation of some functionalities, we introduce the
following secret-broadcast functionality:

(α, 1|α|, ..., 1|α|) �→ (α, α, ..., α) (7.49)

At first glance, it seems that Eq. (7.49) is trivially implementable by Party 1 posting α on
the broadcast channel. This solution is “secure” as long as the (real-model) adversary
controls a non-empty set of parties, but fails in case the adversary controls none of
the parties and yet can tap the broadcast channel. That is, the trivial solution does
not provide secrecy with respect to an external adversary (which taps the channel but
controls none of the parties and thus is not supposed to learn the value sent by Party 1 to
all other parties). Note that secrecy with respect to an external adversary also arises in a
subtle way when we do not care about it a priori (e.g., see the proof of Theorem 7.5.21).

Proposition 7.5.22: Assuming the existence of trapdoor permutations, there exists a
secure implementation of Eq. (7.49) in the first malicious model.

69 Unlike in the two-party case, here we cannot afford to consider a designated adversary for each subset of parties.
70 Security holds also in the other extreme case, where I ∩ P = P , but it is not meaningful in that case.
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7.5* EXTENSION TO THE MULTI-PARTY CASE

Proof Sketch: The first idea that comes to mind is to let each party generate a pair of
keys for a public-key encryption scheme and broadcast the encryption-key, and then let
Party 1 broadcast the encryption of its input under each of these encryption-keys. The
problem with this protocol is that it is no longer guaranteed that all parties receive the
same value. One solution is to let Party 1 provide zero-knowledge proofs (to each of
the parties) that the posted ciphertexts are consistent (i.e., encrypt the same value), but
the implementation of this solution is not straightforward (cf. Construction 7.5.24). An
alternative solution, adopted here, is to use the encryption scheme in order to emulate a
set of private (point-to-point) channels, as in Section 7.5.3.1, and run an authenticated
Byzantine Agreement on this network. Since we have an ordinary broadcast channel at
our disposal, we do not need to assume an initial set-up that corresponds to a public-key
infrastructure, but can rather generate it on the fly. The resulting protocol is as follows:

1. Each party generates a pair of keys for a signature scheme and posts the verification-
key on the broadcast channel. This establishes the public-key infrastructure as relied
upon in Construction 7.5.17.

2. Each party generates a pair of keys for a public-key encryption scheme and posts
the encryption-key on the broadcast channel. This effectively establishes a network
of private (point-to-point) channels to be used in Step 3.

3. The parties invoke the authenticated Byzantine Agreement protocol of Construc-
tion 7.5.17 in order to let Party 1 broadcast its input to all other parties. All messages
of this protocol are sent in encrypted form, where each message is encrypted using
the encryption-key posted in Step 2 by the designated receiver.

Combining the ideas underlying the proofs of Propositions 7.5.16 and 7.5.18 (and con-
sidering two cases corresponding to whether I is empty or not), the current proposition
follows.

7.5.4.3. Multi-Party Authenticated Computation

We start our assembly of multi-party functionalities by presenting and implement-
ing a multi-party generalization of the authenticated-computation functionality of
Eq. (7.33).

Definition 7.5.23 (authenticated computation, multi-party version): Let f : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ and h : {0, 1}∗ → {0, 1}∗ be polynomial-time computable. The
h-authenticated f -computation m-party functionality is defined by

(α, β2, ..., βm) �→ (λ, v2, ..., vm) (7.50)

where vi
def= f (α) if βi = h(α) and vi

def= (h(α), f (α)) otherwise, for each i .71

71 Indeed, an alternative multi-party generalization may require that all vi ’s equal f (α) if β2 = · · · = βm = h(α)
and equal (h(α), f (α)) otherwise. However, this alternative generalization seems harder to implement, whereas
Eq. (7.50) suffices for our application.
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Note that the obvious reduction of Eq. (7.50) to the two-party case (i.e., to Eq. (7.33))
does not work (see Exercise 16). As in the two-party case, we will securely reduce
Eq. (7.50) to an adequate multi-party generalization of the image-transmission func-
tionality and provide a secure implementation of the latter. We start by implementing the
adequate multi-party generalization of the image-transmission functionality, defined as
follows:

(α, 1|α|, ..., 1|α|) �→ (λ, f (α), ..., f (α)) (7.51)

Indeed, Eq. (7.51) is essentially a special case of Eq. (7.50). We stress that in a secure
implementation of Eq. (7.51), either all parties obtain the same f -image or they all
obtain an indication that Party 1 has misbehaved. Thus, the honest parties must be in
agreement regarding whether or not Party 1 has misbehaved, which makes the gener-
alization of the two-party protocol less obvious than it may seem. In particular, the fact
that we use a proof system of perfect completeness plays a central role in the analysis of
the multi-party protocol. The same holds with respect to the fact that all messages are
sent using (secret) broadcast (and so the honest parties agree on their value). Together,
these two facts imply that any party can determine whether some other party has “jus-
tifiably rejected” some claim, and this ability enables the parties to reach agreement
regarding whether or not Party 1 has misbehaved.

Construction 7.5.24 (image-transmission protocol, multi-party version): Let R
def=

{(v, w) : v = f (w)}. For simplicity, we assume that f is length-regular; that is,
| f (x)| = | f (y)| for every |x | = |y|.

Inputs: Party 1 gets input α ∈ {0, 1}∗, and each other party gets input 1n, where n = |α|.
Step C1: Party 1 secretly broadcasts v

def= f (α). That is, Party 1 invokes Eq. (7.49) with
input v, whereas each other party enters the input 1| f (1n )| and receives the output v.

Step C2: For i = 2, ..., m, Parties 1 and i invoke a zero-knowledge strong-proof-of-
knowledge system for R such that Party 1 plays the prover and Party i plays the
verifier. The common input to the proof system is v, the prover gets α as auxiliary
input, and its objective is to prove that it knows a w such that (v, w) ∈ R (i.e.,
v = f (w)). In case the verifier rejects the proof, Party i sends the coins used by the
verifier so that all other parties can be convinced of its justifiable rejection, where the
latter corresponds to the view of the verifier in a rejecting interaction. All messages
of the proof system are sent using the secret broadcast functionality.

Outputs: For i = 2, ..., m, if Party i sees some justifiable rejection, then it outputs ⊥;
otherwise it outputs v. (Party 1 has no output.)

Agreement on whether or not Party 1 has misbehaved is reduced to the decision whether
or not some verifier has justifiably rejected in Step C2, where of the latter decision
depends on information available to all parties. A key observation is that if Party 1
is honest, then no party can justifiably reject its proof in Step C2, because the proof
system has perfect completeness (which means that there exists no random-tape that
makes the verifier reject a claim by an honest prover). Note that Construction 7.5.24 is
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actually an oracle-aided protocol, using the secret broadcast oracle. Consequently, if the
real-model adversary controls none of the parties, then it learns nothing (as opposed
to what might have happened if we were to use an ordinary broadcast in Steps C1
or C2).

Proposition 7.5.25: Suppose that the proof system, (P, V ), used in Step C2 is indeed a
zero-knowledge strong-proof-of-knowledge for the relation R. Then Construction 7.5.24
securely reduces Eq. (7.51) to Eq. (7.49).

Proof Sketch: The proof extends the two-party case treated in Proposition 7.4.12. Here,
we transform any real-model adversary A into a corresponding ideal-model adversary
B, where both get the set I as auxiliary input. The case I = ∅ is handled by relying
on the secret broadcast functionality (which implies that in this case, the real-model
adversary, which refers to an oracle-aided protocol in which all messages are sent using
Eq. (7.49), gets nothing). Otherwise, the operation of B depends on whether or not
1 ∈ I , which corresponds to the cases handled in the two-party case.

As in the two-party case, when transforming real-model adversaries to ideal-model
adversaries, we sometimes allow the latter to halt before invoking the trusted party.
This can be viewed as invoking the trusted party with a special abort symbol, where in
this case, the latter responds to all parties with a special abort symbol.

We start with the case where the first party is honest, which means here that 1 �∈ I .
In this case, the input to B consists essentially of 1n , where n = |α|, and it operates as
follows (assuming I �= ∅):

1. Acting on behalf of each party in I , the ideal-model adversary B sends 1|α| to
the trusted party and obtains the answer v, which equals f (α) for α handed (to
the trusted party) by (the honest) Party 1. Thus, indeed, (v, α) ∈ R. (Recall that
Party 1 always obtains λ from the trusted party, but the other parties in Ī = [m] \ I
obtain v.)

2. For i = 2, ..., m, machine B invokes the simulator guaranteed for the zero-knowledge
proof system (P, V ), on input v, using (the residual) A as a possible malicious verifier.
Note that we are simulating the actions of the prescribed prover P , which in the real
protocol is played by the honest Party 1. Once one simulation is finished, its transcript
becomes part of the history fed to A in subsequent simulations. Denote the obtained
sequence of simulation transcripts by S = S(v).

3. Finally, B feeds A with the alleged execution view (v, S) and outputs whatever A
does.

The computational indistinguishability of the output of the real-model adversary under
(A, I ) and the output of the ideal-model adversary under (B, I ) follows from the guar-
anteed quality of the zero-knowledge simulator. In addition, we need to consider the
outputs of the honest parties (i.e., the parties in Ī ), and specifically the outputs of parties
in Ī \ {1} (since Party 1 has no output). (Indeed, this is an issue only if Ī \ {1} �= ∅,
which is the reason that this issue did not arise in the two-party case.) In the ideal-model
execution, each party in Ī \ {1} outputs v = f (α), and we have to prove that the same
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occurs in the real-model execution (when Party 1 is honest). This follows from the
perfect completeness of (P, V ), as discussed earlier.

We now turn to the case where the first party is dishonest (i.e., 1 ∈ I ). In this
case, the input to B includes α, and it operates as follows (ignoring the easy case
I = [m]):

1. B invokes A on input α, and obtains the Step C1 message, denoted v, that A instructs
Party 1 to send (i.e., v = A(α)). As (implicit) in the protocol, any action of A in
Step C1 (including abort) is interpreted as sending a string.

2. B tries to obtain a pre-image of v under f . Toward this end, B uses the (strong)
knowledge-extractor associated with (P, V ). Specifically, providing the strong
knowledge-extractor with oracle access to (the residual prover) A(α), machine B
tries to extract (from A) a string w such that f (w) = v. This is done for each of the
| Ī | executions of the proof system in which the verifier is played by an honest party,
while updating the history of A accordingly.72 In case the extractor succeeds (in one
of these | Ī | attempts), machine B sets α′ def= w . Otherwise, B sets α′ def= ⊥.

3. B now emulates an execution of Step C2. Specifically, for each i ∈ Ī , machine B lets
the adequate residual A play the prover, and emulates by itself the (honest) verifier
interacting with A (i.e., B behaves as a honest Party i). (The emulation of the proofs
given to parties in I is performed in the straightforward manner.) Next, B decides
whether or not to invoke the trusted party and let it respond to the honest parties.
This decision is based on all the m − 1 emulated proofs.

� In case any of the m − 1 emulated verifiers rejects justifiably, machine B aborts
(without invoking the trusted party), and outputs whatever A does (when fed with
these emulated proof transcripts).

� Otherwise (i.e., no verifier rejects justifiably), we consider two sub-cases:

(a) If α′ �= ⊥, then B sends α′ (on behalf of Party 1) to the trusted party and
allows it to respond the honest parties. (The response will be f (α′), which
by Step 2 must equal v.)

(b) Otherwise (i.e., α′ = ⊥, indicating that extraction has failed), B fails. (Note
that this means that in Step 3 the verifier was convinced, while in Step 2
the extraction attempt has failed.)

4. Finally, B feeds A with the execution view, which contains the prover’s view of the
emulation of Step C2 (produced in Step 3), and outputs whatever A does.

As in the two-party case (see proof of Proposition 7.4.12), the real-model execution
differs from the ideal-model execution only in case the real-model adversary A succeeds
in convincing the knowledge-verifier (which is properly emulated for any i ∈ Ī ) that it
knows a pre-image of v under f , and yet the knowledge-extractor failed to find such a
pre-image. By definition of strong knowledge-verifiers, such an event may occur only
with negligible probability.

72 If necessary (i.e., | Ī | �= {2, ..., | Ī | + 1}), we also emulate the interleaved proofs that are given to parties in I .
This is performed in the straightforward manner (i.e., by letting A emulate both parties in the interaction).
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7.5* EXTENSION TO THE MULTI-PARTY CASE

Securely Reducing Authenticated Computation to Image Transmission. Analo-
gously to the two-party case, we securely reduce Eq. (7.50) to Eq. (7.51).

Construction 7.5.26 (multi-party authenticated computation, oracle-aided protocol):

Inputs: Party 1 gets input α ∈ {0, 1}∗, and Party i �= 1 gets input βi ∈ {0, 1}|α|.

Step C1: Party 1 uses the (multi-party) image-transmission functionality to send the
pair (u, v)

def= (h(α), f (α)) to the other parties. That is, the parties invoke the func-
tionality of Eq. (7.51), where Party 1 enters the input α and Party i is to obtain

g(α)
def= (h(α), f (α)).

Step C2: Assuming that Step C1 was not aborted by Party 1 and that Party i receives
the pair (u, v) in Step C2, Party i outputs v if u = βi and (u, v) otherwise.

Outputs: If not aborted (with output ⊥), Party i �= 1 sets its local output as directed in
Step C2. (Party 1 has no output.)

Extending the proof of Proposition 7.4.15 (to apply to Construction 7.5.26), and using
Propositions 7.5.25 and 7.5.22, we obtain:

Proposition 7.5.27: Assuming the existence of trapdoor permutations, the h-
authenticated f -computation m-party functionality of Eq. (7.50) can be securely im-
plemented in the first malicious model.

Proof Sketch: We focus on the analysis of Construction 7.5.26, which extends the
proof of Proposition 7.4.15. As in the proof of Proposition 7.5.25, when extending
the proof of the two-party setting, the two cases (in the proof) correspond to whether
or not Party 1 is honest (resp., 1 �∈ I or 1 ∈ I ). Again, we discard the case I = ∅,
where here the justification is that the oracle-aided protocol does not use the broadcast
channel at all (and so no information is available to the real-model adversary in this
case). The case 1 �∈ I �= ∅ is handled exactly as the case that Party 1 is honest in the
proof of Proposition 7.4.15 (i.e., B sends the βi ’s it holds to the trusted party, obtains
h(α) (either explicitly or implicitly) and f (α), where α is the input of Party 1, and
uses (h(α), f (α)) to emulate the real execution). In case 1 ∈ I , we need to extend the
two-party treatment a little, because we also have to emulate the oracle answer given (in
Step C1) to dishonest parties (different from Party 1, which gets no answer). However,
this answer is determined by the query α′ made in Step C1 by Party 1, and indeed, we
merely need to feed A with the corresponding oracle answer (h(α′), f (α′)). The rest of
the treatment is exactly as in the two-party case. The proposition follows.

Comment: Pure Oracle-Aided Protocols. Note that Construction 7.5.26 makes no
direct use of its communication channel, but is rather confined to the invocation of
oracles and local computations. Such an oracle-aided protocol is called pure. Note that
most oracle-aided protocols presented in Section 7.4 are pure. An important property
of pure oracle-aided protocols is that an adversary that controls none of the parties
and only wire-taps the communication channel gets no information, and so this case
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GENERAL CRYPTOGRAPHIC PROTOCOLS

can be discarded (as done in the proof of Proposition 7.5.27).73 In fact, Construc-
tion 7.5.24 is also a pure oracle-aided protocol (by virtue of its use of the secret broadcast
functionality).

7.5.4.4. Multi-Party Augmented Coin-Tossing

In this section, we generalize the augmented coin-tossing functionality (of Sec-
tion 7.4.3.5) to the multi-party setting. More generally, for any positive polynomial
� : N → N and a polynomial-time computable function g, we consider the randomized
m-ary functionality

(1n , ..., 1n) �→ (r, g(r ), ..., g(r )), (7.52)

where r is uniformly distributed in {0, 1}�(n). We securely reduce Eq. (7.52) to the multi-
party authenticated-computation functionality. We note that the following construction
is different from the one used in the two-party case:

Construction 7.5.28 (an oracle-aided protocol for Eq. (7.52)): Let C be a commitment
scheme and Cr1,...,r�

(σ1, ..., σ�) = (Cr1 (σ1), ..., Cr�
(σ�)) be as in Construction 7.4.16.

Inputs: Each party gets input 1n and sets �
def= �(n).

