CHAPTER FIVE

Encryption Schemes

Up to the 1970s, Cryptography was understood as the art of building encryption
schemes, that is, the art of constructing schemes allowing secret data exchange over
insecure channels. Since the 1970s, other tasks (e.g., signature schemes) have been
recognized as falling within the domain of Cryptography (and even being at least as
central to Cryptography). Yet the construction of encryption schemes remains, and is
likely to remain, a central enterprise of Cryptography.

In this chapter we review the well-known notions of private-key and public-key
encryption schemes. More importantly, we define what is meant by saying that such
schemes are secure. This definitional treatment is a cornerstone of the entire area,
and much of this chapter is devoted to various aspects of it. We also present several
constructions of secure (private-key and public-key) encryption schemes. It turns out
that using randomness during the encryption process (i.e., not only at the key-generation
phase) is essential to security.

Organization. Our main treatment (i.e., Sections 5.1-5.3) refers to security under
“passive” (eavesdropping) attacks. In contrast, in Section 5.4, we discuss notions of se-
curity under active attacks, culminating in robustness against chosen ciphertext attacks.
Additional issues are discussed in Section 5.5.

Teaching Tip. We suggest to focus on the basic definitional treatment (i.e., Sections 5.1
and 5.2.1-5.2.4) and on the the feasibility of satisfying these definitions (as demon-
started by the simplest constructions provided in Sections 5.3.3 and 5.3.4.1). The
overview to security under active attacks (i.e., Section 5.4.1) is also recommended.
We assume that the reader is familiar with the material in previous chapters (and
specifically with Sections 2.2, 2.4, 2.5, 3.2-3.4, and 3.6). This familiarity is important
not only because we use some of the notions and results presented in these sections but
also because we use similar proof techniques (and do so while assuming that this is not
the reader’s first encounter with these techniques).

373

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

5.1. The Basic Setting

Loosely speaking, encryption schemes are supposed to enable private exchange of
information between parties that communicate over an insecure channel. Thus, the basic
setting consists of a sender, a receiver, and an insecure channel that may be tapped by
an adversary. The goal is to allow the sender to transfer information to the receiver,
over the insecure channel, without letting the adversary figure out this information.
Thus, we distinguish between the actual (secret) information that the receiver wishes to
transmit and the message(s) sent over the insecure communication channel. The former
is called the plaintext, whereas the latter is called the ciphertext. Clearly, the ciphertext
must differ from the plaintext or else the adversary can easily obtain the plaintext by
tapping the channel. Thus, the sender must transform the plaintext into a corresponding
ciphertext such that the receiver can retrieve the plaintext from the ciphertext, but the
adversary cannot do so. Clearly, something must distinguish the receiver (who is able
to retrieve the plaintext from the corresponding ciphertext) from the adversary (who
cannot do so). Specifically, the receiver knows something that the adversary does not
know. This thing is called a key.

An encryption scheme consists of a method of transforming plaintexts into cipher-
texts and vice versa, using adequate keys. These keys are essential to the ability to effect
these transformations. Formally, these transformations are performed by corresponding
algorithms: an encryption algorithm that transforms a given plaintext and an adequate
(encryption) key into a corresponding ciphertext, and a decryption algorithm that given
the ciphertext and an adequate (decryption) key recovers the original plaintext. Actu-
ally, we need to consider a third algorithm, namely, a probabilistic algorithm used to
generate keys (i.e., a key-generation algorithm). This algorithm must be probabilistic
(or else, by invoking it, the adversary obtains the very same key used by the receiver).
We stress that the encryption scheme itself (i.e., the aforementioned three algorithms)
may be known to the adversary, and the scheme’s security relies on the hypothesis that
the adversary does not know the actual keys in use.!

In accordance with these principles, an encryption scheme consists of three
algorithms. These algorithms are public (i.e., known to all parties). The two obvious
algorithms are the encryption algorithm, which transforms plaintexts into ciphertexts,
and the decryption algorithm, which transforms ciphertexts into plaintexts. By these
principles, it is clear that the decryption algorithm must employ a key that is known
to the receiver but is not known to the adversary. This key is generated using a third
algorithm, called the key-generator. Furthermore, it is not hard to see that the encryp-
tion process must also depend on the key (or else messages sent to one party can be
read by a different party who is also a potential receiver). Thus, the key-generation
algorithm is used to produce a pair of (related) keys, one for encryption and one for de-
cryption. The encryption algorithm, given an encryption-key and a plaintext, produces
a ciphertext that when fed to the decryption algorithm, together with the corresponding

! In fact, in many cases, the legitimate interest may be served best by publicizing the scheme itself, because this
allows an (independent) expert evaluation of the security of the scheme to be obtained.

374

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.1 THE BASIC SETTING

plaintext plaintext
ciphertext

X E ————————————————————————————————— D X

K K

Sender’s protected region Receiver’s protected region

ADVERSARY

The key K is known to both receiver and sender, but is unknown to
the adversary. For example, the receiver may generate K at random
and pass it to the sender via a perfectly-private secondary channel (not
shown here).

Figure 5.1: Private-key encryption schemes: an illustration.

decryption-key, yields the original plaintext. We stress that knowledge of the decryption-
key is essential for the latter transformation.

5.1.1. Private-Key Versus Public-Key Schemes

A fundamental distinction between encryption schemes refers to the relation between
the aforementioned pair of keys (i.e., the encryption-key and the decryption-key). The
simpler (and older) notion assumes that the encryption-key equals the decryption-key.
Such schemes are called private-key (or symmetric).

Private-Key Encryption Schemes. To use a private-key scheme, the legitimate parties
must first agree on the secret key. This can be done by having one party generate the
key at random and send it to the other party using a (secondary) channel that (unlike
the main channel) is assumed to be secure (i.e., it cannot be tapped by the adversary). A
crucial point is that the key is generated independently of the plaintext, and so it can be
generated and exchanged prior to the plaintext even being determined. Assuming that
the legitimate parties have agreed on a (secret) key, they can secretly communicate
by using this key (see illustration in Figure 5.1): The sender encrypts the desired
plaintext using this key, and the receiver recovers the plaintext from the corresponding
ciphertext (by using the same key). Thus, private-key encryption is a way of extending
a private channel over time: If the parties can use a private channel today (e.g., they
are currently in the same physical location) but not tomorrow, then they can use the
private channel today to exchange a secret key that they may use tomorrow for secret
communication.

A simple example of a private-key encryption scheme is the one-time pad. The
secret key is merely a uniformly chosen sequence of n bits, and an n-bit long ci-
phertext is produced by XORing the plaintext, bit-by-bit, with the key. The plaintext
is recovered from the ciphertext in the same way. Clearly, the one-time pad provides

375

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

plaintext plaintext
ciphertext

X E 77777777777777777777777777777777 D X

C=———+— ¢ d

Sender’s protected region Receiver’s protected region

ADVERSARY

The key-pair (e,d) is generated by the receiver, who posts the
encryption-key e on a public media, while keeping the decryption-key
d secret.

Figure 5.2: Public-key encryption schemes: an illustration.

absolute security. However, its usage of the key is inefficient; or, put in other words,
it requires keys of length comparable to the total length (or information contents) of
the data being communicated. By contrast, the rest of this chapter will focus on en-
cryption schemes in which rn-bit long keys allow for the secure communication of
data having an a priori unbounded (albeit polynomial in #) length. In particular, n-bit
long keys allow for significantly more than # bits of information to be communicated
securely.

Public-Key Encryption Schemes. A new type of encryption schemes emerged in
the 1970s. In these so-called public-key (or asymmetric) encryption schemes, the
decryption-key differs from the encryption-key. Furthermore, it is infeasible to find the
decryption-key, given the encryption-key. These schemes enable secure communication
without the use of a secure channel. Instead, each party applies the key-generation
algorithm to produce a pair of keys. The party (denoted P) keeps the decryption-key,
denoted dp, secret and publishes the encryption-key, denoted ep. Now, any party can
send P private messages by encrypting them using the encryption-key ep. Party P can
decrypt these messages by using the decryption-key dp, but nobody else can do so.
(See illustration in Figure 5.2.)

5.1.2. The Syntax of Encryption Schemes
We start by defining the basic mechanism of encryption schemes. This definition says

nothing about the security of the scheme (which is the subject of the next section).

Definition 5.1.1 (encryption scheme): An encryption scheme is a triple, (G, E, D),
of probabilistic polynomial-time algorithms satisfying the following two conditions:

1. Oninput 1", algorithm G (called the key-generator) outputs a pair of bit strings.
2. For every pair (e, d) in the range of G(1"), and for every a € {0, 1}*, algorithms E

376

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.1 THE BASIC SETTING

(encryption) and D (decryption) satisfy
Pr[D(d, E(e, a))=a] =1
where the probability is taken over the internal coin tosses of algorithms E and D.

The integer n serves as the security parameter of the scheme. Each (e, d) in the range
of G(1") constitutes a pair of corresponding encryption/decryption keys. The string
E(e, a)isthe encryption of the plaintext o € {0, 1}* using the encryption-key e, whereas
D(d, B) is the decryption of the ciphertext B using the decryption-key d.

We stress that Definition 5.1.1 says nothing about security, and so trivial (insecure)
algorithms may satisfy it (e.g., E(e,) &f & and D(, B) & B). Furthermore, Defini-
tion 5.1.1 does not distinguish private-key encryption schemes from public-key ones.
The difference between the two types is introduced in the security definitions: In a
public-key scheme the “breaking algorithm” gets the encryption-key (i.e., ¢) as an ad-
ditional input (and thus e # d follows), while in private-key schemes e is not given to
the “breaking algorithm” (and thus, one may assume, without loss of generality, that
e=d).

We stress that this definition requires the scheme to operate for every plaintext,
and specifically for plaintext of length exceeding the length of the encryption-key.
(This rules out the information theoretic secure “one-time pad” scheme mentioned
earlier.)

Notation. In the rest of this text, we write E.(«) instead of E(e, o) and D;(B) instead
of D(d, B). Sometimes, when there is little risk of confusion, we drop these subscripts.
Also, we let G{(1") (resp., G2(1")) denote the first (resp., second) element in the
pair G(1%). That is, G(1") = (G1(1"), G2(1")). Without loss of generality, we may
assume that |G(1")| and |G,(1")]| are polynomially related to n, and that each of these
integers can be efficiently computed from the other. (In fact, we may even assume that
|G1(1")] = |G2(1")| = n; see Exercise 6.)

Comments. Definition 5.1.1 may be relaxed in several ways without significantly harm-
ing its usefulness. For example, we may relax Condition (2) and allow a negligible de-
cryption error (e.g., Pr[Dy(E.(a))#a] < 27"). Alternatively, one may postulate that
Condition (2) holds for all but a negligible measure of the key-pairs generated by G(1").
At least one of these relaxations is essential for some suggestions of (public-key) en-
cryption schemes.

Another relaxation consists of restricting the domain of possible plaintexts (and
ciphertexts). For example, one may restrict Condition (2) to «’s of length £(n), where
£ : N— N is some fixed function. Given a scheme of the latter type (with plaintext
length £), we may construct a scheme as in Definition 5.1.1 by breaking plaintexts into
blocks of length () and applying the restricted scheme separately to each block. (Note
that security of the resulting scheme requires that the security of the length-restricted
scheme be preserved under multiple encryptions with the same key.) For more details
see Sections 5.2.4 and 5.3.2.

377

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

5.2. Definitions of Security

In this section we present two fundamental definitions of security and prove their equiv-
alence. The first definition, called semantic security, is the most natural one. Semantic
security is a computational-complexity analogue of Shannon’s definition of perfect pri-
vacy (which requires that the ciphertext yield no information regarding the plaintext).
Loosely speaking, an encryption scheme is semantically secure if it is infeasible to
learn anything about the plaintext from the ciphertext (i.e., impossibility is replaced
by infeasibility). The second definition has a more technical flavor. It interprets se-
curity as the infeasibility of distinguishing between encryptions of a given pair of
messages. This definition is useful in demonstrating the security of a proposed encryp-
tion scheme and for the analysis of cryptographic protocols that utilize an encryption
scheme.

We stress that the definitions presented in Section 5.2.1 go far beyond saying that it
is infeasible to recover the plaintext from the ciphertext. The latter statement is indeed a
minimal requirement for a secure encryption scheme, but we claim that it is far too weak
a requirement. For example, one should certainly not use an encryption scheme that
leaks the first part of the plaintext (even if it is infeasible to recover the entire plaintext
from the ciphertext). In general, an encryption scheme is typically used in applications
where even obtaining partial information on the plaintext may endanger the security
of the application. The question of which partial information endangers the security
of a specific application is typically hard (if not impossible) to answer. Furthermore,
we wish to design application-independent encryption schemes, and when doing so
it is the case that each piece of partial information may endanger some application.
Thus, we require that it be infeasible to obtain any information about the plaintext
from the ciphertext. Moreover, in most applications the plaintext may not be uniformly
distributed, and some a priori information regarding it may be available to the adversary.
We thus require that the secrecy of all partial information be preserved also in such a
case. That is, given any a priori information on the plaintext, it is infeasible to obtain
any (new) information about the plaintext from the ciphertext (beyond what is feasible
to obtain from the a priori information on the plaintext). The definition of semantic
security postulates all of this.

Security of Multiple Plaintexts. Continuing the preceding discussion, the definitions
are presented first in terms of the security of a single encrypted plaintext. However,
in many cases, it is desirable to encrypt many plaintexts using the same encryption-
key, and security needs to be preserved in these cases, too. Adequate definitions and
discussions are deferred to Section 5.2.4.

A Technical Comment: Non-Uniform Complexity Formulation. To simplify the ex-
position, we define security in terms of non-uniform complexity (see Section 1.3.3 of
Volume 1). Namely, in the security definitions we expand the domain of efficient adver-
saries (and algorithms) to include (explicitly or implicitly) non-uniform polynomial-size
circuits, rather than only probabilistic polynomial-time machines. Likewise, we make

378

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.2 DEFINITIONS OF SECURITY

no computational restriction regarding the probability distribution from which messages
are taken, nor regarding the a priori information available on these messages. We note
that employing such a non-uniform complexity formulation (rather than a uniform one)
may only strengthen the definitions, yet it does weaken the implications proven between
the definitions because these (simpler) proofs make free usage of non-uniformity. A
uniform-complexity treatment is provided in Section 5.2.5.

5.2.1. Semantic Security

A good disguise should not reveal the person’s height.
Shafi Goldwasser and Silvio Micali, 1982

Loosely speaking, semantic security means that nothing can be gained by looking
at a ciphertext. Following the simulation paradigm, this means that whatever can be
efficiently learned from the ciphertext can also be efficiently learned from scratch (or
from nothing).

5.2.1.1. The Actual Definitions

To be somewhat more accurate, semantic security means that whatever can be efficiently
computed from the ciphertext can be efficiently computed when given only the length
of the plaintext. Note that this formulation does not rule out the possibility that the
length of the plaintext can be inferred from the ciphertext. Indeed, some information
about the length of the plaintext must be revealed by the ciphertext (see Exercise 4).
We stress that other than information about the length of the plaintext, the ciphertext is
required to yield nothing about the plaintext.

In the actual definitions, we consider only information regarding the plaintext (rather
than information regarding the ciphertext and/or the encryption-key) that can be ob-
tained from the ciphertext. Furthermore, we restrict our attention to functions (rather
than randomized processes) applied to the plaintext. We do so because of the intuitive
appeal of this special case, and are comfortable doing so because this special case im-
plies the general one (see Exercise 13). We augment this formulation by requiring that
the infeasibility of obtaining information about the plaintext remain valid even in the
presence of other auxiliary partial information about the same plaintext. Namely, what-
ever can be efficiently computed from the ciphertext and additional partial information
about the plaintext can be efficiently computed given only the length of the plaintext and
the same partial information. In the definition that follows, the information regarding the
plaintext that the adversary tries to obtain is represented by the function f, whereas the
a priori partial information about the plaintext is represented by the function 4. The in-
feasibility of obtaining information about the plaintext is required to hold for any
distribution of plaintexts, represented by the probability ensemble { X, },cn.

Security holds only for plaintexts of length polynomial in the security parameter. This
is captured in the following definitions by the restriction |.X,| < poly(n), where “poly”
represents an arbitrary (unspecified) polynomial. Note that we cannot hope to provide
computational security for plaintexts of unbounded length or for plaintexts of length

379

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

that is exponential in the security parameter (see Exercise 3). Likewise, we restrict the
functions f and 4 to be polynomially-bounded, that is, | f(z)|, |h(z)] < poly(|z]).

The difference between private-key and public-key encryption schemes is manifested
in the definition of security. In the latter case, the adversary (which is trying to obtain
information on the plaintext) is given the encryption-key, whereas in the former case
it is not. Thus, the difference between these schemes amounts to a difference in the
adversary model (considered in the definition of security). We start by presenting the
definition for private-key encryption schemes.

Definition 5.2.1 (semantic security — private-key): An encryption scheme, (G, E, D),
is semantically secure (in the private-key model) if for every probabilistic polynomial-
time algorithm A there exists a probabilistic polynomial-time algorithm A’ such that
for every probability ensemble { X, },en, with | X,| < poly(n), every pair of polynomi-
ally bounded functions f, h : {0, 1}* — {0, 1}*, every positive polynomial p and all
sufficiently large n

PrA(1", E,an(Xa), 1%L A(1", X)) = £(17, X,)]

< Pr[4'(", 1% (17, X)) = £(17, X))+ —
p(n)

(The probability in these terms is taken over X, as well as over the internal coin tosses
of either algorithms G, E, and A or algorithm A'.)

We stress that all the occurrences of X, in each of the probabilistic expressions re-
fer to the same random variable (see the general convention stated in Section 1.2.1
in Volume 1). The security parameter 1” is given to both algorithms (as well as to the
functions / and) for technical reasons.? The function / provides both algorithms with
partial information regarding the plaintext X,,. Furthermore, / also makes the defini-
tion implicitly non-uniform; see further discussion in Section 5.2.1.2. In addition, both
algorithms get the length of X,,. These algorithms then try to guess the value (17, X,);
namely, they try to infer information about the plaintext .X,,. Loosely speaking, in a se-
mantically secure encryption scheme the ciphertext does not help in this inference task.
That is, the success probability of any efficient algorithm (i.e., algorithm A) that is given
the ciphertext can be matched, up to a negligible fraction, by the success probability of
an efficient algorithm (i.e., algorithm A’) that is not given the ciphertext at all.

Definition 5.2.1 refers to private-key encryption schemes. To derive a definition of
security for public-key encryption schemes, the encryption-key (i.e., G1(1")) should
be given to the adversary as an additional input.

2 The auxiliary input 17 is used for several purposes. First, it allows smooth transition to fully non-uniform
formulations (e.g., Definition 5.2.3) in which the (polynomial-size) adversary depends on n. Thus, it is good to
provide 4 (and thus also A4") with 1”. Once this is done, it is natural to allow also / and f to depend on 7. In
fact, allowing & and f to explicitly depend on n facilitates the proof of Proposition 5.2.7. In light of the fact
that 17 is given to both algorithms, we may replace the input part 14! by |.X,,|, because the former may be
recovered from the latter in poly(n)-time.

380

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.2 DEFINITIONS OF SECURITY

Definition 5.2.2 (semantic security — public-key): An encryption scheme, (G, E, D),
is semantically secure (in the public-key model) if for every probabilistic polynomial-
time algorithm A, there exists a probabilistic polynomial-time algorithm A’ such that
for every { X, }yen, £, h, p, and n as in Definition 5.2.1

Pr [A(lna Gl(ln)e EGl(l”)(Xn)’ lanls h(ln, Xn))zf(lns Xn)]

< Pr{4'(”, 1%, h(17, X)) = £(1", X,)] + —
p(n)

Recall that (by our conventions) both occurrences of G(1"), in the first probabilistic
expression, refer to the same random variable. We comment that it is pointless to give
the random encryption-key (i.e., G1(1")) to algorithm A4’ (because the task as well as
the main inputs of 4’ are unrelated to the encryption-key, and anyhow A’ could generate
a random encryption-key by itself).

Terminology. For sake of simplicity, we refer to an encryption scheme that is seman-
tically secure in the private-key (resp., public-key) model as a semantically secure
private-key (resp., public-key) encryption scheme.

The reader may note that a semantically secure public-key encryption scheme cannot
employ a deterministic encryption algorithm; that is, £.(x) must be a random variable
rather than a fixed string. This is more evident with respect to the equivalent Defini-
tion 5.2.4. See further discussion following Definition 5.2.4.

5.2.1.2. Further Discussion of Some Definitional Choices

We discuss several secondary issues regarding Definitions 5.2.1 and 5.2.2. The in-
terested reader is also referred to Exercises 16, 17, and 19, which present additional
variants of the definition of semantic security.

Implicit Non-Uniformity of the Definitions. The fact that / is not required to be
computable makes these definitions non-uniform. This is the case because both algo-
rithms are given (1", X,,) as auxiliary input, and the latter may account for arbitrary
(polynomially bounded) advice. For example, letting 2(1”,) = a,, € {0, 1}P°¥" means
that both algorithms are supplied with (non-uniform) advice (as in one of the com-
mon formulations of non-uniform polynomial-time; see Section 1.3.3). In general, the
function % can code both information regarding its main input and non-uniform ad-
vice depending on the security parameter (i.e., 2(1", x) = (h'(x), a,)). We comment
that these definitions are equivalent to allowing 4 and A4’ to be related families of non-
uniform circuits, where by related we mean that the circuits in the family 4" = {4, },,en
can be efficiently computed from the corresponding circuits in the family 4 = {4, },en.
For further discussion, see Exercise 9.

Lack of Computational Restrictions Regarding the Function f. We do not even
require that the function f be computable. This seems strange at first glance because
(unlike the situation with respect to the function 4, which codes a priori information

381

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

given to the algorithms) the algorithms are asked to guess the value of f (at a plaintext
implicit in the ciphertext given only to 4). However, as we shall see in the sequel (see
also Exercise 13), the actual technical content of semantic security is that the proba-
bility ensembles {(1", E(X,,), I'X:I, h(1", X))}, and {(17, E(1X:D), 11%1 (17, X))},
are computationally indistinguishable (and so whatever 4 can compute can also be
computed by 4"). Note that the latter statement does not refer to the function f, which
explains why we need not make any restriction regarding f.

Other Modifications of No Impact. Actually, inclusion of a priori information re-
garding the plaintext (represented by the function %) does not affect the definition of
semantic security: Definition 5.2.1 remains intact if we restrict 4 to only depend on
the security parameter (and so only provide plaintext-oblivious non-uniform advice).
(This can be shown in various ways; e.g., see Exercise 14.1.) Also, the function f can
be restricted to be a Boolean function having polynomial-size circuits, and the random
variable X, may be restricted to be very “dull” (e.g., have only two strings in its sup-
port): See proof of Theorem 5.2.5. On the other hand, Definition 5.2.1 implies stronger
forms discussed in Exercises 13, 17 and 18.

5.2.2. Indistinguishability of Encryptions

A good disguise should not allow a mother to distinguish her own children.
Shafi Goldwasser and Silvio Micali, 1982

The following technical interpretation of security states that it is infeasible to distinguish
the encryptions of two plaintexts (of the same length). That is, such ciphertexts are
computationally indistinguishable as defined in Definition 3.2.7. Again, we start with
the private-key variant.

Definition 5.2.3 (indistinguishability of encryptions — private-key): An encryption
scheme, (G, E, D), has indistinguishable encryptions (in the private-key model) if
Jfor every polynomial-size circuit family {C,}, every positive polynomial p, all suffi-
ciently large n, and every x, y € {0, 1}P°Y® (e |x| = |y]),

| Pr{Cu(Eg,an(x))=1] = Pr[Ca(Ec,an()=1] | < ﬁ

The probability in these terms is taken over the internal coin tosses of algorithms G
and E.

Note that the potential plaintexts to be distinguished can be incorporated into the circuit
C,. Thus, the circuit models both the adversary’s strategy and its a priori information:
See Exercise 11.

Again, the security definition for public-key encryption schemes is derived by adding
the encryption-key (i.e., G(1")) as an additional input to the potential distinguisher.

382

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.2 DEFINITIONS OF SECURITY

Definition 5.2.4 (indistinguishability of encryptions — public-key): An encryption
scheme, (G, E, D), has indistinguishable encryptions (in the public-key model) if for
every polynomial-size circuit family {C,}, and every p, n, x, and y as in Definition 5.2.3

1
| Pr[Cu(G1(1"), Eg,am(x))=1] = Pr[C,(G1(1"), Eg,an(»)=1]| < £

Terminology. We refer to an encryption scheme that has indistinguishable encryptions
in the private-key (resp., public-key) model as a ciphertext-indistinguishable private-
key (resp., public-key) encryption scheme.

Failure of Deterministic Encryption Algorithms. A ciphertext-indistinguishable
public-key encryption scheme cannot employ a deterministic encryption algorithm (i.e.,
E.(x) cannot be a fixed string). The reason is that for a public-key encryption scheme
with a deterministic encryption algorithm E, given an encryption-key e and a pair of
candidate plaintexts (x, y), one can easily distinguish E.(x) from E.(y) (by merely
applying E. to x and comparing the result to the given ciphertext). In contrast, in case
the encryption algorithm itself is randomized, the same plaintext can be encrypted
in many exponentially different ways, under the same encryption-key. Furthermore,
the probability that applying E. twice to the same message (while using independent
randomization in £,) results in the same ciphertext may be exponentially vanishing.
(Indeed, as shown in Section 5.3.4, public-key encryption schemes having indistin-
guishable encryptions can be constructed based on any trapdoor permutation, and these
schemes employ randomized encryption algorithms.)

5.2.3. Equivalence of the Security Definitions

The following theorem is stated and proven for private-key encryption schemes. A
similar result holds for public-key encryption schemes (see Exercise 12).

Theorem 5.2.5 (equivalence of definitions — private-key): 4 private-key encryption
scheme is semantically secure if and only if it has indistinguishable encryptions.

Let (G, E, D) be an encryption scheme. We formulate a proposition for each of the two
directions of this theorem. Each proposition is in fact stronger than the corresponding
direction stated in Theorem 5.2.5. The more useful direction is stated first: It asserts
that the technical interpretation of security, in terms of ciphertext-indistinguishability,
implies the natural notion of semantic security. Thus, the following proposition yields
a methodology for designing semantically secure encryption schemes: Design and
prove your scheme to be ciphertext-indistinguishable, and conclude (by applying the
proposition) that it is semantically secure. The opposite direction (of Theorem 5.2.5)
establishes the “completeness” of the latter methodology, and more generally asserts
that requiring an encryption scheme to be ciphertext-indistinguishable does not rule
out schemes that are semantically secure.

383

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Proposition 5.2.6 (useful direction: “indistinguishability” implies “security”): Sup-
pose that (G, E, D) is a ciphertext-indistinguishable private-key encryption scheme.
Then (G, E, D) is semantically secure. Furthermore, Definition 5.2.1 is satisfied by
using A' = M4, where M is a fixed oracle machine; that is, there exists a single M
such that for every A letting A" = M* will do.

Proposition 5.2.7 (opposite direction: “security” implies “indistinguishability”): Sup-
pose that (G, E, D) is a semantically secure private-key encryption scheme. Then
(G, E, D) has indistinguishable encryptions. Furthermore, the conclusion holds even
if the definition of semantic security is restricted to the special case satisfying the
following four conditions:

1. The random variable X, is uniformly distributed over a set containing two strings;

2. The value of h depends only on the length of its input or alternatively h(1", x) =
h'(n), for some h';

3. The function f is Boolean and is computable by a family of (possibly non-uniform)
polynomial-size circuits,

4. The algorithm A is deterministic.

In addition, no computational restrictions are placed on algorithm A’ (i.e., A’ can be
any function), and moreover A" may depend on {X,},en, h, f, and A.

Observe that the four itemized conditions limit the scope of the four universal quantifiers
in Definition 5.2.1, whereas the last sentence removes a restriction on the existential
quantifier (i.e., removes the complexity bound on 4”) and reverses the order of quanti-
fiers allowing the existential quantifier to depend on all universal quantifiers (rather than
only on the last one). Thus, each of these modifications makes the resulting definition
potentially weaker. Still, combining Propositions 5.2.7 and 5.2.6, it follows that a weak
version of Definition 5.2.1 implies (an even stronger version than) the one stated in
Definition 5.2.1.

5.2.3.1. Proof of Proposition 5.2.6

Suppose that (G, E, D) has indistinguishable encryptions. We will show that (G, E, D)
is semantically secure by constructing, for every probabilistic polynomial-time algo-
rithm A4, a probabilistic polynomial-time algorithm 4’ such that the condition in Defi-
nition 5.2.1 holds. That is, for every { X, }nen, f and h, algorithm A’ guesses f(1", X))
Sfrom (1", 151 h(1", X)) essentially as well as A guesses f(1", X,) from E(X,) and
(17, 141 h(1", X,,)). Our construction of 4" consists of merely invoking A on input
(17, E(1%h, 11X0 (17, X)), and returning whatever 4 does. That is, A" invokes 4
with a dummy encryption rather than with an encryption of X, (which A4 expects to
get, but 4’ does not have). Intuitively, the indistinguishability of encryptions implies
that 4 behaves nearly as well when invoked by 4’ (and given a dummy encryption) as
when given the encryption of X,,, and this establishes that 4’ is adequate with respect
to 4. The main issue in materializing this plan is to show that the specific formulation
of indistinguishability of encryptions indeed supports the implication (i.e., implies that

384

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.2 DEFINITIONS OF SECURITY

A guesses f (1", X,) essentially as well when given a dummy encryption as when given
the encryption of X,)). Details follow.

The construction of 4’: Let 4 be an algorithm that tries to infer partial information (i.e.,
the value (1", X,,)) from the encryption of the plaintext X, (when also given 17, 1%
and a priori information 4(1”, X,,)). Intuitively, on input E(e) and (17, 1'*, 2(1", @),
algorithm A tries to guess f(1”,). We construct a new algorithm, A’, that performs
essentially as well without getting the input £(«). The new algorithm consists of invok-
ing A4 on input Eg,»(11*) and (17, 11, (1", «)), and outputting whatever 4 does.
That is, on input (17, 1%/, h(1",)), algorithm A’ proceeds as follows:

1. A’ invokes the key-generator G (on input 1”), and obtains an encryption-key e <«
G(1M).

2. A’ invokes the encryption algorithm with key e and (‘“dummy”) plaintext 1%/, ob-
taining a ciphertext 8 < E (11%1).

3. A’ invokes 4 on input (17, B, 1'%/, h(1", @)), and outputs whatever 4 does.

Observe that 4’ is described in terms of an oracle machine that makes a single oracle
call to (any given) 4, in addition to invoking the fixed algorithms G and £ . Furthermore,
the construction of A" depends neither on the functions / and f nor on the distribution
of plaintexts to be encrypted (represented by the probability ensembles { X, },,cn). Thus,
A’ is probabilistic polynomial-time whenever 4 is probabilistic polynomial-time (and
regardless of the complexity of 4, f, and { X}, },en).

Indistinguishability of encryptions will be used to prove that A" performs essentially
as well as A. Specifically, the proof will use a reducibility argument.

Claim 5.2.6.1: Let A’ be as in the preceding construction. Then, for every { X, },en, f,
h, and p as in Definition 5.2.1, and all sufficiently large n’s

Pr{A(1", Eg,an(Xn), 1%L h(1", X)) = £ (1", X,)]

< Pr[4'(", 1% a1, X)) = f(1", X)) + -
p(n)

Proof: To simplify the notations, let us incorporate 1! into /,() & A(1”, &) and let

Jn(@) & f(1",). Also, we omit 1” from the inputs given to 4, shorthanding A(1", ¢, v)

by A(c, v). Using the definition of A’, we rewrite the claim as asserting
Pr [A(EGl(l")(Xn)’ hn(Xn))an(Xn)] (51)

< PrA(Eg,an(1™), by (X)) = fu(X)] + —
p(n)

Intuitively, Eq. (5.1) follows from the indistinguishability of encryptions. Otherwise,

by fixing a violating value of X,, and hardwiring the corresponding values of 4,(X},)

and f,(X,), we get a small circuit that distinguishes an encryption of this value of X,

from an encryption of 1%/, Details follow.

385

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Assume toward the contradiction that for some polynomial p and infinitely many
n’s Eq. (5.1) is violated. Then, for each such n, we have E[A,,(X,)] > 1/p(n), where

| PrlA(EG,an(x), ha(x)= fo(x)] = Pr [A(EG,an(1™), ha(x))= fu(x)]]

We use an averaging argument to single out a string x,, in the support of X,, such that
An(x,) = E[A,(X,)]: That is, let x,, € {0, 1}P°Y" be a string for which the value of
A,(+) is maximum, and so A,(x,) > 1/p(n). Using this x,, we introduce a circuit C,,,
which incorporates the fixed values f,(x,) and %,(x,), and distinguishes the encryption
of x,, from the encryption of 1"/, The circuit C, operates as follows. Oninput 8 = E (),
the circuit C,, invokes A(B, h,(x,)) and outputs 1 if and only if 4 outputs the value
fn(x,). Otherwise, C, outputs 0.

This circuit is indeed of polynomial size because it merely incorporates strings of
polynomial length (i.e., f,(x,)and 4, (x,)) and emulates a polynomial-time computation
(i.e., that of A). (Note that the circuit family {C,} is indeed non-uniform since its
definition is based on a non-uniform selection of x,,’s as well as on a hardwiring of
(possibly uncomputable) corresponding strings #,,(x,) and f,(x,).) Clearly,

Pr(Cu(Eg,an(@)=1] = Pr[A(Eg,an(), ha(xn))= fu(xn)] (5.2)
Combining Eq. (5.2) with the definition of A, (x,), we get
| Pr{Ca(Ecan(n)=1] = Pr{Cu(Ec,an(1™)=1]| = Au(xa)
1
> —
p(n)
This contradicts our hypothesis that £ has indistinguishable encryptions, and the claim
follows. O

Ayx) €

We have just shown that 4’ performs essentially as well as 4, and so Proposition 5.2.6
follows. M

Comments. The fact that we deal with a non-uniform model of computation allows
the preceding proof to proceed regardless of the complexity of f and 4. All that
our definition of C, requires is the hardwiring of the values of f and % on a single
string, and this can be done regardless of the complexity of f and 4 (provided that
| fnen)l, 1hn(xn)| < poly(n)).

When proving the public-key analogue of Proposition 5.2.6, algorithm A4’ is defined
exactly as in the present proof, but its analysis is slightly different: The distinguishing
circuit, considered in the analysis of the performance of 4’, obtains the encryption-key
as part of its input and passes it to algorithm A (upon invoking the latter).

5.2.3.2. Proof of Proposition 5.2.7

Intuitively, indistinguishability of encryption (i.e., of the encryptions of x, and y,) is
a special case of semantic security in which f indicates one of the plaintexts and 4
does not distinguish them (i.e., (17, z) = l iffz = x,, and A(1", x,) = A(1", y,,)). The
only issue to be addressed by the actual proof'is that semantic security refers to uniform

386

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.2 DEFINITIONS OF SECURITY

(probabilistic polynomial-time) adversaries, whereas indistinguishability of encryption
refers to non-uniform polynomial-size circuits. This gap is bridged by using the func-
tion 4 to provide the algorithms in the semantic-security formulation with adequate
non-uniform advice (which may be used by the machine in the indistinguishability of
encryption formulation).

The actual proof is by a reducibility argument. We show that if (G, E, D) has dis-
tinguishable encryptions, then it is not semantically secure (not even in the restricted
sense mentioned in the furthermore-clause of the proposition). Toward this end, we
assume that there exists a (positive) polynomial p and a polynomial-size circuit family
{C,}, such that for infinitely many #’s there exists x,,, y, € {0, 1}P°¥(so that

| Pr{Cu(Eg,an(x)=1] = Pr[Cu(Eg,an(v))=1]| > (5:3)

1
p(n)
Using these sequences of C,’s, x,,’s and y,’s, we define {X},},cn, f and 4 (referred to
in Definition 5.2.1) as follows:

e The probability ensemble {X),},cn is defined such that X, is uniformly distributed
over {x,, y»}.

e The (Boolean) function f is defined such that f(1”, x,) = 1 and f(1", y,) = 0, for
every n. Note that (1", X,) = 1 with probability 1/2 and equals 0 otherwise.

e The function % is defined such that (1", X,) equals the description of the circuit
C,. Note that (1", X,,) = C, with probability 1, and thus 4(1”, X,) reveals no
information on the value of X,.