Step C1: For i = 1, .., m, Party i uniformly selects ri ∈ {0, 1}� and si ∈ {0, 1}�·n.

Step C2: For i = 1, .., m, Party i uses the image-transmission functionality to send

ci
def= Csi (ri ) to all parties. Actually, Party i enters Eq. (7.50) with input (ri , si ); each

other party enters with input 1�+�·n, which is supposed to equal h (C2)(ri , si )
def= 1|ri |+|si |,

and is supposed to obtain f (C2)(ri , si )
def= Csi (ri ). Abusing notation, let us denote by ci

the answer received by each party, where ci may equal ⊥ in case Party i has aborted
the i-th oracle call. Thus, in Steps C1–C2, each party commits to a random string.
Without loss of generality, we assume that no party aborts these steps (i.e., we treat
abort as if it were some legitimate default action).

Step C3: For i = 2, .., m (but not for i = 1), Party i uses the authenticated-
computation functionality to send ri to all parties. That is, Party i enters Eq. (7.50)
with input (ri , si ); each other party enters with input ci , where ci is supposed to equal

h (C3)(ri , si )
def= Csi (ri ), and is supposed to obtain f (C3)(ri , si )

def= ri . If Party i aborts the
oracle call (that it has invoked) or some Party j obtains an answer of a different
format, which happens in case the inputs of these two parties do not match, then
Party j halts with output ⊥. Otherwise, Party j obtains f (C3)(ri , si ) = ri and sets
r j

i = ri . (For simplicity, let r j
j

def= r j .)
Thus, in this step, each party (except Party 1), reveals the �-bit long string to which
it has committed in Step C2. The correctness of the revealed value is guaranteed
by the definition of the authenticated-computation functionality, which is used here

73 Recall that in Section 7.4 we did not consider such external adversaries, and thus the notion of pure oracle-aided
protocols was neither discussed nor used.
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7.5* EXTENSION TO THE MULTI-PARTY CASE

instead of the straightforward way of disclosing the decommitment information. It
follows that for every j ∈ [m], if Party j is honest and did not halt, then r j

i = ri for
every i ∈ [m] \ {1}, where ri is the value committed by Party i in Step C3.

Step C4: In case Party 1 did not halt (and so r1
i = ri for every i ∈ [m]), Party 1 uses

the authenticated-computation functionality to send g(⊕m
i=1r1

i ) to all parties. Details
follow:

For j = 1, ..., m, Party j sets r j def= ⊕m
i=2r j

i . Note that in case Party j did not halt,

it holds that r j
i = ri (for every i ∈ [m]), and so r j = ⊕m

i=2ri = r1. Thus, ⊕m
i=1r1

i =
r1 ⊕ r1.

Party 1 sets r
def= r1 ⊕ r1 and uses the authenticated-computation functional-

ity to send g(r ) to all parties. Specifically, Party 1 enters Eq. (7.50) with in-
put (r1, s1, r1); each (other) Party j enters with input (c1, r j ), where (c1, r j )
is supposed to equal h (C4)(r1, s1, r1)

def= (Cs1 (r1), r1), and is supposed to obtain
f (C4)(r1, s1, r1)

def= g(r1 ⊕ r1), which equals g(r ). In case Party 1 aborts or Party j ob-
tains an answer of a different format, which happens if the inputs to the functionality
do not match, Party j halts with output ⊥ (indicating that Party 1 misbehaved).

Outputs: Unless halted in Step C3 (with output ⊥), Party 1 outputs r , and Party j �= 1
outputs the value determined in Step C4, which is either g(r ) or ⊥.

In case m = 2, Construction 7.5.28 yields an alternative protocol for Eq. (7.34), that
is, a protocol that is fundamentally different from the one in Construction 7.4.16.

Proposition 7.5.29: Construction 7.5.28 securely reduces Eq. (7.52) to Eq. (7.50).

Proof Sketch:74 We transform any real-model adversary A (for the oracle-aided exe-
cution) into a corresponding ideal-model adversary B. The operation of B depends on
whether or not Party 1 is honest (i.e., 1 ∈ Ī ), and we ignore the trivial cases of I = ∅
and I = [m]. In case 1 ∈ Ī (i.e., Party 1 is honest), machine B proceeds as follows:

1. Machine B emulates the local actions of the honest parties in Step C1. In particular,
it uniformly selects (ri , si ) for each i ∈ Ī (including i = 1).

2. For every i ∈ Ī , machine B emulates the i-th sub-step of Step C2 by feeding A with
the corresponding ci = Csi (ri ) (as if it were the answer of the i-th oracle call). For
every i ∈ I , machine B obtains the input (ri , si ) that A enters (on behalf of Party i)
to the i-th oracle call of Step C2, and feeds A with adequate emulations of the oracle
answers (to other parties in I ).

3. For every i ∈ Ī \ {1}, machine B emulates the i-th sub-step of Step C3 by feeding A
with a sequence in {ri , (ci , ri )}|I | that corresponds to whether or not each Party j ∈ I
has entered the input ci (defined in Step 2). For every i ∈ I , machine B obtains the
input (r ′

i , s ′
i ) that A enters (on behalf of Party i) to the i-th oracle call of Step C3,

records whether or not Csi (ri ) = Cs ′
i
(r ′

i ), and feeds A with adequate emulations of
the oracle answers.

74 As in the proof of Proposition 7.5.25, we sometimes present ideal-model adversaries that halt before invoking
the trusted party. This can be viewed as invoking the trusted party with a special abort symbol.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

For every i ∈ Ī , machine B sets r1
i = ri . For every i ∈ I , machine B sets r1

i = ri if
Csi (ri ) = Cs ′

i
(r ′

i ) and aborts otherwise (while outputting whatever A outputs [when
Party 1 halts in Step C3]). Note that for every i , this setting of r1

i agrees with the
setting of r1

i in the protocol. In particular, B aborts if and only if (the honest) Party 1
would have halted in the corresponding (emulated) execution of Step C3.75

4. In case B did not abort, it invokes the trusted party with input 1n and obtains the
answer g(r ), where r is the uniformly distributed �-bit string handed to Party 1.
Next, machine B emulates Step C4 by feeding each dishonest party with either

g(r ) or ((c1, r1), g(r )), where r1 def= ⊕m
i=2r1

i . The choice is determined by whether
or not (in Step C4) this party has entered the input (c1, r1). (Note that we cheat in
the emulation of the oracle answer in Step C4; specifically, we use g(r ) rather than
g(r1 ⊕ r1).) Finally, machine B outputs whatever A does.

We stress that in this case (i.e., 1 �∈ I ), machine B may possibly abort only before
invoking the trusted party (which satisfies the security definition). Observe that the
only difference between the ideal-model execution, under B and the real-model exe-
cution under A is that in the ideal-model execution, an independently and uniformly
distributed r ∈ {0, 1}� is used (in the emulation of Step C4), whereas in the real-model
execution, r (as used in Step C4) is set to ⊕m

i=1r1
i = r1 ⊕ r1. That is, in the ideal-model,

r1 is independent of r and r1, whereas in the real-model, r1 = r ⊕ r1, where g(r ) and
r1 = r i (for every i) are known to the adversary (and r appears in the joint-view). Thus,
in addition to its possible affect on r (in the real model), the only (other) affect that r1

has on the joint-view is that the latter contains c1 = C(r1). In other words, (the joint-
views in) the real model and the ideal model differ only in whether c1 is a commitment
to r ⊕ r1 or to a uniformly and independently distributed string, where r and r1 are
explicit in the joint-view. By the hiding property of C , this difference is undetectable.

We now turn to the case that 1 ∈ I (i.e., Party 1 is dishonest). The treatment of this
case differs in two main aspects. First, unlike in the previous case, here the real-model
adversary (which controls Party 1) obtains all ri ’s, and so we must guarantee that in the
ideal-model execution, the trusted party’s answer (to Party 1) equals ⊕m

i=1ri . Second,
unlike in the previous case, here the real-model adversary may effectively abort Step C4
(i.e., abort after obtaining the outcome), but this is easy to handle using the ideal-
model adversary’s ability to instruct the trusted party not to respond the honest parties.
Returning to the first issue, we present a different way of emulating the real-model
execution.76 Specifically, we will cheat in our emulation of the honest parties and use (in
Step 1–2) commitments to the value 0�, rather than commitments to the corresponding
ri ’s, which will be determined only at the end of Step 2. Details follow:

1. Machine B starts by invoking the trusted party and obtains a uniformly distributed
r ∈ {0, 1}�. At this time, B does not decide whether or not to allow the trusted party
to answer the honest parties.

75 Indeed, in Step C3, Party 1 halts if and only if for some i , the input that Party 1 enters to the i-th sub-step (which
in turn equals the value ci = Csi (ri ) that Party 1 has obtained in the i-th sub-step of Step C2) does not fit the
input (r ′

i , s′
i ) that is entered by Party i (i.e., iff ci �= Cs′

i
(r ′

i )).
76 We comment that the alternative emulation strategy can also be used in case Party 1 is honest.
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7.5* EXTENSION TO THE MULTI-PARTY CASE

In addition, B emulates the local actions of the honest parties in Step C1 by uniformly
selecting only the si ’s, for each i ∈ Ī .

2. For every i ∈ Ī , machine B emulates the i-th sub-step of Step C2 by feeding A with
ci = Csi (0

�). For every i ∈ I , machine B obtains the input (ri , si ) that A enters (on
behalf of Party i) to the i-th oracle call of Step C2. Finally, B uniformly selects
all other ri ’s (i.e., for i’s in Ī ) such that ⊕m

i=1ri = r holds; for example, for each
i ∈ Ī \ {1}, select ri ∈ {0, 1}� uniformly, and set r1 = r ⊕ (⊕m

i=2ri ).
3. For every i ∈ Ī , machine B emulates the i-th sub-step of Step C3 by feeding A with

a sequence in {ri , (ci , ri )}|I | that corresponds to whether or not each Party j ∈ I has
entered the input ci . Note that the fact that ci is unlikely to be a commitment to ri is
irrelevant here. The rest of this step (i.e., the determination of the r1

i ’s) is as in the
case that Party 1 is honest. In particular, we let B halt if some Party i ∈ I behaves
improperly (i.e., invokes the corresponding oracle with input that does not fit ci as
recorded in the emulation of Step C2).

The next step is performed only in case B did not abort. In this case, r1
i = ri holds

for every i = 2, ..., m, and r = r1 ⊕ (⊕m
i=2r1

i ) follows.
4. Next, machine B emulates Step C4 and determines whether or not A instructs Party 1

to abort its oracle call (in Step C4). The decision is based on whether or not the oracle
query (q1, q2, q3) of Party 1 (in Step C4) matches the oracle query (ri , si ) it made
in Step C2 and the value of ⊕m

i=2r1
i as determined in Step 3 (i.e., whether or not

Cq2 (q1) = Csi (ri ) and q3 = ⊕m
i=2r1

i ). If Party 1 aborts, then B prevents the trusted
party from answering the honest parties, and otherwise B allows the trusted party to
answer. (Indeed, in case the trusted party answers Party i �= 1, the answer is g(r )). In
addition, B emulates the answers of the Step C4 oracle call to the dishonest parties
(as in the case that Party 1 is honest). Finally, machine B outputs whatever A does.

Observe that the only difference between of the ideal-model execution under B and the
real-model execution under A is that in the former, commitments to 0� (rather than to
the ri ’s, for i ∈ Ī ) are delivered in Step C2. However, by the hiding property of C , this
difference is undetectable.

An Important Special Case. An important special case of Eq. (7.52) is the case that
g(r, s) = Cs(r ), where |s| = n · |r |. This special case will be called the augmented
(m-party) coin-tossing functionality. That is, for some fixed commitment scheme, C ,
and a positive polynomial �, we consider the m-ary functionality:

(1n , ..., 1n) �→ ((r, s), Cs(r ), ..., Cs(r )) (7.53)

where (r, s) is uniformly distributed in {0, 1}�(n) × {0, 1}�(n)·n . Combining Proposi-
tions 7.5.27 and 7.5.29, we get:

Proposition 7.5.30: Assuming the existence of trapdoor permutations, the augmented
coin-tossing functionality of Eq. (7.53) can be securely implemented in the first mali-
cious model.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

7.5.4.5. Multi-Party Input Commitment

The last functionality needed for the first multi-party compiler is a multi-party gener-
alization of the input-commitment functionality of Section 7.4.3.6. Specifically, for C
and C as in Section 7.5.4.4, we consider the m-party input-commitment functionality

(x , 1|x |, ..., 1|x |) �→ (r, Cr (x), ..., Cr (x)), (7.54)

where r is uniformly distributed in {0, 1}|x |2 . By combining a straightforward general-
ization of Construction 7.4.20 with Propositions 7.5.27 and 7.5.30, we get:

Proposition 7.5.31: Assuming the existence of trapdoor permutations, the input-
commitment functionality of Eq. (7.54) can be securely implemented in the first mali-
cious model.

Proof Sketch: Starting from Construction 7.4.20, we replace each oracle call to a two-
party functionality by a call to the corresponding multi-party functionality. That is, in
Step C2 Party 1 uses the image-transmission (or rather the authenticated-computation)
functionality to send c′ def= Cr ′(x) to all other parties, in Step C3 an augmented coin-
tossing is used to provide Party 1 with a random pair (r, r ′′) whereas each other party gets
c′′ def= Cr ′′(r ), and in Step C4 Party 1 uses the authenticated-computation functionality
to send Cr (x) to all other parties. Each of the other parties acts exactly as Party 2 acts
in Construction 7.4.20.

The security of the resulting multi-party oracle-aided protocol is established as in the
two-party case (treated in Proposition 7.4.21). As in the previous analysis of multi-party
protocols that generalize two-party ones, the two cases here are according to whether
or not Party 1 is honest (resp., 1 �∈ I or 1 ∈ I ). Finally, composing the oracle-aided
protocol with secure implementations of the adequate multi-party functionalities (as
provided by Propositions 7.5.27 and 7.5.30), the proposition follows.

7.5.4.6. The Compiler Itself

We are now ready to present the first multi-party compiler. Given a multi-party protocol,
�, for the semi-honest model, we want to generate an “equivalent” protocol �′ for the
first malicious model. Recall that the given protocol operates in a communication model
consisting of a single broadcast channel. The compiled protocol will operate in the
same communication model. As in the two-party case, we first present an oracle-aided
version of the compiled protocol (which will actually be a pure oracle-aided protocol,
and thus the communication model is actually irrelevant for discussing the oracle-
aided version of the compiled protocol). The compiled protocol is a generalization of
the one presented in Construction 7.4.23 (for m = 2), and the reader is referred there
for additional clarifications.

Construction 7.5.32 (The first multi-party compiler, oracle-aided version): Given an
m-party protocol, �, for the semi-honest model (using a single broadcast channel), the
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7.5* EXTENSION TO THE MULTI-PARTY CASE

compiler produces the following oracle-aided m-party protocol, denoted �′, for the
first malicious model:

Inputs: Party i gets input xi ∈ {0, 1}n.

Input-Commitment Phase: Each of the parties commits to its input by using the input-
commitment functionality of Eq. (7.54). That is, for i = 1, ..., m, Party i invokes
Eq. (7.54), playing the role of the first party with input xi , and obtains the output ρi ,

whereas each other party obtains γ i def= Cρi (xi ).

Coin-Generation Phase: The parties generate random-tapes for the emulation of �.
Each party obtains the random-tape to be held by it, whereas each other party
obtains a commitment to this value. This is done by invoking the augmented coin-
tossing functionality of Eq. (7.53). That is, for i = 1, ..., m, Party i invokes Eq. (7.53),
playing the role of the first party, and obtains the output (r i , ωi ), whereas each other

party obtains δi def= Cωi (r i ).

Protocol-Emulation Phase: The parties use the authenticated-computation function-
ality of Eq. (7.50) in order to emulate each step of protocol �. The party that
is supposed to send (i.e., broadcast) a message plays the role of the first party in
Eq. (7.50), and the other parties play the other roles. Suppose that the current mes-
sage in � is to be sent by Party j . Then the functions h, f and the inputs α, β2, ..., βm,
for the functionality of Eq. (7.50), are set as follows (analogously to their setting in
Construction 7.4.23):

� The string α is set to equal (α1, α2, α3), where α1 = (x j , ρ j ) is the query and
answer of Party j in the oracle call that it initiated in the input-commitment
phase, α2 = (r j , ω j ) is the answer that Party j obtained in the oracle call that
it initiated in the coin-generation phase, and α3 is the sequence of messages that

Party j obtained so far in the emulation of �. Each βi equals β
def= (γ j , δ j , α3),

where γ j and δ j are the answers that the other parties obtained in the same oracle
calls in the first two phases (and α3 is as previously).
Note that since � operates over a single broadcast channel, all parties receive
exactly the same messages.