Note that X;,, f, and % satisfy the restrictions stated in the furthermore-clause of the
proposition. Intuitively, Eq. (5.3) implies violation of semantic security with respect to
the X,,, h, and f. Indeed, we will present a (deterministic) polynomial-time algorithm
A that, given C, = h(1", X,,), guesses the value of f(1", X,,) from the encryption
of X,, and does so with probability non-negligibly greater than 1/2. This violates
(even the restricted form of) semantic security, because no algorithm, regardless of its
complexity, can guess f(1”, X},) with probability greater than 1/2 when only given
11%1 (because given the constant values 1+ and A(1", X,,), the value of £(1", X,) is
uniformly distributed over {0, 1}). Details follow.
Let us assume, without loss of generality, that for infinitely many #’s

1
Pr[Cu(E,anxn)=1] > Pr[Cu(Eg,ann)=1] +) (54
Claim 5.2.7.1: There exists a (deterministic) polynomial-time algorithm 4 such that
for infinitely many »’s
1
2p(n)

1
Pr [A(lna EG1(1”)(Xn)a 1|Xn|, h(ln, Xn)):f(ln, Xn)] > E +

Proof: The desired algorithm A4 merely uses C,, = A(1”, X,,) to distinguish £ (x,) from
E(y,), and thus given E(X,,) it produces a guess for the value of (1", X,,). Specifically,
oninput 8 = E(a)(where « is in the support of X,,) and (17, 1%/, k(1" «)), algorithm A4

387

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

recovers C, = h(1",), invokes C,, on input 8, and outputs 1 if C,, outputs 1 (otherwise,
A outputs 0).
def

It is left to analyze the success probability of A. Letting m = |x,| = |y,l, hu(a) =
h(1", &) and fy(@) & £(17, @), we have
Pr [A(ln» EG1(1")(Xn)» lanl, hn(Xn)):ﬂ(Xn)]

1
=5 Pr{4(1”, Eg,an(Xn), 1], hy(X,)= ful Xa) | X =x4]

1
+ 5 - PrAQ", Eg,an(X), 1, hy(Xo))= f(Xi) | Xn =]
1 n %]
= E : Pr [A(l) EGI(]")(X”)5 1 ! > Cn)z 1]
1
T PrA4(1", Eg,an(yn), 17", C,)=0]
1
=5 (Pr [Ca(EG,am@xa)=1] + 1 = Pr[Cu(Eq,an(m)=1])
1 n 1
2
2 2p(n)

where the inequality is due to Eq. (5.4). O

In contrast, as aforementioned, no algorithm (regardless of its complexity) can guess
f(1", X,)) with success probability above 1/2, when given only 1!+l and #(1", X,,). That
is, we have the following:

Fact 5.2.7.2: For every n and every algorithm A’

Pria'(”, 1", h(1", X,)= (1", X»)] < ! (5.5)

o

Proof: Just observe that the output of A’, on its constant input values 1", 1%l and
h(1", X,), is stochastically independent of the random variable f(1”, X,), which in
turn is uniformly distributed in {0, 1}. Eq. (5.5) follows (and equality holds in case A’
always outputs a value in {0, 1}). O

Combining Claim 5.2.7.1 and Fact 5.2.7.2, we reach a contradiction to the hypothesis
that the scheme is semantically secure (even in the restricted sense mentioned in the
furthermore-clause of the proposition). Thus, the proposition follows. W

Comment. When proving the public-key analogue of Proposition 5.2.7, algorithm A
is defined as in the current proof except that it passes the encryption-key, given to it as
part of its input, to the circuit C,,. The rest of the proof remains intact.

3 We comment that the value “1” output by C, is an indication that « is more likely to be x,, whereas the
output of 4 is a guess of f(«). This point may be better stressed by redefining f such that f(1”, x,) def X, and
F(1",x) = y, if x # x,,, and having 4 output x,, if C,, outputs 1 and output y, otherwise.

388

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.2 DEFINITIONS OF SECURITY

5.2.4. Multiple Messages

Definitions 5.2.1-5.2.4 only refer to the security of an encryption scheme that is used
to encrypt a single plaintext (per generated key). Since the plaintext may be longer than
the key, these definitions are already non-trivial, and an encryption scheme satisfying
them (even in the private-key model) implies the existence of one-way functions (see
Exercise 2). Still, in many cases, it is desirable to encrypt many plaintexts using the
same encryption-key. Loosely speaking, an encryption scheme is secure in the multiple-
message setting if analogous definitions (to Definitions 5.2.1-5.2.4) also hold when
polynomially many plaintexts are encrypted using the same encryption-key.

We show that in the public-key model, security in the single-message setting
(discussed earlier) implies security in the multiple-message setting (defined in
Section 5.2.4.1). We stress that this is not necessarily true for the private-key model.

5.2.4.1. Definitions

For a sequence of strings ¥ = (xV, ..., x®), we let E,(¥) denote the sequence of the
¢t results that are obtained by applying the randomized process E. to the ¢ strings
xD, . x®, respectively. That is, E.(X) = (E.(x1), ..., E.(x®)). We stress that in
each of these ¢ invocations, the randomized process E, utilizes independently chosen
random coins. For the sake of simplicity, we consider the encryption of (polynomi-
ally) many plaintexts of the same (polynomial) length (rather than the encryption of
plaintexts of various lengths as discussed in Exercise 20). The number of plaintexts
as well as their total length (in unary) are given to all algorithms either implicitly or
explicitly.*

Definition 5.2.8 (semantic security — multiple messages):

For private-key: An encryption scheme, (G, E, D), is semantically secure for mul-
tiple messages in the private-key model if for every probabilistic polynomial-
time algorithm A, there exists a probabilistic polynomial-time algorithm A’ such
that for every probability ensemble (X, = (X},l), s Xf,t(n)))}neN, with |X,<11)| =...=
|.X E,t(n))l < poly(n) and t(n) < poly(n), every pair of polynomially bounded functions
fih {0, 1} — {0, 1}, every positive polynomial p and all sufficiently large n

Pr[401", B, 17, 1, T =707, Ko
<Pr [A’(l”,), 150 p(1, X)) = £(17,)_(n)] L
p(n)

For public-key: An encryption scheme, (G, E, D), is sgmantically secure for multiple
messages in the public-key model if for 4, 4’ t, { X, }nen, [, h, p, and n, as in the

4 For example, 4 can infer the number of plaintexts from the number of ciphertexts, whereas A’ is given this
number explicitly. Given the number of the plaintexts as well as their total length, both algorithms can infer the
length of each plaintext.

389

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

private-key case, it holds that

Pr{4(1", G1(1"), Eg,an (), 17, (17, X)) = £(1", X,

< Pr [A’(l", t(n), 151, h(l”,Yn))=f(1”,7n)] + L
p(n)

(The probability in these terms is taken over X, as well as over the internal coin tosses
of the relevant algorithms.)

We stress that the elements of X, are not necessarily independent; they may depend on
one another. Note that this definition also covers the case where the adversary obtains
some of the plaintexts themselves. In this case it is still infeasible for him/her to obtain
information about the missing plaintexts (see Exercise 22).

Definition 5.2.9 (indistinguishability of encryptions — multiple messages):

For private-key: An encryption scheme, (G, E, D), has indistinguishable encryptions
for multiple messages in the private-key model if for every polynomial-size cir-
cuit family {C,}, every positive polynomial p, all sufficiently large n, and every
X15 wees Xi(n)s Y15 -oor Yicn) € {0, 13PN with t(n) < poly(n), it holds that

E = - - 1
| Pr[Ca(Egyan@)=1] = Pr[Cu(Eg,an@N=1]| < p(n)
where X = (X1, .., Xi(m)) and y = (Y1, -+ Vim))-
For public-key: An encryption scheme, (G, E, D), has indistinguishable encryp-

tions for multiple messages in the public-key model if for ¢, {C,}, p, n, and
X1 eees Xi(n)s Y15 - Vi(n) @S in the private-key case

| Pr[Cu(G1(1"), Eg,an(®)=1] = Pr[Cu(G1(1"), Eg,an()=1]| < ﬁ

The equivalence of Definitions 5.2.8 and 5.2.9 can be established analogously to the
proof of Theorem 5.2.5.

Theorem 5.2.10 (equivalence of definitions — multiple messages): 4 private-key (resp.,
public-key) encryption scheme is semantically secure for multiple messages if and only
if it has indistinguishable encryptions for multiple messages.

Thus, proving that single-message security implies multiple-message security for one
definition of security yields the same for the other. We may thus concentrate on the
ciphertext-indistinguishability definitions.

5.2.4.2. The Effect on the Public-Key Model
We first consider public-key encryption schemes.

390

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.2 DEFINITIONS OF SECURITY

Theorem 5.2.11 (single-message security implies multiple-message security): 4
public-key encryption scheme has indistinguishable encryptions for multiple messages
(i.e., satisfies Definition 5.2.9 in the public-key model) if and only if it has indistinguish-
able encryptions for a single message (i.e., satisfies Definition 5.2.4).

Proof: Clearly, multiple-message security implies single-message security as a special
case. The other direction follows by adapting the proof of Theorem 3.2.6 to the current
setting.

Suppose, toward the contradiction, that there exist a polynomial ¢, a polynomial-size
circuit family {C,}, and a polynomial p, such that for infinitely many #’s, there exists
X1s ooy Xt(n)s Y15 oo Yi(n) € {0, l}poly(n) so that

— _ — _ 1

| Pr{Ca(G1(1"), Eg,an(X)=1] = Pr[C.(G1(1"), Eg,an(P)=1]| >)
where X = (x1, ..., X;(»)) and ¥ = (1, ..., Yu())- Let us consider such a generic n and
the corresponding sequences X1, ..., X/(x) and yi, ..., yi»). We use a hybrid argument.
Specifically, define

=i def
a0 E (X15 wees Xis Vitls ooes Yi(n))

i) def n I 7
and Hrg) =e (G](l), EG;(]")(h()))
Since H\" = (G,(1"), Eg,an(7) and H'" = (G,(1"), Eg,n(%)), it follows that
there exists an i € {0, ..., #(n) — 1} so that
1

1(n) - p(n)
‘We show that Eq. (5.6) yields a polynomial-size circuit that distinguishes the encryption
of x; 4 from the encryption of y;., and thus derive a contradiction to security in the
single-message setting. Specifically, we construct a circuit D, that incorporates the

circuit C, as well as the index i and the strings X1, ..., Xj+1, Vi41, ---» Ve(n)- On input an
encryption-key e and (corresponding) ciphertext 8, the circuit D, operates as follows:

| Pr[Ca(H)=1] = Pr[Cu(H!T))=1]| > (5.6)

e For every j < i, the circuit D, generates an encryption of x; using the encryption-
key e. Similarly, for every j > i + 2, the circuit D, generates an encryption of y;
using the encryption-key e.

Let us denote the resulting ciphertexts by i, ..., Bi, Bi+2, ..., Bin). That is, B; <
E.(x;)for j <iand B; < E.(y;) for j > i + 2.

¢ Finally, D, invokes C, on input the encryption-key e and the sequence of ciphertexts

Bi, ..y Bis B, Bit2, -.-s Bin)> and outputs whatever C,, does.

We stress that the construction of D, relies in an essential way on the fact that the
encryption-key is given to D,, as input.

We now turn to the analysis of the circuit D,. Suppose that 8 is a (random)
encryption of x;.; with (random) key e; that is, § = E.(x;+1). Then, D,(e, B) =
Cu(e, E,(h+D)) = C,(H'™), where X =Y means that the random variables X
and Y are identically distributed. Similarly, for 8 = E.(y;+1), we have D,(e, B) =

391

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

C,(e, E.(h")) = Cn(H,gi)). Thus, by Eq. (5.6), we have

| Pr[Du(G1(1"), Eg,an(i+1)=1]

1
—Pr[D,(G1(1"), Eg,am(xi41))=1]]

> —
t(n) - p(n)

in contradiction to our hypothesis that (G, E, D) is a ciphertext-indistinguishable
public-key encryption scheme (in the single-message sense). The theorem
follows. W

Discussion. The fact that we are in the public-key model is essential to this proof. It
allows the circuit D, to form encryptions relative to the same encryption-key used in
the ciphertext given to it. In fact, as previously stated (and proven next), the analogous
result does not hold in the private-key model.

5.2.4.3. The Effect on the Private-Key Model

In contrast to Theorem 5.2.11, in the private-key model, ciphertext-indistinguishability
for a single message does not necessarily imply ciphertext-indistinguishability for mul-
tiple messages.

Proposition 5.2.12: Suppose that there exist pseudorandom generators (robust against
polynomial-size circuits). Then, there exists a private-key encryption scheme that sat-
isfies Definition 5.2.3 but does not satisfy Definition 5.2.9.

Proof: We start with the construction of the desired private-key encryption scheme. The
encryption/decryption key for security parameter » is a uniformly distributed n-bit long
string, denoted s. To encrypt a ciphertext, x, the encryption algorithm uses the key s
as a seed for a (variable-output) pseudorandom generator, denoted g, that stretches
seeds of length n into sequences of length |x|. The ciphertext is obtained by a bit-by-bit
exclusive-or of x and g(s). Decryption is done in an analogous manner.

We first show that this encryption scheme satisfies Definition 5.2.3. Intuitively,
this follow from the hypothesis that g is a pseudorandom generator and the fact that
x @ Uy is uniformly distributed over {0, 1}*!. Specifically, suppose toward the contra-
diction that for some polynomial-size circuit family {C,}, a polynomial p, and infinitely
many n’s

1
| PriC(x @ g(U,))=1]1—Pr[C,(y ® g(U,))=1]| > —
p(n)

where U, is uniformly distributed over {0, 1}" and |x| = |y| = m = poly(n). On the
other hand,

Pr{Cy(x ® Uy)=1] = Pr(C,(y ® Uy)=1]
392

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.2 DEFINITIONS OF SECURITY

Thus, without loss of generality

| PrC(x @ g(Un))=1] = PrCy(x & Un)=111 > >——3
- p(n)
Incorporating x into the circuit C,,, we obtain a circuit that distinguishes U, from g(U,,),
in contradiction to our hypothesis (regarding the pseudorandomness of g).
Next, we observe that this encryption scheme does not satisfy Definition 5.2.9.
Specifically, given the ciphertexts of two plaintexts, one may easily retrieve the
exclusive-or of the corresponding plaintexts. That is,

Eg(x1) @ Es(x2) = (x1 D g(s)) D (x2D g(s)) = x1 ®x2

This clearly violates Definition 5.2.8 (e.g., consider f(x;, x3) = x; @ x3) as well as
Definition 5.2.9 (e.g., consider any ¥ = (x;, x2) and y = (1, y») such that x; & x; #
y1 @ »2). Viewed in a different way, note that any plaintext-ciphertext pair yields a
corresponding prefix of the pseudorandom sequence, and knowledge of this prefix
violates the security of additional plaintexts. That is, given the encryption of a known
plaintext x; along with the encryption of an unknown plaintext x,, we can retrieve
XQ.S [|

Discussion. The single-message security of the scheme used in the proof of Propo-
sition 5.2.12 was proven by considering an ideal version of the scheme in which the
pseudorandom sequence is replaced by a truly random sequence. The latter scheme
is secure in an information-theoretic sense, and the security of the actual scheme fol-
lowed by the indistinguishability of the two sequences. As we show in Section 5.3.1, this
construction can be modified to yield a private-key “stream-cipher” that is secure for
multiple message encryptions. All that is needed in order to obtain multiple-message
security is to make sure that (as opposed to this construction) the same portion of the
pseudorandom sequence is never used twice.

An Alternative Proof of Proposition 5.2.12. Given an arbitrary private-key encryption
scheme (G, E, D), consider the following private-key encryption scheme (G’, E’, D’):

o G'(1") = ((k,r), (k,r)), where (k, k) < G(1") and r is uniformly selected in
{0, 1}41;

* Ej . (x) = (E(x), k@ r) with probability 1/2 and Ej; . (x) = (Ek(x),r) other-
wise;

* and D, (v, z) = Di(y).

If (G, E, D) is secure, then so is (G’, E’, D") (with respect to a single message); how-
ever, (G, E’, D’) is not secure with respect to two messages. For further discussion see
Exercise 21.

5 On input the ciphertexts ; and f,, knowing that the first plaintext is x|, we first retrieve the pseudorandom

A def
sequence (i.e., it is just » = B1 @ x1), and next retrieve the second plaintext (i.e., by computing 8, & r).

393

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

5.2.5.* A Uniform-Complexity Treatment

As stated at the beginning of this section, the non-uniform complexity formulation
was adopted in this chapter for the sake of simplicity. In contrast, in this subsection,
we outline an alternative definitional treatment of security based on a uniform (rather
than a non-uniform) complexity formulation. We stress that by uniform or non-uniform
complexity treatment of cryptographic primitives, we refer merely to the modeling of the
adversary. The honest (legitimate) parties are always modeled by uniform complexity
classes (most commonly probabilistic polynomial-time).

The notion of efficiently constructible probability ensembles, defined in Section 3.2.3
of Volume 1, is central to the uniform-complexity treatment. Recall that an ensemble,
X = {X,}.en, 1s said to be polynomial-time constructible if there exists a probabilistic
polynomial-time algorithm S so that for every n, the random variables S(1") and X,
are identically distributed.

5.2.5.1. The Definitions

We present only the definitions of security for multiple messages; the single-message
variant can be easily obtained by setting the polynomial ¢ (in Definitions 5.2.13 and
5.2.14) to be identically 1. Likewise, we present the public-key version, and the private-
key analogue can be obtained by omitting G(1”) from the inputs to the various
algorithms.

The uniformity of the following definitions is reflected in the complexity of the
inputs given to the algorithms. Specifically, the plaintexts are taken from polynomial-
time constructible ensembles and so are the auxiliary inputs given to the algo-
rithms. For example, in the following definition we require the ensemble (X,)
to be polynomial-time constructible and the function % to be polynomial-time
computable.

Definition 5.2.13 (semantic security — uniform-complexity version): An encryption
scheme, (G, E, D), is uniformly semantically secure in the public-key model if for
every two polynomials t, £, and every probabilistic polynomial-time algorithm A there
exists a probabilistic polynomial-time algorithm A’ such that for every polynomial-
time constructible ensemble {X, = Xf,l), ...,Xﬁ,l(")))}neN, with |Xf,i)| = {(n), every
polynomial-time computable h : {0, 1}* — {0, 1}*, every 1 : {0, 1}* — {0, 1}*, every
positive polynomial p, and all sufficiently large n's

Pr(401", G1(1"), Eg,an (). 17, h(1", X)) = £(1", X,

< Pr [A’(l”, t(n), 1'% n(1", X)) = £(1",)_(n)] + L
p(n)

where Eo(%) = (E,(xV), ..., E.(x")), for ¥ = (x1, ..., x(®)) € {0, 1} g g
in Definition 5.2.8.

394

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.2 DEFINITIONS OF SECURITY

Again, we stress that X, is a sequence of random variables, which may depend on
one another. Note that Definition 5.2.13 is seemingly weaker than the corresponding
non-uniform definition (i.e., Definition 5.2.8). We stress that even here (i.e., in
the uniform-complexity setting) no computational limitations are placed on the
function f.

Definition 5.2.14 (indistinguishability of encryptions — uniform-complexity version):
An encryption scheme, (G, E, D), has uniformly indistinguishable encryptions in the
public-key model if for every two polynomials t, £, every probabilistic polynomial-time
algorithm D', every polynomial-time constructible ensemble T &ef (T, =X, Y0 Zn}nen,
with X, = (X, o, XYY, = @Y, ., YY), and | X = 1Y) = €(n), it holds
that

| Pr[D'(1", Z,, Gi(1"), Eg,am(Xn)=1]

_ — 1
— Pr|D'(1", Z,, Gi(1"), Eg,an(Y,))=1 —
[D'(s G1(1"), Eg,an(Ya)=1]| < 200)
for every positive polynomial p and all sufficiently large n's. (The probability in these
terms is taken over T,, = X,,Y , Z,, as well as over the internal coin tosses of the relevant
algorithms.)

The random variable Z, represented a priori information about the plaintexts for which
encryptions should be distinguished. A special case of interest is when Z, = X, Y.
Uniformity is captured in the requirement that D’ be a probabilistic polynomial-time
algorithm (rather than a family of polynomial-size circuits) and that the ensemble {7, =
XY uZy) wen be polynomial-time constructible. Recall that in the non-uniform case (i.e.,
Definition 5.2.9), the random variable Z, can be incorporated in the distinguishing
circuit C,, (and thus be eliminated).® Thus, Definition 5.2.14 is seemingly weaker than
the corresponding non-uniform definition (i.e., Definition 5.2.9).

5.2.5.2. Equivalence of the Multiple-Message Definitions

We prove the equivalence of the uniform-complexity definitions (presented earlier) for
(multiple-message) security.

Theorem 5.2.15 (equivalence of definitions — uniform treatment): A public-key en-
cryption scheme satisfies Definition 5.2.13 if and only if it satisfies Definition 5.2.14.
Furthermore, this holds even if Definition 5.2.14 is restricted to the special case where
Z, = X, Y,. Similarly, the equivalence holds even if Definition 5.2.13 is restricted to
the special case where [is polynomial-time computable.

An analogous result holds for the private-key model. The important direction of the
theorem holds also for the single-message version (this is quite obvious from the

6 Furthermore, in the case of non-uniform distinguishers, the auxiliary input 1” is redundant.

395

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

following proof). In the other direction, we seem to use the multiple-message ver-
sion (of semantic security) in an essential way. An alterative treatment is provided in
Exercise 23.

Proof Sketch: Again, we start with the more important direction (i.e., “indistinguisha-
bility” implies semantic security). Specifically, assuming that (G, E, D) has indistin-
guishable encryptions in the uniform sense, even merely in the special case where
Z, = X, Y,, we show that it is semantically secure in the uniform sense. Our construc-
tion of algorithm A’ is analogous to the construction used in the non-uniform treatment.
Specifically, oninput (17, #(n), 1%®!, h(1", @)), algorithm A’ generates a random encryp-
tion of a dummy sequence of plaintexts (i.e., 1%!), feeds it to 4, and outputs whatever
A does.” That is,

A", 1(n), 1%, u) = A(1", Gi(1"), Eg,an(1), 1191, 1) (5.7)
As in the non-uniform case, the analysis of algorithm A’ reduces to the following claim.

Claim 5.2.15.1: For every two polynomials # and ¢, every polynomial-time constructible
ensemble {X, },en, with X, = (X3, ..., XY™y and |X| = £(n), every polynomial-
time computable /, every positive polynomial p, and all sufficiently large #’s

Pr(401", G1(1"), Eg,an (), 17, (17, X)) = £(1", X))

< Pr[A07, G, B0 h(7, Ty = 107, T+ o
Proof Sketch: Analogously to the non-uniform case, assuming toward the contradiction
that the claim does not hold yields an algorithm that distinguishes encryptions of X,
from_encryptions of ¥, = 1'"2I, when getting auxiliary information Z, = X, Y, =

X, 1% Thus, we derive a contradiction to Definition 5.2.14 (even under the special
case postulated in the theorem).

We note that the auxiliary information that is given to the distinguishing algorithm
replaces the hardwiring of auxiliary information that was used in the non-uniform
case (and is not possible in the uniform-complexity model). Specifically, rather than
using a hardwired value of / (at some non-uniformly fixed sequence), the distinguish-
ing algorithm will use the auxiliary information Z, = X, 1/*"! in order to compute
ha(X,) & (17, 1% p(17, X)), which it will pass to A. Indeed, we rely on the hypoth-
esis that 4 is efficiently computable.

The actual proof is quite simple in case the function f is also polynomial-
time computable (which is not the case in general). In this special case, on input
(17, e, z, E.(@)), where z = (x, 1) and @ € {x, 1"} for ¥ < X,,, the distinguishing
algorithm computes u = A(1”,x) and v = f(1”, X), invokes A4, and outputs 1 if and
only if A(1", e, E.(a), 1!, u) = v.

7 More accurately, algorithm A’ proceeds as follows. Using #(n), the algorithm breaks 11! into a sequence of #(n)
equal-length (unary) strings, using 1” it generates a random encryption-key, and using this key it generates the
corresponding sequence of encryptions.

396

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.2 DEFINITIONS OF SECURITY

(Tedious comment: In case o = 1!, we actually mean that & is a sequence of
t(n) strings of the form 1Y%, where ¢ and £ are as in x = (x(, ..., x0)) ¢
({0, 1}y)

The proof becomes more involved in the case where f is not polynomial-time
computable.® Again, the solution is in realizing that indistinguishability of encryp-
tion postulates a similar output profile (of A) in both cases, where the two cases
correspond to whether 4 is given an encryption of X or an encryption of 1% (for
X < X,). In particular, no value can occur as the output of 4 in one case with non-
negligibly higher probability than in the other case. To clarify the point, for every fixed
X, we define A, ,(x) to be the difference between Pr[A(G,(1"), EGI(M)(Y), h,(x))=v]

and PrlA(G1(1"), E g,an(1™), h,(X))=v], where A, (¥) L (17, 11 a(1", X)) and the
probability space is over the internal coin tosses of algorithms G, E, and A. Taking
the expectation over X, the contradiction hypothesis means that E[A,, /. ¥, (Xx)] >

1/p(n), and so with probability at least 1/2p(n) over the choice of X <— X, we have
Ay, r1n,5)(X) > 1/2p(n). The problem is that, given X (and 1"), we cannot even approx-
imate A, r1»5)(X), because we do not have the value f(1”, X) (and we cannot compute
it). Instead, we let A,(X) & max,eo, 1jpov { Ay (X)), and observe that E[AL(X,)] >
E[A,. f(],,’yn)(yn)] > 1/p(n). Furthermore, given (1", X), we can (efficiently) approx-
imate A,(X) as well as find a value v such that A, ,(¥) > A,(X) — (1/2p(n)), with
probability at least 1 — 27",

On approximating A,(x) and finding an adequate v: Let g(n) be a bound on the
length of f(1”,x). Our goal is to approximate A,(X), which is the maximum of
A, ,(x) taken over all v € {0, 1}4™ as well as find a value v for which Ay (X)) 1s
close to A,(x). For each fixed v, it is easy to approximate A, ,(X), but we cannot
afford to seperately compute each of these approximations. Yet we can efficiently
compute an implicit representation of all the 277" approximations, where all but
polynomially many of the A, ,(x)’s will be approximated by zero. This is possible
because the A, ,(X)’s are the differences between corresponding two sequences
of positive numbers (where each sequence has a sum equal to one). Specifically,
we obtain m £ O((n + q(n)) - p(n)?) outputs of A(G1(1"), E g,1r(¥), h,(¥)) and
m outputs of A(G1(1"), E g, (1), h,(X)), where in each of the invocations we
use new coin tosses for algorithms 4, G, and E. For each v, the quantity A, ,(X)
is approximated by the difference between the fraction of times that v occurs as
output in the first case and the fraction of times it occurs as output in the second
case. Indeed, at most, 2m values may occur as outputs, and for all other v’s the
quantity A, ,(¥) is implicitly approximated by zero. Let us denote by Z,,,v(f) the
approximation computed (explicitly or implicitly) for A, ,(X). Note that for every
fixed v, the probability that |A, ,(X) — Z,,,v(f)| > 1/4p(n) is at most 2"+,
hence, with probability at least 1 — 27, |A, (%) — A,o(X)| < 1/4p(n) holds for
all v’s. Having computed all these approximations, we just select a string ¢ for
which the approximated quantity K,,,f,(f) is the largest. To analyze the quality of

8 Unlike in the non-uniform treatment, here we cannot hardwire values (such as the values of 4 and f on good
sequences) into the algorithm D’, because D’ is required to be uniform.

397

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

our selection, let us denote by v, a string s that maximizes A, ;(¥) (i.e., A, o, (X) =
A, (X)). Then, with probability at least 1 — 27", the string ¥ satisfies

Ans(®) = A, 5(®) — (1/4p(n))
> Ao, (®) — (1/4p(n))
> Ay, () — (1/4p(n)) — (1/4p(n))

where the first and last inequalities are due to the quality of our approximations, and
the second inequality is due to the fact that ¥ maximizes A, .(x). Thus, A, 3(X) >

An(x) = (1/2p(n)).

Thus, on input (17, e, z, E.(@)), where z = (x, 17¥1), the distinguisher, denoted D’,
operates in two stages.

1. In the first stage, D’ ignores the ciphertext E.(a). Using z, algorithm D’ recovers
¥, and computes u = h,(¥) = (17, 11, h(1", ¥)). Using ¥ and u, algorithm D’ esti-
mates A,(X), and finds a value v as noted. That is, with probability at least 1 — 27",
it holds that A, ,(X) > A,(X) — (1/2p(n)).

2. In the second stage (using u and v, as determined in the first stage), algorithm D’
invokes 4, and outputs 1 if and only if A(e, E (@), u) = v.

Let V,(x) be the value found in the first stage of algorithm A (i.e., obliviously of the
ciphertext E.(«)). The reader can easily verify that

| Pr[D'(1", Gi(1"), Zy, E G, X)) =1]
— Pr [D’(l”, G1(1"), Zy, Eg,an(17) = 1](

=E[4, a0, Xn)]

— 1

> _ ny . _ __n—n
>(1-27")-E |:A,,(X,,) 2p(n)] 2

1
- — >

3p(n) 3p(n)

where the first inequality is due to the quality of the first stage (and the 27" factors ac-
count for the probability that the value found in that stage is bad). Thus, we have derived
a probabilistic polynomial-time algorithm (i.e., D’) that distinguishes encryptions of X,
from encryptions of ¥, = 1'*»!, when getting auxiliary information Z, = X, 1/, By
hypothesis, {X,) is polynomial-time constructible, and it follows that so is (X, Y,Z,)

Thus, we derive contradiction to Definition 5.2.14 (even under the special case postu-
lated in the theorem), and the claim follows. O

> E[An(X))]

Having established the important direction, we now turn to the opposite one. That is,
we assume that (G, E, D) is (uniformly) semantically secure and prove that it has (uni-
formly) indistinguishable encryptions. Again, the proof is by contradiction. However,
the proof is more complex than in the non-uniform case, because here “distinguishable
encryptions” means distinguishing between two plaintext-distributions (rather than be-
tween two fixed sequences of plaintexts), when also given a possibly related auxiliary

398

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.2 DEFINITIONS OF SECURITY

input Z,. Thus, it seems that we need to incorporate Z, into the input given to the
(semantic-security) adversary, and the only way to do so seems to be by letting Z, be
part of the a priori information given to that adversary (i.e., letting A(plaintext) = Z,).
Indeed, this will be part of the construction presented next.

Suppose, without loss of generality, that there exists a probabilistic polynomial-time
algorithm D', a polynomial-time constructible ensemble 7 &ef (T, =X,V Zy}nen (as
in Definition 5.2.14), a positive polynomial p, and infinitely many 7’s such that

Pr[D'(Z,, Gi(1"), Eg,an(Xn)=1]

_ — 1
> Pr[D'(Z,, Gi(1"), Eg,an(Y)=1]| + 0]
Let #(n) and £(n) be such that X,, (resp., Y,) consists of #(n) strings, each of length
E(n) Suppose, without loss of generality, that | Z,| = m(n) - £(n), and parse Z, into
Z, =(Z", .. 2y e ({0, 1)@ ym™ such that Z, = Z -+ Z"™) We define an

auxiliary polynomial-time constructible ensemble O & { 0, }nen such that

B { 04Z,X,, with probability 1 (5.8)

14MZ,Y, X, with probability 1

Thatis, O, is a sequence of 1 4+ m(n) + 2¢(n) strings, each of length £(), that contains
Z,X,Y, in addition to a bit (encoded in the £(n)-bit long prefix) indicating whether or
not the order of X, and Y, is switched. We define the function f to be equal to this
“switch”-indicator bit, and the function / to provide all information in Q, except this
switch bit. That is, we define f and / as follows:

e We define f(1%,9) = & f1(q), where f, returns the first bit of its input; that is,
fu(@“MzaB) = o, for (z, a, B) € ({0, 1}/(ymt+2im),

e We define i(1", q) iy n(q), where h, reorders the suffix of its input according to
the first bit; that is, 1, (0“"za) = zaf and 1,(1°"zaf) = zBa. Thus, h(1", 0,) =
Z,X,Y,, where Z,X,Y, is determined by T, = X,Y,Z, (and is independent of
the switch-case chosen in Eq. (5.8)).

We stress that both 4 and f are polynomial-time computable.

We will show that the distinguishing algorithm D’ (which distinguishes E(X,) from
E(Y,), when also given Z, = Z,) can be transformed into a polynomial-time algo-
rithm A that guesses the value of f(1”, 0,), from the encryption of O, (and the value
of (17, O,)), and does so with probability non-negligibly greater than 1/2. This vio-
lates semantic security, since no algorithm (regardless of its running time) can guess
f(1", 0, with probability greater than 1/2 when only given h(1", O,) and 1/9! (be-
cause, conditioned on the value of #(1", Q,) (and 1/9:!), the value of (1", Q,) is
uniformly distributed over {0, 1}).

On input (e, E.(@), 17, h(1", @)), where @ = o‘™zuv € ({0, 1}/0)1+m00+2:0n)
equals either (0°™, z, X, 7) or (14, Z, 3, X), algorithm A proceeds in two stages:

1. In the first stage, algorithm A ignores the ciphertext E.(a). It first extracts
X,y and z =7z out of A(1",@) =zXxy, and approximates A,(z, X, y), which is

399

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

defined to equal
Pr[D'(z, Gi(1"), Eg,an(X)=1] = Pr[D'(z, Gi(1"), Eg,an (7)) =1]

Specifically, using O(n - p(n)?) samples, algorithm A obtains an approximation, de-
noted A,(z, ¥, 7), such that |A,(z, X, 7) — An(z, X, 7)| < 1/3 p(n) with probability
atleast 1 — 27",

Algorithm 4 sets &€ = 1 if A,(z,X,7) > 1/3p(n), sets £ = —1 if A, (z, %, 7) <
—1/3p(n), and sets & = 0 otherwise (i.e., |Zn(z, X,¥)| < 1/3p(n)). Intuitively, &
indicates the sign of Z,,(z, X, ¥), provided that the absolute value of the latter is
large enough, and is set to zero otherwise. In other words, with overwhelmingly high
probability, & indicates whether the value of Pr[D'(z, -, E.(X))=1] is significantly
greater, smaller, or about the same as Pr[D'(z, -, E.(7))=1].

In case & = 0, algorithm A halts with an arbitrary reasonable guess (say a randomly
selected bit). (We stress that all this is done obliviously of the ciphertext E.(a),
which is only used next.)

2. In the second stage, algorithm A extracts the last block of ciphertexts (i.e., E.(7))
out of E,(@) = E.(0"™zuv), and invokes D’ on input (z, e, E.(v)), where z is as
extracted in the first stage. Using the value of & as determined in the first stage,
algorithm A decides (i.e., determines its output bit) as follows:

e Incase & = 1, algorithm A outputs 1 if and only if the output of D’ is 1.
e In case £ = —1, algorithm A4 outputs 0 if and only if the output of D’ is 1.

That is, £ = 1 (resp., £ = —1) indicates that D’ is more (resp., less) likely to output
1 when given the encryption of X than when given the encryption of y.

Claim 5.2.15.2: Let p, O, &, f, and 4 be as in Eq. (5.8) and the text that follows it.

— — — — 1 1
Pr [A(Gl(ln)n EGI(I")(Q}’I)’ h(lna Qn))zf(ln’ Qn)] > E =+ m

Proof Sketch: We focus on the case in which the approximation of A, (z, X,) computed
by (the first stage of) 4 is within 1/3 p(n) of the correct value. Thus, in case & # 0, the
sign of & agrees with the sign of A, (z, ¥, ¥). It follows that for every possible (z, X,)
such that & = 1 (it holds that A,(z, X, ¥) > 0 and) the following holds:

Pr [A(Gl(ln)a FGl(l”)(Qn)z h(lnz @n)):f(lna @n) | (Zna yﬂz Xvn):(za X, y)]

1 — _ -
=3 Pr[A(G1(1"), Eg,1n(0"", 2, %, 7), h,(0"™, z, X, 7)) =0]
1 — _ o

+ 5 -Pr [A(Gl(ln)’ EGl(l”)(le(n)’ z, Y, X), hn(ll()’ Z, y,X))Z 1]
1) = _
= 5 -Pr [D (Za Gl(l)7 EGl(l”)(y)):O]

+ = Pr[D'(z Gi(1"), Eg,an(®) =1]

N —

= S+ AGTT)

400

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.2 DEFINITIONS OF SECURITY

Similarly, for every possible (z, X, ¥) such that £ = —1 (it holds that A, (z,x,7) < 0
and) the following holds:

Pr [A(Gl(ln)’ FGI(I")(Qn)’ h(ln’ an)):f(lns an) | (Zn,)_(n, Xn)z(z’ x, y)]
1
= 5 ’ (1 - An(Zn x, y))

Thus, in both cases where & # 0, algorithm A succeeds with probability

1+&-Au(z,x,y) 14]|A4(z, %,)
2 o 2

and in case £ = 0 it succeeds with probability 1/2, which is (artificially) lower-bounded
by (1 +|A,(z, X, P)l = (2/3p(n)))/2 (because |A,(z, X,)| < 2/3p(n) for & =0)
Thus, ignoring the negligible probability that the approximation deviated from the
correct value by more than 1/3 p(n), the overall success probability of algorithm A4 is

c [1 + 1A (Zs Xy V)l = <2/3p(n>>} _ L+ E[AW(Zn, X, V)] = 2/3p(n)
2 - 2

- 1+1/p(m) —2/3p(m) 1 1
2 2 6p(n)

where the last inequality follows by the contradiction hypothesis (i.e., that
E[A(Z, X, Y)] > ﬁ). The claim follows (because the negligible probability ig-
nored in the last [displayed] inequality is certainly upper-bounded by (1/6p(n)) —
(1/7p(n))). O

This completes the proof of the opposite direction. MW

Discussion. The proof of the first (i.e., important) direction holds also in the single-
message setting. In general, for any function ¢, in order to prove that semantic security
holds with respect to t-long sequences of ciphertexts, we just use the hypothesis that ¢-
long message-sequences have indistinguishable encryptions. In contrast, the proof of the
second (i.e., opposite) direction makes an essential use of the multiple-message setting.
In particular, in order to prove that z-long message-sequences have indistinguishable
encryptions, we use the hypothesis that semantic security holds with respect to (1 +
m + 2t)-long sequences of ciphertexts, where m depends on the length of the auxiliary
input in the claim of ciphertext-indistinguishability. Thus, even if we only want to
establish ciphertext-indistinguishability in the single-message setting, we do so by
using semantic security in the multiple-message setting. Furthermore, we use the fact
that given a sequence of ciphertexts, we can extract a certain subsequence of ciphertexts.

° This analysis looks somewhat odd but is nevertheless valid. Our aim is to get a “uniform” expression for
the success probability of 4 in all cases (i.e., for all values of £). In case |§| = 1, we have the lower-bound
(14 |Au(z, X, ¥)|)/2, which is certainly lower-bounded by (1 + |A,(z, X, ¥)| — (2/3p(n)))/2, whereas in case
& = 0 we artificially lower-bound 1/2 by the same expression. Once we have such a “uniform” expression, we
may take expectation over it (without breaking it to cases).

401

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

5.2.5.3. Single-Message Versus Multiple-Message Definitions

As in the non-uniform case, for the public-key model, single-message security implies
multiple-message security. Again, this implication does not hold in the private-key
model. The proofs of both statements are analogous to the proofs provided in the non-
uniform case. Specifically:

1. For the public-key model, single-message uniform-indistinguishability of encryp-

tions implies multiple-message uniform-indistinguishability of encryptions, which
in turn implies multiple-message uniform-semantic security.
In the proof of this result, we use the fact that all hybrids are polynomial-time
constructible, and that we may select a random pair of neighboring hybrids (as
in the proof of Theorem 3.2.6). We also use the fact that an ensemble of triplets,
(T = XYy Z ners with X, = (X3, ., XY, Y, = (", ..., v'™), as in Defi-
nition 5.2.14, induces an ensemble of triplets, {7, = X, Y;, Z,}nen, forthecaset = 1.
Specifically, we shall use X, = X, ¥, = ¥\”, and Z, = (X,, Y., Z!, i), where i
is uniformly distributed in {1, ..., ¢(n)}.

2. For the private-key model, single-message uniform-indistinguishability of encryp-
tions does not imply multiple-message uniform-indistinguishability of encryptions.
The proof is exactly as in the non-uniform case.

5.2.5.4. The Gain of a Uniform Treatment

Suppose that one is content with the uniform-complexity level of security, which is what
we advocate in the following paragraph. Then the gain in using the uniform-complexity
treatment is that a uniform-complexity level of security can be obtained using only
uniform-complexity assumptions (rather than non-uniform-complexity assumptions).
Specifically, the results presented in Section 5.3 are based on non-uniform assumptions
such as the existence of functions that cannot be inverted by polynomial-size circuits
(rather than by probabilistic polynomial-time algorithms). These non-uniform assump-
tions are used in order to satisfy the non-uniform definitions presented in Sections 5.2.1
and 5.2.2. Using any of these constructions, while making the analogous uniform as-
sumptions, yields encryption schemes with the analogous uniform-complexity security.
(We stress that this is no coincidence, but is rather an artifact of these construction being
proven secure via a uniform reducibility argument.)

However, something is lost when relying on these (seemingly weaker) uniform-
complexity assumptions. Namely, the security we obtain is only against the (seemingly
weaker) uniform adversaries. We believe that this loss in security is immaterial. In par-
ticular, schemes secure against probabilistic polynomial-time adversaries can be used in
any setting consisting of probabilistic polynomial-time machines with inputs generated
by probabilistic polynomial-time procedures. We believe that the cryptographic setting
is such a case. That is, we believe that the world should be modeled as a probabilistic
polynomial-time procedure; namely, each object in the world was generated at some
point by a uniform and efficient procedure (possibly depending on previously existing

402

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.3 CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES

objects), rather than handed down from heaven (where it might have been selected
non-uniformly or using non-recursive procedures).

5.2.5.5. An Alternative Treatment

An alternative uniform-complexity treatment of security (in the current passive setting)
can be derived from the treatment of security under chosen plaintext attacks (presented
in Section 5.4.3). Specifically, the definitions presented in Section 5.4.3.1 should be
modified as follows:

¢ Replace the input pair (e, z), which is given to the attacker’s first part (i.e., 4;), by 1”.
That is, eliminate the (non-uniform) auxiliary input z, and omit the encryption-key
e (also in the public-key version).

e Remove the encryption oracle (i.e., E,) from the definitions; that is, model the
attacker by an ordinary (probabilistic polynomial-time) algorithm, rather than by an
oracle machine.

Consequently, the definition of semantic security (Definition 5.4.8) can be simplified
by using 4| = A4, and omitting Condition 2 (which refers to the distributions produced
by A; and A4}). Doing so requires a minor change in the first part of the proof of
Theorem 5.4.11 (i.e., letting A4/ rather than A4 generate a random encryption-key).

In the resulting definitions, the first part of the attacker is confined to an oblivious
selection of a challenge template (i.e., the challenge template is selected independently
of the encryption-key), whereas the second part of the attacker is given an adequate
challenge (and nothing else). In the case of semantic security, this means that the adver-
sary first selects the “application” that consists of the plaintext distribution, the partial
information function %, and the desired information function f. These three objects
are represented by circuits. Next, a plaintext x is selected according to the specified
distribution, and the adversary is given a corresponding ciphertext (i.e., E.(x)), as well
as the corresponding partial information /(x).

5.3. Constructions of Secure Encryption Schemes

In this section we present constructions of secure private-key and public-key encryption
schemes. Here and throughout this section security means semantic security in the
multiple-message setting. Recall that this is equivalent to ciphertext-indistinguishability
(in the multiple-message setting). Also recall that for public-key schemes it suffices to
prove ciphertext-indistinguishability in the single-message setting. Following are the
main results of this section:

¢ Using any (non-uniformly robust) pseudorandom function, one can construct secure
private-key encryption schemes. Recall that the former can be constructed using any
(non-uniformly strong) one-way function.

e Using any (non-uniform strong) trapdoor one-way permutation, one can construct
secure public-key encryption schemes.

403

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

In addition, we review some popular suggestions for private-key and public-key en-
cryption schemes.

Probabilistic Encryption. Before starting, we recall that a secure public-key encryp-
tion scheme must employ a probabilistic (i.e., randomized) encryption algorithm. Oth-
erwise, given the encryption-key as (additional) input, it is easy to distinguish the
encryption of the all-zero message from the encryption of the all-ones message. The
same holds for private-key encryption schemes when considering the multi-message
setting.!® For example, using a deterministic (private-key) encryption algorithm allows
the adversary to distinguish two encryptions of the same message from the encryptions
of a pair of different messages. Thus, the common practice of using pseudorandom per-
mutations as “block-ciphers” (see definition in Section 5.3.2) is not secure (again, one
can distinguish two encryptions of the same message from encryptions of two different
messages). This explains the linkage between our security definitions and randomized
(aka probabilistic) encryption schemes. Indeed, all our encryption schemes will employ
randomized encryption algorithms.'!

5.3.1.* Stream-Ciphers

It is common practice to use “pseudorandom generators” as a basis for private-key
stream-ciphers (see definition in Section 5.3.1.1). Specifically, the pseudorandom gen-
erator is used to produce a stream of bits that are XORed with the corresponding
plaintext bits to yield corresponding ciphertext bits. That is, the generated pseudoran-
dom sequence (which is determined by the a priori shared key) is used as a “one-time
pad” instead of a truly random sequence, with the advantage that the generated se-
quence may be much longer than the key (whereas this is not possible for a truly
random sequence). This common practice is indeed sound, provided one actually uses
pseudorandom generators (as defined in Section 3.3 of Volume 1), rather than programs
that are called “pseudorandom generators” but actually produce sequences that are easy
to predict (such as the linear congruential generator or some modifications of it that
output a constant fraction of the bits of each resulting number).

As we shall see, by using any pseudorandom generator one may obtain a secure
private-key stream-cipher that allows for the encryption of a stream of plaintext bits.
We note that such a stream-cipher does not conform to our formulation of an encryption
scheme (i.e., as in Definition 5.1.1), because in order to encrypt several messages one is
required to maintain a counter (to prevent reusing parts of the pseudorandom “one-time
pad”). In other words, we obtain a secure encryption scheme with a variable state that
is modified after the encryption of each message. We stress that constructions of secure

19 We note that this does not hold with respect to private-key schemes in the single-message setting (or for the
augmented model of state-based ciphers discussed in Section 5.3.1). In such a case, the private-key can be
augmented to include a seed for a pseudorandom generator, the output of which can be used to eliminate
randomness from the encryption algorithm. (Question: Why does the argument fail in the public-key setting
and in the multi-message private-key setting?)

! The (private-key) stream-ciphers discussed in Section 5.3.1 are an exception, but (as further explained in Sec-
tion 5.3.1) these schemes do not adhere to our (basic) formulation of encryption schemes (as in Definition 5.1.1).

404

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.3 CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES

and stateless encryption schemes (i.e., conforming with Definition 5.1.1) are known
and are presented in Sections 5.3.3 and 5.3.4. The traditional interest in stream-ciphers
is due to efficiency considerations. We discuss this issue at the end of Section 5.3.3.
But before doing so, let us formalize the discussion.

5.3.1.1. Definitions

We start by extending the simple mechanism of encryption schemes (as presented
in Definition 5.1.1). The key-generation algorithm remains unchanged, but both the
encryption and decryption algorithm take an additional input and emit an additional
output, corresponding to their state before and after the operation. The length of the state
is not allowed to grow by too much during each application of the encryption algorithm
(see Item 3 in Definition 5.3.1), or else the efficiency of the entire “repeated encryption”
process cannot be guaranteed. For the sake of simplicity, we incorporate the key in the
state of the corresponding algorithm. Thus, the initial state of each of the algorithms is
set to equal its corresponding key. Furthermore, one may think of the intermediate states
as updated values of the corresponding key. For clarity, the reader may consider the
special case in which the state contains the initial key, the number of times the scheme
was invoked (or the total number of bits in such invocations), and auxiliary information
that allows a speedup of the computation of the next ciphertext (or plaintext).

For simplicity, we assume that the decryption algorithm (i.e., D) is deterministic
(otherwise formulating the reconstruction condition would be more complex). Intu-
itively, the main part of the reconstruction condition (i.e., Item 2 in Definition 5.3.1)
is that the (proper) iterative encryption—decryption process recovers the original plain-
texts. The additional requirement in Item 2 is that the state of the decryption algorithm
is updated correctly so long as it is fed with strings of length equal to the length of
the valid ciphertexts. The reason for this additional requirement is discussed following
Definition 5.3.1. We comment that in traditional stream-ciphers, the plaintexts (and ci-
phertexts) are individual bits or blocks of a fixed number of bits (i.e., |«®| = |B?| = ¢
for all i’s).

Definition 5.3.1 (state-based cipher — the mechanism): 4 state-based encryption
scheme is a triple, (G, E, D), of probabilistic polynomial-time algorithms satisfying
the following three conditions:

1. On input 1", algorithm G outputs a pair of bit strings.

2. Foreverypair (e, d©)in the range of G(1"), and every sequence of plaintexts oV,
the following holds: If (e, BD) < E(eV, a®)and (dD, y) < D@V, pD),
fori=1,2, ..., then y® = o for every i. Furthermore, for every i and every B €
{0, 1}8°1 it holds that D(d=Y, B) = (dD, -). That is, d?) is actually determined by
d(i—l) and |/3(i)|.12

12 Alternatively, we may decompose the decryption (resp., encryption) algorithm into two algorithms, where the
first takes care of the actual decryption (resp., encryption) and the second takes care of updating the state. For
details see Exercise 24.

405

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

3. There exists a polynomial p such that for every pair (e, d©®) in the range of
G(1"), and every sequence of a)’s and eV’s as in Item 2, it holds that |e")] <
leC=D| + oD - p(n). Similarly for the d?s.

That is, as in Definition 5.1.1, the encryption—decryption process operates properly
(i.e., the decrypted message equals the plaintext), provided that the corresponding
algorithms get the corresponding keys (or states). Note that in Definition 5.3.1, the
keys are modified by the encryption—decryption process, and so correct decryption
requires holding the correctly updated decryption-key. We stress that the furthermore-
clause in Item 2 guarantees that the decryption-key is correctly updated so long as the
decryption process is fed with strings of the correct lengths (but not necessarily with the
correct ciphertexts). This extra requirement implies that given the initial decryption-
key and the current ciphertext, as well as the lengths of all previous ciphertexts (which
may be actually incorporated in the current ciphertext), one may recover the current
plaintext. This fact is interesting for two reasons:

A theoretical reason: It implies that without loss of generality (albeit with possible
loss in efficiency), the decryption algorithm may be stateless. Furthermore, without
loss of generality (again, with possible loss in efficiency), the state of the encryption
algorithm may consist of the initial encryption-key and the lengths of the plaintexts
encrypted so far.

A practical reason: It allows for recovery from the loss of some of the ciphertexts. That
is, assuming that all ciphertexts have the same (known) length (which is typically
the case in the relevant applications), if the receiver knows (or is given) the total
number of ciphertexts sent so far, then it can recover the current plaintext from the
current ciphertext, even if some of the previous ciphertexts were lost. See the special
provision in Construction 5.3.3.

We comment that in Construction 5.3.3, it holds that [e®| < [e®| 4 log, 23:1 o],
which is much stronger than the requirement in Item 3 (of Definition 5.3.1).

We stress that Definition 5.3.1 refers to the encryption of multiple messages (and
meaningfully extends Definition 5.1.1 only when considering the encryption of multiple
messages). However, Definition 5.3.1 by itself does not explain why one should encrypt
the ith message using the updated encryption-key e'~", rather than reusing the initial
encryption-key e?) in all encryptions (where decryption is done by reusing the initial
decryption-key d©). Indeed, the reason for updating these keys is provided by the
following security definition that refers to the encryption of multiple messages, and
holds only in case the encryption-keys in use are properly updated (in the multiple-
message encryption process). Here we present only the semantic security definition for
private-key schemes.

Definition 5.3.2 (semantic security — state-based cipher): For a state-based encryp-
tion scheme, (G, E, D), and any x = (xV, ..., x®), we let E.(x) = (yV, ..., y©) be
the result of the following t-step (possibly random) process, where e Ll e For
i=1,..twelet(e?, yD) « EV, xD) where each of the t invocations E utilizes

406

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.3 CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES

independently chosen random coins. The scheme (G, E, D) is semantically secure in
the state-based private-key model if for every polynomial t and every probabilistic
polynomial-time algorithm A there exists a probabilistic polynomial-time algorithm A’
such that for every {X,, = XD, L xYN f, h, p, and n as in Definition 5.2.8,
it holds that

Pr[401", Eg,an(Xn), 17, h(1", X)) = (17, X,

< Pr [A’(l”, t(m), 1% (17, X)) = £(1",)_(n)] P
p(n)

Note that Definition 5.3.2 (only) differs from Definition 5.2.8 in the preamble defin-
ing the random variable E,(x), which mandates that the encryption-key e ~! is used
in the ith encryption. Furthermore, Definition 5.3.2 guarantees nothing regarding
an encryption process in which the plaintext sequence x(V, ..., x is encrypted by
E(e,x1), E(e, x?), ..., E(e, x") (i.e., the initial encryption-key e itself is used in all
encryptions, as in Definition 5.2.8).

5.3.1.2. A Sound Version of a Common Practice

Using any (on-line) pseudorandom generator, one can easily construct a secure state-
based private-key encryption scheme. Recall that on-line pseudorandom generators are
a special case of variable-output pseudorandom generators (see Section 3.3.3), in which
a hidden state is maintained and updated so as to allow generation of the next output
bit in time polynomial in the length of the initial seed, regardless of the number of bits
generated so far. Specifically, the next (hidden) state and output bit are produced by
applying a (polynomial-time computable) function g: {0, 1} — {0, 1}"*! to the current
state (i.e., s’ < g(s), where s is the current state, s’ is the next state and o is the next
output bit). The suggested state-based private-key encryption scheme will be initialized
with a key equal to the seed of such a generator, and will maintain and update a state
allowing it to quickly produce the next output bit of the generator. The stream of
plaintext bits will be encrypted by XORing these bits with the corresponding output
bits of the generator.

Construction 5.3.3 (how to construct stream-ciphers [i.e., state-based private-key
encryption schemes)): Let g be a polynomial-time computable function such that
lg(s)| = |s| + 1 foralls € {0, 1}*.

Key-generation and initial state: On input 1*, uniformly select s € {0, 1}", and output
the key-pair (s, s). The initial state of each algorithm is set to (s, 0, 5).

(We maintain the initial key s and a step-counter in order to allow recovery from
loss of ciphertexts.)

Encrypting the next plaintext bit x with state (s, ¢, s"): Let s"0 = g(s’), where |s"| =
|s’| and o € {0, 1}. Output the ciphertext bit x @ o, and set the new state to (s, t +
1,s”).

407

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Decrypting the ciphertext bit y with state (s, ¢, s'): Let s"c = g(s’), where |s"| = |s'|
and o € {0, 1}. Output the plaintext bit y ® o, and set the new state to (s, t + 1, s").

Special recovery procedure: When notified that some ciphertext bits may have been
lost and that the current ciphertext bit has index t', the decryption procedure first
recovers the correct current state, denoted sy, to be used in decryption instead of's’.

. . . , def 13
This can be done by computing s;o; = g(s;—1), fori =1, ..., t', where sy = s.

Note that both the encryption and decryption algorithms are deterministic, and that the
state after encryption of ¢ bits has length 2n 4 log, ¢ < 3n (for t < 2").

Recall that g (as in Construction 5.3.3) is called a next-step function of an on-
line pseudorandom generator if for every polynomial p the ensemble {G%},cy is
pseudorandom (with respect to polynomial-size circuits), where G% is defined by the
following random process:

Uniformly select sy € {0, 1}7;
Fori = 1to p(n), let sio; < g(si—1), where o; € {0, 1} (and s; € {0, 1}");
Output 6107 - - - O p(n)-

Also recall that if g is itself a pseudorandom generator, then it constitutes a next-step
function of an on-line pseudorandom generator (see Exercise 21 of Chapter 3). We
have:

Proposition 5.3.4: Suppose that g is a next-step function of an on-line pseudoran-
dom generator. Then Construction 5.3.3 constitutes a secure state-based private-key
encryption scheme.

Proof Idea: Consider an ideal version of Construction 5.3.3 in which a truly random
sequence is used instead of the output produced by the on-line pseudorandom gener-
ator defined by g. The ideal version coincides with the traditional one-time pad, and
thus is perfectly secure. The security of the actual Construction 5.3.3 follows by the
pseudorandomness of the on-line generator. MW

5.3.2. Preliminaries: Block-Ciphers

Many encryption schemes are conveniently presented by first constructing a restricted
type of encryption scheme that we call a block-cipher.'* In contrast to encryption
schemes (as defined in Definition 5.1.1), block-ciphers (as defined in Definition 5.3.5)
are only required to operate on plaintexts of a specific length (which is a function of
the security parameter). As we shall see, given a secure block-cipher, we can easily
construct a (general) secure encryption scheme.

13 More generally, if the decryption procedure holds the state at time 7 < ¢ then it needs only compute s, 1, ..., 5.

14 In using the term block-cipher, we abuse standard terminology by which a block-cipher must, in addition to op-
erating on plaintext of specific length, produce ciphertexts of a length that equals the length of the corresponding
plaintexts. We comment that the latter cannot be semantically secure; see Exercise 25.

408

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.3 CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES

5.3.2.1. Definitions

We start by considering the syntax (cf. Definition 5.1.1).

Definition 5.3.5 (block-cipher): 4 block-cipher is a triple, (G, E, D), of probabilistic
polynomial-time algorithms satisfying the following two conditions:

1. Oninput 1", algorithm G outputs a pair of bit strings.

2. There exists a polynomially bounded function £ : N— N, called the block length, so
that for every pair (e, d) in the range of G(1"), and for each o € {0, 1}*™, algorithms
E and D satisfy

PriDa(Ee(@)) = a] =1

Typically, we use either £(n) = ©(n) or £(n) = 1. Analogously to Definition 5.1.1, this
definition does not distinguish private-key encryption schemes from public-key ones.
The difference between the two types is captured in the security definitions, which are
essentially as before, with the modification that we only consider plaintexts of length
£(n). For example, the analogue of Definition 5.2.8 (for private-key schemes) reads:

Definition 5.3.6 (semantic security — private-key block-ciphers): A block-cipher,
(G, E, D), with block length ¢ is semantically secure (in the private-key model) if for
every probabilistic polynomial-time algorithm A there exists a probabilistic polynomial-
time algorithm A’ such that for every ensemble (X, = (Xf,l), s Xff(n)))}neN, with
IXf,l)I =...= |X§f("))| = {(n) and t(n) < poly(n), every pair of polynomially bounded
functions f, h, every positive polynomial p, and all sufficiently large n, it holds that

Pr{4(1”, B, an (X, 1%, h(17,)= (17, X, |

<Pr [A/(l”, t(n), 1% (17, X)) = £(17,)_(n)] + L
p(n)

where E (xV, ..., x0) = (E,(x(V), ..., E.(x")), as in Definition 5.2.8.

Note that, in case £ is polynomial-time computable, we can omit the auxiliary input
10l = 11040 "because it can be reconstructed from the security parameter 7 and the
value ¢(n).

5.3.2.2. Transforming Block-Ciphers into General Encryption Schemes

There are obvious ways of transforming a block-cipher into a general encryption
scheme. The basic idea is to break the plaintexts (for the resulting scheme) into blocks
and encode each block separately by using the block-cipher. Thus, the security of the
block-cipher (in the multiple-message settings) implies the security of the resulting
encryption scheme. The only technicality we need to deal with is how to encrypt plain-
texts of length that is not an integer multiple of the block-length (i.e., of €(#n)). This

409

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

is easily resolved by padding the last block (while indicating the end of the actual
plaintext).!?

Construction 5.3.7 (from block-ciphers to general encryption schemes): Let
(G, E, D) be a block-cipher with block length function £. We construct an encryp-
tion scheme, (G', E', D'), as follows. The key-generation algorithm, G', is identical to
G. To encrypt a message o (with encryption-key e generated under security parameter
n), we break it into consecutive blocks of length €(n), while possibly augmenting the
last block. Let ay, ..., a; be the resulting blocks. Then

def

= (al, Ee(@1), ooy Eele))

1o decrypt the ciphertext (m, B, ..., B;) (with decryption-key d), we let o; = D4(B;)
fori =1, ..., t, and let the plaintext be the m-bit long prefix of the concatenated string
oy - O

Ey(@)

This construction yields ciphertexts that reveal the exact length of the plaintext. Recall
that this is not prohibited by the definitions of security, and that we cannot hope to totally
hide the plaintext length. However, we can easily construct encryption schemes that hide
some information about the length of the plaintext; see examples in Exercise 5. Also,
note that the above construction applies even to the special case where £ is identically 1.

Proposition 5.3.8: Let(G, E, D)and(G', E’, D’) be as in Construction 5.3.7. Suppose
that the former is a secure private-key'® (resp., public-key) block-cipher. Then the latter
is a secure private-key (resp., public-key) encryption scheme.

Proof Sketch: The proof is by a reducibility argument. Assuming toward the contra-
diction that the encryption scheme (G’, E’, D’) is not secure, we conclude that neither
is (G, E, D), contradicting our hypothesis. Specifically, we rely on the fact that in
both schemes, security means security in the multiple-message setting. Note that in
case the security of (G', E’, D’) is violated via ¢(n) messages of length L(n), the se-
curity of (G, E, D) is violated via t(n) - [L(n)/£(n)] messages of length £(n). Also,
the argument may utilize any of the two notions of security (i.e., semantic security or
ciphertext-indistinguishability). W

5.3.3. Private-Key Encryption Schemes

Secure private-key encryption schemes can be easily constructed using any efficiently
computable pseudorandom function ensemble (see Section 3.6). Specifically, we present
a block-cipher with block length £(n) = n. The key-generation algorithm consists of

15 We choose to use a very simple indication of the end of the actual plaintext (i.e., to include its length in the
ciphertext). In fact, it suffices to include the length of the plaintext modulo £(n). Another natural alternative
is to use a padding of the form 100 —lel=D)mod &) \yhile observing that no padding is ever required in case
Ln)=1.

16 Recall that throughout this section security means security in the multiple-message setting.

410

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.3 CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES

selecting a seed, denoted s, for such a function, denoted f;. To encrypt a message
x € {0, 1}" (using key s), the encryption algorithm uniformly selects a string 7 € {0, 1}"
and produces the ciphertext (7, x @ fi(7)). To decrypt the ciphertext (7, y) (using key
s), the decryption algorithm just computes y & f;(r). Formally, we have:

Construction 5.3.9 (a private-key block-cipher based on pseudorandom functions):
Let F = {F,} be an efficiently computable function ensemble and let I and V be the
algorithms associated with it. That is, 1(1") selects a function with distribution F, and
V (s, x) returns fs(x), where f; is the function associated with the string s. We define a
private-key block-cipher, (G, E, D), with block length £(n) = n as follows:

Key-generation: G(1") = (k, k), where k < I(1").
Encrypting plaintext x € {0, 1}" (using the key k): Ex(x) = (r, V(k,7) @ x), where r
is uniformly chosen in {0, 1}".

Decrypting ciphertext (r, y) (using the key k): Dy(r, y) = V(k,7) ® y.

Clearly, for every & (in the range of /(1")) and x € {0, 1}",

Di(Ex(x)) = Dp(Uy, fil(Up) @ x) = fi(Uy) @ (fi(Un) ®x) = x

We assume that F' is pseudorandom with respect to polynomial-size circuits, meaning
that no polynomial-size circuit having “oracle gates” can distinguish the case in which
the answers are provided by a random function from the case in which the answers are
provided by a function in F. Alternatively, one may consider probabilistic polynomial-
time oracle machines that obtain a non-uniform polynomially long auxiliary input.
That is, for every probabilistic polynomial-time oracle machine M, for every pair of
positive polynomials p and q, and for all sufficiently large n's and all z € {0, 1},

: 1
Pr{M?(z)=1] - Pr[M/"@z)=1]] < —
[P =1] - Pr| Il < =
where ¢ is a uniformly selected function mapping {0, 1}" to {0, 1}".

Analogously to Corollary 3.6.7, such (non-uniformly strong) pseudorandom functions
can be constructed using any non-uniformly strong one-way function.

Proposition 5.3.10: Let F and (G, E, D) be as in Construction 5.3.9, and suppose
that F is pseudorandom with respect to polynomial-size circuits. Then (G, E, D) is
secure.

The proof of Proposition 5.3.10 follows. Combining Propositions 5.3.8 and 5.3.10 (with
a non-uniform version of Corollary 3.6.7), we obtain:

Theorem 5.3.11: [f there exist (non-uniformly strong) one-way functions, then there
exist secure private-key encryption schemes.

411

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES
The converse holds too; see Exercise 2.

Proof of Proposition 5.3.10: The proof consists of two steps (suggested as a general
methodology in Section 3.6):

1. Prove that an idealized version of the scheme, in which one uses a uniformly selected
function ¢ : {0, 1}" — {0, 1}", rather than the pseudorandom function f;, is secure
(in the sense of ciphertext-indistinguishability).

2. Conclude that the real scheme (as presented in Construction 5.3.9) is secure (because
otherwise one could distinguish a pseudorandom function from a truly random one).

Specifically, in the ideal version, the messages x(, .., x") are encrypted by
D, prM) @ xV), ..., rD, ¢p(r®) @ x), where the /)s are independently and uni-
formly selected, and ¢ is a random function. Thus, with probability greater than
1 —¢>.27" the r")’s are all distinct, and so the values ¢(#") @ x/) are independently
and uniformly distributed, regardless of the x()s. It follows that the ideal version is
ciphertext-indistinguishable; that is, for any x(V, ..., x® and y, ..., y®, the statisti-
cal difference between the distributions (U, ¢(U{") @ xV), ..., (UL, Uy @ x©)
and (U, p(U") @ y V), ..., (UL, o(UP) @ y©) is at most 12 - 27".

Now, if the actual scheme is not ciphertext-indistinguishable, then for some sequence
of #)’s and v\)’s, a polynomial-size circuit can distinguish the ¢(+)) @ v’ from
the f,(r')) @ v, where ¢ is random and f; is pseudorandom.!” But this contra-
dicts the hypothesis that polynomial-size circuits cannot distinguish between the two
cases. W

Discussion. Note that we could have gotten rid of the randomization if we had al-
lowed the encryption algorithm to be history dependent (as discussed in Section 5.3.1).
Specifically, in such a case, we could have used a counter in the role of . Further-
more, if the encryption scheme is used for FIFO communication between the parties and
both can maintain the counter-value, then there is no need for the sender to send the
counter-value. However, in the latter case, Construction 5.3.3 is preferable (because the
adequate pseudorandom generator may be more efficient than a pseudorandom function
as used in Construction 5.3.9). We note that in case the encryption scheme is not used
for FIFO communication and one may need to decrypt messages with arbitrary varying
counter-values, it is typically better to use Construction 5.3.9. Furthermore, in many
cases it may be preferable to select a value (i.e., r) at random, rather, than rely on a
counter that must be stored in a reliable manner between applications (of the encryption
algorithm).

The ciphertexts produced by Construction 5.3.9 are longer than the corresponding
plaintexts. This is unavoidable in the case of secure (history-independent) encryption
schemes (see Exercise 25). In particular, the common practice of using pseudorandom

17 The v()%s either equal the xU)’s or the yU)’s, whereas the »()’s are random (or are fixed by an averaging
argument). The conclusion follows by considering the actual encryptions of the x(/)’s and the y(/)’s versus
their ideal encryptions. Since the actual encryptions are distinguishable whereas the ideals are not, the actual
encryption of either the x)’s or the y/)’s must be distinguishable from the corresponding ideal version.

412

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.3 CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES

permutations as block-ciphers'® is not secure (e.g., one can distinguish two encryptions
of the same message from encryptions of two different messages).

Recall that by combining Constructions 5.3.7 and 5.3.9 (and referring to Proposi-
tions 5.3.8 and 5.3.10), we obtain a (full-fledged) private-key encryption scheme. A
more efficient scheme is obtained by a direct combination of the ideas underlying both
constructions:

Construction 5.3.12 (a private-key encryption scheme based on pseudorandom func-
tions): Let F' = {F,} be as in Construction 5.3.9 (that is, F = {F,} is an efficiently
computable function ensemble) and I and V be the selection and evaluation algo-
rithms associated with it (e.g., V (s, x) = fs(x)). We define a private-key encryption
scheme, (G, E, D), as follows:

Key-generation: G(1") = (k, k), where k < I(1").

Encrypting plaintext « € {0, 1}* (using the key k): Break « into consecutive blocks of
length n, while possibly augmenting the last block. Let o, ..., o; be the resulting
blocks. Associate {0, 1}" with the set of integer residues modulo 2", select uniformly
r € {0, 1}*, and compute r; =r + i mod 2", for i =1, ..., t. Finally, form the ci-
phertext (r, ||, V(k,r1) ® oy, ..., V(k, 7)) ® ;). That is,

Ev(x) = (o, |al, fi(r + 1 mod 2") ® ay, ..., fr(r + ¢t mod 2") & «;)

Decrypting ciphertext (r, m, yi, ..., y;) (using the key k): For i =1,...,t, compute
a; = V(k, (r +i mod 2")) ® y;, and output the m-bit long prefix of ay - - - &;. That
is, Dy(r, m, y1, ..., y;) is the m-bit long prefix of

(V(k, (r + 1 mod 2")) @ y1) - - - (V' (k, (r + t mod 2")) @ y/)
= (fk(r + 1 mod 2") @ y1) - - (fk(r + ¢ mod 2") & y;)

Clearly, Construction 5.3.12 constitutes a secure private-key encryption scheme (pro-
vided that F is pseudorandom with respect to polynomial-size circuits). See Exercise 26.

5.3.4. Public-Key Encryption Schemes

As mentioned earlier, randomization during the encryption process can be avoided in
private-key encryption schemes that employ a varying state (not allowed in our basic
Definition 5.1.1). In the case of public-key encryption schemes, randomization during
the encryption process is essential (even if the encryption scheme employs a varying
state). Thus, the randomized encryption paradigm plays an even more pivotal role in the
construction of public-key encryption schemes. To demonstrate this paradigm, we start
with a very simple (and quite wasteful) construction. But before doing so, we recall the
notion of trapdoor permutations.

18 That is, letting Et(x) = pi(x), where py is the permutation associated with the string k.

413

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Trapdoor permutations. All our constructions employ a collection of trapdoor per-
mutations, as in Definition 2.4.5. Recall that such a collection, {p,}+, comes with four
probabilistic polynomial-time algorithms, denoted here by 7, S, F, and B (for index,
sample, forward, and backward), such that the following (syntactic) conditions hold:

1. On input 1", algorithm [/ selects a random n-bit long index o of a permutation p,,
along with a corresponding trapdoor t;

2. On input «, algorithm S samples the domain of p,, returning a random element in
it;

3. For x in the domain of p,, given « and x, algorithm F returns p,(x) (i.e., F(«, x) =
Pa(X));

4. For y in the range of p,, if («, 7) is a possible output of /(1”), then given 7 and y,
algorithm B returns p.'(y) (i.e., B(z, y) = p, ' ().

The hardness condition refers to the difficulty of inverting p, on a random element of
its range, when given only the range-element and «. That is, let 7;(1") denote the first
element in the output of /(1") (i.e., the index); then for every polynomial-size circuit
family {C,}, every polynomial p and all sufficiently large »’s

1
PriC,(1i(1"), pran(SU(1M))) = S(L(1")] < >
Namely, C,, fails to invert p, on p,(x), where o and x are selected by / and S as in the
previous paragraph. Recall that the collection can be easily modified to have a hard-core
predicate (see Theorem 2.5.2). For simplicity, we continue to refer to the collection as
{pa}, and let b denote the corresponding hard-core predicate.

5.3.4.1. Simple Schemes

We are now ready to present a very simple (alas quite wasteful) construction of a secure
public-key encryption scheme. Actually, we present a block-cipher with block-length
L =1.

Construction 5.3.13 (a simple public-key block-cipher scheme): Let {p,}, I, S, F, B,
and b be as in the paragraph entitled “trapdoor permutations.”

Key-generation: The key-generation algorithm consists of selecting at random a per-
mutation p, together with a trapdoor t for it: The permutation (or rather its de-
scription) serves as the public-key, whereas the trapdoor serves as the private-key.
That is, G(1") = I(1™), which means that the index-trapdoor pair generated by I is
associated with the key-pair of G.