� The function h is defined such that h((v1, s1), (v2, s2), v3) equals (Cs1 (v1),
Cs2 (v2), v3). Indeed, it holds that h(α1, α2, α3) = β.

� The function f equals the computation that determines the message to be
sent in �. Note that this message is computable in polynomial-time from
the party’s input (denoted x j and being part of α1), its random-tape (de-
noted r j and being part of α2), and the messages it has received so far (i.e.,
α3). Indeed, it holds that f (α1, α2, α3) is the message that Party j should
send in �.

Recall that each party that plays a receiver in the current oracle call obtains either
f (α) or (h(α), f (α)). It treats the second case as if the sending party has aborted,
which is also possible per se.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

Aborting: In case any of the functionalities invoked in any of the above phases termi-
nates in an abort state, the parties obtaining this indication abort the execution and
set their output to ⊥. Otherwise, outputs are as follows.

Outputs: At the end of the emulation phase, each party holds the corresponding output
of the party in protocol �. The party just locally outputs this value.

We note that both the compiler and the protocols produced by it are efficient, and that
their dependence on m is polynomially bounded.

7.5.4.7. Analysis of the Compiler

The effect of Construction 7.5.32 is analyzed analogously to the effect of Construc-
tion 7.4.23. In view of this similarity, we combine the two main steps (in the analysis)
and state only the end result:

Theorem 7.5.33 (Restating half of Theorem 7.5.15): Suppose that there exist collec-
tions of enhanced trapdoor permutations. Then any m-ary functionality can be securely
computable in the first malicious model (using only point-to-point communication
lines), provided that a public-key infrastructure exists in the network. Furthermore,
security holds even if the adversary can read all communication among honest parties.

Proof Sketch: We start by noting that the definition of the augmented semi-honest
model (i.e., Definition 7.4.24) applies without any change to the multi-party context
(also in case the communication is via a single broadcast channel). Recall that the
augmented semi-honest model allows parties to enter the protocol with modified inputs
(rather than the original ones) and abort the execution at any point in time. We stress
that in the multi-party augmented semi-honest model, an adversary controls all non-
honest parties and coordinates their input modifications and abort decisions. As in the
two-party case, other than these non-proper actions, the non-honest parties follow the
protocol (as in the semi-honest model).

The first significant part of the proof is showing that the compiler of Construc-
tion 7.5.32 transforms any protocol � into a protocol �′ such that executions of �′

in the first malicious real model can be emulated by executions of � in the aug-
mented semi-honest model (over a single broadcast channel). This part is analogous
to Proposition 7.4.25, and its proof is analogous to the proof presented in the two-
party case. That is, we transform any real-model adversary (A, I ) for �′ into a cor-
responding augmented semi-honest adversary, (B, I ), for �. The construction of B
out of A in analogous to the construction of Bmal out of Amal (carried out in the proof
of Proposition 7.4.25): Specifically, B modifies inputs according to the queries that
A makes in the input-committing phase, uniformly selects random-tapes (in accor-
dance with the coin-generation phase), and aborts in case the emulated machine does
so. Thus, B, which is an augmented semi-honest adversary, emulates the malicious
adversary A.

The second significant part of the proof is showing that canonical protocols (as
provided by Theorem 7.5.14) have the property that their execution in the augmented
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7.5* EXTENSION TO THE MULTI-PARTY CASE

semi-honest model can be emulated in the (first) malicious ideal model of Defini-
tion 7.5.2. This part is analogous to Proposition 7.4.27, and its proof is analogous to
the proof presented in the two-party case.

Thus, given any m-ary functionality f , we first (use Theorem 7.5.14 to) obtain a
canonical protocol � that privately computes f . (Actually, we use the version of �

that operates over a single broadcast channel, as provided by the pre-compiler [i.e.,
Proposition 7.5.16].) Combining the two parts, we conclude that when feeding � to
the compiler of Construction 7.5.32, the result is an oracle-aided protocol �′ such that
executions of �′ in the (first) malicious real model can be emulated in the ideal model
of Definition 7.5.2. Thus, �′ securely computes f in the first malicious model.

We are almost done, but there are two relatively minor issues to address. First, �′

is an oracle-aided protocol rather than an ordinary one. However, an ordinary protocol
that securely computes f can be derived by using secure implementations of the oracles
used by �′ (as provided by Propositions 7.5.27, 7.5.30, and 7.5.31). Second, �′ operates
in the broadcast-channel communication model, whereas we claimed a protocol in the
point-to-point communication model. This gap is bridged by using the post-compiler
(i.e., Proposition 7.5.19).

7.5.5. The Second Compiler: Effectively Preventing Abort

We now show how to transform any protocol for securely computing some functionality
in the first malicious model into a protocol that securely computes the same functionality
in the second malicious model. We stress that again, all communication, both in the
input protocol as well as in the one resulting from the compilation, is conducted by
posting messages on a single broadcast channel.

The current compiler has little to do with anything done in the two-party case.
The only similarity is at a technical level; that is, in using a secure implementation of
the authenticated-computation functionality. The main novelty is in the use of a new
ingredient, called Verifiable Secret Sharing (VSS).

It is interesting to note that we use implementations of the authenticated-computation
functionality (of Eq. (7.50)) and of VSS that are (“only”) secure in the first malicious
model. It is what we add on top of these implementations that makes the resulting
protocol secure in the second malicious model. Following is a high-level description of
the multi-party protocols generated by the current compiler. Recall that the input to the
compiler is a protocol secure in the first malicious model (and so the random-tape and
actions mentioned here refer to this protocol).77

The sharing phase: Each party shares its input and random-tape with all the parties
such that any strict majority of parties can retrieve their value, whereas no minority
group can obtain any knowledge of these values. This is done by using Verifiable
Secret Sharing (VSS).

77 In our application, we feed the current compiler with a protocol generated by the first compiler. Still, the random-
tape and protocol actions mentioned here refer to the secure protocol compiled by the first compiler, not to the
semi-honest protocol from which it was derived.
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Intuitively, the malicious parties (which are in a strict minority) are effectively pre-
vented from aborting the protocol by the following conventions:

� If a party aborts the execution prior to completion of the sharing phase, then the
honest parties (which are in the majority) will set its input and random-tape to
some default value and will carry out the execution (“on its behalf”).

� If a party aborts the execution after the completion of the sharing phase, then
the honest (majority) parties will reconstruct its input and random-tape and will
carry out the execution (“on its behalf”). The ability of the majority parties to
reconstruct the party’s input and random-tape relies on the properties of VSS.

The fact that communication is conducted over a broadcast channel, as well as the
abovementioned conventions, guarantee that the (honest) majority parties will always
be in consensus as to which parties have aborted (and what messages were sent).

Protocol-emulation phase: The parties emulate the execution of the original protocol
with respect to the input and random-tapes shared in the first phase. This will be done
using a secure (in the first malicious model) implementation of the authenticated-
computation functionality of Eq. (7.50).

We start by defining and implementing the only new tool needed; that is, Verifiable
Secret Sharing.

7.5.5.1. Verifiable Secret Sharing

Loosely speaking, a Verifiable Secret Sharing scheme is (merely) a secure (in the first
malicious model) implementation of a secret-sharing functionality. Thus, we first define
the latter functionality.

Definition 7.5.34 (Secret-Sharing Schemes): Let t ≤ m be positive integers. A t-out-
of-m Secret-Sharing Scheme is a pair of algorithms, Gm,t and Rm,t , satisfying the
following conditions:78

Syntax: The share-generation algorithm, Gm,t , is a probabilistic mapping of secret bits
to m-sequences of shares; that is, for every σ ∈ {0, 1}, the random variable Gm,t (σ )
is distributed over ({0, 1}∗)m. The recovering algorithm, Rm,t , maps t-sequences of

pairs in [m] × {0, 1}∗ into a single bit, where [m]
def= {1, ..., m}.

The recovery condition: For any σ ∈ {0, 1}, any sequence (s1, ..., sm) in the range of
Gm,t (σ ), and any t-subset {i1, ..., it} ⊆ [m], it holds that

Rm,t ((i1, si1 ), ..., (it , sit )) = σ

The secrecy condition: For any (t − 1)-subset I ⊂ [m], the distribution of the I -
components of Gm,t (σ ) is independent of σ . That is, for any I = {i1, ..., it−1} ⊂ [m],
let gI (σ ) be defined to equal ((i1, si1 ), ..., (it−1, sit−1 )), where (s1, ..., sm) ← Gm,t (σ ).

78 At this point, we place no computational requirements on Gm,t and Rm,t . Typically, when m is treated as a
parameter, these algorithms will operate in time that is polynomial in m.
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7.5* EXTENSION TO THE MULTI-PARTY CASE

Then we require that for any such I , the random variables gI (0) and gI (1) are
identically distributed.

Indeed, an m-out-of-m secret-sharing scheme is implicit in the construction presented
in Section 7.5.2: To share a bit σ , one just generates m random bits that sum up to
σ (mod 2). Efficient t-out-of-m secret-sharing schemes do exist for any value of t ≤ m.
The most popular one, which uses low-degree polynomials over finite fields, is presented
next.

Construction 7.5.35 (Shamir’s t-out-of-m secret-sharing scheme): Find the smallest
prime number, denoted p, that is bigger than m, and consider arithmetic over the finite
field GF(p).79 The share-generating algorithm consists of uniformly selecting a degree
t − 1 polynomial over GF(p) with free term equal to σ , and setting the i-th share
to be the value of this polynomial at i . The recovering algorithm consists of finding
(by interpolation) the unique degree t − 1 polynomial that fits the given values and
outputting its free term.

Construction 7.5.35 is analyzed in Exercise 17. Getting back to our subject matter, we
derive the basic definition of verifiable secret sharing.

Definition 7.5.36 (Verifiable Secret Sharing, basic version): A verifiable secret shar-
ing (VSS) scheme with parameters (m, t) is an m-party protocol that implements
(i.e., securely computes in the first malicious model) the share-generation func-
tionality of some t-out-of-m secret-sharing scheme. That is, let Gm,t be a share-
generation algorithm of some t-out-of-m secret-sharing scheme. Then the correspond-
ing share-generation functionality that the VSS securely computes (in the first malicious
model) is

((σ, 1n), 1n , ..., 1n) �→ Gm,t (σ ) (7.55)

Actually, it will be more convenient to use an augmented notion of Verifiable Secret
Sharing. The augmentation provides each party with an auxiliary input that determines
the secret σ (as in a commitment scheme), and allows Party 1 to later conduct au-
thenticated computations relative to the auxiliary inputs given to the other parties.
Furthermore, each party is provided with a certificate of the validity of its own share
(relative to the auxiliary inputs given to the other parties). We seize the opportunity to
generalize the definition, such that it refers to the sharing of strings (of a priori known
length), rather than to the sharing of single bits. From this point on, when we say Veri-
fiable Secret Sharing (or VSS), we mean the notion defined next (rather the the weaker
form in Definition 7.5.36).

Definition 7.5.37 (Verifiable Secret Sharing, revised): Given a share-generation al-
gorithm Gm,t of some t-out-of-m secret-sharing scheme, we extend it to handle

79 By the Fundamental Theorem of Number Theory, p ≤ 2m. Thus, p can be found by merely (brute-force)
factoring all integers between m + 1 and 2m.
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n-bit long strings; that is, Gm,t (σ1, ..., σn)
def= (s1, ..., sm), where si = si,1 · · · si,n

and (s1, j , ..., sm, j ) ← Gm,t (σ j ) for every i = 1, ..., m and j = 1, ..., n. Suppose
that Gm,t (α) ∈ ({0, 1}�(|α|))m, and let C be a commitment scheme and C be as
in Construction 7.5.28. Consider the corresponding (augmented) share-generation
functionality

(α, 1|α|, ..., 1|α|) �→ ((s, ρ), (s2, ρ2, c), ..., (sm , ρm , c)) (7.56)

where s
def= (s1, ..., sm) ← Gm,t (α), (7.57)

ρ
def= (ρ1, ..., ρm) ∈ {0, 1}m·�(|α|)2

(7.58)
is uniformly distributed,

and c
def= (Cρ1 (s1), ..., Cρm (sm)). (7.59)

Then any m-party protocol that securely computes Eq. (7.56) – (7.59) in the first ma-
licious model is called a verifiable secret sharing (VSS) scheme with parameters
(m, t).

Observe that each party may demonstrate (to each other party) the validity of its
“primary” share (i.e., the si ) with respect to the globally held c, by revealing the
corresponding ρi . We shall be particularly interested in VSS schemes with param-
eters (m, �m/2�); that is, t = �m/2�. The reason for this focus is that we assume
throughout this section that the malicious parties are in strict minority. Thus, by the
secrecy requirement, setting t ≥ m/2 guarantees that the (less than m/2) dishonest
parties are not able to obtain any information about the secret from their shares. On
the other hand, by the recovery requirement, setting t ≤ �m/2� guarantees that the
(more than m/2) honest parties are able to efficiently recover the secret from their
shares. Thus, in the sequel, whenever we mention VSS without specifying the param-
eters, we mean the VSS with parameters (m, �m/2�), where m is understood from the
context.

Clearly, by Theorem 7.5.33, verifiable secret sharing schemes exist, provided that
enhanced trapdoor permutations exist. Actually, to establish the existence of VSS, we
merely need to apply the first compiler to the straightforward protocol that privately
computes Eq. (7.56) – (7.59); see Exercise 10. For the sake of subsequent reference, we
state the latter result.

Proposition 7.5.38: Suppose that trapdoor permutations exist. Then for every t ≤ m,
there exists a verifiable secret-sharing scheme with parameters (m, t).

Note that the assumption used in Proposition 7.5.38 is (merely) the one needed for the
operation of the first compiler, which amounts to the assumption needed for imple-
menting the functionalities used in Construction 7.5.32.
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7.5.5.2. The Compiler Itself

We are now ready to present the second compiler. Recall that we are given a multi-
party protocol, �, that is secure in the first malicious model, and we want to generate
an “equivalent” protocol �′ for the second malicious model. Also recall that both the
given protocol and the one generated by the compiler operate in a communication model
consisting of a single broadcast channel. Finally, we note that the generated protocol
uses sub-protocols that are secure with respect to the first malicious model (and yet the
entire protocol will be analyzed with respect to the second malicious model).80

Construction 7.5.39 (The second multi-party compiler): Let t
def= �m/2�. Given an m-

party protocol, �, for the first malicious model, the compiler produces the following
m-party protocol, denoted �′, for the second malicious model.

Inputs: Party i gets input xi ∈ {0, 1}n.

Random-Tape: Party i uniformly selects a random-tape, denoted r i ∈ {0, 1}c(n), for
the emulation of �.

The Sharing Phase: Each party shares its input and random-tape with all the parties,
using a Verifiable Secret Sharing scheme. That is, for i = 1, ..., m, Party i invokes
the VSS scheme playing the first party with input xir i , while the other parties play
the roles of the other parties in Eq. (7.56) – (7.59) with input 1n+c(n).

Regarding the i-th VSS invocation,81 we denote the output that Party i ob-
tains by (si , ρi ), and the outputs that each other Party j obtains by (si

j , ρi
j , ci ),

where si = (si
1, ..., si

m) ← Gm,t (xir i ), ρi = (ρi
1, ..., ρi

m) is uniformly distributed,
ci = (ci

1, ..., ci
m), and ci

k = Cρi
k
(si

k). Note that either all honest parties get the correct
outcome or they all detect that Party i is cheating and set their outcome to ⊥.

Handling Abort: If Party i aborts the i-th VSS invocation, which means that all honest
parties received the outcome ⊥, then the honest parties set its input and random-tape
to some default value; that is, they set their record of the input and random-tape of
Party i (which are otherwise unknown to them) to some default value. Note that by
definition, the VSS scheme is secure in the first malicious model, and thus all honest
parties agree on whether or not the VSS initiator (i.e., Party i) has aborted.82

80 For this reason, we cannot utilize a composition theorem for the second malicious model. We comment that such
a composition theorem would anyhow be more restricted than Theorem 7.5.21. One issue is that the second mali-
cious model depends on a bound on the fraction of dishonest parties. Thus, if the m-party oracle-aided protocol in-
vokes a k-ary functionality with k < m, then the bound (on the fraction of dishonest parties) may be violated in the
sub-protocol that replaces the latter. For this reason, when dealing with the second malicious model, one should
confine the treatment to m-party oracle-aided protocols that use m-ary (rather than k-ary) functionalities.

81 Indeed, this notation is slightly inconsistent with the one used in Definition 7.5.37. Here, Party i plays the first
party in the VSS, and being consistent with Definition 7.5.37 would required calling its share si

1 rather than si
i .

Consequently, the share of Party j in this invocation would have been denoted si
πi ( j), where πi ( j) is the role that

Party j plays in this invocation. However, such notation would have made our exposition more cumbersome.
82 This is reflected in the corresponding ideal-model adversary that either makes all honest parties detect abort

(i.e., output ⊥) or allows all of them to obtain (and output) the corresponding entries in a valid m-sequence.
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We stress that in case Party i aborts the i-th VSS invocation, its (default) input and
random-tape become known to all parties. Since the entire execution takes place
over a broadcast channel, each party can determine by itself what messages Party i
should send in a corresponding execution of �. Thus, there is actually no need to
send actual messages on behalf of Party i .

Protocol-Emulation Phase: The parties emulate the execution of protocol � with re-
spect to the input and random-tapes shared in the first phase. This will be done by
using a secure (in the first malicious model) implementation of the authenticated-
computation functionality of Eq. (7.50).

That is, Party i , which is supposed to send a message in �, plays the role of the first
party in Eq. (7.50), and the other parties play the other roles. The inputs α, β2, ..., βm

and the functions h, f , for the functionality of Eq. (7.50), are set as follows:

� The string α = (α1, α2) is set such that α1 = (xir i , si , ρi ) and α2 equals the
concatenation of all previous messages sent in the emulation of previous steps
of �. Recall that (xir i , (si , ρi )) is the input–output pair of Party i in the i-th
invocation of the VSS.

� The string β j equals β
def= (ci , α2), where α2 is as in previous item. Recall that ci

is part of the output that each other party got in the i-th invocation of the VSS.
� The function h is defined such that h((z, (s1, ..., sm), (r1, ..., rm)), γ ) =

((Cr1 (s1), ..., Crm (sm)), γ ). Indeed, h(α1, α2) = β.
� The function f is set to be the computation that determines the message to be sent

in �. Note that this message is computable in polynomial-time from the party’s
input (denoted xi ), its random-tape (denoted r i ), and the previous messages posted
so far (i.e., α2).

As a result of the execution of the authenticated-computation sub-protocol, each
party either gets an indication that Party i aborted or determines the message that
Party i should have sent in a corresponding execution of �. By the definition of
security in the first malicious model, all honest parties agree on whether or not
Party i aborted, and in case it did not abort, they also agree on the message it sent.

Handling Abort: If a party aborts when playing the role of the first party in an
invocation of Eq. (7.50) during the emulation phase, then the majority parties re-
cover its (actual) input and random-tape, and carry out the execution on its behalf.
Specifically, if Party j detects that Party i has aborted, then it broadcasts the pair
(si

j , ρi
j ) that it has obtained in the sharing phase, and each party uses the correctly

decomitted shares (i.e., the si
j ’s) to reconstruct xir i .

We note that the completion of the sharing phase (and the definition of VSS) guarantee
that the majority parties hold shares that yield the input and random-tape of any party.
Furthermore, the correct shares are verifiable by each of the other parties, and so
reconstruction of the initial secret is efficiently implementable whenever a majority
of parties wishes to do so.
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Outputs: At the end of the emulation phase, each party holds the corresponding output
of the party in protocol �. The party just locally outputs this value.

Note that the VSS scheme is implicitly used as a commitment scheme for the value
of xir i ; that is, ci = (ci

1, ..., ci
m) serves as a commitment to the sequence of shares

(si
1, ..., si

m), which in turn determine xir i . Actually, the main steps in the emulation
phase only refer to this aspect of the VSS, whereas only the abort-handling procedure
refers to the additional aspects (e.g., the fact that Party j holds the value of the share si

j

that is determined by the commitment ci
j , as well as the corresponding decommitment

information).

Comment. Applying the two (multi-party protocol) compilers one after the other is
indeed wasteful. For example, we enforce proper emulation (via the authenticated-
computation functionality) twice: first with respect to the semi-honest protocol, and
next with respect to the protocol resulting from the first compiler. Indeed, more ef-
ficient protocols for the second malicious model could be derived by omitting the
authenticated-computation protocols generated by the first compiler (and having the
second compiler refer to the actions of the semi-honest protocol). Similarly, one can
omit the input-commit phase in the first compiler. In general, feeding the second com-
piler with protocols that are secure in the first malicious model is an overkill; see further
discussion subsequent to Proposition 7.5.42.

7.5.5.3. Analysis of the Compiler

Our aim is to establish the following:

Theorem 7.5.40 (Restating the second half of Theorem 7.5.15): Suppose that there
exist collections of enhanced trapdoor permutations. Then any m-ary functionality
can be securely computable in the second malicious model (using only point-to-point
communication lines), provided that a public-key infrastructure exists in the network.
Furthermore, security holds even if the adversary can read all communication among
honest parties.

As will be shown here, given a protocol as guaranteed by Theorem 7.5.33, the second
compiler produces a protocol that securely computes (in the second malicious model)
the same functionality. Thus, for any functionality f , the compiler transforms proto-
cols for securely computing f in the first malicious model into protocols for securely
computing f in the second malicious model. This suffices to establish Theorem 7.5.40,
yet it does not say what the compiler does when given an arbitrary protocol (i.e., one
not provided by Theorem 7.5.33). In order to analyze the action of the second compiler,
in general, we introduce the following model that is a hybrid of the semi-honest and
the two malicious models. We call this new model the second-augmented semi-honest
model. Unlike the (first) augmented semi-honest model (used in the analysis of the first
compiler [see proof of Theorem 7.5.33]), the new model allows a dishonest party to
select its random-tape arbitrarily, but does not allow it to abort.
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Definition 7.5.41 (the second-augmented semi-honest model): Let � be a multi-party
protocol. A coordinated strategy for parties I is admissible as a second-augmented
semi-honest behavior (with respect to �) if the following holds:

Entering the execution: Depending on their initial inputs and in coordination with each
other, the parties in I may enter the execution of � with any input of their choice.

Selection of random-tape: Depending on their inputs and in coordination with each
other, the parties in I may arbitrarily select their random-tapes for the execution
of �.

Here and in the previous step, the parties in I may employ randomized procedures,
but the randomization in their procedures is not to be confused with the random-tapes
for � selected in the current step.

Proper message transmission: In each step of �, depending on its view so far, the
designated (by �) party sends a message as instructed by �. We stress that the
message is computed as � instructs based on the party’s (possibly modified) input,
its (possibly non-uniformly selected) random-tape, and the messages received so far,
where the input and random-tape are as set in the previous two steps.

Output: At the end of the interaction, the parties in I produce outputs depending on
their entire view of the interaction. We stress that the view contains their initial inputs
and all messages sent over all channels.83

Intuitively, the compiler transforms any protocol � into a protocol �′ so that executions
of �′ in the second malicious model correspond to executions of � in the second
augmented semi-honest model. That is:

Proposition 7.5.42 (general analysis of the second multi-party compiler): Let �′ be
the m-party protocol produced by the compiler of Construction 7.5.39, when given
the protocol �. Then for every probabilistic polynomial-time adversary A for the sec-
ond malicious model, there exists a probabilistic polynomial-time strategy B that is
admissible (with respect to �) in the second-augmented semi-honest model (of Defini-
tion 7.5.41), such that for every I ⊂ [m] with |I | < m/2

{real�, I , B(z)(x)}x ,z
c≡ {real�′, I , A(z)(x)}x ,z

Proposition 7.5.42 can be viewed as asserting that if� is secure in the second-augmented
semi-honest model, then �′ is secure in the second malicious model, where by the former
term we mean that for every real-model adversary B that is admissible (with respect to
�) in the second-augmented semi-honest model, there exists an ideal-model adversary
C as per Definition 7.5.4 such that {ideal

(2)
f, I ,C(z)(x)}x ,z

c≡ {real�, I , B(z)(x)}x ,z (for every
I ). Proposition 7.5.42 will be applied to protocols that securely compute a functionality
in the first malicious model. As we shall see, for such protocols, the second augmented
semi-honest model (of Definition 7.5.41) can be emulated by the second ideal malicious

83 This model is applicable both when the communication is via a single broadcast channel and when the commu-
nication is via point-to-point channels that can be wire-tapped by the adversary.
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7.5* EXTENSION TO THE MULTI-PARTY CASE

model (of Definition 7.5.4). Thus, Theorem 7.5.40 will follow. We start by establishing
Proposition 7.5.42:

Proof Sketch: Given a real-model adversary A (for �′), we present a corresponding
adversary B that is admissible with respect to � for the second augmented semi-honest
model. We stress two points. First, whereas A may abort some parties, the adversary B
may not do so (as per Definition 7.5.41). Second, we may assume that the number of
parties controlled by A (and thus by B) is less than m/2 (because nothing is required
otherwise).

Machine B will use A as well as the ideal-model adversaries derived (as per Def-
inition 7.5.3) from the behavior of A in the various sub-protocols invoked by �′. We
stress that these ideal-model adversaries are of the first malicious model. Furthermore,
machine B will also emulate the behavior of the trusted party in these ideal-model em-
ulations (without communicating with any trusted party; there is no trusted party in the
augmented semi-honest model). Thus, the following description contains an implicit
special-purpose composition theorem (in which sub-protocols that are secure in the
first malicious model are used to implement the oracles of an oracle-aided protocol that
is secure in the second malicious model):

Entering the execution and selecting a random-tape: B invokes A (on the very input
supplied to it) and decides with what input and random-tape to enter the execution
of �. Toward this end, machine B emulates the execution of the sharing phase of
�′, using A (as subroutine). Machine B supplies A with the messages it expects to
see, thus emulating the honest parties in �′, and obtains the messages sent by the
parties in I (i.e., those controlled by A). We stress that this activity is internal to B
and involves no real interaction (of B in �).

Specifically, B emulates the executions of the VSS protocol in an attempt to obtain
the values that the parties in I share with all parties. The emulation of each such
VSS-execution is done by using the ideal-model adversary derived from (the residual
real-model malicious adversary) A. We stress that in accordance with the definition
of VSS (i.e., security in the first malicious model), the ideal-model adversary derived
from (the residual) A is in the first malicious model and may abort some parties.
Note that (by Definitions 7.5.3 and 7.5.2) this may happen only if the initiator of
the VSS is dishonest. In case the execution initiated by some party aborts, its input
and random-tape are set to the default value (as in the corresponding abort-handling
procedure of �′). Details follow:

� In an execution of VSS initiated by an honest party (i.e., in which an honest party
plays the role of the first party in VSS), machine B obtains the corresponding
augmented shares (available to I ).84 Machine B will use an arbitrary value, say
0n+c(n), as the first party’s input for the current emulation of the VSS (because
the real value is unknown to B). In emulating the VSS, machine B will use
the ideal-model adversary, denoted A′, that emulates the behavior of A in this
VSS (in �′), when given the history so far. We stress that since the initiating

84 These will be used in the emulation of future message-transmission steps.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

party of the VSS is honest, this ideal-model adversary (i.e., A′) cannot abort any
party.
Invoking the ideal-model adversary A′, and emulating both the honest (ideal-
model) parties and the trusted party, machine B obtains the outputs of all parties
(i.e., and in particular, the output of the initiating party). That is, machine B emu-
lates the sharing of value 0n+c(n) by the initiating party and emulates the response
of the trusted oracle (i.e., by setting s ← Gm,t (0n+c(n)), uniformly selecting ρ of
adequate length, and computing the outputs as in Eq. (7.56) – (7.59)).

� In an execution of VSS initiated by a party in I (i.e., a dishonest party plays the
role of the first party in VSS), machine B obtains the corresponding input and
random-tape of the initiator, as well as the randomization used in the commitment
to it. As before, machine B uses the derived ideal-model adversary, denoted A′,
to emulate the execution of the VSS. Recall that A′ emulates the behavior of A in
the corresponding execution of the VSS.

Suppose that we are currently emulating the instance of VSS initiated by Party i ,
where i ∈ I . Then B invokes A′ on input xir i (i.e., the initial input and random-
tape of Party i), and emulating both the honest (ideal-model) parties and the
trusted party, machine B obtains the outputs of all parties (including the “VSS-
randomization” (i.e., (si , ρi )) handed to Party i which is in I ). A key point is
that machine B has obtained, while emulating the trusted party, the input handed
by A′ to the trusted party. This value is recorded as the modified input and
random-tape of Party i .

In case the emulated machine did not abort the initiator (i.e., Party i), machine
B records the previous value, as well as the randomization used by B (as trusted
party) in the execution of VSS. Otherwise (i.e., A aborts Party i in the invocation
of VSS initiated by it), the input and random-tape of Party i are set to the default
value (as in �′). In either case, B concatenates the emulation of the VSS to the
history of the execution of A.

Thus, inputs and random-tapes are determined for all parties in I , depending only
on their initial inputs. (All this is done before entering the actual execution of �.)
Furthermore, the view of machine A in the sharing phase of �′ has been emulated,
and the VSS-randomizations (i.e., the pairs (si , ρi )) used in the sharing of all values
have been recorded by B. (Actually, it suffices to record the VSS-randomization
handed to dishonest parties and the commitments made on behalf of honest ones;
these will be used in the emulation of the message-transmission steps of �′,
where the VSS-randomization will be used only in case the corresponding party
aborts.)

Subsequent steps – message transmission: Machine B now enters the actual execution
of � (with inputs and random-tapes for I -parties as determined earlier). It proceeds
in this real execution of �, along with emulating the corresponding executions of
the authenticated computation of Eq. (7.50) (which are invoked in �′).

In a message-transmission step by an honest party in �, machine B obtains a mes-
sage from this honest party (in the real execution of �) and emulates an execution
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7.5* EXTENSION TO THE MULTI-PARTY CASE

of the authenticated-computation protocol resulting in this message as output. In
a message-transmission step by a dishonest party in �, machine B computes the
message to be sent as instructed by �, based on the input and random-tape de-
termined in the previous stage and the messages obtained so far (in �). In addi-
tion, B emulates an execution of the authenticated-computation protocol resulting
in this message as output. The emulation of each execution of the authenticated-
computation protocol, which securely computes (in the first malicious model) the
functionality Eq. (7.50), is done by using the malicious ideal-model adversary de-
rived from A. The fact that in these emulations machine B also emulates the trusted
party allows it to set the outcome of the authenticated-computation protocol to fit
the message being delivered. We stress that the fact that a (dishonest) party may
abort some parties in these emulations of �′ does not result in aborting the real
execution of � (and is merely reflected in the transcript of these emulations). Details
follow:

� In a message-transmission step by an honest party in �, machine B first obtains
from this party (in the real execution of�) a message, denotedmsg. This completes
all that is done in this step with respect to communication in �.

Next, machine B proceeds in emulating the corresponding message-transmission
sub-protocol of �′. Firstly, machine B derives the ideal-model adversary, denoted
A′, which corresponds to the behavior of A in the corresponding execution of the
authenticated-computation sub-protocol (executed by protocol �′). Invoking the
ideal-model adversary A′, and emulating both the honest (ideal-model) parties
and the trusted party, machine B sets the trusted party’s replies (to parties in I ) to
equal either msg or (β, msg), where β is as in Construction 7.5.39.85 The decision
concerning which reply to deliver to each party in I depends on the input that this
party hands to the trusted party (or rather the input that A′ hands on its behalf):
If the party hands the correct value β, then it receives msg; otherwise it receives
(β, msg).

Note that the emulation of the authenticated-computation sub-protocol is carried
out so as to produce an output in {msg, (β, msg)}|I |, where msg does not neces-
sarily fit the output of the authenticated-computation functionality of Eq. (7.50)
on the corresponding dummy inputs. However, the machine A′ used in the em-
ulation cannot detect that we are cheating because the inputs that A′ gets (i.e.,
commitments to dummy values) are computationally indistinguishable from the
correct inputs (i.e., commitments to values that correspond to the unknown input
and random-tape of the corresponding honest party).

Finally, B concatenates the emulation of the authenticated-computation sub-
protocol to the history of the execution of A. (Note that since the initiator of
the authenticated-computation sub-protocol is honest, abort is not possible here,
by definition of the first ideal model.)