Encryption: To encrypt a bit o, using the encryption-key «, the encryption algorithm
randomly selects an element, r, in the domain of p,, and produces the ciphertext
(pa(r), 0 ® b(r)). That is, E,(0) = (F(a, 7), 0 @ b(r)), wherer <« S(a).

Decryption: 7o decrypt the ciphertext (y, <), using the decryption-key t, the decryption
algorithm just computes ¢ @ b(p, ' (y)), where the inverse is computed using the
trapdoor t of py. That is, D(y, ¢) = ¢ @ b(B(t, y)).

414

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.3 CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES

Clearly, for every possible («, T) output of G and for every o € {0, 1}, it holds that
Di(Eo(0)) = D:(F(a, S()), 0 @ b(S(a)))
= (0 ® b(S())) ® b(B(t, F(a, S())))
=0 ® b(S()) ® b(p, ' (pa(S(@))))
=0 @ b(S(a)Bb(S() = o

The security of this public-key encryption scheme follows from the (non-uniform) one-
way feature of the collection { p, } (or rather from the hypothesis that » is a corresponding
hard-core predicate).

Proposition 5.3.14: Suppose that b is a (non-uniformly strong) hard-core of the collec-
tion {py}. Then Construction 5.3.13 constitutes a secure public-key block-cipher (with
block-length £ = 1).

Proof: Recall that by the equivalence theorems (i.e., Theorems 5.2.5 and 5.2.11), it
suffices to show single-message ciphertext-indistinguishability. Furthermore, by the
fact that here there are only two plaintexts (i.e., 0 and 1), it suffices to show that one
cannot distinguish the encryptions of these two plaintexts. That is, all we need to prove
is that, given the encryption-key «, it is infeasible to distinguish £,(0) = (pu(7), b(r))
from Ey(1) = (pa(r), 1 @ b(r)), where r <— S(«). But this is easily implied by the
hypothesis that b is a hard-core of the collection {p,}. Details follow.

Recall that by saying that b is a hard-core of { p,, }, we mean that for every polynomial-
size circuit family {C,}, every polynomial p and all sufficiently large n’s

1 1
PriC,(1i(1"), pr,an(S(1(1")) = b(S(H(A"))] < 5 + — (5.9)
2 pm)

However, analogously to the second proof of Theorem 3.4.1, it can be shown that this
implies that for every polynomial-size circuit family {C}}, every polynomial p’, and all
sufficiently large n’s

IPrC,(at, pa(r), b(r)) = 1] — Pr{C(a, pu(r), 1 ® b(r)) = 11| < P
wherea < [1(1")andr <« S(«). Thus, (o, E£,(0)) is computationally indistinguishable
from (o, E4(1)), and the proposition follows. W

Using Propositions 5.3.8 and 5.3.14, and recalling that Theorem 2.5.2 applies also to
collections of one-way permutations and to the non-uniform setting, we obtain:

Theorem 5.3.15: [f there exist collections of (non-uniformly hard) trapdoor permuta-
tions, then there exist secure public-key encryption schemes.

A generalization. As admitted earlier, Construction 5.3.13 is quite wasteful. Specif-
ically, it is wasteful in bandwidth, which is defined to be the relationship between the
length of the plaintext and the length of the ciphertext. In Construction 5.3.13, the
relationship between these lengths equals the security parameter (i.e., the length of

415

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

description of individual elements in the domain of the permutation). However, the
idea underlying Construction 5.3.13 can yield efficient public-key schemes, provided
we use trapdoor permutations having hard-core functions with large range (see Sec-
tion 2.5.3). To demonstrate the point, we use the following assumption relating to the
RSA collection of trapdoor permutations (cf. Subsections 2.4.3 and 2.4.4).

Large Hard-Core Conjecture for RSA: The first n/2 least-significant bits of the argu-
ment constitute a (non-uniformly strong) hard-core function of the RSA function when
applied with n-bit long moduli.

We stress that the conjecture is not known to follow from the assumption that the RSA
collection is (non-uniformly) hard to invert. What is known to hold under the latter as-
sumption is only that the first O(log n) least-significant bits of the argument constitute
a (non-uniformly strong) hard-core function of RSA (with r-bit long moduli). Still, if
the large hard-core conjecture holds, then one obtains a secure public-key encryption
scheme with efficiency comparable to that of “plain RSA” (see the following discussion).
Furthermore, this scheme is related (but not identical) to the common practice of ran-
domly padding messages (using padding equal in length to the message) before encrypt-
ing them (by applying the RSA function).!® That is, we consider the following scheme:

Construction 5.3.16 (Randomized RSA — a public-key block-cipher scheme): This
scheme employs the RSA collection of trapdoor permutations (cf. Subsections 2.4.3
and 2.4.4). The following description is, however, self-contained.

Key-generation: The key-generation algorithm consists of selecting at random two
n-bitprimes, P and Q, setting N = P - Q, selecting at random a pair (e, d) such that
e-d=1 (mod (P —1)-(Q — 1)), and outputting the pair (N, e), (N, d)), where
(N, e) is the encryption-key and (N, d) is the decryption-key. That is, (N, e),
(N, d)) < G(17"), where N, e, and d are as specified here.

(Note that N is 2n-bits long.)

Encryption: To encrypt an n-bit string o (using the encryption-key (N, e)), the encryp-
tion algorithm randomly selects an element r € {0, ..., N — 1}, and produces the
ciphertext (r° mod N, o @ LsB(r)), where LsB(r) denotes the n least-significant bits
of r. That is, E(n,¢(0) = (¥ mod N, o @ LSB(r)).

Decryption: To decrypt the ciphertext (y,¢) € {0, ..., N — 1} x {0, 1}" (using the
decryption-key (N, d)), the decryption algorithm just computes ¢ @ LsB(y? mod N),
where LSB(-) is as in the Encryption procedure. That is, Dy ay(y,s)=¢ ®
LsB(y? mod N).

The bandwidth of this scheme is much better than in Construction 5.3.13: A plaintext of
length 7 is encrypted via a ciphertext of length 2# + n = 3n. Furthermore, Randomized
RSA is almost as efficient as “plain RSA” (or the RSA function itself).

19 The conjectured security of the common practice relies on a seemingly stronger assumption; that is, the as-
sumption is that for every x € {0, ..., 2" — 1}, given (N, e) as generated in Construction 5.3.16, it is infeasible
to distinguish 7¢ mod N from (x + s2")° mod N, where r (resp., s) is uniformly distributed in {0, ..., N — 1}
(resp., in {0, ..., [N/2"] — 1}).

416

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.3 CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES

To see that Randomized RSA satisfies the syntactic requirements of an encryption
scheme, consider any possible output of G(1"), denoted ((N, e), (N, d)), and any ¢ €
{0, 1}". Then, for any » € {0, ..., N — 1}, it holds that

Dv.a)(E(v.e)(9)) = Dv.a)((r mod N), o @ LsB(r))
= (o ® LsB(r)) ® LsB((r* mod N)? mod N)

=0 ®LSB(r) ®LsB(r* mod N) = o

where the last equality is due to 7¢/ = (mod N). The security of Randomized RSA
(as a public-key encryption scheme) follows from the large hard-core conjecture for
RSA, analogously to the proof of Proposition 5.3.14.

Proposition 5.3.17: Suppose that the large hard-core conjecture for RSA does hold.
Then Construction 5.3.16 constitutes a secure public-key block-cipher (with block-
length £(n) = n).

Proof Sketch: Recall that by the equivalence theorems (i.e., Theorems 5.2.5and 5.2.11),
it suffices to show single-message ciphertext-indistinguishability. Considering any
two strings x and y, we need to show that ((N,e), 7 mod N, x & LsB(r)) and
((N,e), r* mod N, y & LsB(r)) are indistinguishable, where N, e and r are selected
at random as in the construction. It suffices to show that for every fixed x, the distribu-
tions ((N, e), ¥ mod N, x @ LsB(r)) and ((N, e), ¥ mod N, x @ s) are indistinguish-
able, where s € {0, 1}" is uniformly distributed, independently of anything else. The
latter claim follows from the hypothesis that the n least-significant bits are a hard-core
function for RSA with moduli of length 2n. W

Discussion. We wish to stress that encrypting messages by merely applying the RSA
function to them (without randomization) yields an insecure encryption scheme. Un-
fortunately, this procedure (previously referred to as “plain RSA”) is quite common in
practice. The fact that plain RSA is definitely insecure is a special case of the fact that
any public-key encryption scheme that employs a deterministic encryption algorithm
is insecure. We warn that the fact that in such deterministic encryption schemes one
can distinguish encryptions of two specific messages (e.g., the all-zero message and
the all-one message) is not “merely of theoretical concern”; it may seriously endanger
some applications! In contrast, Randomized RSA (as defined in Construction 5.3.16)
may be secure, provided a quite reasonable conjecture (i.e., the large hard-core con-
jecture for RSA) holds. We comment that the more common practice of applying the
RSA function to a randomly padded version of the plaintext is secure if and only if a
seemingly stronger (and yet reasonable) assumption holds; see footnote 19. Thus, the
latter practice is far superior to using the RSA function directly (i.e., without random-
ization): The randomized version is likely to be secure, whereas the non-randomized
(or plain) version is definitely insecure.

We note that Construction 5.3.16 (or, alternatively, Construction 5.3.13) generalizes
to any collection of trapdoor permutations having a corresponding large hard-core
function. Suppose that { p, } is such a collection, and / (or rather {4, }) is a corresponding
hard-core function (resp., a corresponding collection of hard-core functions), such

417

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

that any element in the domain of p, is mapped by % (or %,) to an £(|«|)-bit long
string. Then we can encrypt an £(|«|)-bit long plaintext, x, by (p(#), A(r) ® x) (resp.,
(pa(r), hy(r) ® x)), where r <— S(«) (as in Construction 5.3.13). This yields a secure
public-key encryption scheme with bandwidth related to the ratio of £(|c|) over the
length of the description of an individual element in the domain of p,.

5.3.4.2. An Alternative Scheme

An alternative construction of a public-key encryption scheme is presented in Con-
struction 5.3.18. Rather than encrypting each plaintext bit (or block of bits) by an
independently selected element in the domain of the trapdoor permutation (as done in
Construction 5.3.13), we select only one such element (for the entire plaintext) and
generate from it additional bits, one per each bit of the plaintext. These additional bits
are determined by successive applications of the trapdoor permutation, and only the
last result is included in the ciphertext. In a sense, the construction of this encryption
scheme augments the construction of a pseudorandom generator based on one-way
permutations (i.e., Construction 3.4.4).

Construction 5.3.18 (a public-key encryption scheme): Let {py}, 1, S, F, B, and b be
as in Construction 5.3.13. We use the notation p''(x) = Po(PL(x)) and p;(l+1)(x) =

Py (py (x)).)

Key-generation: The key-generation algorithm consists of selecting at random a per-
mutation p, together with a trapdoor, exactly as in Construction 5.3.13. That is,
G(1™) = I(1"), which means that the index-trapdoor pair generated by I is associ-
ated with the key-pair of G.

Encryption: To encrypt a string o, using the encryption-key o, the encryption algorithm
randomly selects an element, r, in the domain of p, and produces the ciphertext
(pllr), o @ G((xldl)(r)), where

GO@) Z b(r) - b(pa(r)) -+ b(pl () (5.10)

That is, Eo(0) = (p/(S(@)), 0 @ GL(S())).

Decryption: 7o decrypt the ciphertext (y, <), using the decryption-key t, the decryption
algorithm just computes ¢ @ Ggg‘)(pglg‘(y)), where the inverse is computed using

the trapdoor t of py. Thatis, D.(y,¢) = ¢ & G((),lgl)(p;m(y)).

We stress that this encryption scheme is a full-fledged one (rather than a block-cipher).
Its bandwidth tends to 1 with the length of the plaintext; that is, a plaintext of length
£ = poly(n) is encrypted via a ciphertext of length m + £, where m denotes the length
of the description of individual elements in the domain of p,,. Clearly, for every possible
(o,) output of G (and r < S(w)), it holds that

D(Eq(0)) = Do(p'(r), 0 ® GI7V(r)
= (0 ® GUN@) @ GUD(p71® Ol (plo)y
=0 GGl = o
418

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.3 CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES

The security of this public-key encryption scheme follows from the (non-uniform)
one-way feature of the collection {p,}, but here we restrict the sampling algorithm
S to produce almost uniform distribution over the domain (so that this distribution is
preserved under successive applications of py).

Proposition 5.3.19: Suppose that b is a (non-uniformly strong) hard-core of the trap-
door collection {py}. Furthermore, suppose that this trapdoor collection utilizes a
domain sampling algorithm S so that the statistical difference between S(a) and
the uniform distribution over the domain of p, is negligible in terms of |a|. Then
Construction 5.3.18 constitutes a secure public-key encryption scheme.

Proof: Again, we prove single-message ciphertext-indistinguishability. It suffices
to show that for every o, the distributions (a, pl°/(S(@)), 0 & GY""(S(«))) and
(o, ploI(S(ar)), 0 @ s) are indistinguishable, where s € {0, 1}I°! is uniformly dis-
tributed, independently of anything else. The latter claim holds by a minor extension
to Proposition 3.4.6: This proposition refers to the case where S(«) is uniform over the
domain of p,, but can be extended to the case in which there is a negligible statistical
difference between the distributions.

Details: We need to prove that for every polynomial ¢ and every sequence of
pairs (07, /") € {0, 1}¢™ x {0, 1}, the distributions D/, & @, p(S(w)), o) @
G (S(a))) and D! E (o, pi™(S(a)), 0 @& G (S(ax))) are indistinguishable,
where o <— ;(1"). We prove this in two steps:

1. We first prove that for every sequence of o,’, the distributions D, &

(@ p"(S(@)), 0, ® GL(S(@))) and R, & (a, pt(S(@)), 04 @ Ugin)) are

indistinguishable, where Uy, denotes a random variable uniformly distributed
over {0, 1}*™ and o < I;(1").

Suppose first that S(«) is uniform over the domain of p,. Then the indistin-
guishability of {D,},en and {R,},en follows directly from Proposition 3.4.6
(as adapted to circuits): The adapted form refers to the indistinguishability of
(@, p"(S(@)), GE™(S(a))) and (@, pe(S()), Upiny) and yields the desired
claim by noting that o, can be incorporated in the prospective distinguisher.
The extension (to the case that S(«) has negligible statistical difference to the
uniform distribution over the domain of p,) is straightforward.

2. Applying the previous item to D), and R, Clef(pa(n)(S((x)) o, ® Uyy)), we
conclude that {D)},en and {R)},en are indistinguishable. Similarly, {D)'},en
and {R)},en, where R def(pl(")(S(oz)), o, @ Uyy), are indistinguishable.
Furthermore, {R)},en and {R)},cn are identically distributed. Thus, {D)},en
and {D)'},en are indistinguishable.

The proposition follows. W

An instantiation. Assuming that factoring Blum Integers (i.e., products of two primes
each congruent to 3 (mod 4)) is hard, one may use the modular squaring function
(which induces a permutation over the quadratic residues modulo the product of these

419

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

integers) in the role of the trapdoor permutation used in Construction 5.3.18. This yields
a secure public-key encryption scheme with efficiency comparable to that of plain RSA
(see further discussion latter in this section).

Construction 5.3.20 (the Blum-Goldwasser Public-Key Encryption Scheme): Consult
Appendix A in Volume 1 for the relevant number-theoretic background, and note that
for P =3 (mod 4) the number (P + 1)/4 is an integer. For simplicity, we present a
block-cipher with arbitrary block-length £(n) < poly(n); a full-fledged encryption
scheme can be derived by an easy modification (see Exercise 27).

Key-generation: The key-generation algorithm consists of selecting at vandom two n-
bitprimes, P and Q, each congruent to 3 mod 4, and outputting the pair (N, (P, Q)),
where N = P - Q.

Actually, for sake of efficiency, the key-generator also computes
dp =((P+ 1)/ mod P —1 (in{0,..., P —2})
dp=((Q+1)/4) ™ mod Q — 1 (inf0,..,0—2})

cp=0-(0 "' mod P) (in {0, ..., N — 0})
co=P (P mod Q) (in {0, ..., N — P})

It outputs the pair (N, T), where N serves as the encryption-key and T =
(P, Q,N,cp,dp, cg, dg) serves as decryption-key.

Encryption: To encrypt the message o € {0, 1Y*™, using the encryption-key N:

1. Uniformly select sy € {1, ..., N}.
(Note that if GCD(sg, N) = 1, thensi mod N is auniformly distributed quadratic
residue modulo N.)

2. Fori =1, ..,£4(n)+ 1, compute s; < 51'271 mod N and b; = Isb(s;), where Isb(s)
is the least-significant bit of s.

The ciphertext is (Semy+1,), where ¢ = o @ b1by - - - by(w).

Decryption: 7o decrypt the ciphertext (r,¢) using the decryption-key T =
(P, Q,N,cp,dp,cg,dp), one first retrieves s\ and then computes the b; s as in
the Encryption procedure. Instead of successively extracting modular square roots
0(n) times, we extract the 2°C-th root, which can be done as efficiently as extracting
a single square root. Extracting the 2°-th root modulo N is done by extracting the
corresponding root modulo P and modulo Q (by raising to power dp modulo P and
dg modulo Q, respectively) and combining the results via the Chinese Reminder
Theorem:

1. Let s’ < r% mod P, and s" < r% mod Q.
2. Letsy <cp-s' +co-s"mod N.
3. Fori =1, ..., £(n), compute b; = 1sb(s;) and s;11 < si2 mod N.

The plaintext is ¢ @ b1by - - - by(w).
420

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.3 CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES

Again, one can easily verify that this construction constitutes an encryption scheme:
The main fact to verify is that the value of s; as reconstructed in the decryption stage
equals the value used in the encryption stage. This follows by combining the Chinese
Reminder Theorem with the fact that for every quadratic residue s mod N, it holds that
s = (s mod N)¥» (mod P)ands = (s mod N)% (mod Q).

Details: Recall that for a prime P =3 (mod 4), and every quadratic residue », we
have r#+1/2 = (mod P). Thus, for every quadratic residue s (modulo N) and
every £, we have

(P+1)/4)*
(szé mod N)¥ = (szl mod N)

(mod P)
= s(P+D/2 (mod P)

s (mod P)

Similarly, (szf mod N)¥ =s (mod Q). Finally, observing that cp and cp are as
in the Chinese Reminder Theorem,?® we conclude that s; as recovered in Step 2
of the decryption process equals s, as first computed in Step 2 of the encryption
process.

Encryption amounts to £(n) 4+ 1 modular multiplications, whereas decryption amounts
to £(n) + 2 such multiplications and 2 modular exponentiations (relative to half-sized
moduli). Counting modular exponentiations with respect to n-bit moduli as O(n) (i.e.,
at least n, typically 1.5z, and at most 2n) modular multiplications (with respect to
n-bit moduli), we conclude that the entire encryption—decryption process requires
work comparable to 2¢(n) + 3n modular multiplications. For comparison to (Ran-
domized) RSA, note that encrypting/decrypting £(n)-bit messages (in Randomized
RSA) amounts to [£(n)/n] modular exponentiations, and so the total work is compa-
rableto 2 - (¢4(n)/n) - 1.5n = 3£(n) modular multiplications (for general exponent e, or
(€(n)/n)- (2 + 1.5n) =~ 1.5¢(n) modular multiplications in case e = 3).

The security of the Blum-Goldwasser scheme (i.e., Construction 5.3.20) follows
immediately from Proposition 5.3.19 and the fact that the least-significant bit (i.e., Isb)
is a hard-core for the modular squaring function. Recalling that inverting the latter is
computationally equivalent to factoring, we get:

Corollary 5.3.21: Suppose that factoring is infeasible in the sense that for every
polynomial-size circuit {C,}, every positive polynomial p, and all sufficiently large
ns

1
PI’[C,,(P,, : Qn) = Pn] < —
p(n)
where P, and Q,, are uniformly distributed n-bit long primes. Then Construction 5.3.20
constitutes a secure public-key encryption scheme.

Thus, the conjectured infeasibility of factoring (which is a necessary condition for secu-
rity of RSA) yields a secure public-key encryption scheme with efficiency comparable

20 That is, i = cp - (i mod P) + cp - (imod Q) (mod N), for every integer i.

421

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

to that of (plain or Randomized) RSA. In contrast, recall that plain RSA itself is not
secure (as it employs a deterministic encryption algorithm), whereas Randomized RSA
(i.e., Construction 5.3.16) is not known to be secure under a standard assumption such
as intractability of factoring (or even of inverting the RSA function).?!

5.4.* Beyond Eavesdropping Security

Our treatment so far has referred only to a “passive” attack in which the adversary
merely eavesdrops on the line over which ciphertexts are being sent. Stronger types
of attacks, culminating in the so-called Chosen Ciphertext Attack, may be possible in
various applications. Specifically, in some settings it is feasible for the adversary to
make the sender encrypt a message of the adversary’s choice, and in some settings the
adversary may even make the receiver decrypt a ciphertext of the adversary’s choice.
This gives rise to chosen plaintext attacks and to chosen ciphertext attacks, respectively,
which are not covered by the security definitions considered in previous sections. Thus,
our main goal in this section is to provide a treatment of such types of “active” attacks.
In addition, we also discuss the related notion of non-malleable encryption schemes
(see Section 5.4.5).

5.4.1. Overview

We start with an overview of the type of attacks and results considered in the current
(rather long) section.

5.4.1.1. Types of Attacks

The following mini-taxonomy of attacks is certainly not exhaustive.

Passive attacks. We first reconsider passive attacks as referred to in the definitions
given in previous sections. In the case of public-key schemes we distinguish two sub-
cases:

1. A key-oblivious, passive attack, as captured in the aforementioned definitions. By
“key-obliviousness” we refer to the postulation that the choice of plaintext does not
depend on the public-key.

2. A key-dependent, passive attack, in which the choice of plaintext may depend on the
public-key.

(In Definition 5.2.2, the choice of plaintext means the random variable X,,, whereas in
Definition 5.2.4, it means the pair (x,, ;). In both these definitions, the choice of the
plaintext is key-oblivious.)

21 Recall that Randomized RSA is secure provided that the /2 least-significant bits constitute a hard-core function
for n-bit RSA moduli. This is a reasonable conjecture, but it seems stronger than the conjecture that RSA is hard
to invert: Assuming that RSA is hard to invert, we only know that the O(logn) least-significant bits constitute
a hard-core function for n-bit moduli.

422

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

Chosen Plaintext Attacks. Here the attacker may obtain encryptions of plaintexts of
its choice (under the key being attacked). Indeed, such an attack does not add power in
the case of public-key schemes.

Chosen Ciphertext Attacks. Here the attacker may obtain decryptions of ciphertexts
of its choice (under the key being attacked). That is, the attacker is given oracle access
to the decryption function corresponding to the decryption-key in use. We distinguish
two types of such attacks.

1. In an a priori chosen ciphertext attack, the attacker is given access to the decryption
oracle only prior to being presented with the ciphertext that it should attack (i.e., the
ciphertext for which it has to learn partial information). That is, the attack consists
of two stages: In the first stage, the attacker is given the above oracle access, and in
the second stage, the oracle is removed and the attacker is given a “test ciphertext”
(i.e., a test of successful learning).

2. In an a posteriori chosen ciphertext attack, after being given the test ciphertext, the
decryption oracle is not removed, but rather the adversary’s access to this oracle is
restricted in the natural way (i.e., the adversary is allowed to query the oracle on any
ciphertext except for the test ciphertext).

In both cases, the adversary may make queries that do not correspond to a legitimate
ciphertext, and the answer will be accordingly (i.e., a special “failure” symbol). Fur-
thermore, in both cases the adversary may effect the selection of the test ciphertext (by
specifying a distribution from which the corresponding plaintext is to be drawn).

Formal definitions of all these types of attacks are given in the following subsections
(i.e., in Sections 5.4.2, 5.4.3, and 5.4.4, respectively). In addition, in Section 5.4.5,
we consider the related notion of malleability, that is, attacks aimed at generating
encryptions of plaintexts related to the secret plaintext, rather than gaining information
about the latter.

5.4.1.2. Constructions

As in the basic case (i.e., Section 5.3), actively secure private-key encryption schemes
can be constructed based on the existence of one-way functions, whereas actively
secure public-key encryption schemes are based on the existence of (enhanced) trapdoor
permutations. In both cases, withstanding a posteriori chosen ciphertext attacks is harder
than withstanding a priori chosen ciphertext attacks. We will present the following
results.

For Private-Key Schemes. In Section 5.4.4.3, we show that the private-key encryption
scheme based on pseudorandom functions (i.e., Construction 5.3.9) is secure also under
a priori chosen ciphertext attacks, but is not secure under an a posteriori chosen
ciphertext attack. We also show how to transform any passively secure private-key
encryption scheme into a scheme secure under (a posteriori) chosen ciphertext attacks
by using a message-authentication scheme on top of the basic encryption. Thus, the latter
construction relies on message-authentication schemes as defined in Section 6.1. We

423

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

mention that message-authentication schemes can be constructed using pseudorandom
functions; see Section 6.3.

For Public-Key Schemes. Assuming the existence of enhanced trapdoor permutations
(see Section C.1 in Appendix C), we will present constructions of public-key encryption
schemes that are secure against (a priori and a posteriori) chosen ciphertext attacks.
The constructions utilize various forms of non-interactive zero-knowledge proofs (see
Section 4.10 in Volume 1), which can be constructed under the former assumption.
We warn that these constructions, which are presented in Section 5.4.4.4, are rather
complex.

As a corollary to the relation between these strong notions of security and non-
malleable encryption schemes, we will conclude that the schemes withstanding a pos-
teriori chosen ciphertext attacks are non-malleable. For details, see Section 5.4.5.

5.4.1.3. Methodological Comments

As hinted, we do not cover all possible intermediate types of attacks but, rather, focus on
some natural ones. For example, we only consider key-dependent attacks on public-key
encryption schemes (but not on private-key schemes).

The attacks are presented in increasing order of strength; hence, resilience against
such attacks yields increasingly stronger notions of security.?? This fact may be
best verified when considering the indistinguishability variants of these security
definitions.

A uniform-complexity treatment seems more appealing in the current section (i.e.,
more than in the previous sections). However, for the sake of consistency with the
basic definitions (i.e., the previous sections of this chapter), we use non-uniform for-
mulations of the various definitions. In fact, our treatment of the active attacks (i.e.,
in Sections 5.4.3 and 5.4.4) only uses non-uniformity in referring to (non-uniform)
auxiliary inputs, and so non-uniformity can be easily eliminated in that case (i.e., by
just eliminating these auxiliary inputs from all the definitions). (In Section 5.4.2 we
refer to non-uniform families of [polynomial-size] circuits, but also in this case, all re-
sults extend to the uniform-complexity setting [because all the reductions are actually
uniform].)

As mentioned, non-interactive zero-knowledge proofs play a central role in the
construction of public-key encryption schemes that are secure under chosen ciphertext
attacks. Thus, we will assume that the reader is fairly comfortable with the notion
of zero-knowledge proofs. Furthermore, although we recall the relevant definition of
non-interactive zero-knowledge, which will serve as our starting point toward stronger
notions, we recommend that the more basic definitions (and results) regarding non-
interactive zero-knowledge proofs (as presented in Section 4.10) be studied first. In
our constructions of encryption schemes that are secure under a posteriori chosen

22 Indeed, an alternative presentation may start with the strongest notion of security (i.e., corresponding to a-
posteriori chosen ciphertext attacks), and obtain the weaker notions by imposing various restrictions (on the
attacks).

424

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

ciphertext attacks, we will use some results from Chapter 6. In the case of private-key
encryption schemes (treated in Section 5.4.4.3), we will use a message-authentication
scheme, but do so in a self-contained way. In the case of public-key encryption schemes
(treated in Section 5.4.4.4), we will use signature schemes (having an extra property)
in order to construct a certain non-interactive zero-knowledge proof, which we use for
the construction of the encryption scheme. At that point we will refer to a specific result
proved in Chapter 6.

5.4.2. Key-Dependent Passive Attacks

The following discussion, as well as the entire subsection, refers only to public-key
encryption schemes. For sake of simplicity, we present the single-message definitions
of security. We note that, as in the basic case (for public-key encryption schemes), the
single-message definitions of security are equivalent to the multiple-message ones.

In Definitions 5.2.2 and 5.2.4, the plaintext distribution (or pair) is fixed obliviously
of the encryption-key. This suffices for the natural case in which the (high-level) appli-
cation (using the encryption scheme) is oblivious of the encryption-key.?* However, in
some settings, the adversary may have partial control on the application. Furthermore,
in the public-key case, the adversary knows the encryption-key in use, and so (if it may
partially control the application then) it may be able to cause the application to invoke
the encryption scheme on plaintexts that are related to the encryption-key in use. Thus,
for such settings, we need stronger definitions of security that postulate that partial
information about the plaintext remains secret even if the plaintext does depend on the
encryption-key in use. Note that here we merely consider the dependence of the “test”
plaintext (i.e., the one for which the adversary wishes to obtain partial information)
on the encryption-key, and ignore the fact that the foregoing motivation also suggests
that the adversary can obtain the encryptions of additional plaintexts chosen by it (as
discussed in Section 5.4.3). However, it is easy to see that (in the public-key setting
discussed here) these additional encryptions are of no use because the adversary can
generate them by itself (see Section 5.4.3).

5.4.2.1. Definitions

Recall that we seek a definition that guarantees that partial information about the plain-
text remains secret even if the plaintext does depend on the encryption-key in use. That
is, we seek a strengthening of semantic security (as defined in Definition 5.2.2) in which
one allows the plaintext distribution ensemble (denoted {X,},cn in Definition 5.2.2)
to depend on the encryption-key in use (i.e., for encryption-key e, we consider the
distribution X, over {0, 1}P°¥(¢D) Fyrthermore, we also allow the partial information
functions (denoted f and 4 in Definition 5.2.2) to depend on the encryption-key in use
(i.e., for encryption-key e, we consider the functions f, and %,). In the actual definition

23 Indeed, it is natural (and even methodologically imperative) that a high-level application that uses encryption as
atool be oblivious of the keys used by that tool. However, this refers only to a proper operation of the application,
and deviation may be caused (in some settings) by an improper behavior (i.e., an adversary).

425

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

it is important to restrict the scope of the functions {4.}. and the distributions {X,}.
so that their dependency on e is polynomial-time computable (see Exercise 28). This
yields the definition presented in Exercise 29, which is equivalent to the following
formulation.?*

Definition 5.4.1 (semantic security under key-dependent passive attacks): The se-
quence {(fe, he, Xe)leeio,1y+ is admissible for the current definition if

1. The functions f, : {0, 1}* — {0, 1}* are polynomially bounded, that is, there exists
a polynomial £ such that | f,(x)| < €(|x| + le|).

2. There exists a non-uniform family of polynomial-size (h-evaluation) circuits { H, },en
such that for every e in the range of G(1") and every x in the support of X, it holds
that H,(e, x) = hq(x).

3. There exists a non-uniform family of (probabilistic) polynomial-size (sampling) cir-
cuits { Sy }nen such that for every e in the range of G (1) and for some m = poly(|e]),
the random variables S,(e, U,,) and X, are identically distributed.*

An encryption scheme, (G, E, D), is semantically secure under key-dependent pas-
sive attacks if for every probabilistic polynomial-time algorithm A, there exists a
probabilistic polynomial-time algorithm A’ such that for every admissible sequence
{(fe, hes Xe)Yecio, 11+, every positive polynomial p, and all sufficiently large n it holds
that

Pr [A(e, E.(Xe), llXe" he(Xe)):fe(Xe)]

< Pr [A/(e, 1|X€|3 he(Xe))=fe(Xe)] + —

p(n)
where (e, d) < G(1"), and the probability is taken over the internal coin tosses of
algorithms G, E, A, and A’', as well as over X,.

We stress that the performance of A’ is measured against the same distribution of
triplets (/e, he, Xe) (i.e., e < G1(1")) as the one considered for algorithm 4. Unlike
in other versions of the definition of semantic security, here it is important to let A
have the encryption-key e because the task (i.e., the evaluation of f,(X,)) as well as its
main input (i.e., the value %.(X,)) are related to e. (Indeed, if e were not given to 4’,
then no encryption scheme (G, E, D) could have satisfied the revised Definition 5.4.1:
Considering 4.(x) = x @ e (for |x| = |e|]) and f.(x) = x, note that it is easy for 4 to
compute x from e and A.(x), which are explicit in (e, E.(x), 1*!, h.(x)), whereas no
A’ can compute x from (17, 1¥1, h.(x)).)

Using Exercise 14.2, one may verify that Definition 5.2.2 is a special case of Def-
inition 5.4.1. An analogous modification (or generalization) of Definition 5.2.4 yields
the following:

24 Recall that without loss of generality, we may assume that the keys generated by G(1") have length 7. Thus,
there is no point in providing the algorithms with 1” as an auxiliary input (as done in Definition 5.2.2).

25 As usual, S, (e, r) denotes the output of the circuit S, on input e and coins . We stress that for every e, the
length of X, is fixed.

426

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

Definition 5.4.2 (indistinguishability of encryptions under key-dependent passive at-
tacks): The sequence {(x., Ve)}ee(0,1}+ is admissible for the current definition if there ex-
ists a non-uniform family of polynomial-size circuits { P, },<n that maps each encryption-
key e € {0, 1}* to the corresponding pair of (equal-length) strings (x., v.). That is, for
every e in the range of G(1"), it holds that P,(e) = (x., V.). An encryption scheme,
(G, E, D), has indistinguishable encryptions under key-dependent passive attacks
if for every non-uniform family of polynomial-size circuits {C,}, every admissible se-
quence {(xe, Ye)}ee(o, 1)+, €very positive polynomial p, and all sufficiently large n it holds
that

1
| PrCu(e, Ec(xe))=1] = Pr[Cy(e, E.(ye))=1]| < —
p(n)
where (e, d) < G(1"), and the probability is taken over the internal coin tosses of
algorithms G and E.

As in the basic case (i.e., Section 5.2), the two definitions are equivalent.

Theorem 5.4.3 (equivalence of definitions for key-dependent passive attacks): A
public-key encryption scheme (G, E, D) is semantically secure under key-dependent
passive attacks if and only if it has indistinguishable encryptions under key-dependent
passive attacks.

Proof Sketch: In order to show that indistinguishability of encryptions implies semantic
security, we follow the proof of Proposition 5.2.6. Specifically, 4’ is constructed and
analyzed almost as before, with the exception that 4" gets and uses the encryption-
key e (rather than letting it generate a random encryption-key by itself).2® That is, we
let A'(e, 1”1, h(x)) = A(e, E.(1*), 1F, h,(x)), and show that for all (deterministic)
polynomial-size circuit families {S) },eny and { 4, },en it holds that

Pr{ (e, Eu(Sy(), 15V, Hy (e, S,(e))=fu(S;(e))] (5.11)

< Pr[d(e, (11549, 15, H,(e, 5, (e))= fu(S, ()] +
poly(n)

where e < G(1") and w:N—[0,1] is a negligible function. Once established,

Eq. (5.11) implies that (G, E, D) satisfies Definition 5.4.1.

On how Eq. (5.11) implies Definition 5.4.1: The issue is that Eq. (5.11) refers to
deterministic plaintext-selecting circuits (i.e., the S,’), whereas Definition 5.4.1
refers to probabilistic plaintext-sampling circuits (i.e., the S,’s). This small gap
can be bridged by fixing a sequence of coins for the latter probabilistic (sam-
pling) circuits. Specifically, starting with any admissible (for Definition 5.4.1) se-
quence {(fe, fe, Xe)}eeto, 1)+, Where Hy (e, x) = ho(x) and X, = S, (e, Upoly(n)), We
consider some sequence of coins r, (for S,) that maximizes the gap between
PrlA(e, Ec(x.), 17!, Hy(e, x.))= fo(x.)] and Pr{A'(e, 1", H, (e, x.))= fo(x.)],

26 Here we use the convention by which A’ gets e along with %,(x) (and 1*1). This is important because 4’ must
feed a matching pair (e, /1.(x)) to 4.

427

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

where e is random and x, = S,(e,r,). Recalling that A'(e, 14, 9) =
A(e, E.(1%), 1¢, y) and incorporating the sequence of 7,,’s in A, we obtain a contra-
diction to Eq. (5.11) (i.e., by letting S (e) = S,(e, 74) = x).