85 Recall that β = (ci , α2), where ci is the commitment produced by the VSS that was invoked by Party i , which
is assumed to be the sender in the current message-transmission step, and α2 equals the sequence of messages
sent so far in the emulated execution of �.
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� In a message-transmission step by a dishonest party in �, machine B first com-
putes the message to be sent according to �. This message is computed based
on the input and random-tape determined (and recorded) in the emulation of the
sharing phase of �′ and the messages received so far (in the execution of �).
Denote the resulting message by msg. Machine B completes the execution of this
step in � by posting msg on the broadcast channel.

Next, machine B proceeds in emulating the corresponding authenticated-
computation sub-protocol of �′. Firstly, machine B derives the ideal-model
adversary, denoted A′. Invoking A′ and emulating both the honest (ideal-
model) parties and the trusted party, machine B produces an emulation of
the corresponding execution of the authenticated-computation protocol. The in-
put (for the transmitting party) used by B in this emulation equals the value
recorded in the emulation of (the corresponding VSS in) the sharing phase
of �′.

Note that this emulation (of the corresponding authenticated-computation sub-
protocol of �′) either produces the very same message msg (or a pair (β, msg)
as above) or aborts the sender. In the latter case, we emulate the abort-handling
procedure of �′, by using the corresponding VSS-randomization (as recorded
in the sharing phase of �′). In both cases, B concatenates the emulation of the
authenticated-computation protocol (and possibly also the abort-handling proce-
dure) to the history of the execution of A.

Note that each message-transmission step is implemented in polynomial-time, and
each message posted is computed exactly as instructed by �. (We stress again that
the emulation of an aborting event in �′ does not result in aborting the execution of
any party in �.)

Output: Machine B just outputs whatever machine A outputs given the execution history
composed (or actually emulated) as in the previous steps.

Clearly, machine B (described here) implements a second-augmented semi-honest be-
havior with respect to �. It is left to show that

{real�′, I , A(x)}x
c≡ {real�, I , B(x)}x (7.60)

There are two differences between the two ensembles referred to in Eq. (7.60):

1. In the first distribution (i.e., real�′,(A, I )(x)), secure (in the first malicious model)
protocols implementing VSS and authenticated computation (of Eq. (7.56) – (7.59)
and Eq. (7.50), respectively) are executed; whereas in the second distribution (i.e.,
real�,(B, I )(x)), these executions are emulated using the corresponding ideal-model
adversaries.

2. The emulation of Eq. (7.50) in real�,(B, I )(x) is performed with a potentially wrong
input, specifically, with commitments to dummy values, rather than to the correct
values.

However, these differences are computationally undetectable.
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7.6* PERFECT SECURITY IN THE PRIVATE CHANNEL MODEL

Proof of Theorem 7.5.40: Given an m-ary functionality f , let � be an m-party proto-
col, as guaranteed by Theorem 7.5.33, for securely computing f in the first malicious
model. (Actually, we merely need a protocol operating in the broadcast channel [rather
than point-to-point] communication model.) We now apply the compiler of Construc-
tion 7.5.39 to � and derive a protocol �′. By Proposition 7.5.42, for any efficient
real-model adversary A (for �′), there exists an efficient admissible behavior (with
respect to �) in the second-augmented semi-honest model, denoted B, such that for
every I ⊂ [m] with |I | < m/2

{real�′, I , A(x)}x
c≡ {real�, I , B(x)}x (7.61)

One key observation is that B constitutes a benign form of a real-model adversar-
ial behavior with respect to � (which is certainly allowed by the first malicious
model). Specifically, the malicious behavior of B amounts to replacing inputs and
random-tapes arbitrarily, and executing � with these replaced values and without
aborting any party. Thus, by the security of � (in the first malicious model), the
real-model adversary B can be emulated by an ideal-model adversary C that oper-
ates in the first ideal model (and so may potentially abort parties). However, since
B does not abort parties, then neither does C (except with negligible probabil-
ity). It follows that C is essentially an admissible ideal-model adversary for the
second malicious party, or, more accurately, C behaves in a way that is statisti-
cally close to a second ideal-model adversary C ′ (which behaves as C except that
it never aborts). Combining Eq. (7.61) with the latter observations, we obtain (for
every |I | < m/2)

{real�′, I , A(x)}x
c≡ {real�, I , B(x)}x

c≡ {ideal
(1)
f, I ,C (x)}x

s≡ {ideal
(2)
f, I ,C ′(x)}x

We are almost done. The only problem is that �′ operates in the communication model
of a single broadcast channel. As in the proof of Theorem 7.5.33, this problem is
resolved by applying the post-compiler (i.e., Proposition 7.5.19).

7.6.* Perfect Security in the Private Channel Model

In this section, we present an alternative treatment of general secure multi-party
protocols. Specifically, we assume the existence of private channels between each
pair of parties and present protocols that are “perfectly secure” (i.e., perfectly em-
ulate a trusted party), and we do so without relying on any intractability assump-
tions. However, security holds only in case the honest parties are in a strict ma-
jority, and thus the current treatment is not meaningful for the two-party case. Let
us summarize the Pros and Cons of the current treatment in comparison to the
treatment offered in Section 7.5:
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pros: Abstracting away computational issues. In particular:

1. Making no intractability assumptions.
2. Emulating a trusted party in a perfect sense (rather than in a computation-

ally indistinguishable sense), even with respect to computationally unbounded
adversaries.

cons: Limited applicability. In particular:

1. A strict majority of honest parties is required (even for withstanding semi-
honest adversaries). Thus, the current treatment is inapplicable to the two-
party case.

2. Perfectly private channels are postulated to exist.

Again, our ultimate goal is to design protocols that withstand any feasible adversarial
behavior, and again we proceed in two steps: first dealing with the semi-honest model
and next with the malicious model. However, here, protocols for the malicious model
are derived by extending the ideas that underlie the semi-honest protocols, rather than
by compiling the latter.

7.6.1. Definitions

We consider both the semi-honest and the malicious models, where in both cases
we refer to explicit bounds on the number of dishonest parties. Furthermore, in both
cases, we consider a communication network consisting of point-to-point channels
that cannot be wire-taped by the adversary. Finally, in both models, we require the
relevant probability ensembles to be statistically indistinguishable, rather than (only)
computationally indistinguishable.

Security in the Semi-Honest Model. The following definition is derived from Defi-
nition 7.5.1 by restricting the number of dishonest parties and strengthening the indis-
tinguishability requirement.

Definition 7.6.1 (t-privacy of m-party protocols): Let f be an m-ary functionality, and
� be an m-party protocol for computing f . As in Definition 7.5.1, we denote the joint-
view of the parties in I ⊆ [m] by view�

I (x), and the corresponding output sequence
of all parties by output�(x). We say that � t-privately computes f if there exists
a probabilistic polynomial-time algorithm, denoted S, such that for every I ⊂ [m] of
cardinality at most t , it holds that

{(S(I , x I , f I (x)) , f (x))}x∈({0,1}∗)m

s≡ {(view�
I (x) , output�(x))}x∈({0,1}∗)m (7.62)

where x I and fI denote projections of the corresponding m-ary sequence on the coor-
dinates in I . In case the ensembles in Eq. (7.62) are identically distributed, we say that
the emulation is perfect.

We stress that Eq. (7.62) requires statistical indistinguishability, whereas the ana-
logue requirement in Definition 7.5.1 is of computational indistinguishability. As in
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7.6* PERFECT SECURITY IN THE PRIVATE CHANNEL MODEL

Definition 7.5.1, the view of parties in I does not include messages sent among parties

in Ī
def= [m] \ I .

Security in the Malicious Model. Analogously, the following definition is derived
from Definition 7.5.4 by restricting the number of dishonest parties, disallowing wire-
tapping, and strengthening the indistinguishability requirement. Recall that Defini-
tion 7.5.4 refers to security in the second malicious model, which is reflected in the
choice of the ideal model. We further strengthen the definition by allowing computation-
ally unbounded real-model adversaries, and by requiring the corresponding ideal-model
adversaries to be of “comparable complexity” (i.e., have polynomially related running
time). Specifically, we say that algorithm B has comparable complexity to algorithm A
if there exists a polynomial p such that for every y, it holds that timeB(y) ≤ p(timeA(y)),
where timeA(y) (resp., timeB(y)) denotes the number of steps taken by A (resp., B) on
input y.

Definition 7.6.2 (t-security of m-party protocols): Let f , �, and ideal
(2)
f, I , B(z)(x) be

exactly as in Definition 7.5.4. The real-model adversary is defined as in Definitions 7.5.3
and 7.5.4, except that here, the real-model adversary A does not see messages sent
among honest parties (i.e., parties in Ī ). We say that � t-securely computes f if
for every probabilistic algorithm A (representing a real-model adversary strategy),
there exists a probabilistic algorithm of comparable complexity B (representing an
ideal-model adversary strategy), such that for every I ⊂ [m] of cardinality at most t ,
it holds that

{ideal
(2)
f, I , B(z)(x)}x ,z

s≡ {real�, I , A(z)(x)}x ,z (7.63)

In case the ensembles in Eq. (7.63) are identically distributed, we say that the emulation
is perfect.

We stress that Eq. (7.63) requires statistical indistinguishability, whereas the analogue
requirement in Definition 7.5.4 is of computational indistinguishability. More impor-
tantly, we make no computational restrictions regarding the real-model adversary, and
require the corresponding ideal-model adversary to be of comparable complexity. The
latter requirement is very important: It prevents obviously bad protocols (see Exer-
cise 18), and it guarantees that Definition 7.6.2 is actually a strengthening of Defini-
tion 7.5.4 (see Exercise 19).

7.6.2. Security in the Semi-Honest Model

The following construction of t-private m-party protocols, for t < m/2, is a modifi-
cation of the construction presented in Section 7.5.2 (which in turn generalized the
construction presented in the two-party case [i.e., Section 7.3]). Recall that the core of
these constructions is the privately computed propagation of shares of bits through a
circuit that represents the desired computation. In the previous cases (see Sections 7.3
and 7.5.2), we used a very simple m-out-of-m secret-sharing scheme (i.e., a bit was
shared by m random bits that sum up to the value of the secret bit). Here, we use the
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more sophisticated (t + 1)-out-of-m secret-sharing scheme of Construction 7.5.35 (i.e.,
a bit is shared by the values of a random degree t polynomial with free term that equals
the value of the secret bit). Thus, our focus is on propagating these types of shares
through the circuit, and on doing so via a t-private computation. Again, the heart of the
construction is performing the propagation through a single multiplication gate.

Let us clarify this discussion by being more specific about the details. We fix some
prime p > m and consider polynomials of degree t over GF(p).86 Recall that the value
of such a polynomial at t + 1 arbitrary (known) points allows for recovery of the
polynomial and specifically its free term. On the other hand, the value of a random
(degree t) polynomial at t arbitrary (known) points does not reveal information about
the value of the free term of the polynomial. Thus, each party will share each of its input
bits with all other parties, by uniformly selecting a random (degree t) polynomial with
free term equal to the value of this bit, and hand to Party i the value of this polynomial
at point i .

Suppose that the parties hold the shares of two GF(p) values and wish to derive
shares of the sum of these values, where all arithmetic operations refer to GF(p). Then
letting each party add the two shares it holds yields the desired shares. That is, suppose
that the values u and v are shared using the (degree t) polynomials a(·) and b(·), such
that u = a(0) and v = b(0), and Party i holds the shares ai = a(i) and bi = b(i). Then
the ai + bi ’s are shares of a polynomial c(·) that has free term u + v (i.e., letting c(z) =
a(z) + b(z), it holds that c(i) = ai + bi and c(0) = u + v). Furthermore, the degree of
c(·) is at most t . Thus, we are able to propagate shares through an addition gate, and
we do so in a totally private manner (because only local computations are used).

It is appealing to try to do the same in case of multiplication (rather than addition).
Indeed, the entire argument goes through, except that the corresponding polynomial
c may have a degree greater than t (but not more than 2t). Thus, we need a more
sophisticated way of propagating shares through multiplication gates. Using the same
notations (as previously), we consider the following (randomized) process:

Construction 7.6.3 (t-private m-party protocol for propagating shares through a mul-
tiplication gate): Recall that t < m/2, and so 2t ≤ m − 1.

Input: Party i enters with input (ai , bi ), where ai = a(i) and bi = b(i) for degree t
polynomials a(·) and b(·).

The protocol itself proceeds as follows:

1. For every i , Party i (locally) computes ci ← ai · bi .

Indeed, these ci ’s are the values of the polynomial c(z)
def= a(z) · b(z) at the corre-

sponding i’s, and c(0) = u · v. However, c may have degree 2t (rather than at most t).

2. For every i , Party i shares ci with all other parties. That is, Party i selects uniformly
a polynomial qi of degree t such that qi (0) = ci , and sends qi ( j) to Party j , for
every j .

86 Here and in the following, when we say a degree d polynomial, we actually mean a polynomial of degree at
most d.
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7.6* PERFECT SECURITY IN THE PRIVATE CHANNEL MODEL

Motivation: Extrapolation of the ci ’s yields the value of c(0) = u · v. In the following
we will let each party perform the corresponding operation on the shares it obtained.
We will show that this will yield shares with the desired properties.

Recall that by the Extrapolation Theorem, there exist constants γ1, ..., γm such that
for every polynomial q of degree m − 1 it holds that

q(0) =
m∑

i=1

γi q(i) (7.64)

(Specifically, γi = −(1)i+1 · (m
i

)
.)

3. For every j , Party j (locally) computes d j ← ∑m
i=1 γi qi ( j), where γ1, ..., γm are

the extrapolation constants satisfying Eq. (7.64), and qi ( j) is the share that Party j
received from Party i in Step 2.

Output: Party i exits with output di .

It is quite clear that Construction 7.6.3 yields no information about u and v to any
coalition of t (or fewer) parties. The reason is that the only new information obtained
by t parties (i.e., t shares of each of the other ci ’s) yields no information about the
polynomials a and b (because it yields no information about these ci ’s). It is also clear
that every sequence of t of the di ’s is uniformly distributed (because the values of the
qi ’s at any t points are uniformly distributed). What is less clear is that the di ’s are indeed
admissible shares of the desired value (i.e., di = d(i) for some degree t polynomial d
having free term u · v). This fact will be established next.

Fact 7.6.4: Let the di ’s be defined as in Construction 7.6.3, and t < m/2. Then there
exists a degree t polynomial, d, such that d(0) = a(0) · b(0) and d(i) = di for i =
1, ..., m.

Proof: Consider the formal polynomial q(z)
def= ∑m

i=1 γi qi (z), where the qi ’s are the
polynomials selected at Step 2. Since each qi has degree t , this holds also for q. For
every j = 1, ..., m, by Step 3, we have d j = ∑m

i=1 γi qi ( j) = q( j), where the second
equality is due to the definition of q. Finally, note that

q(0) =
m∑

i=1

γi qi (0)

=
m∑

i=1

γi ci

=
m∑

i=1

γi · a(i) · b(i)

= a(0) · b(0)

where the second equality is by Step 2, the third equality is by Step 1, and the last
equality is by the Extrapolation Theorem (applied to the 2t ≤m − 1 degree polynomial
a(z) · b(z)).
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GENERAL CRYPTOGRAPHIC PROTOCOLS

Conclusion. Using Fact 7.6.4, for t < m/2, one can show (see Exercise 23)
that Construction 7.6.3 constitutes a t-private computation of the (partial) m-ary
functionality

((a(1), b(1)), ..., (a(m), b(m))) �→ (r (1), ..., r (m)) (7.65)

where a and b are degree t polynomials and r is a uniformly distributed degree t
polynomial with free term equal to a(0) · b(0). By a straightforward adaptation of
Construction 7.5.10 and its analysis, it follows that any m-ary functionality can be
t-privately reduced to Eq. (7.65). Finally, by using a suitable Composition Theorem,
we obtain:

Theorem 7.6.5: For t < m/2, any m-ary functionality is t-privately computable. Fur-
thermore, the emulation is perfect.

In contrast, very few m-ary functionalities are t-privately computable for t ≥ m/2.
In particular, the only m-ary Boolean-valued functions that are m/2-privately com-
putable are linear combinations of Boolean-valued functions of the individual inputs
(i.e., f (x1, ..., xm) = ∑m

i=1 ci f (i)(xi ) mod 2).

7.6.3. Security in the Malicious Model

In order to deal with the malicious model, we replace Construction 7.6.3 with a more
robust protocol that t-securely computes Eq. (7.65). In particular, the protocol should
withstand a possible modification of t of the inputs (which, in particular, may not fit the
domain of the functionality as partially defined earlier). This turns out to be possible,
provided t < m/3, and so we get:

Theorem 7.6.6: For t < m/3, any m-ary functionality is t-securely computable. Fur-
thermore, the emulation is perfect.

We briefly sketch the ideas that underlie the proof of Theorem 7.6.6. Let us first assume
that t < m/4, and note that Steps 2–3 of Construction 7.6.3 constitute a t-private
computation of the (partial) m-ary functionality

(c(1), ..., c(m)) �→ (r (1), ..., r (m)) (7.66)

where c is a degree 2t polynomial and r is a uniformly distributed degree t polyno-
mial with free term equal to c(0). We wish to t-securely compute Eq. (7.66). Let us
first consider the related task of t-securely computing c(0). Construction 7.5.10 sug-
gests that c(0) can be computed by extrapolation of the c(i)’s, and that extrapolation
is a linear function, which (as such) can be t-privately computed (see Exercise 20).
However, when some parties are malicious, simple extrapolation will fail. What we
need is a “robust extrapolation” procedure, which corresponds to error correction
of Reed-Solomon codes, which in turn is a linear function of the given sequence.
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7.7 MISCELLANEOUS

Specifically, this task is to find the free term of the unique degree 2t polynomial (i.e.,
c) that fits at least m − t of the inputs (i.e., the correct c(i)’s), and we can perform
this task in a t-secure manner. (The desired polynomial is indeed unique, because
otherwise we get two different degree 2t polynomials that agree on m − 2t ≥ 2t + 1
of the inputs.) Finally, observe that the parties can t-securely generate shares of a
random degree t polynomial with free term equal to zero. Combining the two linear
computations, one obtains the desired t-secure implementation of Eq. (7.66), provided
that t < m/4.

In order to handle the case m/4 ≤ t < m/3, we have to work directly with Eq. (7.65),
rather than with Eq. (7.66); that is, we use the fact that the parties actually hold the
shares of two degree t polynomials, rather than only the product of these shares (which
corresponds to shares of a degree 2t polynomial).

7.7. Miscellaneous

7.7.1.* Three Deferred Issues

In this section, we briefly discuss three important issues that were avoided (for the sake
of simplicity) in previous sections.

7.7.1.1. Partial Fairness, or On Exchanging Secrets

As commented upon in Section 7.2.3, in general, no two-party protocol can guarantee
perfect fairness; that is, it cannot be guaranteed that one party obtains its desired output
if and only if the other party obtains its own desired output. Intuitively, an adversary
may always abort at the first possible time at which it obtains its output, and this means
that one of the parties may obtain the desired output while the other party does not quite
get its own output. In fact, in the specific (two-party and multi-party) protocols that
we have presented, this phenomenon occurs in an extreme sense; that is, Party 1 gets
the output before any other party gains any knowledge regarding its own output. As
we will show, the severity of this phenomenon can be reduced (but, as shown in [65],
cannot be totally eliminated). That is, “partial fairness” (alas, not “perfect fairness”)
may be achieved in some sense. In the rest of this section, we focus on two-party pro-
tocols, but similar treatment can be applied to multi-party protocols (lacking an honest
majority).

A general framework for obtaining partial fairness consists of first computing shares
of both desired outputs, and next gradually revealing pieces of these shares, such that
a party reveals the next piece only if its counterpart has revealed the previous piece.
The parties should be able to verify the correctness of the revealed pieces, which can
be achieved by generating also commitments to these pieces (and asking the reveal-
ing party to also provide the corresponding decommitment information). Thus, for
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a functionality f , which without loss of generality satisfies | f1(x , y)| = | f2(x , y)|,
we may proceed in two stages:

1. The parties securely compute shares of the desired outputs of f . Specifically, the
parties securely compute the functionality

(x , y) �→ ((v1 ⊕ s1, s2, r1, c) , (s1, v2 ⊕ s2, r2, c))

where (v1, v2) ← f (x , y), the si ’s are uniformly distributed in {0, 1}|vi |, and
c ← Cr1⊕r2 (v1, v2), for uniformly distributed r1, r2 ∈ {0, 1}|v1,v2|2 . Note that at this
stage, each individual party obtains no knowledge of the desired outputs, but to-
gether they hold (verifiable) secrets (i.e., the vi ⊕ si ’s and si ’s) that yield both
outputs.

2. The parties gradually exchange the secrets that they hold. That is, Party 1 re-
veals pieces of s2 in exchange for pieces of s1 (revealed by Party 2), where one
piece of s2 is revealed per one piece of s1. The pieces are revealed by using
a secure computation of an adequate functionality. Suppose that Party i is sup-
posed to obtain the piece πi (si ), where πi may be a (predetermined) Boolean
function or a randomized process. Then the parties securely compute the func-
tionality that maps ((a1, a2, ρ1, γ1) , (b1, b2, ρ2, γ2)) to (π1(b1), π2(a2)) if γ1 =
γ2 = Cρ1⊕ρ2 (a1 ⊕ b1, a2 ⊕ b2) and to (λ, λ) otherwise. Indeed, each party en-
ters this secure computation with the input it has received in the first stage;
that is, Party 1 (resp., Party 2) enters with input (v1 ⊕ s1, s2, r1, c) (resp.,
(s1, v2 ⊕ s2, r2, c)).

The entire approach (and, in particular, the gradual exchange of secrets) depends
on a satisfactory definition of a piece of a secret. Such a definition should satisfy
two properties: (1) Given sufficiently many pieces of a secret, one should be able to
recover the secret, whereas (2) getting yet another piece of the secret contributes little
to the knowledge of the secret. We admit that we do not know of a definition (of a
piece of a secret) that is “uncontroversially satisfactory”; still, some suggestions (for
what these pieces of information may be) seem quite appealing. For example, consider
the randomized process π that maps the n-bit long secret σ1 · · · σn to the n-bit long
string τ1 · · · τn , such that τi = σi with probability 1

2 + ε and τi = 1 − σi otherwise, for
every i , independently.87 Then each piece carries O(nε2) bits of information, whereas
after seeing t such pieces of the secret, one can guess it with success probability at
least 1 − n · exp(−tε2), which for t = O(n/ε2) means practically obtaining the secret.
However, if Party 1 knows that s1 ∈ {0n , 1n}, whereas Party 2 only knows that s2 ∈
{0, 1}n , then π (s1) seems more meaningful to Party 1 than π (s2) is to Party 2. Is it really
so or is the proposed exchange actually fair? Note that things are even more complex
(than they seem), because the uncertainty of the parties is actually not information-
theoretic but rather computational.

87 An alternative randomized process π maps the n-bit string s to the random pair (r, b), such that r is uniformly
distributed in {0, 1}n and b ∈ {0, 1} equals the inner product (mod 2) of s and r with probability 1

2 + ε (and the
complementary value otherwise). In this case, each piece carries O(ε2) bits of information about s, whereas
after seeing O(n/ε2) such pieces, one practically obtains s.
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7.7 MISCELLANEOUS

7.7.1.2. The Adaptive Model

The definitions presented in Section 7.5.1 referred to adversaries, called non-adaptive,
that control a predetermined set of parties (which, of course, is not known to the honest
parties).88 In this section, we consider a stronger type of adversaries, called adaptive,
that can select the parties that they control as the execution proceeds. To demonstrate the
power of adaptive adversaries, consider an m-party protocol in which Party 1 uniformly
selects an m/3-subset J of the parties, publicizes J , and shares its own input with the
parties in J as a whole (i.e., it hands each Party j in J a random r j such that

∑
j∈J r j

equals its own input). Treating m as a parameter, this protocol (for computing nothing)
is secure with respect to Definition 7.5.4, essentially because for every set I of fewer
than m/2 parties, it holds that the probability that a random m/3-subset J is contained in
I is exponentially vanishing in m. However, an adaptive adversary that selects the set of
parties that it controls to equal the publicized set J obtains the input of Party 1 without
controlling it (and, hence, demonstrates that the protocol is insecure with respect to
adaptive adversaries).

In general, an adaptive adversary is one that can decide which parties to corrupt (i.e.,
seize control of) during the course of the execution of the protocol. Potentially, such an
adaptive decision may be more beneficial to the adversary than an oblivious decision.
Security in the adaptive model means that even an adaptive adversary cannot gain from
the execution more than what is unavoidable (even in the presence of a trusted party).

To actually define security with respect to adaptive adversaries, we should first define
an adequate ideal model, which corresponds to what is unavoidable when considering
adaptive adversaries. The crucial point is that even in an ideal-model execution, the
adversary may select the parties that it controls adaptively and based on the information
it has gathered so far (i.e., the inputs of the parties controlled so far).89 We stress that once
the adversary seizes control of a party, it learns the party’s initial input (and in the real
model, it also learns its random-tape and the messages that this party has received so far).

When defining the result of such an ideal-model execution, we also include in it
the set of parties that the adversary controls. The same is done when defining the
result of the real-model execution. Consequently, when we require that the ideal-model
execution can emulate the real-model execution, the executions must refer to the same
(or computationally indistinguishable) sets of controlled parties. Actually, one should
also consider the order in which the controlled parties are selected. To clarify this
discussion, let use consider an extension of Definition 7.5.4 (i.e., the second malicious
model) to the adaptive model.

Definition 7.7.1 (security in the malicious adaptive model, a sketch): Let f and � be
as in Section 7.5.1, and t be a bound on the number of parties that the adversary is
allowed to control (e.g., t < m/2).

88 The issue of adaptivity also arises, but in a more subtle way, in the case of two-party protocols.
89 The non-adaptive model can be viewed as a special case in which the adversary selects the parties that it controls

up-front, before learning any information regarding the current execution. But in general (in the adaptive model),
only the choice of the first controlled party is oblivious of the execution.
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� A t-adaptive ideal-model adversary is a randomized process that operates in up-to
t + 1 steps, which are partitioned into two main phases. In each step of the first
phase, based on the information available to it, the adversary decides whether to
seize control of another party or to move to the second phase. In the first case,
the adversary also determines the identity of the new party to be controlled and
obtains its local input. In the second case, the adversary invokes the trusted party
and supplies the trusted party with inputs of its choice corresponding to the parties
that it currently controls. At this point, the other parties supply the trusted party with
their original inputs, and the trusted party determines the corresponding outputs
and provides each party with its corresponding output, where the adversary receives
all the outputs of parties that it controls.90

In each step of the second phase, based on the information available to it, the
adversary decides whether or not to seize control of another party and if so also
determines its identity. Consequently, the adversary receives the local input and
output of this party. The joint computation in the ideal model, under an adaptive
adversary, is defined as the concatenation of the outputs of the uncontrolled parties,
the adversary’s output, and the sequence of the parties on which the adversary gained
control.

� A t-adaptive real-model adversary is a randomized strategy that corresponds to
an attack on the actual execution of the protocol. Such an adversary may adaptively
select up to t parties it wishes to control, obtain their current view of the execution
(as per Definition 7.2.1), and determine their actions. The adversary may select some
parties before the actual execution starts, some parties during the actual execution,
and some after it has terminated, as long as the total number of selected parties
is at most t . The joint computation in the real model, under an adaptive adver-
sary, is defined as the concatenation of the outputs of the uncontrolled parties, the
adversary’s output, and the sequence of the parties on which the adversary gained
control.

� Protocol � for computing f is called t-adaptively secure if for every feasi-
ble t-adaptive real-model adversary A, there exists a feasible t-adaptive ideal-
model adversary B, such that the joint computation in the real model under A
is computationally indistinguishable from the joint computation in the ideal model
under B.

We stress that in the real model, when the adversary seizes control of a party, it gets
the party’s view of the execution so far (where the party’s view is as defined in Defini-
tion 7.2.1). In particular, the protocol’s possible instructions to erase certain data does
not affect the party’s view, which always contains its input, its random-tape, and all
messages it has received so far. A weaker notion of security postulates that when the
adversary seizes control of a party, it only gets the current values of the party’s local
variables as determined by the protocol (in which case, the adversary does not obtain

90 As in Definition 7.5.4 (and unlike in Definition 7.5.2), the trusted party always answers all parties; that is, the
adversary has no option of preventing the trusted party from answering the honest parties. Recall that here the
trusted party is invoked (by the adversary) at the time the adversary decides that it controls enough parties.
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data that was explicitly erased by an instruction of the protocol). Our definitional choice
is motivated by the fear that the past values of the party’s local variables (i.e., the party’s
view as per Definition 7.2.1) may be available somewhere on its computing system; see
analogous discussion in Section 7.2.2 (regarding the semi-honest model).

Theorem 7.7.2 (main results regarding adaptively secure protocols):

1. In the private channel model, any m-ary functionality can be computed in a
�(m − 1)/3	-adaptively secure manner. Furthermore, as in Theorem 7.6.6, the em-
ulation is perfect.

2. Assuming the intractability of inverting RSA (or of the DLP), any m-ary function-
ality can be computed in a �(m − 1)/3	-adaptively secure manner, even when the
adversary can tap all communication lines.

Part 1 follows by extending the proof of Theorem 7.6.6, that is, by observing that the
protocols used toward proving the latter result are in fact adaptively secure. Proving
Part 2 is more problematic. In particular, a straightforward application of the pre-
compiler described in Section 7.5.3.1 seems to fail. The source of trouble is that standard
encryption schemes, which may be used to emulate private (point-to-point) channels
over ordinary (point-to-point) channels, effectively “commit” to the single value that
was sent (which is a problem because of messages sent between honest parties that
are later corrupted by the adversary). Intuitively, the solution is to use non-standard
encryption schemes (i.e., “non-committing” ones). The latter can be constructed using
trapdoor permutations with certain additional properties.

7.7.1.3. Reactive Systems

Our treatment so far has focused on functionalities that represent standard (multi-
party) computations, mapping (sequences of) inputs to (sequences of) outputs. A more
general treatment may refer to (multi-party) reactive systems that iteratively respond
to inputs presented from the outside. Furthermore, the functionalities of these reactive
systems may depend on a (global) state that they maintain and update. This global state
may not be known to any individual party (but is rather the concatenation of the local
states that the individual parties maintain and update). Thus, we view (multi-party)
reactive systems as iterating the following steps (for an a priori unbounded number of
times):91

� Parties are given inputs for the current iteration; that is, in the j-th iteration Party i is
given input x ( j)

i . In addition, there is a global state: The global state at the beginning of
the j-th iteration is denoted s( j), where the initial global state is empty (i.e., s(1) = λ).

� Depending on the current inputs and the global state, the parties are supposed to
compute outputs for the current iteration, as well as update the global state. That is,

91 As usual, the number of iterations (and the length of the inputs) must be polynomial in the security parameter.
Furthermore, the length of the global state (at any time) must also be polynomial in the security parameter.
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the outputs in iteration j are determined by the x ( j)
i ’s, for all i’s, and s( j). The new

global state, s( j+1), is determined similarly (i.e., also based on x ( j)
i ’s and s( j)).

As it is an abstraction, one may think of the global state as being held by a trusted
party. In other words, reactive systems are captured by reactive functionalities in
which the trusted party maintains a state and interacts with the actual parties in iter-
ations. Indeed, in each iteration, the trusted party obtains an input from each party,
responds (as directed by the reactive functionality) with corresponding outputs, de-
pending also on its state, and updates its state. Note that the latter formulation fits
a definition of an ideal model (for computing the reactive functionality), whereas a
(real-model) reactive protocol must emulate this augmented notion of a trusted party.
Thus, the reactive protocol should emulate the iterative computation of outputs while
maintaining the state of the imaginary trusted party. Indeed, it is natural to have the
real-model parties use a secret-sharing scheme in order to maintain the latter state
(such that the state remains unknown to individual parties and even to a bounded num-
ber of dishonest parties). In fact, we need to use a verifiable secret-sharing scheme (see
Section 7.5.5.1), because dishonest parties should be prevented from (illegally) modi-
fying the (system’s) state (except from the predetermined effect of the choice of their
own inputs).

This discussion suggests that the secure implementation of reactive functionalities
can be reduced to the secure implementation of ordinary (i.e., non-reactive) function-
alities. For example, we refer to security in the second malicious model, as defined
in Definition 7.5.4 (for ordinary functionalities). That is, we postulate that a major-
ity of the parties are honest and require that the dishonest parties cannot (effectively)
abort the execution. In such a case, we use a verifiable secret-sharing scheme in which
only a majority of the pieces yield the secret. Once a verifiable secret-sharing scheme
is fixed and the (system’s) state is shared using it, the computation of each iteration
of the reactive system can be cast as an ordinary functionality. The latter maps se-
quences of the form ((x1, s1), ..., (xm , sm)), where xi denotes the current input of Party i
and si denotes its share of the current state, to the sequence ((y1, r1), ..., (ym , rm)),
where yi denotes the next output of Party i and ri denotes its share of the updated
state.