Assuming (to the contrary of the above claim) that Eq. (5.11) does not hold, we obtain
a sequence of admissible pairs {(X., Ve)}eco, 1) for Definition 5.4.2 such that their
encryptions can be distinguished (in contradiction to our hypothesis). Specifically,
we setx, = S (e)and y, & 1| and let C' (e,) & A(e, a, 17!, H, (e, x.)). Thus, we
obtain a (poly(n)-size) circuit C;, such that for some positive polynomial p and infinitely
many n’s

|Pr{C (e, Eo(xe))= fe(xe)] = PCy(e, Eo(ye) = fe(x)]| >)
where e is distributed according to G(1”). Using an idea as in the proof of Theo-
rem 5.2.15, we derive a (poly(n)-size) circuit C, that distinguishes (e, E.(x.)) from
(e, Ec(y.)), where e <— G1(1"), in contradiction to our hypothesis.

Details: We refer to the proof of Claim 5.2.15.1 (contained in the proof of The-
orem 5.2.15). Recall that the idea was to proceed in two stages. First, using
only e (which also yields x, and y.), we find an arbitrary value v such that
|Pr[C,’,(e, E.(x.))=v] — Pr[C) (e, Ee(ye)):v]| is large. In the second stage, we
use this value v in order to distinguish the case in which we are given an encryption
of x. from the case in which we are given an encryption of y,. (We comment if
(e, x) > f.(x) were computable by a poly(n)-size circuit, then converting C;, into a
distinguisher C,, would have been much easier; we further comment that as a corol-
lary to the current proof, one can conclude that the restricted form is equivalent to
the general one.)

This concludes the proofthat indistinguishability of encryptions (as per Definition 5.4.2)
implies semantic security (as per Definition 5.4.1), and we now turn to the opposite
direction.

Suppose that (G, E, D) does not have indistinguishable encryptions, and consider an
admissible sequence {(x., ye)}ee(o, 1)+ that witnesses this failure. Following the proof of
Proposition 5.2.7, we define a probability ensemble { X, }.c(o, 1} and function ensembles
{he}eeqo,1y and { fe}eeqo,1)+ in an analogous manner:

e The distribution X, is uniformly distributed over {x., y.}.

e The function f, satisfies f.(x.) = 1 and f.(y.) = 0.

e The function /., is defined such that 4.(X,) equals the description of the circuit C,, that
distinguishes (e, E.(x.)) from (e, E.(y.)), wheree <— G1(1") (and (x., y.) = P,(e)).

Using the admissibility of the sequence {(x., y.)}. (for Definition 5.4.2), it follows that
{(fe, he, Xe)}e 18 admissible for Definition 5.4.1. Using the same algorithm A as in the
proof of Proposition 5.2.7 (i.e., A(e, B, C,) = C,(e, B), where B is a ciphertext and
C, = h.(X.)), and using the same analysis, we derive a contradiction to the hypothesis
that (G, E, D) satisfies Definition 5.4.1.

428

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

Details: Without loss of generality, suppose that
PrIC,(e, Eux)=11 = PrICy(e, E(r) =11+ ——
p(n)
for e <~ G(1"). Then, as shown in Claim 5.2.7.1,
1
2p(n)
On the other hand, as shown in Fact 5.2.7.2, for every algorithm A’

PrLA(e, Eo(Xo), he(X0)= (X0l > 5 +

1

Pr{d'(e, 1'%, he(Xo) = fu(Xe)] < 3

because (e, 1!/, h,(X,)) contains no information about the value of f,(X,) (which

is uniformly distributed in {0, 1}). This violates Definition 5.4.1, and so our initial

contradiction hypothesis (i.e., that one can distinguish encryptions under (G, E, D))
must be false.

The theorem follows. W

Multiple-Message Security. Definitions 5.4.1 and 5.4.2 can be easily generalized to
handle the encryption of many messages (as in Section 5.2.4), yielding again two
equivalent definitions. Since we are in the public-key setting, one can show (analo-
gously to Theorem 5.2.11) that the single-message definitions of security are equiv-
alent to the multiple-message ones (i.e., by showing that Definition 5.4.2 implies its
multiple-message generalization). One important observation is that admissibility for
the multiple-message definition enables one to carry out a hybrid argument (as in the
proof of Theorem 5.2.11). For details, see Exercise 31. The bottom-line is that we can
freely use any of the four security definitions for key-dependent passive attacks, and
security under that definition implies security under any of the other definitions.

5.4.2.2. Constructions

All the results presented in Section 5.3.4 extend to security under key-dependent passive
attacks. That is, for each of the constructions presented in Section 5.3.4, the same
assumption used to prove security under key-oblivious passive attacks actually suffices
for proving security under key-dependent passive attacks. Before demonstrating this
fact, we comment that (in general) security under key-oblivious passive attacks does
not necessarily imply security under key-dependent passive attacks; see Exercise 32.

Initial observations. We start by observing that Construction 5.3.7 (i.e., the transfor-
mation of block-ciphers to general encryption schemes) maintains its security in our
context. That is:

Proposition 5.4.4: (extension of Proposition 5.3.8): Let (G, E, D) and (G', E’, D)
be as in Construction 5.3.7; that is, let (G', E’, D) be the full-fledged encryption
constructed based on the block-cipher (G, E, D). Then if (G, E, D) is secure under
key-dependent passive attacks, then so is (G', E', D").

429

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Proof Idea: As in the proof of Proposition 5.3.8, we merely observe that multiple-
message security of (G', E’/, D’) is equivalent to multiple-message security of
(G,E,D). 1

We next observe that Construction 5.3.13 (a block-cipher with block-length £ = 1)
maintains its security also under a key-dependent passive attack. This is a special case
of the following observation:

Proposition 5.4.5: Let (G, E, D) be a block-cipher with logarithmically bounded
block-length (i.e., £(n) = O(logn)). If (G, E, D) is secure under key-oblivious pas-
sive attacks, then it is also secure under key-dependent passive attacks.

Proof Sketch: Here we use the definition of ciphertext-indistinguishability in the single-
message setting. The key observation is that the set of possible messages is relatively
small, and so selecting a message in a key-dependent manner does not give much
advantage over selecting a message at random (i.e., obliviously of the key).

Consider an arbitrary admissible (for Definition 5.4.2) set of pairs, {(X¢, Ve)}eeo, 11+
where |x.| = |y.| = O(log|e|), and a circuit family {C,} that tries to distinguish
(e, Ec(x.)) from (e, E.(y.)). We shall show that {C,} necessarily fails by relating its
distinguishing gap to the distinguishing gap of a key-oblivious attack (represented in
the next paragraph by the C,”%).

Let { P, },en be the circuit family producing the aforementioned admissible set (i.e.,
P,(e) = (x., y.)). Fixing some n € N and an arbitrary (x, y) € {0, 1}* x {0, 1}*, we
consider a circuit C;"” (depending on the circuits C, and P, and the pair (x, y)) that,
on input (e, o), operates as follows:

1. Using the hard-wired circuit P, and the input (key) e, the circuit C;*” checks whether
(e, ye) equals the hard-wired pair (x,) (i.e., C;”” checks whether P,(e) = (x, y)).
In case the check fails, C;™” outputs an arbitrary value (e.g., 1) obliviously of the
ciphertext «.

2. Otherwise (i.e., P,(e) = (x, y)), the circuit C,*” invokes C, on its own input and
answers accordingly (i.e., outputs Cy(e,)).

Since (G, E, D) is secure under key-oblivious passive attacks, it follows that (for every
(x,y) € {0, 1} x {0, 1}, where m < poly(n)) the circuit C;** cannot distinguish the
case « = E, (x) from the case @« = E,.(y). Thus, for some negligible function u:N—
[0,1] and every pair (x,) € {0, 1} x {0, 1}, the following holds:

w(n) > |Pr.[Cr (e, Ee(x)) = 11— Pr.[C} (e, Eo()) = 1]|
_ Cule, Eo(xe))=17 _ Chle, Eo(ye)) =1
= 'Pre |:/\ (xe’ye):(x’ y)] Pr, |:/\ (xe,ye)z(x,y)]’

where e <— G(1"), and equality holds because in case (x., y.)#(x, y), the output of
Cy” (e, a) is independent of o (and so in this case C; (e, E.(x)) = Cp”’ (e, E(1))).
Since this holds for any pair (x, y) € {0, 1} x {0, 1}, and since |x.| = |y.| = £(n), it

430

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

follows that
[Pr.[Cu(e, Ee(xe)) = 1] = Pr[Cy(e, Eo(y.)) = 1]|
Pr, |: Cyu(e, Eo(x.))=1 i| —Pr, [Cule, Ec(ye))=1 iH

IA

/\(Xe,ye)Z(an/) /\(xe,ye)z(x,y)

[x|=ly|=¢t(n)
< 22[(}1) X M(”)

and the proposition follows (because £(n) = O(logn)). A

A Feasibility Result. Combining Theorem 5.3.15 with Propositions 5.4.4 and 5.4.5,
we obtain a feasibility result:

Theorem 5.4.6: If there exist collections of (non-uniformly hard) trapdoor permu-
tations, then there exist public-key encryption schemes that are secure under key-
dependent passive attacks.

More Efficient Schemes. Inorder to obtain more efficient schemes, we directly analyze
the efficient constructions presented in Section 5.3.4. For example, extending the proof
of Proposition 5.3.19, we obtain:

Proposition 5.4.7: Suppose that b is a (non-uniformly strong) hard-core of the trapdoor
collection {py}. Furthermore, suppose that this trapdoor collection utilizes a domain
sampling algorithm S so that the statistical difference between S(«) and the uniform
distribution over the domain of p,, is negligible in terms of |« |. Then Construction 5.3.18
constitutes a public-key encryption scheme that is secure under key-dependent passive
attacks.

Proof Sketch: Again, we prove single-message ciphertext-indistinguishability. We rely
heavily on the admissibility condition. In analogy to the proof of Proposition 5.3.19,
it suffices to show that for every polynomial-size circuit family {C,}, the distribu-
tions (a, pL(S(a)), Cp(a) ® G((f)(S(oz))) and (a, pt(S(@)), Cu(a) ® Uy) are indistin-
guishable, for a randomly generated (encryption-key) o, where £ = |C,,(«)| and U, is
uniformly distributed (independently of anything else).?’ Incorporating {C,} in the po-
tential distinguisher, it suffices to show that the distributions (e, p(S(a)), GY)(S(oz)))
and (a, p’(S(a)), Up) are indistinguishable. The latter claim follows as in the proof of
Proposition 5.3.19 (i.e., by a minor extension to Proposition 3.4.6). The proposition
follows. W

5.4.3. Chosen Plaintext Attack
So far, we have discussed only passive attacks (in two variants: key-oblivious versus

key-dependent, discussed in Section 5.2 and 5.4.2, respectively). Turning to active

27 Recall that here « serves as an encryption-key and C,, () is a key-dependent plaintext. Typically, C, () would
be the first or second element in the plaintext pair (xy, yo) = Pn(@).

431

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

attacks, we start with mild active attacks in which the adversary may obtain (from some
legitimate user) ciphertexts corresponding to plaintexts of the adversary’s choice. Such
attacks will be called chosen plaintext attacks, and they characterize the adversary’s
abilities in some applications. For example, in some settings, the adversary may (directly
or indirectly) control the encrypting module (but not the decrypting module).

Intuitively, a chosen plaintext attack poses additional threat in the case of private-
key encryption schemes (see Exercise 33), but not in the case of public-key encryption
schemes. In fact, we will show that in the case of public-key encryption schemes, a
chosen plaintext attack can be emulated by a passive key-dependent attack.

5.4.3.1. Definitions

We start by rigorously formulating the framework of chosen plaintext attacks. Intu-
itively, such attacks proceed in four stages corresponding to the generation of a key (by
alegitimate party), the adversary’s requests (answered by the legitimate party) to encrypt
plaintexts under this key, the generation of a challenge ciphertext (under this key and
according to a template specified by the adversary), and additional requests to encrypt
plaintexts (under the same key). That is, a chosen plaintext attack proceeds as follows:

1. Key generation: A key-pair (e, d) <— G(1") is generated (by a legitimate party). In
the public-key setting the adversary is given (17, e), whereas in the private-key setting
the adversary is only given 1”. Actually, assuming (without loss of generality) that
le| = n, we may replace (17, e) by e in the former case.

2. Encryption requests: Based on the information obtained so far, the adversary may
request (the legitimate party) to encrypt plaintexts of its (i.e., the adversary’s) choice.
A request to encrypt the plaintext x is answered with a value taken from the distribu-
tion E.(x), where e is as determined in Step 1. After making several such requests,
the adversary moves to the next stage.

3. Challenge generation: Based on the information obtained so far, the adversary spec-

ifies a challenge template and is given an actual challenge.
When defining semantic security, the challenge template is a triplet of circuits
(Sw» hms fm), where S, specifies a distribution of m-bit long plaintexts (and
s f 2 {0, 1} — {0, 1}*), and the actual challenge is a pair (E.(x), A, (x)) where
x is distributed according to S,,(Upoly(n)). When defining indistinguishability of en-
cryptions, the challenge template is merely a pair of equal-length strings, and the
actual challenge is an encryption of one of these two strings.

4. Additional encryption requests: Based on the information obtained so far, the ad-
versary may request the encryptions of additional plaintexts of its choice. These
requests are handled as in Step 2. After making several such requests, the adversary
produces an output and halts.

In the actual definition, the adversary’s strategy will be decoupled into two parts cor-
responding to its actions before and after the generation of the actual challenge. Each
part will be represented by a (probabilistic polynomial-time) oracle machine, where
the oracle is an “encryption oracle” (with respect to the key generated in Step 1). The

432

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

first part, denoted 4, represents the adversary’s behavior during Step 2. It is given
a security parameter (and possibly an encryption-key), and its output is a pair (z, o),
where 7 is the template generated in the beginning of Step 3 and o is state information
passed to the second part of the adversary. The second part of the adversary, denoted
A,, represents the adversary’s behavior during Step 4. It is given the state o (of the first
part), as well as the actual challenge (generated Step 3), and produces the actual output
of the adversary.

In accordance with the use of non-uniform formulations, we let each of the two
oracle machines have a (non-uniform) auxiliary input. In fact, it suffices to provide
only the first machine with such a (non-uniform) auxiliary input, because it can pass
auxiliary input to the second machine in the state information o. (Similarly, in the case
of public-key schemes, it suffices to provide only the first machine with the encryption-
key.) We comment that we provide these machines with probabilistic oracles; that is, in
response to a plaintext query x, the oracle E, returns a random ciphertext E.(x) (i.e.,
the result of a probabilistic process applied to e and x). Thus, in the case of public-key
schemes, the four-step attack process can be written as follows:

(e;d) < G(1")
(1.0) < 4{“(e,2)

¢ & an actual challenge generated according to the template t
output <— A2E “(o,)

where z denotes (non-uniform) auxiliary input given to the adversary. In the case of
private-key schemes, the adversary (i.e., 4;) is given 1" instead of e.

Semantic Security. Instantiating this framework to derive a definition of semantic
security amounts to specifying the challenge generation and to postulating that the
success probability in such an attack should be met by a corresponding benign process.
As hinted in the preceding discussion, the challenge generation consists of the adversary
specifying a triplet of circuits, denoted (S, #m, fm), and being presented with an
encryption of x < S, (Upolyn)) € 10, 1} along with the partial information #,,(x).
The adversary’s goal is to guess f,(x), and semantic security amounts to saying that
the adversary’s success probability can be matched by a corresponding algorithm that
is only given 4,,(x) and 1¥I = 1", Like the adversary, the corresponding algorithm is
decoupled into two parts; the first is in charge of outputting a challenge template, and
the second is in charge of solving the challenge (without being given a ciphertext),
where state information is passed from the first part to the second part. It is important
to require that the challenge template produced by the corresponding algorithm be
distributed exactly as the challenge template produced by the adversary. (See further
discussion following Definition 5.4.8.)

Definition 5.4.8 (semantic security under chosen plaintext attacks):

For public-key schemes: A public-key encryption scheme, (G, E, D), is said to be se-
mantically secure under chosen plaintext attacks if for every pair of probabilistic

433

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

polynomial-time oracle machines, A; and A,, there exists a pair of probabilistic
polynomial-time algorithms, A} and A, such that the following two conditions hold:

1. For every positive polynomial p, and all sufficiently large n and z € {0, 1}P°Y)
it holds that
v= fu(x) where
(e,d) < G(1M")
Pr (S s f), 0) < A(e, 2)
¢ < (Eo(x), hp(x)), where x < S, (Upoly(n))
v« Afe(cr,)

v= fun(x) where
((Sims By fin), 0) <_A/](1naz) + 1
x < Su(Upoly(n)) p(n)
V< A/2(Gn 1|x'3 hm(x))

< Pr

Recall that (Sy, hm, fn) is a triplet of circuits produced as in Step 3 of the
foregoing description, and that x is a sample from the distribution induced by S,,.
2. For every n and z, the first elements (i.e., the (Sy,, hm, fn) part) in the random

variables A\(1", z) and Afc'“")(Gl(l”), z) are identically distributed.

For private-key schemes: The definition is identical except that algorithm A, gets the
security parameter 1" instead of the encryption-key e.

Note that as in almost all other definitions of semantic security (with the exception of
Definition 5.4.1), algorithm 4 does not get a (random) encryption-key as input (but may
rather generate one by itself).?® Since the challenge template is not fixed (or determined
by e) but, rather, is chosen by A and A’ themselves, it is very important to require
that in both cases, the challenge template be distributed identically (or approximately
s0): There is no point in relating the success probability of 4 and A4’, unless these
probabilities refer to same distribution of problems (i.e., challenge templates).?’ (The
issue arises also in Definition 5.4.1 where it was resolved by forcing A’ to refer to the
challenge template determined by the public-key e.)*

Definition 5.4.8 implies Definition 5.4.1, but this may not be evident from the def-
initions themselves (most importantly, because here f,, is computationally bounded
whereas in Definition 5.4.1 the function is computationally unbounded). Still, the va-
lidity of the claim follows easily from the equivalence of the two definitions to the

28 In fact, A is likely to start by generating e < G(1"), because it has to generate a challenge template that is
distributed as the one produced by A; on input e <— G(1").

29 Failure to make this requirement would have resulted in a fundamentally bad definition (by which every encryp-
tion scheme is secure). For example, algorithm A} could have set /,, to equal the function f;, selected by 4; (in
a corresponding attack). Doing so, the success of 4 to guess the value of f;,(x) from the (insecure) encryption
of x and a (possibly) useless value 4,,(x) (e.g., for a constant function /,,) would have been met by the success
of A’ to “guess” the value of f,,(x) from f,,(x) itself (without being given the encryption of x). An alternative
approach, which follows the formulation of Definition 5.4.1, is presented in Exercise 34.

30 1ndeed, an alternative solution could have been the one adopted here and in the sequel; that is, in an alternative
to Definition 5.4.1, one may allow A’ to select the challenge template by itself, provided that the selection yields
a distribution similar to the one faced by A4 (as induced by the public-key e). For details, see Exercise 30.

434

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

corresponding notions of indistinguishability of encryptions (and the fact that the im-
plication is evident for the latter formulations).

Indistinguishability of Encryptions. Deriving the corresponding definition of indis-
tinguishability of encryptions (from the previous framework) is considerably simpler.
Here, the challenge generation consists of the adversary specifying two equal-length
strings and the adversary being presented with the encryption of one of them. The
adversary’s goal is to distinguish the two possible cases.

Definition 5.4.9 (indistinguishability of encryptions under chosen plaintext attacks):

For public-key schemes: A public-key encryption scheme, (G, E, D), is said to have
indistinguishable encryptions under chosen plaintext attacks if for every pair
of probabilistic polynomial-time oracle machines, A, and A, for every positive
polynomial p, and for all sufficiently large n and z € {0, 1}P°Y™ it holds that

1
1 2
|P,(1,2_P£,,;| < ITH)

where

v = 1 where
(e,d) < G(1")
) = Pr (@D, x?),0) < 4{(e,2)
c < E (x©)
v« AZE"(G, c)

where |x(V| = [x@)].

For private-key schemes: The definition is identical except that A gets the security
parameter 1" instead of the encryption-key e.

Clearly, Definition 5.4.9 implies Definition 5.4.2 as a special case. Furthermore, for
public-key schemes, the two definitions are equivalent (see Proposition 5.4.10), whereas
for private-key schemes, Definition 5.4.9 is strictly stronger (see Exercise 33).

Proposition 5.4.10: Let (G, E, D) be a public-key encryption scheme that has indis-
tinguishable encryptions under key-dependent passive attacks. Then (G, E, D) has
indistinguishable encryptions under chosen plaintext attack.

Proof Sketch: The key observation is that in the public-key model, a chosen plaintext
attack can be emulated by a passive key-dependent attack. Specifically, the (passive)
attacker can emulate access to an encryption oracle by itself (by using the encryption-
key given to it). Thus, we obtain an attacker as in Definition 5.4.9, with the important
exception that it never makes oracle calls (but rather emulates E, by itself). In other
words, we have an attacker as in Definition 5.4.2, with the minor exception that it is
a probabilistic polynomial-time machine with auxiliary input z (rather than being a
polynomial-size circuit) and that it distinguishes a pair of plaintext distributions rather
than a pair of (fixed) plaintexts (which depend on the encryption-key). However, fixing

435

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

the best-possible coins for this attacker (and incorporating them as well as z in an
adequate circuit), we obtain an attacker exactly as in Definition 5.4.2 such that its
distinguishing gap is at least as large as the one of the (initial) chosen plaintext attacker.
(For details, see Exercise 30.) W

Equivalence of Semantic Security and Ciphertext-Indistinguishability. As in pre-
vious cases, we show that the two formulations of (chosen plaintext attack) security
(i.e., semantic security and indistinguishability of encryptions) are in fact equivalent.

Theorem 5.4.11 (equivalence of definitions for chosen plaintext attacks): A public-key
(resp., private-key) encryption scheme (G, E, D) is semantically secure under cho-
sen plaintext attacks if and only if it has indistinguishable encryptions under chosen
plaintext attacks.

Proof Sketch: In order to show that indistinguishabity of encryptions implies semantic
security, we follow again the ideas underlying the proof of Proposition 5.2.6. Specif-
ically, for both the private-key and public-key cases, 4] and A} are constructed as
follows:

1. 471", 2) & (1, 0"), where (1, o) is generated as follows:

First, 4] generates an instance of the encryption scheme; that is, 4] lets (e, d) <
G(1"). Next, A} invokes A4;, while emulating the oracle E., and sets (7, 0) «

Afe(l", z). Finally, 4} sets o’ o (e, 0).

We warn that the generation of the key-pair by 4} should not be confused with the
generation of the key-pair in the probabilistic experiment referring to the combined
algorithm 4 = (4, 4>). In particular, the generated encryption-key e allows 4] to
emulate the encryption oracle E, (also in the private-key case). Furthermore, A
outputs the encryption-key e as part of the state passed by it to 4}, whereas A4, does
not necessarily do so (and, in fact, cannot do so in the case of the private-key model).

This will allow A, too, to emulate the encryption oracle E,.

2. Ay((e, o), 1",) &

A%< (0, (E.(1™), y)), where typically y = h,,(x) and m = |x|.
Since 4| merely emulates the generation of a key-pair and the actions of 4; with respect
to such a pair, the equal distribution condition (i.e., Item 2 in Definition 5.4.8) holds.
Using the (corresponding) indistinguishability of encryption hypothesis, we show that
(even in the presence of an encryption oracle E,) the distributions (o, (E.(x), (x)))
and (o, (E.(1™"), h(x))) are indistinguishable, where (e, d) < G(1"), (S, &, f), o) <
Afe (¥, z) (with y = e or y = 1" depending on the model), and x <= S(Upoly(n))-

Details: Suppose that given ((S, &, f), o) generated by Af"(y, z) and oracle
access to E,, where e < G(1"), one can distinguish (o, (E.(x), 2(x))) and
(0, (E.(1"1), h(x))), where x < S(Upoly(n))- Then we obtain a distinguisher as in
Definition 5.4.9 as follows. The first part of the distinguisher invokes A4; (while
answering its oracle queries by forwarding these queries to its own E, oracle),
and obtains ((S, &, f), o) < Af"(y, 2). It sets M < S(Upoty(n)) and x@ = 11

436

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

and outputs ((x(V, x@), (o, A(x))). That is, (xV, x) is the challenge template,
and it is answered with E,(x®), where i is either 1 or 2. The second part of the
new distinguisher gets as input a challenge ciphertext o < E(x®) and the state
generated by the first part (o, £(x(1)), and invokes the distinguisher of the contra-
diction hypothesis with input (o, (a, £(x("))), while answering its oracle queries by
forwarding these queries to its own E, oracle. Thus, the new distinguisher violates
the condition in Definition 5.4.9, in contradiction to the hypothesis that (G, E, D)
has indistinguishable encryptions.

It follows that indistinguishability of encryptions (as per Definition 5.4.9) implies se-
mantic security (as per Definition 5.4.8). (Here, this implication is easier to prove than
in previous cases because the function f is computable via a circuit that is generated
as part of the challenge template [and, without loss of generality, is part of o].)

We now turn to the opposite direction. Suppose that (G, E, D) does not have in-
distinguishable encryptions, and consider the pairs (x("), x®) produced as a challenge
template by the distinguishing adversary. Following the ideas of the proof of Proposi-
tion 5.2.7, we let the semantic-security adversary generate a corresponding challenge
template (S, %, f) such that

e The circuit S samples uniformly in {x(, x®}.
e The function f satisfies f(xV) =1 and f(x®) = 0.
e The function /4 is defined arbitrarily subject to #(x1) = h(x@).

Note that here we do not need to use % for passing non-uniform information (e.g., a
description ofthe distinguisher). Instead, non-uniform information (i.e., the auxiliary
input z to the distinguisher) is passed explicitly by other means (i.e., as the auxiliary
input to the semantic-security adversary).

We stress that when the semantic-security adversary invokes the distinguishing adver-
sary, the former uses its own oracle to answer the queries made by the latter. (Likewise,
the former passes its auxiliary input z to the latter.) The reader may easily verify that
the semantic-security adversary has a noticeable advantage in guessing f(S(Upoly(n)))
(by using the distinguishing gap between E.(x(") and E.(x®)), whereas no algorithm
that only gets 2(S(Upoly(n))) can have any advantage in such a guess. We derive a con-
tradiction to the hypothesis that (G, E, D) satisfies Definition 5.4.8, and the theorem
follows. H

Multiple-Message Security. Definitions 5.4.8 and 5.4.9 can be easily generalized to
handle challenges in which multiple plaintexts are encrypted. As in previous cases,
the corresponding (multiple-plaintext) definitions are equivalent. Furthermore, the
multiple-plaintext definitions are equivalent to the single-plaintext definition, both for
public-key and private-key schemes. We stress the equivalence for private-key schemes
(which does not hold for the basic definitions presented in Section 5.1; see Proposi-
tion 5.2.12). To see the equivalence, it is best to consider the notion of indistinguisha-
bility of encryptions. In this case, the argument used in the proof of Theorem 5.2.11
(i.e., the public-key case) can be applied here by using the encryption oracle in order
to produce the ciphertexts needed for the hybrid argument (rather than by generating

437

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

these ciphertexts using knowledge of the encryption-key, which is only possible in the
public-key setting).

5.4.3.2. Constructions

In view of Proposition 5.4.10 (and Theorem 5.4.11), we focus on private-key encryption
schemes (because a public-key encryption scheme is secure under chosen plaintext
attacks if and only if it is secure under passive key-dependent attacks). All the results
presented in Section 5.3.3 extend to security under chosen plaintext attacks. Specifically,
we prove that Constructions 5.3.9 and 5.3.12 remain secure also under a chosen plaintext
attack.

Proposition 5.4.12: Let F and (G, E, D) be as in Construction 5.3.9, and suppose
that F is pseudorandom with respect to polynomial-size circuits. Then the private-key
encryption scheme (G, E, D) is secure under chosen plaintext attacks. The same holds
with respect to Construction 5.3.12.

Proof Sketch: We focus on Construction 5.3.9 and follow the technique underlying the
proof of Proposition 5.3.10. That is, we consider an idealized version of the scheme, in
which one uses a uniformly selected function ¢ : {0, 1} — {0, 1}", rather than the pseu-
dorandom function f;. Essentially, all that the adversary obtains by encryption queries
in the ideal version is pairs (r, ¢(r)), where the »’s are uniformly and independently
distributed in {0, 1}". As to the challenge itself, the plaintext is “masked” by the value
of ¢ at another uniformly and independently distributed element in {0, 1}". Thus, unless
the latter element happens to equal one of the »’s used by the encryption oracle (which
happens with negligible probability), the challenge plaintext is perfectly masked. Thus,
the ideal version is secure under a chosen plaintext attack, and the same holds for the
real scheme (since otherwise one derives a contradiction to the hypothesis that F is
pseudorandom). M

Summary. Private-key and public-key encryption schemes that are secure under cho-
sen plaintext attacks exist if and only if corresponding schemes that are secure under
passive (key-dependent) attacks exist.!

5.4.4. Chosen Ciphertext Attack

We now turn to stronger forms of active attacks in which the adversary may obtain
(from some legitimate user) plaintexts corresponding to ciphertexts of its choice. We
consider two types of such attacks, called chosen ciphertext attacks: In the milder
type, called a priori chosen ciphertext attacks, such decryption requests can be made
only before the challenge ciphertext (for which the adversary should gain knowledge)
is presented. In the stronger type, called a posteriori chosen ciphertext attacks, such
decryption requests can also be made after the challenge ciphertext is presented, so
long as one does not request a decryption of this very (challenge) ciphertext.

31 Hint: When establishing the claim for the private-key case, use Exercise 2.

438

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

Both types of attacks address security threats in realistic applications: In some set-
tings, the adversary may experiment with the decryption module, before the actual
ciphertext in which it is interested is sent. Such a setting corresponds to an a priori
chosen ciphertext attack. In other settings, one may invoke the decryption module on
inputs of one’s choice at any time, but all these invocations are recorded, and real
damage is caused only by knowledge gained with respect to a ciphertext for which a
decryption request was not recorded. In such a setting, protection against a posteriori
chosen ciphertext attacks is adequate. Furthermore, in both cases, decryption requests
can also be made with respect to strings that are not valid ciphertexts, in which case
the decryption module returns a special error symbol.

Typically, in settings in which a mild or strong form of a chosen ciphertext attack is
possible, a chosen plaintext attack is possible, too. Thus, we actually consider combined
attacks in which the adversary may ask for encryption and decryption of strings of its
choice. Indeed (analogously to Proposition 5.4.10), in the case of public-key schemes
(but not in the case of private-key schemes), the combined attack is equivalent to a
“pure” chosen ciphertext attack.

Organization. We start by providing security definitions for the two types of attacks
discussed here. In Section 5.4.4.2, we further extend the definitional treatment of se-
curity (and derive a seemingly stronger notion that is in fact equivalent to the notions
in Section 5.4.4.1). In Section 5.4.4.3 (resp., Section 5.4.4.4) we discuss the construc-
tion of private-key (resp., public-key) encryption schemes that are secure under chosen
ciphertext attacks.

5.4.4.1. Definitions for Two Types of Attacks

Following Section 5.4.3.1 and bearing in mind that we wish to define two types of
chosen ciphertext attacks (i.e., a priori and a posteriori ones), we first formulate the
framework of chosen ciphertext attacks. As in the case of chosen plaintext attacks, we
consider attacks that proceed in four stages corresponding to the generation of a pair
of keys (by a legitimate party), the adversary’s requests (answered by the legitimate
party) to encrypt and/or decrypt strings under the corresponding key, the generation
of a challenge ciphertext (under this key and according to a template specified by the
adversary), and additional requests to encrypt and/or decrypt strings. That is, a chosen
ciphertext attack proceeds as follows:

1. Key generation: A key-pair (e, d) <— G(1") is generated (by a legitimate party). In
the public-key setting the adversary is given e, whereas in the private-key setting the
adversary is only given 1”.

2. Encryption and decryption requests: Based on the information obtained so far, the
adversary may request (the legitimate party) to encrypt and/or decrypt strings of
its (i.e., the adversary’s) choice. A request to encrypt the plaintext x is answered
with a value taken from the distribution E,(x), where e is as determined in Step 1.
A request to decrypt a valid (with respect to E,) ciphertext y is answered with the
value D,;(y), where d is as determined in Step 1. A request to decrypt a string y that

439

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

is not a valid ciphertext (with respect to E.) is answered with a special error symbol.
After making several such requests, the adversary moves to the next stage.

3. Challenge generation: Based on the information obtained so far, the adversary spec-
ifies a challenge template and is given an actual challenge. This is done as in the
corresponding step in the framework of chosen plaintext attacks.

4. Additional encryption and decryption requests: Based on the information obtained
so far, the adversary may request the encryptions of additional plaintexts of its
choice. In addition, in the case of an a posteriori chosen ciphertext attack (but
not in the case of an a priori chosen ciphertext attack), the adversary may make
additional decryption requests with the only (natural) restriction that it not be allowed
to ask for a decryption of the challenge ciphertext. All requests are handled as in
Step 2. After making several such requests, the adversary produces an output and
halts.

In the actual definition, as in the case of chosen plaintext attacks, the adversary’s
strategy will be decoupled into two parts corresponding to its actions before and after
the generation of the actual challenge. Each part will be represented by a (proba-
bilistic polynomial-time) two-oracle machine, where the first oracle is an “encryp-
tion oracle” and the second is a “decryption oracle” (both with respect to the cor-
responding key generated in Step 1). As in the case of chosen plaintext attacks, the
two parts are denoted A4; and A4, and A; passes state information (denoted o) to
A,. Again, in accordance with the use of non-uniform formulations, we provide 4
with a (non-uniform) auxiliary input. Thus, in the case of (a posteriori chosen cipher-
text attacks on) public-key schemes, the four-step attack process can be written as
follows:

(e,d) <~ G(1")

(t,0) < A7 (e, 2)

f .
¢ £ an actual challenge generated according to the template t
output <« Af"’D"(a, c)

where A, is not allowed to make a query regarding the ciphertext in ¢, and z denotes
the (non-uniform) auxiliary input given to the adversary. In the case of private-key
schemes, the adversary (i.e., 41) is given 1” instead of e. In the case of a priori chosen
ciphertext attacks, A, is not allowed to query D, (or, equivalently, 4, is only given
oracle access to the oracle E.).

Semantic Security. As in the case of chosen plaintext attacks, a definition of semantic
security is derived by an adequate specification of the challenge generation and the
meaning of success. As before, the challenge generation consists of the adversary spec-
ifying a triplet of circuits, denoted (S, 4, f), and being presented with an encryption
of x <= S(Upoly(n)) along with the partial information /4(x). The adversary’s goal is to
guess f(x), and semantic security amounts to saying that the adversary’s success prob-
ability can be matched by a corresponding algorithm that is only given A(x) and 1%/
Again, the corresponding algorithm is decoupled into two parts; the first is in charge of

440

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

outputting a challenge template, and the second is in charge of solving the challenge,
where state information is passed from the first part to the second part. Furthermore,
it is again important to require that the challenge template produced by the corre-
sponding algorithm be distributed exactly as the challenge template produced by the
adversary.

Definition 5.4.13 (Semantic Security under Chosen Ciphertext Attacks):

For public-key schemes: A public-key encryption scheme, (G, E, D), is said to be se-
mantically secure under a priori chosen ciphertext attacks if for every pair of
probabilistic polynomial-time oracle machines, A and A,, there exists a pair of
probabilistic polynomial-time algorithms, A} and A, such that the following two
conditions hold:

1. For every positive polynomial p, and all sufficiently large n and z € {0, 1}P°b)
it holds that

v = f(x) where
(e,d) <~ G(1")
Pr (S, h,), 0) < AFPi(e, 2)
¢ < (Eq(x), h(x)), where x < S(Upoly(n))
Vo< Af“(o, c)

v = f(x) where
(S, h, [),0) < A\(1",z) n L
X < S(Upoly(n) p(n)
v < A5(o, 1, A(x))

2. Foreveryn andz, thefirst elements (i.e., the (S, h, f)part)in the random variables
EGI(I”)’DGZ(I”

A\(1", z) and A, "(G1(1"), z) are identically distributed.
Semantic security under a posteriori chosen ciphertext attacks is defined anal-
ogously, except that A, is given oracle access to both E, and D, with the restriction
that when given the challenge ¢ = (c’, ¢”), machine A, is not allowed to make the
query ¢’ to the oracle D,.

For private-key schemes: The definition is identical except that algorithm A, gets the
security parameter 1" instead of the encryption-key e.

Clearly, the a posteriori version of Definition 5.4.13 implies its a priori version, which
in turn implies Definition 5.4.8. Furthermore, these implications are strict (see Exer-
cises 36 and 35, respectively).

Indistinguishability of Encryptions. As in the case of chosen plaintext attacks,
deriving the corresponding definition of indistinguishability of encryptions (from
the previous framework) is considerably simpler: The challenge generation consists
of the adversary specifying two equal-length strings, and the adversary is presented
with the encryption of one of them.

441

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Definition 5.4.14 (indistinguishability of encryptions under chosen ciphertext attacks):

For public-key schemes: A4 public-key encryption scheme, (G, E, D), is said to have
indistinguishable encryptions under a priori chosen ciphertext attacks if for
every pair of probabilistic polynomial-time oracle machines, A, and A,, for every
positive polynomial p, and for all sufficiently large n and z € {0, 1}P°Y™ it holds

that
P
n,z n,z p(n)
where
v = 1 where
(e,d) < G(1")
) def E..D,
Py = Pr (xD, x), 0) < 47" (e, 2)
c < E (x)

v < 45°(o, ¢)

where [x(D] = [x@)].

Indistinguishability of encryptions under a posteriori chosen ciphertext attacks
is defined analogously, except that A, is given oracle access to both E, and D4 with
the restriction that when given the challenge ¢, machine A, is not allowed to make
the query c to the oracle D,.

For private-key schemes: The definition is identical, except that A, gets the security
parameter 1" instead of the encryption-key e.

Clearly, the a posteriori version of Definition 5.4.14 implies its a priori version, which
in turn implies Definition 5.4.9 as a special case. Again, these implications are strict
(see again Exercises 36 and 35, respectively).

Terminology. We use CCA as a shorthand for chosen ciphertext attack.

Equivalence of Semantic Security and Ciphertext-Indistinguishability. Again, we
show that the two formulations of security (i.e., semantic security and indistinguisha-
bility of encryptions) are in fact equivalent.

Theorem 5.4.15 (equivalence of definitions for CCA): 4 public-key (resp., private-
key) encryption scheme (G, E, D) is semantically secure under a priori CCA if and
only if it has indistinguishable encryptions under a priori CCA. An analogous claim
holds for a posteriori CCA.

Proof Sketch: We adapt the proof of Theorem 5.4.11 to the current setting. The adap-
tation is straightforward, and we focus on the case of a posteriori CCA security (while
commenting on the case of a priori CCA security).

442

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

In order to show that indistinguishability of encryptions implies semantic security,
given an adversary (4, A,) we construct the following matching algorithm A/, 45:

1. 411", 2) & (1, 0'), where (1, o) is generated as follows:

First, A} generates an instance of the encryption scheme; that is, 4] lets (e, d) <
G(1"). Next, 4} invokes A, while emulating the oracles E, and Dy, and sets

(1,0) « Af""D"(l”,z). Finally, 4} sets o’ & ((e, d), o). (In the case of a-priori

CCA security, we may set o’ & (e, 0), as in the proof of Theorem 5.4.11.)

We comment that the generated key-pair (e, d), allows A/ to emulate the encryption

and decryption oracles £, and Dj.

2. Ay(((e, d), 0), 1™, y) & 4F<Pi(q, (E,(1™), y)), where typically y = h(x)andm =

|x|. (In the case of a priori CCA security, we may set A((e,0), 1", y) &ef

Afe(o, (E.(1™), y)), as in the proof of Theorem 5.4.11.)

Again, since 4] merely emulates the generation of a key-pair and the actions of 4; with
respect to such a pair, the equal distribution condition (i.e., [tem 2 in Definition 5.4.13)
holds. Using the (corresponding) indistinguishability of encryption hypothesis, we show
that (even in the presence of the encryption oracle £, and a restricted decryption oracle
Dy) the distributions (o, (E.(x), h(x))) and (o, (E.(1™)), h(x))) are indistinguishable,
where (e, d) < G(1"), ((S, h, f), o) < A¥*(y, z) (with y = e or y = 1" depending
on the model), and x <= S(Upoly(n)). The main thing to notice is that the oracle queries
made by a possible distinguisher of these distributions can be handled by a distinguisher
of encryptions (as in Definition 5.4.14), by passing these queries to its own oracles.
It follows that indistinguishability of encryptions (as per Definition 5.4.14) implies
semantic security (as per Definition 5.4.13).

‘We now turn to the opposite direction. Here, the construction of a challenge template
(as per Definition 5.4.13) is exactly as the corresponding construction in the proof of
Theorem 5.4.11. Again, the thing to notice is that the oracle queries made by a possible
distinguisher of encryptions (as in Definition 5.4.14) can be handled by the semantic-
security adversary, by passing these queries to its own oracles. We derive a contra-
diction to the hypothesis that (G, E, D) satisfies Definition 5.4.13, and the theorem
follows. H

Multiple-Message Security. Definitions 5.4.13 and 5.4.14 can be easily generalized
to handle challenges in which multiple plaintexts are encrypted. We stress that in the
case of a posteriori CCA, the adversary is not allowed to make a decryption query
that equals any of the challenge ciphertexts. As in previous cases, the corresponding
(multiple-plaintext) definitions are equivalent. Furthermore, as in the case of chosen
plaintext attacks, the multiple-plaintext definitions are equivalent to the single-plaintext
definitions (both for public-key and private-key schemes). We stress that this notion of
multiple-message CCA security refers to a single challenge-generation step in which a
sequence of messages (rather than a single message) can be specified. A more general
notion of multiple-message CCA security allows multiple challenge-generation steps
that may be interleaved with the query steps. This notion generalizes the notion of

443

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

chosen ciphertext attacks and is discussed next (i.e., in Subsection 5.4.4.2). Actually,
we will focus on this generalization when applied to a posteriori chosen ciphertext
attacks, although a similar generalization can be applied to a priori chosen ciphertext
attacks (and in fact also to chosen plaintext attacks).

5.4.4.2. A Third Equivalent Definition of a posteriori CCA Security

In continuation of the last paragraph, we consider general attacks during which several
challenge templates may be produced (at arbitrary times and possibly interleaved with
encryption and decryption queries).’?> Each of these challenge templates will be an-
swered similarly to the way such templates were answered previously (i.e., by selecting
a plaintext from the specified distribution and providing its encryption together with
the specified partial information). Unlike in Section 5.4.4.1, we will even allow attacks
that make decryption queries regarding ciphertexts obtained as (part of) the answer
to previous challenge templates. After such an attack, the adversary will try to obtain
information about the unrevealed plaintexts, and security holds if its success probabil-
ity can be met by a corresponding benign adversary that does not see the ciphertexts.
Indeed, the discussion requires clarification and careful formulation, provided next.

We start with a description of the actual attacks. It will be convenient to change the
formalism and consider the generation of challenge templates as challenge queries
that are answered by a special oracle called the tester, and denoted T, ,, where e is
an encryption-key and r is a random string of adequate length. On query a challenge
template of the form (S, i), where S is a sampling circuit and % is (an evaluation
circuit for) a function, the (randomized) oracle 7 , returns the pair (E.(x), &(x)), where
x = S(r). (Indeed, we may assume without loss of generality that for all queries (S, /),
it holds that S is a sampling circuit that generates strings of length that fits 4’s input.)
We stress that r is not known to the adversary, and that this formalism supports the
generation of dependent challenges as well as of independent ones.>* A multiple-
challenge CCA is allowed queries to T, as well as unrestricted queries to both E,
and the corresponding D, including decryption queries referring to previously obtained
challenge ciphertexts. It terminates by outputting a function f and a value v, hoping
that f(x!, ..., x") = v, where x’ = §'(r) and (', i) is the i-th challenge query made
by the adversary. Note that the description of f (in terms of an evaluation circuit) may
encode various information gathered by the adversary during its attack (e.g., it may
even encode its entire computation transcript).*

32 Note that in this section we generalize the notion of an a posteriori chosen ciphertext attack. When generalizing
the notion of an a priori chosen ciphertext attack, we disallow decryption queries after the first challenge template
is produced.

33 Independently distributed plaintexts can be obtained by sampling circuits that refer to disjoint parts of the
random string 7. On the other hand, we can obtain a pair of plaintexts such that the second plaintext is a function
of the first one by letting the second sampling circuit equal the composition of the first sampling circuit with
the said function. That is, making queries of the form (S, -) and (C o S, -), where C is a deterministic circuit,
we obtain answers that refer to the plaintexts x = S(r) and C(x).

34 In general, the description of functions in terms of circuits that are not of minimal size is redundant, and opens
the door for encoding of additional information.

444

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

We now turn to describe the benign adversary (which does not see the ciphertexts).
Such an adversary is given oracle access to a corresponding oracle, 7., that behaves
as follows. On query a challenge template of the form (S, /), the oracle returns A(x),
where x = S(r). (Again, r is not known to the adversary.) Like the real adversary, the
benign adversary also terminates by outputting a function f and a value v, hoping that
f(x!, ..., x") = v, where x' = S'(r) and (S, h') is the i-th challenge query made by
the adversary.

Security amounts to asserting that the effect of any efficient multiple-challenge CCA
can be simulated by an efficient benign adversary that does not see the ciphertexts. As
in Definition 5.4.13, the simulation has to satisfy two conditions: First, the probability
that f(x!, ..., x") = v in the CCA must be met by the probability that a corresponding
event holds in the benign model (where the adversary does not see ciphertexts). Second,
the challenge queries, as well as the function f, should be distributed similarly in the
two models. Actually, the second condition should be modified in order to account
for the case that the real CCA adversary makes a decryption query that refers to a
ciphertext that is contained in the answer given to a previous challenge query, denoted
(S, 1). Note that such a decryption query (i.e., E.(S(r))) reveals S(r) to the attacker,
and that this has nothing to do with the security of the encryption scheme. Thus, it is
only fair to also allow the benign adversary (which sees no ciphertexts) to make the
corresponding query, which is equivalent to the challenge query (S, id), where id is
the identity function. (Indeed, the answer will be 1d(S(r)) = S(r).)

In order to obtain the actual definition, we need to define the trace of the execution
of these two types of adversaries. For a multiple-challenge CCA adversary, denoted
A, the trace is defined as the sequence of challenge queries made during the attack,
augmented by fictitious challenge queries such that the (fictitious challenge) query
(S, id)is included if and only if the adversary made a decryption query ¢ such that (c, -)
is the answer given to a previous challenge query of the form (S, -). (This convention
is justified by the fact that the answer (£.(S(r)), 1d(S(r))) to the fictitious challenge
query (S, 1d) is efficiently computable from the answer S(r) to the decryption query
c = E.(S(r)).)*> In fact, for simplicity, we will assume in the following definition that A
(or rather a minor modification of A4) actually makes these fictitious challenge queries.
For the benign adversary, denoted B, the trace is defined as the sequence of challenge
queries made during the attack.

Definition 5.4.16 (multiple-challenge CCA security):

For public-key schemes: A public-key encryption scheme, (G, E, D), is said to be se-
cure under multiple-challenge-chosen ciphertext attacks if for every probabilis-
tic polynomial-time oracle machine A there exists a probabilistic polynomial-time
oracle machine B such that the following two conditions hold:

1. For every positive polynomial p, and all sufficiently large n and z € {0, 1}P°Y)

35 Indeed, the value (E.(S(r)), id(S(r))) is obtained from S(r) by making an encryption query S(r).

445

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

it holds that

v = f(x!, ..., x") where
(e,d) < G(1") and r < Upoly(n)

i (fiv) < AFPuTio(e, 2)
xt <« Si(r), fori =1, .., 1.
v = f(x!,..., x") where
r < U, 1 1
< Pr poly(n) +
(f,v) < B"(1",2) p(n)

xi <« Si(r), fori =1, ..., t.

where t is the number of challenge queries made by A (resp., B), and S' is the
first part of the i-th challenge query made by A (resp., B) to T, (resp., to T,.).

2. The following two probability ensembles, indexed by n € N and z € {0, 1}PoV®)
are computationally indistinguishable:

(a) The trace of A=610"Po0"- 160" o (G (1), 2) augmented by the first ele-
ment of its output pair (i.e., the function f).
(b) The trace of B posen (1", z) augmented by the first element of its output pair.

That is, in both cases, we refer to the corresponding sequence

((SY, kY, s (8", R, f)
where (S', h') denotes the i-th challenge query.

For private-key schemes: The definition is identical, except that machine A gets the
security parameter 1" instead of the encryption-key e.

To get more comfortable with Definition 5.4.16, consider the special case in which
the real CCA adversary does not make decryption queries to ciphertexts obtained as
part of answers to challenge queries. (In the proof of Theorem 5.4.17, such adver-
saries will be called canonical and will be showed to be as powerful as the general
ones.) The trace of such adversaries equals the sequence of actual challenge queries
made during the attack (without any fictitious challenge queries), which simplifies the
meaning of Condition 2. Furthermore, the special case in which such an adversary
makes a single challenge query is very similar to Definition 5.4.13, with the exception
that here Condition 2 allows computational indistinguishability (rather than requiring
identical distributions). Still, this very restricted case (of Definition 5.4.16) does imply
security under a posteriori CCA (see Exercise 37). More importantly, the following
holds:

Theorem 5.4.17 (a posteriori CCA implies Definition 5.4.16): Let (G, E, D) be a
public-key (resp., private-key) encryption scheme that is secure under a posteriori
CCA. Then (G, E, D) is secure under multiple-challenge CCA.

Proof Sketch: As a bridge between the multiple-challenge CCA and the corresponding
benign adversary that does not see the ciphertext, we consider canonical adversaries that

446

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

can perfectly simulate any multiple-challenge CCA without making decryption queries
to ciphertexts obtained as part of answers to challenge queries. Instead, these canonical
adversaries make corresponding queries of the form (S, id), where id is the identity
function and (S, -) is the challenge-query that was answered with the said ciphertext.
Specifically, suppose that a multiple-challenge CCA has made the challenge query
(S, k), which was answered by (c, v) where ¢ = E.(x),v = h(x)andx = S(r),and ata
later stage makes the decryption query ¢, which is to be answered by D;(c) = x. Then,
the corresponding canonical adversary makes the challenge query (S, /) as the original
adversary, receiving the same pair (c, v), but later (instead of making the decryption
query c) the canonical adversary makes the challenge query (S, id), which is answered
by id(S(r)) = x = D, (c). Note that the trace of the corresponding canonical adversary
is identical to the trace of the original CCA adversary (and the same holds with respect
to their outputs).

Thus, given an a posteriori CCA—secure encryption scheme, it suffices to establish
Definition 5.4.16 when the quantification is restricted to canonical adversaries 4. In-
deed, as in previous cases, we construct a benign adversary B in the natural manner:
On input (1", z), machine B generates (e, d) < G(1"), and invokes 4 on input (y, z),
where y = e if we are in the public-key case and y = 1” otherwise. Next, B emulates
all oracles expected by 4, while using its own oracle 7,.. Specifically, the oracles £, and
D, are perfectly emulated by using the corresponding keys (known to B), and the oracle
T, is (imperfectly) emulated using the oracle 7,; that is, the query (S, /) is forwarded
to 7,, and the answer 4(S(r)) is augmented with E.(1™), where m is the number of
output bits in S. Note that the latter emulation (i.e., the answer (E.(1'5¢)), h(S(r)))) is
imperfect since the answer of 7, , would have been (£.(S(r)), #(S(r))), yet (as we shall
show) A cannot tell the difference.

In order to show that B satisfies both conditions of Definition 5.4.16 (with respect
to this A4), we will show that the following two ensembles are computationally indis-
tinguishable:

1. The global view in a real attack of 4 on (G, E, D). That is, we consider the output
of the following experiment:

(@) (e,d) < G(1")and r < Upoly(n).

(b) (f,v) < AEePaTer(y 7)), where y = e if we are in the public-key case and
y = 1" otherwise. Furthermore, we let ((S', '), ..., (S', k")) denote the trace of
the execution A£ePeTer(y z),

(¢) The output is ((S', A"), ..., (', h))), (f, v), -

2. The global view in an attack emulated by B. That is, we consider the output of an
experiment as in Item 1, except that 45«2 %er(y, z) is replaced by A%PoTer(y, z),
where on query (S, /) the oracle 7, replies with (E.(1°")), h(S(r))) rather than
with (E.(S(r)), h(S(r))).

Note that computational indistinguishability of these ensembles immediately implies
Condition 2 of Definition 5.4.16, whereas Condition 1 also follows because using r, we

447

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

can determine whether or not £(S'(r), ..., S'(r)) = v holds (for (£, v)and S', ..., S’ that
appear in the ensemble’s output). Also note that these ensembles may be computationally
indistinguishable only in the case where 4 is canonical (which we have assumed to be
the case).’®

The computational indistinguishability of these two ensembles is proven using a
hybrid argument, which in turn relies on the hypothesis that (G, E, D) has indistin-
guishable encryptions under a posteriori CCAs. Specifically, we introduce ¢ + 1 mental
experiments that are hybrids of the two ensembles (which we wish to relate). Each of
these mental experiments is given oracle access to £, and D, where (e, d) <— G(1")1s
selected from the outside. The i-th hybrid experiment uses these two oracles (in addition
to y, which equals e in the public-key case and 1” otherwise) in order to emulate an
execution of A%P+Mer (3, 7), where r is selected by the experiment itself and l'[i’r is
a hybrid of 7, , and 7. Specifically, Hé’, is a history-dependent process that answers
like 7, , on the first i queries and like T, e”, on the rest. Thus, fori =0, ..., ¢, we define
the i-th hybrid experiment as a process that, given y (which equals e or 1) and oracle
access to £, and Dy, where (e, d) < G(1"), behaves as follows:

1. The process selects 7 <= Upoly(n).-

2. The process emulates an execution of AEe DTl () z), where y = e if we are in the
public-key case and y = 1" otherwise, by using the oracles £, and D,. Specifically,
the answers of IT} . are emulated using the knowledge of 7 and oracle access to E.:
the j-th query to IT} ., denoted (87, 4/), is answered by (E.(S/(r)), h/(S7(r))) if
j <i and is answered by (E.(1'S 1), /(87 (r))) otherwise. (The process answers
A’s queries to E, and Dy by forwarding them to its own corresponding oracles.)

3. As before, (f, v) denotes the output of 4%P¢Mer (. 2), and ((S, A, ..., (S, h'))

denotes its trace. The process outputs ((S', '), ..., (S, k")), (f, v), r.

We stress that since A4 is canonical, none of the D;-queries equals a ciphertext obtained
as part of the answer of a Hé,r—query.

Clearly, the distribution of the 0-hybrid is identical to the distribution of the global
view in an attack emulated by B, whereas the distribution of the #-hybrid is identical to
the distribution of the global view in a real attack by 4. On the other hand, distinguishing
the i-hybrid from the (i + 1)-hybrid yields a successful a posteriori CCA (in the sense of
distinguishing encryptions). That is, assuming that one can distinguish the i -hybrid from
the (i + 1)-hybrid, we construct an a posteriori CCA adversary (as per Definition 5.4.14)

36 Non-canonical adversaries can easily distinguish the two types of views by distinguishing the oracle 7, from
oracle 7, e”,. For example, suppose we make a challenge query with a sampling-circuit S that generates some
distribution over {0, 1} \ {1”'}, next make a decryption query on the ciphertext obtained in the challenge
query, and output the answer. Then, in case we query the oracle T, ,., we output Dy(E.(S(r))) # 1" ; whereas
in case we query the oracle 7, ,, we output Dy(E.(1™)) = 1™. Recall, however, that at this point of the proof,
we are guaranteed that 4 is canonical (and indeed 4 might have been derived by perfectly emulating some
non-canonical 4’). An alternative way of handling non-canonical adversaries is to let B handle the disallowed
(decryption) queries by making the corresponding challenge query, and returning its answer rather than the
decryption value. (Note that B, which emulates 7, can detect which queries are disallowed.)

448

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

as follows. For (e, d) <— G(1"), given y = e if we are in the public-key case and y = 1”
otherwise, the attacker (having oracle access to £, and D) behaves as follows:

1. The attacker selects 7 <= Upoly(n)-

2. The attacker emulates an execution of A€«-Peer(y, 2) where j € {i,i + 1} (is un-
known to the attacker), as follows. The queries to £, and D, are answered by using
the corresponding oracles available to the attacker, and the issue is answering the
queries to T/ . The first i queries to IT; - are answered as in both IT., , and l'[ijjl (i.e.,
query (S, &) is answered by (E.(S(r)), 1(S(r)))), and the last ¢t — (i + 1) queries are
also answered as in both IT;, and ITJ%! (i.e., by (E.(1°7)), hA(S(r))), this time).
The i + 1% query, denoted (S'*!, h**1), is answered by producing the challenge
template (S"+'(r), 115 1), which is answered by the challenge ciphertext ¢ (where
¢ € {E(S™(r)), E.(1'S 7)), and replying with (c, A t1(S7+ ().

Note thatifc = E.(S"!(r)), then we emulate IT}}!, whereas if ¢ = E(1 ISl then
we emulate IT} .

3. Again, (f, v) denotes the output of AZPaer () 2) and ((S', h'), ..., (', h')) de-
notes its trace. The attacker feeds ((S', 2'), ..., (S', ")), (f, v), r to the hybrid dis-
tinguisher (which we have assumed to exist toward the contradiction), and outputs
whatever the latter does.

This is an a posteriori CCA as in Definition 5.4.14: It produces a single challenge
(i.e., the pair of plaintexts (S"+!(r), 1'S"'®))), and distinguishes the case that it is
given the ciphertext ¢ = E,(S*!(r)) from the case that it is given the ciphertext ¢ =
Ee(1|Si+l(’)|), without querying D, on the challenge ciphertext c¢. The last assertion
follows by the hypothesis that 4 is canonical, and so none of the D;-queries that 4
makes equals the ciphertext ¢ obtained as (part of) the answer to the i + 15 T .-query.
Thus, distinguishing the i 4+ 1% and i-th hybrids implies distinguishing encryptions
under an a posteriori CCA, which contradicts our hypothesis regarding (G, E, D). The
theorem follows. M

Further Generalization. Recall that we have allowed arbitrary challenge queries of the
form (S, /) that were answered by (E.(S(7)), #(S(r))). Instead, we may allow queries
of the form (S, %) that are answered by (E.(S(r)), A(r)); that is, & is applied to 7 itself
rather than to S(r). Actually, given the “independence” of 4 from S, one could have
replaced the challenge queries by two types of queries: partial-information (on)
queries that correspond to the 4’s (and are answered by /4(r)), and encrypted partial-
information queries that correspond to the S’s (and are answered by E.(S(r))). As
shown in Exercise 38, all these forms are in fact equivalent.

5.4.4.3. Constructing CCA-Secure Private-Key Schemes

In this section we present simple constructions of CCA-secure private-key encryption
schemes. We start with a priori CCA, and next turn to a posteriori CCA.

449

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Security under a-priori CCA. All the results presented in Section 5.3.3 extend to
security under a priori chosen ciphertext attacks. Specifically, we prove that Construc-
tions 5.3.9 and 5.3.12 remain secure also under an a priori CCA.

Proposition 5.4.18: Let F and (G, E, D) be as in Construction 5.3.9, and suppose
that F is pseudorandom with respect to polynomial-size circuits. Then the private-key
encryption scheme (G, E, D) is secure under a priori chosen ciphertext attacks. The
same holds with respect to Construction 5.3.12.

Proof Sketch: As in the proof of 5.4.12, we focus on Construction 5.3.9, and consider
an idealized version of the scheme in which one uses a uniformly selected function
¢:{0, 1} — {0, 1}" (rather than the pseudorandom function f;). Again, all that the ad-
versary obtains by encryption queries in the ideal version is pairs (r, ¢(r)), where the
r’s are uniformly and independently distributed in {0, 1}". Similarly, decryption queries
provide the adversary with pairs (7, ¢(r)), but here the »’s are selected by the adversary.
Still in an a priori CCA, all decryption queries are made before the challenge is pre-
sented, and so these 7’s are selected (by the adversary) independent of the challenge.
Turning to the challenge itself, we observe that the plaintext is “masked” by the value
of ¢ at another uniformly and independently distributed element in {0, 1}”, denoted
rc. We stress that r¢ is independent of all ’s selected in decryption queries (because
these occur before ¢ is selected), as well as being independent of all s selected by the
encryption oracle (regardless of whether these queries are made prior or subsequently
to the challenge). Now, unless r¢ happens to equal one of the r’s that appear in the
pairs (7, ¢(r)) obtained by the adversary (which happens with negligible probability),
the challenge plaintext is perfectly masked. Thus, the ideal version is secure under an a
priori CCA. The same holds for the real scheme, because pseudorandom functions are
indistinguishable from truly random ones (even by machines that adaptively query the
function at arguments of their choice). H

Security under a-posteriori CCA. Unfortunately, Constructions 5.3.9 and 5.3.12 are
not secure under a posteriori chosen ciphertext attacks: Given a challenge ciphertext
(r, x ® fs(r)), the adversary may obtain f;(r) by making the query (r, '), for any
y' # x & fy(r). This query is allowed and is answered with x’ such that y" = x" & f;(r).
Thus, the adversary may recover the challenge plaintext x from the challenge ciphertext
(r, y), where y Lo fs(r), by computing y & (3’ @ x'). Thus, we should look for new
private-key encryption schemes if we want to obtain one that is secure under a posteriori
CCA. Actually, we show how to transform any private-key encryption scheme that is
secure under chosen plaintext attack (CPA) into one that is secure under a posteriori
CCA.

The idea underlying our transformation (of CPA-secure schemes into CCA-secure
ones) is to eliminate the adversary’s gain from chosen ciphertext attacks by making it
infeasible to produce a legitimate ciphertext (other than the ones given explicitly to the
adversary). Thus, an a posteriori CCA adversary can be emulated by a chosen plaintext
attack (CPA) adversary, while almost preserving the success probability.

450

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

The question is indeed how to make it infeasible for the (a posteriori CCA) adversary
to produce a legitimate ciphertext (other than the ones explicitly given to it). One answer
is to use “Message Authentication Codes” (MACs) as defined in Section 6.1.%” That is,
we augment each ciphertext with a corresponding authentication tag (which is “hard
to forge”), and consider an augmented ciphertext to be valid only if it consists of a
valid (string,tag)-pair. For the sake of self-containment (and concreteness), we will use
a specific implementation of such MACs via pseudorandom functions. Incorporating
this MAC in Construction 5.3.9, we obtain the following:

Construction 5.4.19 (a private-key block-cipher secure against a-posteriori CCA): 4s
in Construction 5.3.9, let F = {F,} be an efficiently computable function ensemble
and let I be the function-selection algorithm associated with it; i.e., 1(1") selects a
function f; with distribution F,. We define a private-key block-cipher, (G, E, D), with
block-length £(n) = n as follows:

Key-generation: G(1") = ((k, k'), (k, k'), where k and k' are generated by two inde-
pendent invocations of 1(1").

Encrypting plaintext x € {0, 1}" (using the key (k, £')):

Epp(x) = ((r, fx(r) @ x), fu(r, fi(r) & X)),

where r is uniformly chosen in {0, 1}".

Decrypting ciphertext (r, y) (using the key (k, k')): Dy, w((r, y),t) = fi(r) Sy if
fi(r,y) =t and Dy 1 ((r, y), t) = L otherwise.

Proposition 5.4.20: Let F and (G, E, D) be as in Construction 5.4.19, and suppose
that F is pseudorandom with respect to polynomial-size circuits. Then the private-key
encryption scheme (G, E, D) is secure under a posteriori chosen ciphertext attacks.

Proof Sketch: Following the motivation preceding the construction, we emulate any a
posteriori CCA adversary by a CPA adversary. Specifically, we need to show how to
answer decryption queries made by the CCA adversary. Let us denote such a generic
query by ((r, y), t), and consider the following three cases:

1. If ((r, ¥), t) equals the answer given to some (previous) encryption query x, then we
answer the current query with x.
Clearly, the answer we give is always correct.

2. If ((r, y), t) equals the challenge ciphertext, then this query is not allowed.

3. Otherwise, we answer that ((r,), ¢) is not a valid ciphertext.
We need to show that our answer is indeed correct. Recall that in this case, ((7,),)
neither appeared before as an answer to an encryption query nor equals the chal-
lenge ciphertext. Since for every (r, y) there is a unique t' such that ((, y), t') is
a valid ciphertext, the case hypothesis implies that one of the following sub-cases

37 In fact, we need to use secure Message Authentication Codes that have unique valid tags (or at least are
super-secure), as discussed in Section 6.5.1 (resp., Section 6.5.2).

451

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

must occur:

Case 1: Some ((r,), t"), with ¢’ # t, has appeared before either as an answer to an
encryption query or as the challenge ciphertext. In this case, ((r,),) is definitely
not a valid ciphertext, because ((, y), t') is the unique valid ciphertext of the form
((l" >y)v)

Case 2: No triple of the form ((r, y), -) has appear before (as such an answer to an
encryption query or as the challenge ciphertext). In this sub-case, the ciphertext
is valid if and only if = fi(r,). That is, in order to produce such a valid
ciphertext, the adversary must guess the value of fi at (»,), when only seeing
the value of fj at other arguments. By the pseudorandomness of the function f/,
the adversary may succeed in such a guess only with negligible probability, and
hence our answer is wrong only with negligible probability.

Finally, note that the CPA-security of Construction 5.3.9 (see Proposition 5.4.12) implies
the CPA-security of Construction 5.4.19. The proposition follows. H

An Alternative Proof of Proposition 5.4.20. Augmenting the proof of Proposi-
tion 5.4.18, we (need to) consider here also decryption queries made after the challenge
ciphertext, denoted ((r¢, yc¢), tc), is presented. Let us denote such a generic decryp-
tion query by ((7, »), t). We consider four cases, ignoring the unlikely case that some
encryption query is answered by a pair of the form ((r¢,), -):

1. Ifr # rc then the query ((7, y), t) can be treated as in the proof of Proposition 5.4.18,
because it reveals nothing on f;(r¢). Indeed, such a query is not more dangerous
than a query made during an a priori CCA attack.

2. Ifr = rcand y # yc then, except with negligible probability, the query ((r,), t) is
not a valid ciphertext, because it is infeasible to guess the value of fi (7, y) (which
is the only value of ¢’ such that ((, y), ¢') is valid). Thus, such queries (which are
almost always answered by _L) can be ignored.

3. If (r, y) = (rc, yo) and t # tc then (surely) the query ((7,), t) is not a valid cipher-
text, and can be ignored (as in the previous case).

4, If (r, y,t) = (r¢, yo, tc) then the query ((7, »), t) is not allowed.

The proposition follows. W

The same construction and analysis can be applied to Construction 5.3.12. Combin-
ing Proposition 5.4.20 with Corollary 3.6.7, we get:

Theorem 5.4.21: [fthere exist (non-uniformly hard) one-way functions, then there exist
private-key encryption schemes that are secure under a posteriori chosen ciphertext
attacks.

5.4.4.4. Constructing CCA-Secure Public-Key Schemes

In this section we present fairly complicated constructions of CCA-secure public-key
encryption schemes. Again, we start by considering a priori CCA, and then augment

452

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

the constructions in order to handle a posteriori CCA. Specifically, we will show how
to transform any public-key encryption scheme that is secure in the passive (key-
dependent) sense into one that is secure under a posteriori CCA. As in the case of private-
key schemes, the idea underlying the transformation is to eliminate the adversary’s gain
from chosen ciphertext attacks.

Recall that in the case of private-key schemes, the adversary’s gain from a CCA was
eliminated by making it infeasible (for the adversary) to produce legitimate ciphertexts
(other than those explicitly given to it). However, in the context of public-key schemes,
the adversary can easily generate legitimate ciphertexts (by applying the keyed encryp-
tion algorithm to any plaintext of'its choice). Thus, in the current context, the adversary’s
gain from a CCA is eliminated by making it infeasible (for the adversary) to produce
legitimate ciphertexts without “knowing” the corresponding plaintext. This, in turn,
will be achieved by augmenting the plaintext with a non-interactive zero-knowledge
“proof of knowledge” of the corresponding plaintext.

NIZK: Preliminaries. Strong forms of Non-Interactive Zero-Knowledge (NIZK)
proofs will play a key role in our transformation, and we will assume that the reader is
familiar with the main notions and results that are presented in Section 4.10. Since the
notion of a proof-of-knowledge is quite complex in general (cf. Section 4.7), and more
so in the non-interactive (zero-knowledge) context (let alone that we will need strength-
enings of it), we will not make explicit use of this notion (i.e., of proof-of-knowledge).
Instead, we will use non-interactive (zero-knowledge) proofs of membership (NIZK)
as defined in Section 4.10. In fact, our starting point is the definition of adaptive NIZK
systems (i.e., Definition 4.10.15), when extended to handle assertions of a priori un-
bounded length (as discussed at the beginning of Section 4.10.3.1). We focus on proof
systems in which the prover is implemented by a probabilistic polynomial-time al-
gorithm that is given a suitable auxiliary-input (e.g., an NP-witness). For the sake of
clarity, let us reproduce the resulting definition.

Definition 5.4.22 (adaptive NIZK): 4n adaptive non-interactive zero-knowledge
proof system (adaptive NIZK) for a language L € NP, with an NP-relation Ry,
consists of a pair of probabilistic polynomial-time algorithms, denoted (P, V), that
satisfy the following:

e Syntax: Both machines are given the same uniformly selected reference string
r € {0, 1} along with an actual input x € {0, 1}* such that |x| = poly(m) and
an auxiliary input. Specifically, on input v, x and w (supposedly, (x, w) € Ry), the
prover P outputs an alleged proof m < P(x, w, r); whereas on input v, x and 7,
the verifier V decides according to V(x,r,) € {0, 1}.

e Completeness: For every (x, w) € Ry with |x| = poly(m), the probability that V
does not accept the input x (based on the proof P(x, w, U,,) and the reference string
Uy) is negligible, that is, Pr[V(x, Uy, P(x, w, Uy)) # 1] is negligible. (Typically,
the error probability here is zero, in which case we say that the proof has perfect
completeness.)

453

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

 Adaptive Soundness: For every E:{0, 1} — ({0, 1}?°Y"\ L) and every TI:
{0, 1} — {0, 1}PY0") the probability that V accepts the input B(U,,) (based
on the proof TI(U,) and the reference string U,) is negligible; that is,
PrV(E(Un), Un, II(Uy)) = 1] is negligible.

¢ Adaptive Zero-Knowledge: There exist two probabilistic polynomial-time algo-
rithms, Sy and Sy, such that for every pair of functions E:{0, 1} — ({0, 1}P°b0™ N
L) and W:{0,1}" = {0, 1}?°Y") such that & and W are both implementable
by polynomial-size circuits and (E(r), W(r))e Ry (Yr €{0, 1}"), the ensembles
{(Un, B(Uy), P(B(U,), W(Uy,), Up)}men and {SE(1"™)}uen are computationally
indistinguishable (by non-uniform families of polynomial-size circuits), where
SE(1™) denotes the output of the following randomized process:

L (r,s) < S;(1™);
2. x < E(r);
3.1 <« S(x,s),
4. Output (r, x,).

Indeed, S is a two-stage simulator that first produces (obliviously of the actual input)
an alleged reference string r (along with the auxiliary information s),>® and then,
given an actual input (which may depend on r), simulates the actual proof-

Note that it is important that in the zero-knowledge condition, the function E is required
to be implementable by polynomial-size circuits (because otherwise only languages in
BPP can have such proof systems; see Exercise 39). In the rest of this subsection,
whenever we refer to an adaptive NIZK, we mean this definition. Actually, we may
relax the adaptive soundness condition so that it only applies to functions E and IT that
are implementable by polynomial-size circuits. That is, computational soundness will
actually suffice for the rest of this subsection.

Additional Conventions. Note that (analogously to Proposition 5.4.10) in the case
of public-key schemes, the combined chosen plaintext and ciphertext attack (as in
Definitions 5.4.13 and 5.4.14) is equivalent to a “pure” chosen ciphertext attack. Thus,
in this subsection we consider only attacks of the latter type. Another technical point is
that in our construction we can use any public-key encryption scheme that is secure in
the passive (key-dependent) sense, provided that for all but a negligible measure of the
key-pairs that it generates, there is no decryption error. For simplicity of presentation,
we will assume that the basic encryption scheme has no decryption error at all (i.e., on
all key-pairs).