We conclude that the results regarding secure computation of ordinary (i.e., non-
reactive) computations can be extended to reactive systems (thus obtaining secure
implementations of the latter).

7.7.2.* Concurrent Executions

A natural problem regarding cryptographic protocol is whether (or to what extent) they
preserve their security when executed concurrently. The problems that arise with respect
to the preservation of zero-knowledge (see Section C.5.1) are merely an indication to
the type of problems that we may encounter. The lesson to be learned (even from that
brief discussion) is that an adversary attacking several concurrent executions of the
same protocol may be able to cause more harm than by attacking a single execution
(or several sequential executions) of the same protocol.
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7.7.2.1. Definitions

One may say that a protocol is concurrently secure if whatever the adversary may ob-
tain by invoking and controlling parties in real concurrent executions of the protocol is
also obtainable by a corresponding adversary that controls corresponding parties mak-
ing concurrent functionality calls to a trusted party (in a corresponding ideal model).
More generally, one may consider concurrent executions of many sessions of several
protocols, and say that a set of protocols is concurrently secure if whatever the ad-
versary may obtain by invoking and controlling such real concurrent executions is also
obtainable by a corresponding adversary that invokes and controls concurrent calls to
a trusted party (in a corresponding ideal model). Consequently, a protocol is said to be
secure with respect to concurrent compositions if adding this protocol to any set of
concurrently secure protocols yields a set of concurrently secure protocols.

A much more appealing approach has been recently suggested by Canetti [51].
Loosely speaking, he suggests considering a protocol to be secure (hereafter referred
to as environmentally secure)92 only if it remains secure when executed within any
(feasible) environment. The notion of an environment is a generalization of the notion
of an auxiliary-input; in a sense, the environment is an auxiliary oracle (or rather a
state-dependent oracle) that the adversary may access. In particular, the environment
may represent other executions of various protocols that are taking place concurrently
(to the execution that we consider). We stress that the environment is not supposed to
assist the proper execution of the protocol (and, in fact, honest parties merely obtain
their inputs from it and return their outputs to it). In contrast, potentially, the envi-
ronment may assist the adversary in attacking the execution. Following the simulation
paradigm, we say that a protocol is environmentally secure if any feasible real-model
adversary attacking the protocol, with the assistance of any feasible environment, can
be emulated by a corresponding ideal-model adversary that uses the same environment,
while making similar queries to the environment. In the following formulation, the en-
vironment is implemented by a (non-uniform) family of polynomial-size circuits, and
is also responsible for providing the parties with inputs and for trying to distinguish the
real-model execution from the ideal-model execution.

Definition 7.7.3 (Environmentally Secure Protocols, a rough sketch): Let f be an m-
ary functionality and � be an m-party protocol, and consider the following real and
ideal models:

� As usual, a real-model adversary controls some of the parties in an execution of
the protocol �. In addition to executing �, all parties can communicate with an
arbitrary interactive process, which is called an environment. Honest parties only
communicate with the environment before the execution starts and when it ends;
they merely obtain their inputs from the environment and pass their outputs to it.
In contrast, dishonest parties (controlled by the adversary) may communicate freely
with the environment and do so concurrently with the entire execution of �.

92 The term used in [51] is Universally Composable, but we believe that a reasonable sense of “universal compos-
ability” is only a corollary of the suggested definition.

753

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.004
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:15, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.004
https:/www.cambridge.org/core


GENERAL CRYPTOGRAPHIC PROTOCOLS

� An ideal-model adversary controls some of the parties in an ideal computation
assisted by a trusted party that behaves according to the functionality f . In addition,
all parties can communicate with an environment (as in the real model). Indeed,
the dishonest parties may communicate extensively with the environment before and
after their single communication with the trusted party, whereas the honest parties
merely obtain their inputs from the environment and pass their outputs to it.

We say that � is an environmentally secure protocol for computing f if for ev-
ery probabilistic polynomial-time real-model adversary A there exists a probabilistic
polynomial-time ideal-model adversary B, such that for any subset I ⊂ [m] of ade-
quate cardinality,93 no family of polynomial-size circuits E = {En}n∈N can distinguish
the case in which it interacts with parties in the real-model execution of � under
adversary (I , A) from the case in which it interacts with parties in the ideal-model
computation of f under adversary (I , B). Schematically,

{ideal f, I , B(1n ), En }n∈N

c≡ {real�, I , A(1n ), En }n∈N

where ideal f, I , B(1n ), En (resp., real�, I , A(1n ), En ) denotes the output of En after interacting
with the ideal-model (resp., real-model) execution under (I , B) (resp., (I , A)).

As hinted earlier, the environment may account for other executions of various protocols
that are taking place concurrently with the main execution being considered. Defini-
tion 7.7.3 implies that such environments cannot distinguish the real execution from an
ideal one. This means that anything that the real-model adversary gains from the exe-
cution of the protocol and any environment (representing other concurrent executions)
can also be obtained by an adversary operating in the ideal model and having access to
the same environment. Thus, each single execution of an environmentally secure pro-
tocol can be replaced by an ideal oracle call to the corresponding functionality, without
affecting the other concurrent executions. Furthermore, one can simultaneously replace
all these concurrent executions by ideal oracle calls and use a hybrid argument to show
that the behavior is maintained. (One needs to use the fact that a single replacement does
not affect the other concurrent executions, even in case some of the other executions
are in the real model and the rest are in the ideal model.) It follows that environmentally
secure protocols are secure with respect to concurrent compositions [51]. We wonder
whether the reverse direction holds.

7.7.2.2. Constructions

The main positive result currently known is that environmentally secure protocols
for any functionality can be constructed for settings in which more than two-thirds
of the active parties are honest (cf. [51]). This holds unconditionally for the private-
channel model and under standard assumptions (e.g., allowing the construction of
public-key encryption schemes) for the standard model (i.e., without private channel).

93 Thus, the definition should actually specify an additional parameter bounding the number of parties that may
be controlled by the adversary.
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The immediate consequence of this result is that general environmentally secure multi-
party computation is possible, provided that more than two-thirds of the parties are
honest.

In contrast, general environmentally secure two-party computation is not possible
(in the standard sense).94 Still, one can salvage general environmentally secure two-
party computation in the following reasonable model: Consider a network that contains
servers that are willing to participate (as “helpers,” possibly for a payment) in compu-
tations initiated by a set of (two or more) users. Now, suppose that two users wishing to
conduct a secure computation can agree on a set of servers such that each user believes
that more than two-thirds of the servers (in this set) are honest. Then, with the active
participation of this set of servers, the two users can compute any functionality in an
environmentally secure manner.

Another reasonable model where general environmentally secure two-party com-
putation is possible is the shared random-string model [59]. In this model, all parties
have access to a universal random string (of length related to the security parameter).
We stress that the entity trusted to post this universal random string is not required to
take part in any execution of any protocol, and that all executions of all protocols may
use the same universal random string.

7.7.3. Concluding Remarks

In this chapter, we have presented a host of definitions of security for multi-party
protocols (especially for the case of more than two parties). Furthermore, some of
these definitions are incomparable to others (i.e., they neither imply the others nor are
implied by them), and there seems to be no single definition that may be crowned as
the central one.

For example, as stated in Section 7.5.1.3, the security definitions for the two ma-
licious (multi-party) models (i.e., Definitions 7.5.3 and 7.5.4) are incomparable and
there is no generic reason to prefer one over the other. Actually, one could formulate a
natural definition that implies both Definitions 7.5.3 and 7.5.4. We refer to waiving the
bound on the number of dishonest parties in Definition 7.5.4 (or, equivalently, eliminat-
ing the abort as an admissible option in the ideal model underlying Definition 7.5.3).
That is, the resulting definition is free of the annoying restrictions (or provisions) that
were introduced in each of the previous definitions. The “only” problem with the re-
sulting definition is that it cannot be satisfied (in general), whereas each of the previous
definitions could be satisfied. Thus, for the first time in this work, we have reached
a situation in which a natural (and general) definition cannot be satisfied, and we are
forced to choose between two weaker alternatives, where each of these alternatives car-
ries fundamental disadvantages (beyond the fact that security holds only with respect
to probabilistic polynomial-time adversaries).

In general, the current chapter carries a stronger flavor of compromise (i.e., recog-
nizing inherent limitations and settling for a restricted meaningful goal) than previous

94 Of course, some specific two-party computations do have environmentally secure protocols. See [51] for several
important examples (e.g., key exchange).
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chapters. In contrast to the impression given in other parts of this work, it is now obvious
that we cannot get all that we may want. Instead, we should study the alternatives and
go for the one that best suits our real needs.

Indeed, as stated in the preface, the fact that we can define a cryptographic goal
does not mean that we can satisfy it as defined. In case we cannot satisfy the initial
definition, we should search for acceptable relaxations that can be satisfied. These
relaxations should be defined in a clear manner so that it would be obvious what
they achieve and what they fail to achieve. Doing so will allow a sound choice of
the relaxation to be used in a specific application. That is, the choice will have to be a
circumstantial rather than a generic one. This seems to be a good point at which to end the
current work.

A good compromise is one in which
the most important interests of all parties are satisfied.

Adv. Klara Goldreich-Ingwer (1912–2004)

7.7.4. Historical Notes

The main results presented in this chapter (i.e., Theorems 7.4.1 and 7.5.15) are due
to Yao [191] and to Goldreich, Micali, and Wigderson [117, 118], treating the two-
party and multi-party cases, respectively. Unfortunately, the original papers do not
provide a satisfactory presentation of these results. In particular, these papers lack
adequate definitions of security (which were developed only later) and provide only
rough sketches of the constructions and no proofs of their security. Still, the conference
version of [117] provides a rough sketch of the compilation of protocols for the semi-
honest model into protocols for the malicious model, by using zero-knowledge proofs
(which are the main focus of [117]) to “force” malicious parties to behave in a semi-
honest manner. Yao’s work [191] presents a construction that can be used to derive
two-party protocols for privately computing any desirable functionality, whereas the
second paper of Goldreich et. al. [118] presents a different construction for the multi-
party case.

Our presentation reverses the chronological order (in which these results were dis-
covered). Firstly, our treatment of the two-party case is derived, via some degeneration,
from the treatment of the multi-party case (in [117, 118]). Secondly, we start by treating
the semi-honest models and only later compile protocols for this model into protocols
for the malicious models. We note that (following [118]) our presentation of the main
protocols is essentially symmetric, whereas Yao’s original protocol for the two-party
case [191] is asymmetric (with respect to the two parties). The latter asymmetry has its
own merits as demonstrated in [27, 165, 143].

In treating the semi-honest model, we follow the framework of Goldreich, Micali,
and Wigderson [118], while adapting important simplifications due to [129] and [120].
In presenting the “semi-honest to malicious” compilers (or the paradigm of “forcing”
semi-honest behavior), we follow the outline provided in [117, FOCS Version, Sec. 4]
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and [118, Sec. 5]. We comment that the original sources (i.e., [117, 118]) are very terse,
and that full details were only provided in [107]. Our treatment differs from [107] in
using a higher level of modularity, which is supported by composition theorems for the
malicious models.

As stated earlier, a satisfactory definitional treatment of secure multi-party compu-
tation was provided after the presentation of the constructions of [117, 118, 191]. The
basic approach was developed by Micali and Rogaway [157] and Beaver [10, 11],95 and
reached maturity in Canetti’s work [50], which provides a relatively simple, flexible,
and comprehensive treatment of the (basic) definitions of secure multi-party com-
putation. In particular, the composition theorems that we use are essentially taken
from [50].

A variety of cryptographic tools is used in establishing the main results of this chapter.
Firstly, we mention the prominent role of Oblivious Transfer in the protocols developed
for the semi-honest model.96 An Oblivious Transfer protocol was first suggested by
Rabin [172], but our actual definition and implementation follow the ideas of Even,
Goldreich, and Lempel [84] (as further developed in the proceedings version of [117]).
Several ingredients play a major role in the compilation of protocols secure in the semi-
honest model into generally secure protocols (for the malicious models). These include
commitment schemes, zero-knowledge proofs-of-knowledge, verifiable secret sharing
(introduced by Chor, Goldwasser, Micali, and Awerbuch [63]), and secure coin-flipping
(introduced by Blum [37]).

The Private Channel Model. In contrast to the bulk of this chapter (as well as the
bulk of the entire work), the private channel model (treated in Section 7.6) allows
the presentation of results that do not rely on intractability assumptions. These re-
sults (e.g., Theorem 7.6.6) were obtained by Ben-Or, Goldwasser, and Wigderson [34]
and Chaum, Crépeau, and Damgård [62]. These works were done after the results of
Yao [191] and Goldreich, Micali, and Wigderson [117, 118] were known, with the ex-
plicit motivation of obtaining results that do not rely on intractability assumptions. Our
presentation is based on [34] (cf. [97]). The essential role of the bound on the number of
dishonest parties (even in the semi-honest model) was studied in [64] and subsequent
works.

7.7.5. Suggestions for Further Reading

As hinted, Yao’s alternative treatment of the two-party case offers some advantages
over the treatment presented in Section 7.3. A sketch of Yao’s construction is provided
in Section 7.1.3.2. For more details, see [177].

95 The approach of Goldwasser and Levin [121] is more general: It avoids the definition of security (with respect
to a given functionality) and defines instead a notion of protocol robustness. Loosely speaking, a protocol is
robust if whatever an arbitrary malicious adversary can obtain by attacking it can also be obtained by a very
benign adversarial behavior.

96 Subsequent results by Kilian [137] further demonstrate the importance of Oblivious Transfer in this context.
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The aforementioned results were originally obtained using protocols that use a
polynomial number of rounds. In some cases, subsequent works obtained secure
constant-round protocols (e.g., in the case of multi-party computations with honest
majority [27], and in the case of two-party computations allowing abort [143]).

We have mentioned (e.g., in Section 7.7.1.1) the impossibility of obtaining fairness
in secure computations without an honest majority. These statements are backed by the
impossibility of implementing a fair two-party coin-toss, as proven in [65].

We have briefly discussed the notion of adaptive adversaries. A more detailed dis-
cussion of the definitions is provided in [50], which builds on [49]. For a proof of
Theorem 7.7.2, the reader is referred to [49, 53]. For a study of adaptive versus non-
adaptive security, the reader is referred to [52].

Our treatment of multi-party protocols assumes a synchronous network with point-
to-point channels between every pair of parties. Results for asynchronous communi-
cation and arbitrary networks of point-to-point channels were presented in [33, 49]
and [78], respectively.

General secure multi-party computation in a model of transient adversarial behavior
was considered in [166]. In this model, the adversary may seize control of each party
during the protocol’s execution, but can never control more than (say) 10 percent of the
parties at any point in time. We comment that schemes secure in this model were later
termed “proactive” (cf., [57]).

Whenever we have restricted the adversary’s control of parties, we have done so by
bounding the cardinality of the set of controlled parties. It is quite natural to consider
arbitrary restrictions on the set of controlled parties (i.e., that this set belongs to a
family of sets against which security is guaranteed). The interested reader is referred
to [131].

For further discussion of Byzantine Agreement, see any standard textbook on Dis-
tributed Computing (e.g., [3, 147]). We mention that whereas plain m-party Byzantine
Agreement can tolerate at most �(m − 1)/3	 malicious parties, Authenticated Byzan-
tine Agreement can tolerate any number of malicious parties (see Construction 7.5.17,
which follows [80]). The problems arising when composing Authenticated Byzantine
Agreement are investigated in [144].

7.7.6. Open Problems

Recall that by Theorem 7.5.12, one can privately reduce any functionality to Oblivious
Transfer. Furthermore, the compilation of protocols that are secure in the semi-honest
model into protocols that are secure in the malicious models only requires one-way
functions and private channels, whereas the latter can be emulated using secure com-
munication protocols (e.g., secure public-key encryption schemes). Since Oblivious
Transfer implies the existence of the latter (see Exercise 7), general secure computa-
tion is reducible to Oblivious Transfer. Thus, determining the complexity assumptions
required for the implementation of Oblivious Transfer seems to be of key importance.
In particular, we have shown that Oblivious Transfer can be implemented using en-
hanced trapdoor permutations (see Proposition 7.3.6). We wonder whether the en-
hanced requirement can be omitted (i.e., whether ordinary trapdoor permutations may
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suffice).97 For further discussion of enhanced trapdoor permutations, see Section C.1
in Appendix C.