The General Framework. The following schema (for constructing CCA-secure
public-key encryption schemes) uses a passively secure public-key encryption

38 The auxiliary information s may explicitly contain r. Alternatively, s may just equal the coins used by S;. In the
constructions that follow, we do not follow either of these conventions, but rather let s equal the very information
about r that S, needs.

454

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

scheme, denoted (G, E, D), and an adaptive NIZK, denoted (P, V'), for a related
NP-set.

Construction 5.4.23 (CCA-security construction framework): Let E.(x,) denote the
ciphertext produced by E when given the encryption-key e, the plaintext x, and the
coins s; that is, E,(x) < E.(x,s), where s is selected uniformly among the set of
poly(lel, |x|)-long bit strings. We use an adaptive NIZK (P, V') for the language L
defined by the following NP-relation:

RE (((e1, €2, y1, 12), (¥, 51, 2)) 1 1 = Ee (x,51) & y2 = Eo(x,52)} (5.12)

Thatis, (e1, ez, V1, v2) € Ly ify) and y, are encryptions of the same plaintext, produced
using the encryption-keys e; and e,, respectively.

Key-generation: G'(1") &ef ((e1, ez, 1), (d1, do, 1)), where (eq, dy) and (e, dy) are se-
lected at random by invoking G(1") twice, and r is uniformly distributed in
{0, 1}".

Encrypting plaintext x € {0, 1}* (using the key e = (ey, e, 7)):

def . . .
EL(x) = (y1, y2,), where s1, s, are uniformly selected poly(n)-long bit strings,
Y1 = Eel(x> S]), Y2 = Eez(xﬂ S2)’ and w < P((elv €2, V1, J’2), (xn 81, S2)9 r)'

Decrypting ciphertext (yy, y,,) (using the key d = (d;, d,, r)):

If V((e1, e, y1, 32), ¥, w) = 1, then return Dy (y1) or else return an error symbol
indicating that the ciphertext is not valid.

Indeed, our choice to decrypt according to y; (in case 7 is a valid proof) is immaterial,
and we could as well decrypt according to y,. Another alternative could be to decrypt
according to both y; and y;, and return a result only if both outcomes are identical (and
7 is a valid proof). We stress that, here as well as in the following analysis, we rely
on the hypothesis that decryption is error-free, which implies that D (E.(x)) = x for
every (e, d) in the range of G. Thus, Dy, (y1) = D4, ()2), for any (e, e, y1, ¥2) € Lp,
where the (e;, d;)’s are in the range of G.

Clearly, Construction 5.4.23 constitutes a public-key encryption scheme; that is,
D;T(Eé(x)) = x, provided that the NIZK proof generated during the encryption stage
was accepted during the decryption stage. Indeed, if the NIZK system enjoys perfect
completeness (which is typically the case), then the decryption error is zero. By the zero-
knowledge property, the passive security of the original encryption scheme (G, E, D)
is preserved by Construction 5.4.23. Intuitively, creating a valid ciphertext seems to
imply “knowledge” of the corresponding plaintext, but this appealing claim should be
examined with more care (and in fact is not always valid). Furthermore, as stated pre-
viously, our actual proof will not refer to the notion of “knowledge.” Instead, the actual
proof will proceed by showing how a chosen ciphertext attack on Construction 5.4.23
can be transformed into a (key-dependent) passive attack on (G, E, D). In fact, we will
need to augment the notion of (adaptive) NIZK in order to present such a transfor-
mation. We will do so in two steps. The first augmentation will be used to deal with
a priori CCA, and further augmentation will be used to deal with a posteriori CCA.

455

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Step I: a-priori CCA

Let us start by considering an a priori CCA. Given such an adversary 4, we construct
a passive adversary B that attacks (G, E, D) by emulating the attack of 4 on Con-
struction 5.4.23. One important observation is that the latter encryption scheme uses
two keys of the original scheme. Thus, given an encryption-key of the original scheme,
B generates another encryption-key (while storing the corresponding decryption-key)
and invokes A, giving it the pair of encryption-keys (along with a reference string to
be generated as discussed in the next paragraph). When 4 makes a decryption query,
B may answer the query by using the stored decryption-key (generated by B before).
This works provided that the query ciphertext contains a pair of ciphertexts of the same
plaintext according to the two keys, which is the reason we augmented the ciphertext
pairs by a proof of consistency. Thus, actually, B should examine the latter proof and
act analogously to the decryption process of Construction 5.4.23.

The next problem arises when A asks to be given a challenge. Algorithm B forwards
the request as its own challenge template, but the challenge given to B is a single
ciphertext of the original scheme, and so B needs to augment it into something that
looks like a ciphertext of Construction 5.4.23. Here is where we rely on the zero-
knowledge property of the proof of consistency (for producing the required proof that
relates to a plaintext we do not know), but in order to do so, the reference string needs
to be generated by the simulator (rather than be uniformly distributed). But this leads to
the following problem: When referring (in the previous paragraph) to the soundness of
the proofs of consistency, we assumed that the reference string is uniformly distributed
(since soundness was stated for that case), and it is not clear whether soundness holds
when the reference string is generated by the simulator (who must use a different®®
distribution). This issue is addressed by the notion of (weak) simulationsoundness.

Defining and Constructing Adaptive NIZKs with a Weak Simulation-Soundness
Property. This discussion leads to the following definition:

Definition 5.4.24 (weak simulation-soundness): Let (P, V') be an adaptive NIZK for
a language L, and (S1, S2) be a corresponding two-stage simulator. We say that weak
simulation-soundness holds if for all polynomial-size implementable functions E and
I1, it holds that

PrE(r)EL and V(E(®r), r, I1(r))=1, where (r, s) < S1(1")] < w(n)

where u:N—[0,1] is a negligible function.

Note that the computational limitation on IT is essential to the viability of the definition
(see Exercise 40). It is tempting to conjecture that every adaptive NIZK (or rather its
simulator) satisfies weak simulation-soundness; however, this is not true (for further
discussion see Exercise 41). Nevertheless, adaptive NIZK (for N"P) with a simulator

39 Indeed, prove that the distribution produced by the simulator must be far away from uniform. See related
Exercises 39 and 40.

456

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

satisfying weak simulation-soundness can be constructed given any adaptive NIZK (for

NP).

Construction 5.4.25 (from adaptive NIZK to weak simulation-soundness): Let (P, V')
be an adaptive NIZK for some language L, and let (S1, S») be the corresponding two-
stage simulator. We construct the following adaptive NIZK that works with reference
string ((r?, rll), o (0, 7)), where r{ e {0, 1}".

n>'n

Prover P': On common input x and auxiliary-input w (s.t., (x, w) € Ry), (and ref-

erence String ((r?, rll), s (r,?, r,}))), uniformly select by, ..., b, € {0, 1}, compute
; . __ def
;< P(x,w, i"l-b')fO}"l =1, ..., n, and output = (b1, ..., by 71,y ooy TTH).
Verifier V': On common input x (and reference string ((r?, rll), e (0, 71))), given an

alleged proof @ = (by, ..., by, 71, ..., T,), accept if and only if V (x, rl.b", ;) =1 for
eachi € {1, ..., n}.

Simulator’s first stage S|: On input 1", select uniformly cy, ..., c, € {0, 1}, generate
(rf",si) <~ $1(1") for i =1, ..., n, select uniformly rll_c‘, s r,:_c“ e {0, 1", and

— — — def — def
output (v, s), where r = ((r?, rll), s (r,?, r,:)) And's = (Cly ceey Criy S1s oeey Sp)-

Simulator’s second stage S;: Oninput (s, x), wheres = (ci, ..., Cn, S1, ..., S), compute
7w < S(x,s;) fori =1, ..., n, and output (¢, ..., Cp, 1, ..., Ty).

It is easy to see that Construction 5.4.25 preserves the adaptive NIZK features of
(P, V, 81, S2). Furthermore, as will be shown, Construction 5.4.25 is weak simulation-
sound.

Proposition 5.4.26: Construction 5.4.25 is an adaptive NIZK for L, and weak
simulation-soundness holds with respect to the prescribed simulator.

Proof Sketch: Completeness and soundness follow by the corresponding properties
of (P, V). To see that the simulation is indistinguishable from the real execution of
(P’, V"), note that the two probability ensembles differ in two aspects: First, the simu-
lationusesr;"’s generated by S (1), whereas in the real execution, the ;" ’s are uniformly
distributed; and second, the simulation uses simulated proofs produced by S»(x, s;),
rather than real proofs produced by P(x, w, rib 7). Still, the indistinguishability of the
output of the original simulator from the real execution of (P, V') can be used to prove
that the current ensembles are indistinguishable, too. Specifically, we consider a hybrid
distribution in which all rl.b ’s are generated by S;(1”) but the individual proofs (i.e.,
7;’s) are produced by P(x, w, ril’"). Using the fact that indistinguishability (by small
circuits) is preserved under repeated sampling, we show that this hybrid ensemble is
indistinguishable from each of the two original ensembles (i.e., the real execution of
(P’, V') and the simulation by (Sj, S5)).

To establish the weak simulation-soundness property, we consider an arbitrary cheat-
ing prover C = (&, I1) that is implementable by a family of small circuits. We say that
C(r) = (E(7), I1(r)) succeeds if it holds that E(r) ¢ L and V'(E(r), r, [1(r)) = 1.
We are interested in the probability that C(r) succeeds when (7, 5) <— S7(1"). Recall

457

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

that s = (cy, ..., Cu, S1, ..., Sy), Where the ¢;’s are selected uniformly in {0, 1}, whereas

[1(7) has the form (b4, ..., b,, 7y, ..., ,). Let us denote the latter sequence of b;’s by

B(7); that is, T1(r) = (B(r), IT'(r)). We distinguish two cases according to whether or
— — def

not B(r) =c¢ = (c1, ..., Cp):

Pr(C(¥) = (E(F), (B(7), IT'(7))) succeeds, when (7, 5) < S7(1")]
= Pr[C(r) succeeds and B(r) = ¢, when (7, (¢, 5')) < Sj(1")] (5.13)
+ Pr[C(F) succeeds and B(F) # ¢, when (7, (¢,5)) < S;(1")] (5.14)

Eq. (5.13), which corresponds to the first case, must be negligible because the corre-
sponding probability that refers to a uniformly selected reference string (as appearing
in the real proof) is negligible, and the indistinguishability of a simulated reference
string from a uniformly distributed one was established previously.

Details: For a uniformly distributed reference string 7, we have Pr[B(r) = ¢] = 27"
by information-theoretic considerations (i.e., 7 is statistically independent of ¢). On

the other hand, for a simulated reference string 7 and a corresponding ¢, the quantity

q & Pr[B(¥) = c] is lower-bounded by Eq. (5.13). The quality of the simulator’s

output (established in the first paragraph of the proof) implies that the simulated
reference string is computationally indistinguishable from a uniformly distributed
reference string, which in turn implies that ¢ — 27" is negligible. It follows that
Eq. (5.13) is negligible.

Eq. (5.14) must be negligible because in this case, at least one of the alleged proofs (to
a false assertion) is with respect to a uniformly distributed reference string.

Details: By the case hypothesis (i.e., B(7") # ¢), there exists an i such that the i-th bit
of B(r)is different from¢; (i.e., b; # ¢;). Thus, the i-th alleged proof (i.e., 7r;) is with
respect to a uniformly distributed reference string, that is, with respect to rl.b = rl.1 —
where ril_"’ is selected uniformly in {0, 1}". By the (adaptive) soundness of (P, V),
this proof for a false assertion can be valid only with negligible probability, which

in turn implies that Eq. (5.14) is negligible.

Having established that both Eq. (5.13) and Eq. (5.14) are negligible, the proposition
follows. H

Using Adaptive NIZKs with Weak Simulation-Soundness. Following the foregoing
motivating discussion, we show that if the adaptive NIZK used in Construction 5.4.23
has the weak simulation-soundness property, then the resulting encryption scheme
(G', E', D') is secure under a priori CCA.

Theorem 5.4.27: Suppose that the adaptive NIZK (P, V') used in Construction 5.4.23
has the weak simulation-soundness property and that the public-key encryption scheme
(G, E, D) is passively secure in the key-dependent sense. Further suppose that the
probability that G(1") produces a pair (e, d) such that Pr[Ds(E.(x)) = x] < 1, for
some x € {0, 1}P°Y" js negligible. Then Construction 5.4.23 constitutes a public-key
encryption scheme that is secure under a priori CCA.

458

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

Combining the above with Theorem 4.10.16 and Proposition 5.4.26, it follows that
public-key encryption schemes that are secure under a priori CCA exist, provided that
enhanced*’ trapdoor permutations exists.

Proof Sketch: Assuming toward the contradiction that the scheme (G’, E’, D’) is not
secure under a priori CCA, we show that the scheme (G, E, D) is not secure under
a (key-dependent) passive attack. Specifically, we refer to the definitions of security
in the sense of indistinguishability of encryptions (as in Definitions 5.4.14 and 5.4.2,
respectively). To streamline the proof, we reformulate Definition 5.4.2, incorporating
both circuits (i.e., the one selecting message pairs and the one trying to distinguish their
encryptions) into one circuit and allow this circuit to be probabilistic. (Certainly, this
model of a key-dependent passive attack is equivalent to the one in Definition 5.4.2.)

Let (4], A5) be an a priori CCA adversary attacking the scheme (G’, E’, D’) (as per
Definition 5.4.14), and (], S>) be the two-stage simulator for (P, V). We construct a
(key-dependent) passive adversary A4 (attacking (G, E, D)) that, given an encryption-
key e (in the range of G;(1")), behaves as follows:

1. Initialization: A generates (e, dy) <— G(1"), (r, s) < Si(n), and setse = (ey, e, 7).
(We assume that (e, d) <— G(17), and let (e2, d») = (e, d), s0 @ = (e1, €2, 7).)

2. Emulation of 4 ba (e): A invokes A/ on input e, and answers its (decryption) queries

as follows. When asked to decrypt the alleged ciphertext (g1, g2, q3), adversary 4
checks if g3 is a valid proof of consistency of ¢; and g, (with respect to the reference
string 7). If the proof is valid, then 4 answers with D, (q1) or else A returns the
error symbol.
(Note that the emulation of the oracle D7 by A4 is perfect, although 4 only knows
part of the corresponding decryption-key d. Also note that A4 emulates A’ on an
input and oracle access that are computationally indistringuishable from the input
and oracle access given to 4/ in a real attack.)

3. Using A), for the final decision: Let (xD, x@), o) denote the challenge template out-
putby A}. Then, 4 outputs (x1), x@) as its own challenge pair. Next, given a cipher-
text y = E,(x), where x € {x(), x®}, adversary 4 forms a corresponding (almost
certainly illegal) ciphertext under E’, denoted (1, y,), by letting y; < E,, (0"‘(1)‘)
and 7w < Sy(s, (e1, e, y1, ¥)). Finally, 4 invokes 4, on input (o, (1, ¥, 7)), and out-
puts whatever the latter does. Recall that here (in the case of a priori CCA), 4} is an
ordinary machine (rather than an oracle machine).

(Note that 4 emulates 4 on an input that is computationally indistringuishable from
the input given to A} in a real attack. In particular, 4 typically invokes 45 with an
illegal ciphertext, whereas in a real attack, 4 is always given a legal ciphertext.)

In order to analyze the performance of 4, we introduce the following hybrid process,
denoted H, as a mental experiment. The hybrid process behaves as A4, with the only
exception that (in Step 3) y; < E,,(x) (rather than y; < E,, (0*!)). Thus, unlike 4,

40 See Section C.1 in Appendix C

459

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

the hybrid process invokes 4’ with a legal ciphertext. (The question of how the hybrid
process “knows” or gets this y; is out of place; we merely define a mental experiment.)
Let pg) = pg)(n) (resp., pg) = pg)(n)) denote the probability that A (resp., the hybrid
process H) outputs 1 when x = xU), where the probability is taken over the choices of
(e, d) < G(1") and the internal coin tosses of A (resp., H).
Claim 5.4.27.1: For both j’s, the absolute difference between p(Aj)
negligible function in 7.

(n) and p'Y(n) is a

Proof: Define an auxiliary hybrid process that behaves as the hybrid process, except
that when emulating D, the auxiliary process answers according to Dy, (rather than
according to Dy,). (Again, this is a mental experiment.) Let pg)H denote the probability
that this auxiliary process outputs 1 when x = x). Similarly, define another mental
experiment that behaves as A4, except that when emulating Dy, this process answers
according to Dy, (rather than according to Dy,), and let p% denote the probability that
the latter process outputs 1 when x = x), We stress that in Step 3, the latter mental
experiment behaves exactly like A; the only aspect in which this mental experiment
differs from A is in its decryption operations at Step 2. The various processes are

tabulated next.

answers the challenge nature of process
dec-queries | ciphertext for 4’

A by using Dy, | (E.,(0F), E.(x),-) | areal (passive) attack
on (G, E, D) (w.r.t. key e)

H by using Dy, | (E¢ (x), Ec(x), -) a mental experiment
HH | byusing Dy, | (E¢ (x), Ec(x),) a mental experiment
AA | byusing Dy, | (E.,(0"), E.(x),) | a mental experiment

We establish the following facts regarding these processes:

Fact 1. For both j’s, the absolute difference between pg) and p%)H is negligible.
The reason is that the two processes differ only in the way they answer the decryption
queries: In the first process the decryption is according to Dy, and in the second
it is according to D,,. However, by weak simulation-soundness, it is infeasible to
produce triples (g1, g2, g3) such that (e, e, q1, g2) € L g and yet g3 is a valid proof
(with respect to r, for the false assertion that (e, e, g1, ¢2) is in L). Thus, except
with negligible probability, either Dy, (1) = Dg,(g2) or g3 is not valid, and so it does
not matter whether one decrypts according to Dy, or to Dg,.*!

Fact 2. Similarly, for both j’s, the absolute difference between pgf) and p% is

negligible.
Fact 3. Finally, for both j’s, the absolute difference between p%)H and pi{; isnegligible.

41 Here, we rely on the hypothesis that except with negligible probability over the key-generation process, the
decryption is error-less (i.e., always yields the original plaintext).

460

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

The reason is that the experiments A4 and HH differ only in the in-
put (o, (y1,y,m)) that they feed to A5; whereas 44 forms y; < E, (0™
(and < Sy(s, (e1, e, ¥1, ¥))), the process HH forms y; < E, (x) (and w <«
Sy(s, (e1, e, y1,¥))). However, 4} cannot distinguish the two cases because this
would have violated the security of E,,.

That is, to establish Fact 3, we construct a passive attack, denoted B, that behaves
similarly to 4 except that it switches its reference to the two basic keys (i.e., the
first two components of the encryption-key e) and acts very differently in Step 3
(e.g., B produces a different challenge template). Specifically, given an attacked
encryption-key e, adversary B generates (e, dy) < G(1"), sets e = (e, ez, -), and
emulates A’lD “(e) using the decryption-key d, to answer queries. For a fixed j, when
obtaining (from 4}) the challenge template ((x, x»)), o'), adversary B produces the
challenge template ((0"‘”)', x), o), and invokes 4 on input (o, (¥, 2, 7)), where
y = E.(x) (x € (0%, x1)}) is the challenge ciphertext given to B, and B computes
v <« E,, (xDyand 7w < S»(s, (e, €3, v, 2)). (Finally, B outputs the output obtained
from A5.) Note that when given the challenge ciphertext E.(x), the adversary
B effectively behaves as experiment H H (for the same j), whereas when given
Ee(le('D'), it effectively behaves as experiment 4 A4 (for the same ;). Thus, if p%},
and pﬂ differ in a non-negligible manner, then B violates the passive security of
the encryption scheme (G, E, D).

Combining these three facts, the current claim follows. [

Let us denote by p(cjga(n) the probability that the CCA adversary (A4, 45) outputs 1
when given a ciphertext corresponding to the j plaintext in its challenge template (see
Definitions 5.4.14). Recall that by the contradiction hypothesis, | p(cléa(n) - p(czga(n)l is
not negligible.

Claim 5.4.27.2: For both j’s, the absolute difference between pgga(n) and pg)(n) is a
negligible function in 7.

Proof: The only difference between the output in a real attack of (4}, 45) and the output
of the hybrid process is that in the hybrid process, a “simulated reference string” and
a “simulated proof™ are used instead of a uniformly distributed reference string and a
real NIZK proof. However, this difference is indistinguishable.*? [

Combining Claims 5.4.27.1 and 5.4.27.2, we obtain that for some negligible function
w it holds that

1 2 1 2
P4 () =)] > 1P}y (m) = pig) ()] — ()
1 2
> |Peca(m) — peca(m)| — 2u(n)
We conclude that (the passive attack) 4 violates the passive security of (G, E, D). This
contradicts the hypothesis (regarding (G, E, D)), and so the theorem follows. H

42 We stress that the current claim relies only on the fact that the simulated reference-string and proof are indis-
tinguishable from the corresponding real objects.

461

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Step II: a-posteriori CCA

In order to use Construction 5.4.23 in the context of a posteriori CCA security, we
need to further strengthen the NIZK proof in use. The reason is that in an a posteriori
CCA, the adversary may try to generate proofs of false claims (as part of the ciphertext
queries in the second stage) after being given a (single) simulated proof (as part of the
challenge ciphertext). Specifically, when trying to extend the proof of Theorem 5.4.27,
we need to argue that, given a simulated proof (to either a false or a true statement), it is
infeasible to generate a proof to a false statement (so long as one does not just copy the
given simulated proof [in case it is to a false statement]). The notion of weak simulation-
soundness does not suffice to bound the probability of success in such attempts, because
the former notion refers to what one can do when only given the simulated reference
string (without a corresponding simulated proof). The following definition addresses
the situation in which one is given a single simulated proof (along with the simulated
reference string). (We comment that a more general notion that refers to a situation in
which one is given many simulated proofs is not necessary for the current application.)

Definition 5.4.28 (1-proof simulation-soundness): Let (P, V') be an adaptive NIZK
Jfor a language L, and (Si, Sy) be a corresponding two-stage simulator. We say that
1-proof simulation-soundness holds if for every triplet of polynomial-size circuit
families (B', 82, T1%), the probability of the following event is negligible:

The event: Forr and (x', ', x2, n?) generated as described next, the following three
conditions hold: x> ¢ L, (x>, w?) # (x', &), and V(x?,r,n?) = 1.

The generation process: First (r, s) < S;(1"), then x' < E'(r), nextw! < Sy(s, x"),
and finally (x*, n2) < (B*(r, n"), TI%(r, m")).

That is, the adversary is represented by three circuits, and the process considered is as
follows. Given a simulated reference string r, the adversary selects an input x!, gets a
corresponding simulated proof !, and tries to form a (valid with respect to r) proof
72 for some No-instance x2. Note that x! is not required to be a YEs-instance. In case
x? = x!, we consider only 72 # 7! (and in case x*> # x ', we also consider 72 = r!).
Definition 5.4.28 requires that the success probability of any such feasible adversary
be negligible. Note that weak simulation-soundness is obtained as a special case of
Definition 5.4.28 (by setting E(r) = E(r, A) and I1(r) = I1%(r, A), where A denotes
the empty string).

Theorem 5.4.29: Suppose that the adaptive NIZK (P, V') used in Construction 5.4.23
has the I-proof simulation-soundness property and that the encryption scheme
(G, E, D) is as in Theorem 5.4.27. Then Construction 5.4.23 constitutes a public-key
encryption scheme that is secure under a posteriori CCA.

Proof Sketch: The proof follows the structure of the proof of Theorem 5.4.27. Specif-
ically, given an a posteriori CCA adversary (4, 45) (attacking (G', E’, D")), we first
constructapassive adversary A4 (attacking (G, E, D)). The construction is as in the proof
of Theorem 5.4.27, with the exception that in Step 3 we need to emulate the decryption
oracle (for A%). This emulation is performed exactly as the one performed in Step 2

462

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

(for A)). Next, we analyze this passive adversary as in the proof of Theorem 5.4.27,
while referring to an 4, that may make decryption queries.* The analysis of the hand-
ling of these (additional) queries relies on the 1-proof simulation-soundness property.

In particular, when proving a claim analogous to Claim 5.4.27.1, we have to establish
two facts (corresponding to Facts 1 and 2) that refer to the difference in the process’s
output when decrypting according to D,, and D,,, respectively. Both facts follow from
the fact (established next) that, except with negligible probability, neither 4} nor 4} can
produce a query (g1, q2, q3) such that g3 is a valid proof that q, and q, are consistent
and yet Dy (q1) # Dg(gq2). (We stress that in the current context we refer also to
A, which may try to produce such a query based on the challenge ciphertext given
to it.)

Fact 5.4.29.1: The probability that 4} produces a query (¢, g2, ¢3) such that g3 is a
valid proof (with respect to reference string ») that (supposedly) there exists x, sy, 53
such that ¢; = E. (x,s;) (for i =1, 2), and yet Dy, (q1) # Da,(g2) is negligible. The
same holds for 4} so long as the query is different from the challenge ciphertext given
to it. This holds regardless of whether the challenge ciphertext (given to 4) is produced
asin 4 (i.e., y1 = E. (0™)) or as in the hybrid process H (i.e., y1 = E,,(x)).

Proof: Recall that one of our hypotheses is that the encryption (G, E, D) is error-free
(except for a negligible measure of the key-pairs). Thus, the current fact refers to a
situation that either 4| or 4 produces a valid proof for a false statement. The first part
(i.e., referring to A') follows from the weak simulation-soundness of the NIZK, which
in turn follows from its 1-proof simulation-soundness property. We focus on the second
part, which refers to 4.

Let (y1, 2,) denote the challenge ciphertext given to A45; that is, y, = y is the
challenge ciphertext given to A(e) (or to H(e)), which augments it with y; and
7w < S(s, (e1, €2, y1, 12)). Recall that (r, s) < S;(1") and that e, = e. Suppose that
A’, produces a query (g1, 2, q3) as in the claim; that is, (g1, g2, g3) # (V1, y2,), the
encryptions ¢; and ¢, are not consistent (with respect to e; and e, respectively), and
yet V((e1, e2, 91, q2), ¥» q3) = 1. Specifically, it holds that x> &ef (e1, €2, q1,92) & Lg,
where Ly is as in Construction 5.4.23 (see Eq. (5.12)), and yet V' (x2,r, ¢3) = 1 (i.e.,
2 & g3 is a valid proof of the false statement regarding x2). Since (yy, 2, 7) is
produced by letting 7w < S (s, (e1, €2, V1, y2)), it follows that 7' = 7 is a simu-
lated proof (with respect to the reference string ») for the alleged membership of
1y (e1, €2, 1, y2) in L, where (r, s) < S1(1"). Furthermore, given such a proof
(along with the reference string r), 4’ produces a query (g1, ¢2, ¢3) that yields a pair
(x?, %), where % = g3, such that x> = (ey, 3, ¢1, q2) € Lz and yet V(x2, r,m?) =1
and (x2, 7%) # (x!, 7!). Thus, using 4 and 4} (along with (G, E, D)), we obtain cir-
cuits E!, E2, IT? that violate the hypothesis that (S, S,) is 1-proof simulation-sound.

Details: On input a (simulated) reference string r, the circuit &' selects (ej, d})
and (e, d») in the range of G(1"), and emulates the execution of 4 ba (e), where
e= (e, err) and d = (dy, dp, 7). (Indeed, we fix the best possible choice of

43 Indeed, in the proof of Theorem 5.4.27, where (4, 4}) is an a priori CCA, 4} makes no such queries.

463

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

(e1,d)) and (ey, d»), rather than selecting both at random, and emulate the or-
acle Dy using d that is known to the circuit.) When A} outputs a challenge
template, E' emulates the selection of the challenge x, sets y; < E,, (OF!) (or
y1 < E. (x) when we argue about the hybrid process H), y, < E.,(x), and out-
puts x! oef (e1, €2, y1, ¥2). (Again, we may fix the best choice of x, y;, and y»,
rather than generating them at random.) The challenge ciphertext is formed by
augmenting y;, y» with w! < S»(s, x!), where s is the auxiliary information gen-
erated by S(1") (i.e., (1, s) < S(1")). Next, we describe the circuits &2 and IT?,
which obtain x! = (ey, e, y1, ¥2) (as produced by E') along with a simulated proof
! = Sy(s, x!). On input a reference string » and x', 7! (as just discussed), these
circuits emulate A;DJ(J, 1, ¥2, 1)), where o is the state information generated
by 4. For some i (fixed as the best choice), we consider the i-th decryption query
made during the emulation (i.e., we emulate the answers to previous queries by
emulating D). Denoting this (i.e., i-th) query by (g1, 42, ¢3), the circuit E? out-
putsx? & (1, 3, g1, g2) and T1? outputs 7> £ 5. Since (41, 42, 43) # (1, y2, 1),
it follows that (x?, 7%) = ((e1, €2, g1, q2), 7°) # ((e1, €2, y1, y2), w') = (x', 7).
The event stated in the claim refers to the case that x> & L and yet 72 is ac-
cepted as a proof (with respect to the reference string »). But this event and the
current process are exactly as in the definition of 1-proof simulation soundness. We
stress that the argument applies to the process defined by the actual attack, as well
as to the process defined by the hybrid H. In the first case x! ¢ L , whereas in the
second case x! € L, but 1-proof simulation soundness applies to both cases.

It follows that a query (g1, g2, ¢3) as in the claim can be produced only with negligible
probability. [

Fact 5.4.29.1 implies (an adequate extension of) the first two facts in the proof of a
claim analogous to Claim 5.4.27.1. The third fact in that proof, as well as the proof of
the analogue of Claim 5.4.27.2, do not refer to the soundness of the NIZK-proofs, and
are established here exactly as in the proof of Theorem 5.4.27. The current theorem
follows. W

Constructing Adaptive NIZK with 1-Proof Simulation-Soundness Property. We
construct the desired NIZK by using a standard (adaptive) NIZK proof, a weak form
of a signature scheme, and a specific commitment scheme. Since all ingredients can be
implemented using enhanced trapdoor permutations (see Definition C.1.1 in Appendix
C), we obtain:

Theorem 5.4.30: If there exist collections of (non-uniformly hard) enhanced trap-
door permutations, then every language in N'P has an adaptive NIZK with 1-proof
simulation-soundness property.

Proof Sketch: Let L € N'P. We construct a suitable NIZK for L using the following
three ingredients:

1. An adaptive Non-Interactive Witness-Indistinguishable (NIWI) proof, denoted
(PV, ¥'WI), for a suitable language in NP. We stress that we mean a proof system

464

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

that operates with a reference string of length » and can be applied to prove (adap-
tively chosen) statements of length poly(n), where the adaptivity refers both to the
soundness and witness-indistinguishability requirements.

As shown in Section 4.10.3.2,* the existence of enhanced trapdoor permutations
implies that every language in NP has an adaptive NIZK that operates with a
reference string of length # and can be applied to prove statements of length poly(n).
Indeed, in analogy to discussions in Section 4.6, any NIZK is a NIWL.

2. A super-secure one-time signature scheme, denoted (G°T, SOT, V'OT). Specifically,

one-time security (see Section 6.4.1) means that we consider only attacks in which
the adversary may obtain a signature to a single document of its choice (rather
than signatures to polynomially many documents of its choice). On the other hand,
super-security (see Section 6.5.2) means that the adversary should fail to produce a
valid document-signature that is different from the query-answer pair that appeared
in the attack. (We stress that unlike in ordinary security, the adversary is deemed
successful even if it produces a different signature to the same document for which
it has obtained a signature during the attack.)
By Theorem 6.5.2, super-secure one-time signature schemes can be constructed
on the basis of any one-way function. (If we were willing to assume the existence
of collision-free hashing functions, then we could have used instead the easier-to-
establish Theorem 6.5.1.)

3. A perfectly-binding commitment scheme, denoted C, as defined in Section 4.4.1,
with the following two additional properties: The first additional property is that
the commitment strings are pseudorandom; that is, the ensembles {C(x)}eo,1) and
{Ujcx) }xefo, 1)+ are computationally indistinguishable. The second property is that
the support of C(U,,) is a negligible portion of {0, 1}/l
Using any collection of one-way permutations (e.g., the one in the hypothesis),
we may obtain the desired commitment scheme. Specifically, Construction 4.4.2
constitutes a commitment scheme that satisfies the pseudorandomness property (but
not the “negligible portion” property). To obtain the additional “negligible portion”
property, we merely let C(x) equal a pair of two independent commitments to x
(and it follows that the support of C(U,) is at most a 2" - (27")> = 27" fraction of
{0, 1}/€WIN 45 We denote by C(x,) the commitment to value x produced using
coins 7; that is, C(x) = C(x, r), where r is uniformly chosen in {0, 1}(*D, for some
polynomial .

Given these ingredients, we construct an adaptive (1-proof simulation-sound) NIZK
for L (with witness relation R) as follows. The NIZK proof uses a reference string of

the form 7 = (v,), where n &ef |r2| and m &ef |1] = poly(n). (The length of 7, is set
to equal the length of C(v), where (s, v) < G°T(1").)

44 See Theorem 4.10.16 and comment following it, as well as Sections C.1 and C.4 in Appendix C.

45 This presupposes that in the original commitment scheme, the support of C(x) is at most a 27! fraction
of {0, 1}I@I which does hold for Construction 4.4.2. An alternative construction of a commitment scheme
satisfying both additional properties can be obtained using any one-way function. Specifically, Construction 4.4.4
will do, except that it uses two messages. However, since the first message (i.e., sent by the receiver) is a random
string, we may incorporate it in the reference string (of the NIZK scheme presented next).

465

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Prover P: On common input x € {0, 1}P°Y" and auxiliary-input w (and reference
string ¥ = (v, 7)), where supposedly (x, w) € R, the prover behaves as follows:

1. Generates a key-pair for the one-time signature scheme; that s, (s, v) < G°T(1").
2. Computes a pre-proof p < PV((x, r1, v), w, 1), where (PV!, ¥™1) is a proof
system (using 7, as reference string) for the following NP-language L':

L'E (@, y,v):(xeL)v @ y=C,w)) (5.15)
The corresponding NP-relation is
R E{((x,p,0).w) (. W) €R)V(y=Co, W)} (5.16)

Note that P indeed feeds PV! with an adequate NP-witness (i.e., ((x, 71, v), W)
€ R’ since (x, w) € R). The first part of the reference string of P is part of the
statement fed to PW!, whereas the second part of P’s reference string
serves as a reference string for PW'. The behavior of ¥V (with respect
to V1) will be analogous.

3. The prover computes a signature o to (x, p) relative to the signing-key s (generated
in Step 1). That is, P computes o < S%T(x, p).

The prover outputs the triplet (v, p, o).

Verifier V: On common input x and an alleged proof (v, p, o) (and reference string
7 = (r1, 1)), the verifier accepts if and only if the following two conditions hold:

1. o is a valid signature, with respect to the verification-key v, of the pair (x, p).
That is, V°T((x, p), o) = 1.

2. p is a valid proof, with respect to the reference string r,, of the statement
(x,71,v) € L. Thatis, VV((x, r1, v), 2, p) = 1.

Simulator’s first stage S;: On input 1" (from which S; determines n and m), the
first stage produces a reference string and auxiliary information as follows:

1. Like the real prover, S;(1"™*") starts by generating a key-pair for the one-time
signature scheme; that is, (s, v) < GOT(1").

2. Unlike in the real setting, S;(1”*") selects s; uniformly in {0, 1}*/*D, and sets 7| =
C(v, s1). (Note that in the real setting, r| is uniformly distributed independently
of v, and thus in the real setting, ; is unlikely to be in the support of C, let alone
in that of C(v).)

3. Like in the real setting, S;(1”*") selects r, uniformly in {0, 1}".

S1(1™*") outputs the pair (7, 5), where 7 = (ry, 1) is a simulated reference string
and s = (v, s, 51, 77) is auxiliary information to be passed to S,.

Simulator’s second stage S$;: On input a statement x and auxiliary input 5 =
(v, s, 51, 72) (as generated by S)), S, proceeds as follows:

466

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

1. Using (the NP-witness) s;, the simulator computes a pre-proof p <«
PW¥((x, C(v, 51), v), 51, 7). Note that indeed, ((x, C(v, s1), v), s1) € R'.

2. Using (the signing-key) s, the simulator computes a signature o to (x, p) relative
to s, where p is as computed in the first step. That is, o < S°T(x, p).

S, (5, x) outputs (v, p, o) as a simulated proof (with respect to 7) for membership of
xin L.