7.7.7. Exercises

Exercise 1: Oblivious sampling: Suppose that both parties hold a function (or circuit)
that defines a distribution in the natural way and wish to obtain a sample from
this distribution without letting any party learn the corresponding pre-image. Cast
this problem as one of securely computing a corresponding functionality, treating
differently the case in which the function (or circuit) is fixed and the case in which it
is given as input to both parties. Consider also the case in which only the first party
is to obtain the output.

Exercise 2: Oblivious signing: In continuation of Exercise 1, consider the case in
which the distribution to be sampled is determined by the inputs of both parties. For
example, consider the task of oblivious signing in which one party wishes to obtain
the signature of the second party to some document without revealing the document
to the signer (i.e., the document is the input of the first party, whereas the signing-key
is the input of the second party).

Exercise 3: Privacy and Correctness: Referring to the discussion that follows Defini-
tion 7.2.6, consider the following definitions of (partial) privacy and correctness (with
respect to malicious adversaries). Partial privacy is defined as a restriction of Defi-
nition 7.2.6 to the adversary’s component of the random variables real�, A(z)(x , y)
and ideal f, B(z)(x , y), whereas partial correctness coincides with a restriction of
Definition 7.2.6 to the honest party’s component of these random variables.

1. Show that both properties are implied by Definition 7.2.6, but that even their
combination does not imply Definition 7.2.6.

2. Why were both properties qualified by the term “partial”?

Guideline (Item 1): Note that computational indistinguishability of ensembles
of pairs implies computational indistinguishability of the ensembles resulting by
projection to each coordinate, but the converse does not necessarily hold.

Guideline (Item 2): This is related to the need to use the general formulation
of Definition 7.2.1 for randomized functionalities; see the discussion that follows
Definition 7.2.1.

Exercise 4: On the importance of the length convention: Show that if the equal-length
convention is omitted from definitions like Definition 7.2.1 and 7.2.6, then they
cannot be satisfied for many natural functionalities. That is, consider these definitions
when the ensembles are indexed by the set of all pairs of strings, rather than by the
set of pairs of equal-length strings.

97 Partial progress toward this goal is reported in Haitner’s work “Implementing Oblivious Transfer using collection
of dense trapdoor permutations” (proceedings of the first Theory of Cryptography Conference, 2004).
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Guideline: (Here, privacy and security refer to the notions obtained when
omitting the equal-length convention.) Show that the functionality (x , y) �→
( f (x , y), f (x , y)), where f (x , y)

def= 1 if |x | = |y| and f (x , y)
def= 0 otherwise, can-

not be privately computed. Show that (x , y) �→ (|y|, |x |) can be privately computed
but tthat he simple protocol in which Party 1 sends |x | to Party 2 (and Party 2 sends
|y| to Party 1) fails to securely compute it. Challenge: Try to show that the latter
functionality cannot be securely computed.

Exercise 5: Transitivity of privacy reductions: Show that if f is privately reducible to
f ′, and f ′ is privately reducible to f ′′, then f is privately reducible to f ′′. Note that
Theorem 7.3.3 is obtained as a special case (e.g., by setting f ′′ to be the identity
mapping).

Guideline: Generalize the proof of Theorem 7.3.3. Specifically, let � f | f ′
(resp.,

� f ′ | f ′′
) be an oracle-aided protocol for f (resp., f ′) using oracle f ′ (resp., f ′′).

Composing these two protocols, obtain and analyze the oracle-aided protocol � =
� f | f ′′

.

Exercise 6: Variants of Oblivious Transfer: In continuation of Section 7.3.2, consider
the following two variants of Oblivious Transfer.

1. For functions k, � : N → N, consider the extension of 1-out-of-k Oblivious Trans-
fer to k(n) secrets each of length �(n), where n is the security parameter.

2. For a function � : N → N, consider the Oblivious Transfer of a single �(n)-bit
long secret (denoted σ ) that is to be delivered with probability 1/2; that is, the
randomized functionality that maps (σ, λ) to (λ, σ ) with probability 1/2 and to
(λ, λ) otherwise.

Assuming that k and � are polynomially bounded and efficiently computable, present
privacy reductions between all these variants. Specifically, show a privacy reduction
of the extended 1-out-of-k Oblivious Transfer to the original 1-out-of-2 Oblivious
Transfer of bits, and between 1-out-of-2 Oblivious Transfer of �-bit long secrets and
Oblivious Transfer of a single �(n)-bit long secret.

Guideline: Note that you are asked only to present oracle-aided protocols that are
secure in the semi-honest model. The only non-obvious reduction is from 1-out-
of-2 Oblivious Transfer to single-secret Oblivious Transfer (OT), presented next.
The first party randomly selects r1, r2 ∈ {0, 1}�(n), and the parties invoke OT twice
where the first party inputs r1 in the first time and r2 in the second time. If the second
party wishes to obtain the i-th secret, for i ∈ {1, 2}, then it says OK if and only if
it has obtained ri but not r3−i . Otherwise, the parties repeat the experiment. Once
the second party says OK, the first party sends it the pair (σ1 ⊕ r1, σ2 ⊕ r2), where
the σ j ’s are the actual secrets.

Exercise 7: Oblivious Transfer implies secure communication protocols: A secure
communication protocol is a two-party protocol that allows the parties to com-
municate in secrecy even when the communication line is tapped by an adversary
(see Exercise 1 of Chapter 5). Show that any 1-out-of-2 Oblivious Transfer (with
security with respect to the semi-honest model) implies the existence of a secure

760

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.004
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:15, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.004
https:/www.cambridge.org/core


7.7 MISCELLANEOUS

communication protocol. Recall that the latter implies the existence of one-way
functions.

Guideline: To transmit a bit σ , the sender invokes the 1-out-of-2 Oblivious Transfer
with input (σ, 0), while the receiver sets its input to 1 and gets σ (i.e., the sender’s
first bit in the OT). Observe that “privacy with respect to the sender” implies that
(the sender and thus also) the adversary cannot distinguish the case where the
receiver enters 1 from the case where it enters 2. Likewise, “privacy with respect
to the receiver” implies that, in the (fictitious) case where the receiver enters 2, the
adversary (like the receiver) cannot tell whether the sender enters (0, 0) or (1, 0).
Thus, also in the (real) case where the receiver enters 1, the adversary cannot tell
whether the sender enters (0, 0) or (1, 0).

Exercise 8: Privately reducing OT to the functionality of Eq. (7.17) – (7.18): Show
that 1-out-of-2 Oblivious Transfer can be privately reduced to the functionality of
Eq. (7.17) – (7.18).

Guideline: Reduce 1-out-of-2 OT to ((s1, s2), (r1, r2)) �→ (λ, s1r1 + s2r2), and re-
duce the latter to Eq. (7.17) – (7.18).

Exercise 9: Alternative analysis of Construction 7.3.7: The said construction can be de-
coupled into two reductions. First, the functionality of Eq. (7.17) – (7.18) is reduced to
the deterministic functionality ((a1, b1, c1), (a2, b2)) �→ (λ, fa2,b2 (a1, b1, c1)), where
fa,b(x , y, z)

def= z + (x + a) · (y + b), and next the latter is reduced to OT4
1. Present

each of these reductions and prove that each is a privacy reduction.

Guideline: When analyzing the second reduction, use the fact that it is used to com-
pute a deterministic functionality and that thus, the simpler form of Definition 7.2.1
can be used.

Exercise 10: Some functionalities that are trivial to privately compute: Show that each
of the following types of functionalities has a trivial protocol for privately computing
it (i.e., using a single message):

1. Each deterministic functionality that only depends on the input of one party (i.e.,
(x , 1|x |) �→ ( f1(x), f2(x)) for arbitrary functions f1 and f2).

2. Each randomized functionality of the form (x , 1|x |) �→ (g(x), f (x , g(x))), where
g is any randomized process and f is a function.

Generalize these functionality types and their treatment to the multi-party case.

Exercise 11: In continuation of Exercise 10, show that all six functionalities introduced
in Section 7.4.3 are trivial to compute in a private manner.

Guideline: Note that the restricted authenticated-computation functionality of
Eq. (7.27) and the image-transmission functionality of Eq. (7.31) fit Item 1,
whereas the basic and augmented coin-tossing functionalities, as well as the input-
commitment functionality, fit Item 2. What about Eq. (7.33)?
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Exercise 12: On the difficulty of implementing more natural versions of authenticated
computation: Consider the functionality (α, β) �→ (λ , v), where v = f (α) if β =
h(α) and v = λ otherwise. We call this functionality the natural auth-comp.

1. Show that the equality functionality (i.e., (α, β) �→ (χ , χ ), where χ = 1 if β = α

and χ = 0 otherwise) is privately reducible to a special case of natural auth-comp.
2. Show that Oblivious Transfer is privately reducible to a special case of natural

auth-comp. Conclude that there can be no trivial protocol for privately computing
the latter (e.g., a protocol that privately computes natural auth-comp implies the
existence of one-way functions).

Guideline (Part 2): Privately reduce the single-secret (bit) version of Oblivious
Transfer to the special case of natural auth-comp in which h(α) (resp., f (α)) equals
the first (resp., second) bit of α. On input a secret bit σ , Party 1 sets its oracle-query
to 1σ and Party 2 sets its query to a uniformly selected bit (and so if the latter equals
h(1σ ) = 1, then Party 2 gets f (1σ ) = σ , and otherwise it gets λ).

Exercise 13: Transitivity of security reductions: Show that if f is securely reducible
to f ′, and f ′ is securely reducible to f ′′, then f is securely reducible to f ′′. Note
that Theorem 7.4.3 is obtained as a special case (e.g., by setting f ′′ to be the identity
mapping).

Guideline: See Exercise 5.

Exercise 14: Voting, Elections, and Lottery: Write a specification for some social pro-
cedure (e.g., voting, elections, or lottery), and cast it as a multi-party functional-
ity. Note that allowing appeals and various forms of interaction requires a reactive
functionality (see Section 7.7.1.3), which in turn can be reduced to a standard (non-
reactive) functionality.

Exercise 15: Threshold Cryptography: Loosely speaking, Threshold Cryptography is
concerned with allowing a set of parties to share the ability to perform certain
(cryptographic) operations (cf. [74, 96]). For example, suppose that we wish m
parties to hold shares of a signing-key (with respect to some signature scheme), such
that every t of these parties (but not fewer) can generate signatures to documents of
their choice. Cast this example as a multi-party functionality. (The same holds for
other versions of Threshold Cryptography.)

Exercise 16: Failure of a simple protocol for multi-party authenticated computation:
Consider the m-party oracle-aided protocol for computing Eq. (7.50) in which, for
i = 2, ..., m, Parties 1 and i invoke Eq. (7.33), with Party 1 entering the input α and
Party i entering the input βi . Show that this oracle-aided protocol does not constitute
a secure implementation of Eq. (7.50).

Exercise 17: Analysis of Shamir’s Secret-Sharing Scheme: Prove that Construc-
tion 7.5.35 satisfies the conditions of Definition 7.5.34.

Guideline: For every sequence (u1, v1), ..., (u�, v�), where the ui ’s are distinct,
consider the set of degree d ≥ � − 1 polynomials q that satisfy q(ui ) = vi for
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7.7 MISCELLANEOUS

i = 1, ..., �. Denoting the unknown coefficients of q by q j ’s, observe that each

equality q(ui ) = vi yields a linear equation for the q j ’s (i.e.,
∑d

j=0 u j
i · q j = vi ).

Furthermore, the equations are linearly independent, and so the solution space has
cardinality pd+1−�. Indeed, it is important to consider these equations as referring
to the variables q j ’s and the constants ui ’s, rather than the other way around.

Exercise 18: On the importance of comparable complexity in the definition of per-
fect security: Consider a modification of Definition 7.6.2 such that the ideal-model
adversary is not required to be of comparable complexity to the real-model adversary.
Present protocols that are deemed “secure” under the modified definition although
they are insecure under the original definition (as well as under Definition 7.5.4).

Guideline: Consider any protocol for computing the functionality
(x , 1|x |, ..., 1|x |) �→ ( f (x), f (x), ..., f (x)), where f is a one-way permutation.
Show that such a protocol, even the trivial (and bad) one in which Party 1 sends
its input (in the clear) to everybody, is deemed “secure” under the modified defini-
tion. In particular, an ideal-model adversary that does not control (resp., controls)
Party 1 can recover the input of Party 1 (resp., the substituted input of Party 1) in
exponential time by inverting f on any party’s output.

Exercise 19: Perfect security implies ordinary security: Show that Definition 7.6.2
implies Definition 7.5.4.

Guideline: Observe that if A is polynomial-time and B has complexity comparable
to A, then B is polynomial-time.

Exercise 20: Private computation of linear functions: For any fixed m-by-m matrix
M , over a finite field, show that the m-ary functionality x �→ x M can be m-privately
computed (as per Definition 7.6.1).

Guideline: For starters, consider first the functionality (x1, ..., xm) �→
(
∑m

i=1 ci xi , 0, ..., 0), where the ci ’s are fixed constants. Show that the following
protocol is m-private: First, each party shares its input with all other parties (by uni-
formly selecting shares that sum up to its input and sending a share to each party).
Next, each party computes the linear combination of the shares it has received.
Finally, each party sends the result to Party 1. Note that this computation would be
t-private if we were to use sharing via a degree t polynomial.

Exercise 21: Private generation of vectors in a linear subspace: For M as in Ex-
ercise 20, show that the m-ary functionality (λ, ..., λ) �→ r , such that r is a
random m-ary vector satisfying r M = 0m can be m-privately computed (as per
Definition 7.6.1).

Guideline: Consider the generating matrix, denoted G, of the subspace defined by
(the parity-check) matrix M . Suppose that G has rank k (i.e., G is a full-rank k-
by-m matrix). Show that, without loss of generality, the k-by-k left submatrix of G
equals the identity matrix. Privately reduce the generation task to the functionality
of Exercise 20.
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GENERAL CRYPTOGRAPHIC PROTOCOLS

Exercise 22: Alternative presentation of t-private computation of Eq. (7.66):

1. In continuation of Exercises 20 and 21, given M1 and M2, consider the m-ary
functionality x �→ x M1 + r , such that r is a random m-ary vector satisfying
r M2 = 0m . Show that this functionality can be m-privately computed.

2. Show that the functionality of Eq. (7.66) is a special case of the class of function-
alities considered in Item 1.

Guideline (Item 1): Note that privately computing each of the two terms of
x M1 + r , separately, will not do. Instead, one has to combine the ideas under-
lying these constructions. Defining G as in Exercise 21, our aim is to privately
compute x �→ x M1 + sG, where s is a uniformly distributed k-element long se-
quence. Assuming, without loss of generality, that the k-by-k left submatrix of G
is of full rank, we can rewrite the functionality as x �→ x M ′ + sG ′, where the k-
by-k left submatrix of G ′ is the identity matrix and the m-by-k left submatrix of
M ′ is the all-zero matrix. Recall that we know how to privately compute each of
the two terms of x M ′ + sG ′, separately; but again this will not do. Instead, we
combine these two computations so as not to yield information about the value of
the individual terms. As a warm-up, consider privately computing the functional-
ity ((x1, y1), ..., (xm , ym)) �→ (x1, y1, ..., xm , ym)M , where M is a fixed 2m-by-m
matrix.

Guideline (Item 2): Show that the computation of the free term of the polynomial
c can be captured by an adequate M1, whereas the generation of the values of a
random degree t polynomial with free-term equal to zero can be captured by an
adequate M2.

Exercise 23: Analysis of Construction 7.6.3: For t < m/2, show that Construc-
tion 7.6.3 constitutes a protocol that t-privately computes Eq. (7.65).

Guideline: Consider, without loss of generality, I = {1, ..., t}. The simulator is
given an input sequence ((a1, b1), ..., (at , bt )) and an output sequence (r1, ..., rt ),
and needs to emulate the messages that the parties in I obtain at Step 2. This can
be done by randomly selecting degree t polynomials q ′

j ’s that are consistent with
these sequences and letting the messages that Party i obtains equal q ′

1(i), ..., q ′
m(i).

Specifically, for i = 1, .., t , the polynomial q ′
i is selected like qi (i.e., uniformly

among the t polynomials having free-term ai bi ); for i = t + 1, .., m − 1, the poly-
nomial q ′

i is selected uniformly among all t polynomials, and q ′
m is selected such

that
∑m

j=1 γ j q ′
j (i) = ri holds for all i ∈ [t].
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