As we will show in Claim 5.4.30.2, the above (two-stage) simulator produces output that
is indistinguishable from the output of the real execution. Intuitively, the first stage of
the simulator enables cheating by entities (such as the second stage of the simulator) that
can produce signatures with respect to the verification-key committed to in the string 7,
(which is part of the reference string generated by S1). This allows the simulation (which
gets the signing-key) to cheat, but does not allow cheating by an adversary that sees
only the verification-key as well as a single valid signature (which are both part of the
single proof given to the adversary in the definition of 1-proof simulation-soundness).
We now turn to the actual proof of these properties.

Claim 5.4.30.1: (P, V) satisfies completeness and adaptive soundness.

Proof: Completeness follows by combining the syntactic properties of the one-time
signature scheme, the completeness property of the proof system (P™!, V'), and the
definition of R’. Adaptive soundness follows by combining the (adaptive) soundness of
(PV!, V') with the fact that 7; is unlikely to be a commitment to any string. Specif-
ically, using the additional property by which C(GS"(1")) covers a negligible portion
of {0, 1}, it follows that for a uniformly selected r; € {0, 1}, there exist no v such
that r; is in the support of C(v). Thus, except with negligible probability (over the
random choice of r1), if (x, r;, v) € L’ holds for some v, then x € L. On the other
hand, using the (adaptive) soundness of (PWV!, V'), except with negligible probabil-
ity (over the random choice of r;), the existence of a valid proof (v, p, o) for some
x € {0, 1}P°Y™) implies that (x, 7, v) € L'. Thus, for a uniformly distributed refer-
ence string 7 = (r1, r2) € {0, 1}"1", except with negligible probability, there exists no
x € {0, 1P\ [and 7 such that ¥ (x, 7,) = 1. The claim follows. [

Claim 5.4.30.2 (adaptive zero-knowledge): For every efficient way of selecting in-
puts E, the output produced by the two-stage simulator (S|, S;) is indistinguish-

able from the one produced by P. That is, the ensembles {SE(1"*")} and RE" &f
{(Unans EUnan), P(E(Upsn), W(Usn), Upnin))} are computationally indistinguish-
able, where SZ is defined as in Definition 5.4.22.

Proof: Consider a hybrid distribution HZ(1”*"), in which everything except the pre-
proof is produced as by S%(1”*"), and the pre-proof is computed as by the real prover.
That is, (7, 5) < S;(1"*") (where ¥ = (r1, 1) and 5 = (v, s, 51, r2)) is produced as by
SE, but then for (x, w) = (E(F), W(7)), the pre-proof is computed using the witness
w;thatis, p < PV!((x, 71, v), w, r2), rather than p < P™((x, 71, v), s1, 72). The final
proof 7 = (v, p, o) is obtained (as in both cases) by letting o < S°T(x, p). We now
relate the hybrid ensemble to each of the two ensembles referred to in the claim.

467

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

1. By the (adaptive) witness-indistinguishability of P!, the ensembles HZ and S are
computationally indistinguishable. (Recall that these ensembles differ only in the
way the pre-proof is produced; specifically, they differ only in the NP-witness used
by P"! to prove the very same claim.)

2. By the pseudorandomness of the commitments produced for any fixed value, H &
and R are computationally indistinguishable. (Recall that these ensembles differ
only in the way the first part of the reference string (i.e., 1) is produced.)

The claim follows. [

Claim 5.4.30.3 (1-proof simulation-soundness): For every triplet of polynomial-size
circuit families (E!, 82, I1?), consider the following process: First (7, 5) < S;(1”*"),
thenx! < E'(7), nextw! < S$:(5, x'), and finally (x?, n2) < (E*(, '), I%(F, n1)).
Then, the probability that the following three conditions hold simultaneously is negli-
gible: (1) x> ¢ L, (2) (x2, 7%) # (x!, #"), and 3) V(x2, 7, n?) = 1.

Proof: Recall that 7 = (r1,72) and 5 = (v, s, 51, 72), where (s, v) < G°T(1")andr| =
C(v, s1) for a uniformly chosen s; € {0, 1}(*D (and r; is selected uniformly in {0, 1}").
Also recall that 7! = (v', p!, '), where v' = v, p! < PVI((x, C(v, 51), V), 51, 72)
and 0! < S9T(x!, p!). Let us denote (v?, p?, %) &f 72, We need to upper-bound the

following:
Pric® ¢ L) A (% n?) # (') A (V2 7, %) = 1)]

(2 EL) A (%72 # (x!,)
=Pr| A (VUCZ)T(()CZ, pz), 0'2) =1) (5.17)
A (PV((x2, 71, 0%), 12, p?) = 1)

where the equality is due to the definition of V. We consider two cases (in which the
event in Eq. (5.17) may hold):

v? = v': In this case, either (x2, p?) # (x!, p') or 0> # ¢! must hold (because other-

wise (x2, m%) = (x2, (v2, p?, 02)) = (x', (@', p', o)) = (x', ') follows). But this
means that (2, 1), given a single valid signature o'! (to the document (x!, p')) with
respect to a randomly generated verification-key v = v! = v?, is able to produce a
valid document-signature pair ((x?, p?), o) (with respect to the same verification-
key) such that ((x?, p?), 02) # ((x', p'), o!), in contradiction to the super-security
of the one-time signature scheme.

Details: It suffices to upper-bound

Pr[(vz =) A (G2 n%#(xl,nl»]

AV pY, 0H) = 1) (5.18)

As explained in the previous paragraph, the first two conditions in Eq. (5.18)
imply that ((x2, p?), 02) # ((x!, p!), o!). Using (S}, S,) and (E!, B2, 1), we
derive an attacker, A4, that violates the super-security of the (one-time) signa-
ture scheme. The attacker just emulates the process described in the claim’s
hypothesis, except that it obtains v as input (rather than generating the pair (s, v)

468

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

by invoking G°T) and uses oracle access to SOT (rather than s itself) in order
to produce the signature o'!. Specifically, on input v, the attacker A first se-
lects s; € {0, 1}* and r, € {0, 1}* uniformly, sets r; = C(v, s1) and 7 = (r1, r2),
and obtains x' < E'(¥). Next, 4 computes p' < PWI((x!, r, v), s1,72) and
queries SSOT on (x!, p!), obtaining the answer o! < SSOT(xl, p') and setting
7! = (v, p', o). (Indeed, 7! so produced is distributed exactly as S,(s, x'),
where 5 = (v, s, 51, #2), although 4 does not know s; the argument relies on
the fact that S,(s, x') can be implemented without knowledge of s and while
making a single query to the signing oracle SOT.) Finally, 4 sets (x2, 72) <
(8%, 1), I?(r, m")), and outputs ((x2, p?), o2), where 72 = (v?, p?, o?).
Note that 4 queries its signing oracle only once. (Recall that 4 queries SOT
on (x', p'), obtains the answer o', and produces the output pair ((x2, p?), 02).)
On the other hand, the probability that 4 produces a valid document-signature
pair (with respect to the verification-key v) that is different from the (single)
query-answer pair it makes equals Eq. (5.18). Thus, the super-security of the
one-time signature scheme implies that Eq. (5.18) is negligible.

v2 # v': Sincer; = C(v', 1), it follows (by the perfect binding property of C) that
isnot in the support of C(v?) (i.e., forevery w’,r; # C(v?, w')). Thus,ifx?> & L, then
(x2, 71, v*) € L'. Now, by the adaptive soundness of (P!, ™) and the fact that r,
was selected uniformly in {0, 1}", it follows that, except with negligible probability,
p? is not a valid proof (with respect to the reference string ;) of the false statement
“x2,r,v?) el

Details: It suffices to upper-bound

Pr[(v2 £y A (2 ¢ L) } (5.19)

A (VWI((-xZa 1, vZ)’ ra, pz) = 1)

As explained in the previous paragraph, the first two conditions in Eq. (5.19)
imply (x2, 71, v?) & L’. The key observation is that », (generated by S)) is uni-
formly distributed in {0, 1}”, and thus the adaptive soundness of the NIWI system
applies. We conclude that Eq. (5.19) is upper-bounded by the (negligible) sound-
ness error of the NIWI system, and the claim follows also in this case.

Combining both cases, the claim follows. [

Combining Claims 5.4.30.1-5.4.30.3, the current theorem follows. W

Conclusion. Combining Theorems 5.4.6, 5.4.30 and 5.4.29, we get:

Theorem 5.4.31: [fthere exist collections of (non-uniformly hard) enhanced trapdoor
permutations, then there exist public-key encryption schemes that are secure under a
posteriori chosen ciphertext attacks.

(See Section C.1 in Appendix C for a discussion of the notion of enhanced trapdoor
permutations.)

469

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

5.4.5. Non-Malleable Encryption Schemes

So far, our treatment has referred to an adversary that, when given a ciphertext, tries to
gain explicit information about the plaintext. A less explicit gain, captured by the so-
called notion of malleability, is the ability to generate an encryption of a related plaintext
(possibly without learning anything about the original plaintext). Loosely speaking, an
encryption scheme is called non-malleable if, given a ciphertext, it is infeasible (for an
adversary) to produce a (different) valid ciphertext for a related plaintext. For example,
given a ciphertext of a plaintext of the form 1x, for an unknown x, it should be infeasible
to produce a ciphertext to the plaintext Ox.

Non-malleability may relate to any of the types of attacks considered earlier (e.g.,
passive attacks, chosen ciphertext attacks, etc). Thus, we have a “matrix” of adversaries,
with one dimension (parameter) being the fype of attack and the second being its
purpose. So far, we have discussed the first dimension (i.e., the type of the attack) when
focusing on a particular purpose (i.e., of violating the secrecy of the plaintext). We
now turn to the second dimension (i.e., the purpose of the attack) and consider also
the purpose of malleability. That is, we make a distinction between the following two
notions (or purposes of attack):

1. Standard security: the infeasibility of obtaining information regarding the plaintext.
As defined in Section 5.2, such information is captured by a function of the bare
plaintext,*® and it may not depend on the encryption-key (or decryption-key).

2. In contrast, the notion of non-malleability refers to the generating of a string depend-
ing on both the plaintext and the current encryption-key. Specifically, one requires
that it be infeasible for an adversary, given a ciphertext, to produce a valid ciphertext
(under the same encryption-key) for a related plaintext.

We shall show that with the exception of passive attacks on private-key schemes,
non-malleability always implies security against attempts to obtain information on the
plaintext. We shall also show that security and non-malleability are equivalent under
a posteriori chosen ciphertext attack. Thus, the results of the previous sections imply
that non-malleable (under a posteriori chosen ciphertext attack) encryption schemes
can be constructed based on the same assumptions used to construct passively secure
encryption schemes.

5.4.5.1. Definitions

For the sake of brevity, we present only a couple of definitions. Specifically, focusing
on the public-key model, we consider only the simplest and strongest types of attacks;
that is, we first consider (key-oblivious) passive attacks, and then we turn to chosen
ciphertext attacks. The definitions refer to an adversary that is given a ciphertext and
tries to generate a (different) ciphertext to a plaintext related to the original one. That
is, given E,(x), the adversary tries to output £.(y) such that (x, y) € R with respect to

46 Note that considering a randomized process applied to the plaintext does not make the definition stronger.

470

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY
some (efficiently recognizable)*’ relation R. Loosely speaking, the adversary’s success
probability in such an attempt is compared to the success probability of generating
such E,(y) when given e but not £,(x). In fact, we prefer an equivalent formulation in
which the latter algorithm is required to output the plaintext y itself.*® As in the case
of semantic security, we strengthen the definition by considering all possible partial
information functions 4.

Definition 5.4.32 (passive non-malleability): A4 public-key encryption scheme
(G, E, D)is said to be non-malleable under passive attacks if for every probabilistic
polynomial-time algorithm A there exists a probabilistic polynomial-time algorithm A’
such that for every ensemble { X, },en, with | X,,| = poly(n), every polynomially bounded
h:{0, 1}*— {0, 1} every polynomially bounded relation R that is recognizable by a
(non-uniform) family of polynomial-size circuits, every positive polynomial p, and all
sufficiently large n, it holds that

(x,y) € R where
(e,d) < G(1")and x < X,

Pr ¢ < E, (x)and ¢’ < A(e, c, 1V, h(x))
y < Dy(c')if ¢’ # c and y < 0"l otherwise
(x,y) € R where 1
< Pr x < X, + —

y < A Ry | PO

We stress that the definition effectively prevents the adversary 4 from just outputting
the ciphertext given to it (because in this case, its output is treated as if it were £,(0*)).
This provision is important because otherwise no encryption scheme could have satis-
fied the definition (see Exercise 42). A more subtle issue, which was hand-waved in the
definition, is how to handle the case in which A4 produces an illegal ciphertext (i.e., is
y defined in such a case to be a standard string [e.g., 1!?!] or a special error symbol).*’
The rest of our text holds under both conventions. Note that 4" can certainly produce
plaintexts, but its information regarding X, is restricted to 4(X,) (and 1'%"1). Thus, if
when given A(.X,) and 1% it is infeasible to generate y such that (X, y) € R, then 4’
as in Definition 5.4.32 may produce such a y only with negligible probability. Conse-
quently, Definition 5.4.32 implies that in this case, given E.(X,,) (and e, 1(X,,), 11*1),
it is infeasible to produce E.(y) such that (X,, y) € R.

47 The computational restriction on R is essential here; see Exercise 16, which refers to a related definition of
semantic security.

48 potentially, this can only make the definition stronger, because the ability to produce plaintexts implies the
ability to produce corresponding ciphertexts (with respect to a given or a randomly chosen encryption-key).
491t is interesting to note that in the case of passive attacks, the two possible conventions seem to yield non-
equivalent definitions. The issue is whether the adversary can correlate the generation of an illegal ciphertext
to the encrypted plaintext handed to it. The question of whether this issue is important or not seems to depend
on the type of application. (In contrust, in the case of a posteriori CCA, the two conventions yield equivalent
definitions, because without loss of generality, the attacker may check whether the ciphertext produced by it is

legal.)

471

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Definition 5.4.32 cannot be satisfied by encryption schemes in which one can modify
bits in the ciphertext without changing the corresponding plaintext (i.e., consider the
identity relation). We stress that such encryption schemes may be semantically secure
under passive attacks (e.g., given a semantically secure encryption scheme (G, E, D),
consider £(x) = E.(x)o, for randomly chosen o € {0, 1}). However, such encryption
schemes may not be (semantically) secure under a posteriori CCA.

Turning to the definition of non-malleability under chosen ciphertext attacks, we
adopt the definitional framework of Section 5.4.4.1. Specifically, analogous to Defini-
tion 5.4.13, the challenge template produced by 4, (and A4)) is a triplet of circuits rep-
resenting a distribution S (represented by a sampling circuit), a function 4 (represented
by an evaluation circuit), and a relation R (represented by a membership recognition
circuit). The goal of 4, (and A4)) will be to produce a ciphertext of a plaintext that is
R-related to the challenge plaintext S(Upoly(n))-

Definition 5.4.33 (non-malleability under chosen ciphertext attacks): A public-key en-
cryption scheme is said to be non-malleable under a priori chosen ciphertext attacks
if for every pair of probabilistic polynomial-time oracle machines, A, and A,, there
exists a pair of probabilistic polynomial-time algorithms, A and A’, such that the
Jfollowing two conditions hold:

1. For every positive polynomial p and all sufficiently large n and z € {0, 1}PoY;

[(x, y) € R where
(e,d) < G(1")
(S, h, R), 0) < AT (e, 2)

Pr (c, v) <= (Ee(x), h(x)), where x < S(Upoly(n))
¢ <« AzE"(a, c,v)
i y < Dy(c')if ¢’ # cand y < 0®l otherwise. _
(x, ¥) € R where
b (S.h, R)0) < 4i(1",2) |,]

x < S(Upoly(n)) p(n)
y < Ay(o, 171, h(x))

2. For every n and z, the first element (i.c., the (S, h, R) part) in the random variables
Eg,qn

A\(1", z) and A, (G1(1™), z) are identically distributed.
Non-malleability under a posteriori chosen ciphertext attacks is defined analogously,
except that A, is given oracle access to both E, and D, with the restriction that when
given the challenge (c, v), machine A, is not allowed to make the query c to the
oracle Dy.

We comment that the definitional treatment can be extended to multiple-message non-
malleability, but we refrain from doing so here.>

30 We warn that even in the case of public-key schemes, (single-message) non-malleability (under some type of
attacks) does not necessarily imply the corresponding notion of multiple-message non-malleability.

472

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.4* BEYOND EAVESDROPPING SECURITY

5.4.5.2. Relation to Semantic Security

With the exception of passive attacks on private-key schemes, for each type of attack
considered in this chapter (and for both private-key and public-key schemes), non-
malleability under this type of attack implies semantic security under the same type.
For example, we show the following:

Proposition 5.4.34: Let (G, E, D) be a public-key encryption scheme that is non-
malleable under passive attacks (resp., under a posteriori chosen ciphertext attacks).
Then, (G, E, D) is semantically secure under passive attacks (resp., under a posteriori
chosen ciphertext attacks).

Proof Sketch: For clarity, the reader may consider the case of passive attacks, but the
same argument holds also for a posteriori chosen ciphertext attacks. Furthermore, the
argument only relies on the hypothesis that (G, £, D) is “non-malleable with respect
to a single (simple) relation.”!

Suppose (toward the contradiction) that (G, E, D) is not semantically secure (under
the relevant type of attack). Using the equivalence to indistinguishability of encryptions,
it follows that under such attacks, one can distinguish encryption to x,, from encryption
to y,. Consider the relation R = {(x, ¥) : x € {0, 1}*}, where & is the complement of
x, and the uniform distribution Z, on {x,, y,}. We construct an algorithm that, given
a ciphertext (as well as an encryption-key e), runs the said distinguisher and produces
E.(x,) in case the distinguisher “votes” for x,, (and produces E.(7,) otherwise). Indeed,
given E(Z,), our algorithm outputs E.(Z,) (and thus “hits” R) with probability that is
non-negligibly higher than 1/2. This performance cannot be met by any algorithm that
is not given E.(Z,). Thus, we derive a contradiction to the hypothesis that (G, E, D)
is non-malleable. W

We stress that this argument relies only on the fact that in the public-key model, we
can produce the encryption of any string, since we are explicitly given the encryption-
key. In fact, it suffices to have access to an encryption oracle, and thus the argument
extends also to active attacks in the private-key model (in which the attacker is allowed
encryption queries). On the other hand, under most types of attacks considered here,
non-malleability is strictly stronger than semantic security. Still, in the special case of
a posteriori chosen ciphertext attacks, the two notions are equivalent. Specifically, we
prove that in the case of a posteriori CCA, semantic security implies non-malleability.

Proposition 5.4.35: Let (G, E, D) be a public-key encryption scheme that is seman-
tically secure under a posteriori chosen ciphertext attacks. Then, (G, E, D) is non-
malleable under a posteriori chosen ciphertext attacks. The same holds for private-key
encryption schemes.

Proof Sketch: Suppose toward the contradiction that (G, E, D) is not non-malleable
under a posteriori chosen ciphertext attacks, and let 4 = (A4, A2) be an adversary
demonstrating this. We construct a semantic-security (a posteriori CCA) adversary

51 In order to avoid certain objections, we refrain from using the simpler relation R = {(x, x) : x € {0, 1}*}.

473

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

B = (B, By) that emulates 4 (while using its own oracles) and produces its own
output by querying its own decryption oracle on the ciphertext output by A, which is
assumed (without loss of generality) to be different from the challenge ciphertext given
to 4. The key point is that B can make this extra query because it is an a posteriori
CCA adversary, and thus the difference between outputting a ciphertext and outputting
the corresponding plaintext disappears. Intuitively, B violates semantic security (with
respect to relations and a posteriori CCA, as can be defined analogously to Exercise 16).
Details follow.

Given an encryption-key e, algorithm B) invokes 4 (e), while answering A ’s queries
by querying its own oracles, and obtains the challenge template (S, 4, R) (and state o),
which it outputs as its own challenge template. Algorithm B, is given a ciphertext
¢ (along with the adequate auxiliary information) and invokes A, on the very same
input, while answering A,’s queries by querying its own oracles. When A4, halts with
output ¢’ # ¢, algorithm B, forwards ¢’ to its decryption oracle and outputs the answer.
Thus, for every relation R, the plaintext output by B “hits” the relation R with the
same probability that the decryption of A’s output “hits” R. We have to show that this
hitting probability cannot be met by a corresponding benign algorithm that does not
get the ciphertext; but this follows from the hypothesis regarding 4 (and the fact that
in both cases, the corresponding benign algorithm [i.e., A’ or B’] outputs a plaintext
[rather than a ciphertext]). Finally, we have to establish, analogously to Exercise 16,
that semantic security with respect to relations holds (in our current context of chosen
ciphertext attacks) if and only if semantic security (with respect to functions) holds.
The latter claim follows as in Exercise 16 by relying on the fact that in the current
context, the relevant relations have polynomial-size circuits. (A similar argument holds
for private-key schemes.) H

Conclusion. Combining Theorem 5.4.31 and Proposition 5.4.35 we get:

Theorem 5.4.36: [fthere exist collections of (non-uniformly hard) enhanced trapdoor
permutations, then there exist public-key encryption schemes that are non-malleable
under a posteriori chosen ciphertext attacks.

Analogously, using Theorem 5.4.21, we get:

Theorem 5.4.37: If there exist (non-uniformly hard) one-way functions, then there
exist private-key encryption schemes that are non-malleable under a posteriori chosen
ciphertext attacks.

5.5. Miscellaneous

5.5.1. On Using Encryption Schemes

Once defined and constructed, encryption schemes may be (and actually are) used as
building blocks toward various goals that are different from the original motivation.

474

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.5 MISCELLANEOUS

Still, the original motivation (i.e., secret communication of information) is of great
importance, and in this section we discuss several issues regarding the use of encryption
schemes toward achieving this goal.

Using Private-Key Schemes: The Key-Exchange Problem. As discussed in Sec-
tion 5.1.1, using a private-key encryption scheme requires the communicating parties
to share a secret key. This key can be generated by one party and secretly communicated
to the other party by an alternative (expensive) secure channel. Often, a preferable solu-
tion consists of employing a key-exchange (or rather key-generation) protocol, which
is executed over the standard (insecure) communication channel. An important distinc-
tion refers to the question of whether the insecure communication channel, connecting
the legitimate parties, is tapped by a passive adversary or may even be subject to active
attacks in which an adversary may modify the messages sent over the channel (and even
delete and insert such messages). Protocols that are secure against passive (resp., ac-
tive) adversaries are often referred to by the term authenticated key-exchange (resp.,
unauthenticated key-exchange), because in the passive case, one refers to the mes-
sages received over the channel as being authentic (rather than possibly modified by
the adversary).

A simple (generic) authenticated key-exchange protocol consists of using a public-
key encryption scheme in order to secretly communicate a key (for the private-key en-
cryption scheme, which is used in the actual communication).>? Specifically, one party
generates a random instance of a public-key encryption scheme, sends the encryption-
key to the other party, which generates a random key (for the private-key encryption
scheme), and sends an encryption (using the received encryption-key) of the newly
generated key to the first party. A famous alternative is the so-called Diffie-Hellman
Key-Exchange [75]: For a (large) prime P and primitive element g, which are universal
or generated on the fly (by one party that openly communicates them to the other), the
first (resp., second) party uniformly selects x € Zp (resp., y € Zp) and sends g* mod P
(resp., g¥ mod P) to the other party, and both parties use g*¥ mod P as their common
key, relying on the fact that g = (g* mod P)” = (g” mod P)* (mod P). (The secu-
rity of this protocol relies on the assumption that given a prime P, a primitive element g,
and the triplet (P, g, (g* mod P), (g mod P), (g mod P)), it is infeasible to decide
whether or not z =xy (mod P — 1), for x, y, z € Zp.) The construction of unau-
thenticated key-exchange protocols is far more complex, and the interested reader is
referred to [29, 30, 15].

Using State-Dependent Private-Key Schemes. In many communication settings, it
is reasonable to assume that the encryption device may maintain (and modify) a state
(e.g., a counter). In such a case, the stream-ciphers discussed in Section 5.3.1 become
relevant. Furthermore, using a stream-cipher is particularly appealing in applications
where decryption is performed in the same order as encryption (e.g., in FIFO commu-
nication). In such applications, the stream-cipher of Construction 5.3.3 is preferable to

32 One reason not to use the public-key encryption scheme itself for the actual (encrypted) communication is that
private-key encryption schemes tend to be much faster.

475

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

the (pseudorandom function-based) encryption scheme of Construction 5.3.9 for a cou-
ple of reasons. First, applying an on-line pseudorandom generator is likely to be more
efficient than applying a pseudorandom function. Second, for an £-bit long counter (or
random value), Construction 5.3.3 allows for securely encrypting 2¢ messages (or bits),
whereas Construction 5.3.9 definitely becomes insecure when V2t messages (or bits)
are encrypted. For small values of £ (e.g., £ = 64), this difference is crucial.

Using Public-Key Schemes: Public-Key Infrastructure. As in the case of private-
key schemes, an important distinction refers to the question of whether the insecure
communication channel between the legitimate parties is tapped by a passive adversary
or may even be subject to active attacks. In typical applications of public-key encryption
schemes, the parties communicate through a communication network (and not via a
point-to-point channel), in which case active attacks are very realistic (e.g., it is easy to
send mail over the Internet pretending to be somebody else). Thus, the standard use of
public-key encryption schemes in real-life communication requires a mechanism for
providing the sender with the receiver s authentic encryption-key (rather than trusting an
“unauthenticated” incoming message to specify an encryption-key). In small systems,
one may assume that each user holds a local record of the encryption-keys of all
other users. However, this is not realistic in large-scale systems, and so the sender
must obtain the relevant encryption-key on the fly in a “reliable” way (i.e., typically,
certified by some trusted authority). In most theoretical work, one assumes that the
encryption-keys are posted and can be retrieved from a public-file that is maintained
by a trusted party (which makes sure that each user can post only encryption-keys
bearing its own identity). Alternatively, such a trusted party may provide each user with
a (signed) certificate stating the authenticity of the user’s encryption-key. In practice,
maintaining such a public-file (and/or handling such certificates) is a major problem, and
mechanisms that implement this abstraction are typically referred to by the generic term
“public-key infrastructure” (PKI). For a discussion of the practical problems regarding
PKI deployment see, e.g., [149, Chap. 13].

5.5.2. On Information-Theoretic Security

In contrast to the bulk of our treatment, which focuses on computationally bounded ad-
versaries, in this section we consider computationally unbounded adversaries. We stress
that also in this case, the length (and number) of the plaintexts is bounded. The result-
ing notion of security is the one suggested by Shannon: A (private-key or public-key)
encryption scheme is called perfectly secure (or information-theoretically secure) if
the ciphertext yields no information regarding the plaintext. That is, perfect-security
is derived from Definitions 5.2.1 and 5.2.2 by allowing computationally unbounded
algorithms (in the roles of 4 and 4’).

It is easy to see that no public-key encryption scheme may be perfectly secure:
A computationally unbounded adversary that is given a encryption-key can find a
corresponding decryption-key, which allows it to decrypt any ciphertext.

In contrast, restricted types of private-key encryption schemes may be perfectly se-
cure. Specifically, the traditional “one-time pad” yields such a (private-key) scheme,

476

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.5 MISCELLANEOUS

which can be used to securely communicate an a priori bounded number of bits. Fur-
thermore, multiple messages may be handled provided that their total length is a priori
bounded and that we use a state (as in Construction 5.3.3). We stress that this state-based
private-key perfectly secure encryption scheme uses a key of length equal to the total
length of plaintexts to be encrypted. Indeed, the key must be at least that long (to allow
perfect-security), and a state is essential for allowing several plaintexts to be securely
encrypted.

Partial Information Models. Note that in the case of private-key encryption schemes,
the limitations of perfect-security hold only if the adversary has full information of the
communication over the channel. On the other hand, perfectly secure private channels
can be implemented on top of channels to which the adversary has limited access.
We mention three types of channels of the latter type, which have received a lot of
attention.

e The bounded-storage model, where the adversary can freely tap the communication
channel(s) but is restricted in the amount of data it can store (cf., [148, 48, 187]).%3

e The noisy channel model (which generalizes the wiretap channel of [189]), where
both the communication between the legitimate parties and the tapping channel of
the adversary are subjected to noise (cf., [148, 69] and the references therein).

® Quantum channels, where an adversary is (supposedly) prevented from obtaining
full information by the (currently believed) laws of quantum mechanics (cf., [45]
and the references therein).

Following are the author’s subjective opinions regarding these models (as a possible
basis for actual secure communication). The bounded-storage model is very appealing,
because it clearly states its reasonable assumptions regarding the abilities of the ad-
versary. In contrast, making absolute assumptions about the noise level at any point in
time seems (overly) optimistic, and thus not adequate in the context of cryptography.
Basing cryptography on quantum mechanics sounds like a very appealing idea, but at-
tempts to implement this idea have often stumbled over unjustified hidden assumptions
(which are to be expected, given the confusing nature of quantum mechanics and the
discrepancy between its scientific culture and cryptography).

5.5.3. On Some Popular Schemes

The reader may note that we have avoided the presentation of several popular encryption
schemes. We regret to say that most of these schemes are proposed without any reference
to a satisfactory notion of security.>* Thus, it is not surprising that we have nothing to
say about the contents of such proposals. In contrast, we highlight a few things that we

53 Typically, this model postulates the existence of an auxiliary (uni-directional) public channel on which a trusted
party (called a beacon) transmits a huge amount of random bits.

4 Typically, these schemes are not (semantically) secure. Furthermore, these proposals fail to suggest a weaker
definition of security that is supposedly satisfied by the proposed schemes.

477

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

have said about other popular schemes and common practices:

e The common practice of using “pseudorandom generators” as a basis for private-
key stream-ciphers (i.e., Construction 5.3.3) is sound, provided that one actually
uses pseudorandom generators (rather than programs that are called “pseudorandom
generators” but actually produce sequences that are easy to predict).>

® Whereas the plain RSA public-key encryption scheme (which employs a determin-
istic encryption algorithm) is not secure, the randomized RSA encryption scheme
(i.e., Construction 5.3.16) is secure, provided that the large hard-core conjecture
holds (see Section 5.3.4.1). Some support for the latter (clearly stated) conjecture
may be derived from the fact that a related function (i.e., much fewer least-significant
bits) constitutes a hard-core of the RSA.

We comment that the common practice of randomly padding messages before en-
crypting them (by applying the RSA function) is secure under a seemingly stronger
conjecture; see footnote 19 (in Section 5.3.4.1).

e Assuming the intractability of factoring, there exists a secure public-key encryption
scheme with efficiency comparable to that of plain RSA: We refer to the Blum-
Goldwasser public-key encryption scheme (i.e., Construction 5.3.20).

Finally, we warn that encryption schemes proved to be secure in the random oracle
model are not necessarily secure (in the standard sense). For further discussion of the
Random Oracle Methodology, we refer the reader to Section 6.6.3.

5.5.4. Historical Notes

The notion of private-key encryption scheme seems almost as ancient as the alphabet it-
self. Furthermore, it seems that the development of encryption methods went along with
the development of communication media. As the amounts of communication grew,
more efficient and sophisticated encryption methods were required. Computational
complexity considerations were explicitly introduced into the arena by Shannon [185]:
In his seminal work, Shannon considered the classical setting where no computational
considerations are present. He showed that in this information-theoretic setting, secure
communication of information is possible only so long as its entropy is lower than the
entropy of the key. He thus concluded that if one wishes to have an encryption scheme
that is capable of handling messages with total entropy exceeding the length of the key,
then one must settle for a computational relaxation of the secrecy condition. That is,
rather than requiring that the ciphertext yield no information on the plaintext, one has
to settle for the requirement that such information cannot be efficiently computed from
the ciphertext. The latter requirement indeed coincides with the definition of semantic
security.

The notion of a public-key encryption scheme was introduced by Diffie and
Hellman [75]. The first concrete candidates were suggested by Rivest, Shamir, and

35 The linear congruential generator is easy to predict [43]. The same holds for some modifications of it that
output a constant fraction of the bits of each resulting number [94]. We warn that sequences having large
linear-complexity (LFSR-complexity) are not necessarily hard to predict.

478

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.5 MISCELLANEOUS

Adleman [176] and by Merkle and Hellman [154]. The abstract notion, as well as
the concrete candidate implementations (especially the RSA scheme of [176]), have
been the driving force behind the theoretical study of encryption schemes. However, the
aforementioned pioneering works did not provide a definition of security. Such satisfac-
tory definitions were provided (only a few years later) by Goldwasser and Micali [123].
The two definitions presented in Section 5.2 originate in [123], where it was shown that
ciphertext-indistinguishability implies semantic security. The converse direction is due
to [156].

Regarding the seminal paper of Goldwasser and Micali [123], a few additional com-
ments are in place. Arguably, this paper is the basis of the entire rigorous approach
to cryptography (presented in the current work): It introduced general notions such
as computational indistinguishability, definitional approaches such as the simulation
paradigm, and techniques such as the hybrid argument. Its title (“Probabilistic Encryp-
tion”) is due to the authors’ realization that public-key encryption schemes in which
the encryption algorithm is deterministic cannot be secure in the sense defined in their
paper. Indeed, this led the authors to (explicitly) introduce and justify the paradigm
of “randomizing the plaintext” as part of the encryption process. Technically speak-
ing, the paper only presents security definitions for public-key encryption schemes,
and furthermore, some of these definitions are syntactically different from the ones
we have presented here (yet all these definitions are equivalent). Finally, the term
“ciphertext-indistinguishability” used here replaces the (generic) term “polynomial-
security” used in [123]. Many of our modifications (to the definitions in [123]) are
due to Goldreich [104], which is also the main source of our uniform-complexity
treatment.>

The first construction of a secure public-key encryption scheme based on a sim-
ple complexity assumption was given by Goldwasser and Micali [123].%7 Specifically,
they constructed a public-key encryption scheme assuming that deciding Quadratic
Residiousity modulo composite numbers is intractable. The condition was weakened
by Yao [190], who showed that any trapdoor permutation will do. The efficient public-
key encryption scheme of Construction 5.3.20 is due to Blum and Goldwasser [41].
The security is based on the fact that the least-significant bit of the modular squaring
function is a hard-core predicate, provided that factoring is intractable, a result mostly
due to [1].

For decades, it has been common practice to use “pseudorandom generators” in the
design of stream-ciphers. As pointed out by Blum and Micali [42], this practice is sound
provided that one uses pseudorandom generators (as defined in Chapter 3 of this work).
The construction of private-key encryption schemes based on pseudorandom functions
is due to [111].

We comment that it is indeed peculiar that the rigorous study of (the security of)
private-key encryption schemes has lagged behind the corresponding study of public-
key encryption schemes. This historical fact may be explained by the very thing that

36 Section 5.2.5.5 was added during the copyediting stage, following discussions with Johan Hastad.
37 Recall that plain RSA is not secure, whereas Randomized RSA is based on the Large Hard-Core Conjecture for
RSA (which is less appealing that the standard conjecture referring to the intractability of inverting RSA).

479

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

makes it peculiar; that is, private-key encryption schemes are less complex than public-
key ones, and hence, the problematics of their security (when applied to popular can-
didates) is less obvious. In particular, the need for a rigorous study of (the security of)
public-key encryption schemes arose from observations regarding some of their con-
crete applications (e.g., doubts raised by Lipton concerning the security of the “mental
poker” protocol of [184], which used “plain RSA” as an encryption scheme). In con-
trast, the need for a rigorous study of (the security of) private-key encryption schemes
arose later and by analogy to the public-key case.

Credits for the Advanced Section (i.e., Section 5.4)

Definitional Issues. The original definitional treatment of Goldwasser and Micali[123]
actually refers to key-dependent passive attacks (rather than to key-oblivious passive
attacks). Chosen ciphertext attacks (of the a priori and a posteriori type) were first
considered in [164] (and [174], respectively). However, these papers focused on the
formulation in terms of indistinguishability of encryptions, and formulations in terms
of semantic security have not appeared before. Section 5.4.4.2 is based on [116]. The
study of the non-malleability of the encryption schemes was initiated by Dolev, Dwork,
and Naor [77].

Constructions. The framework for constructing public-key encryption schemes that
withstand Chosen Ciphertext Attacks (i.e., Construction 5.4.23) is due to Naor and
Yung [164], who used it to construct public-key schemes that withstand a priori CCA
(under suitable assumptions). This framework was applied to the setting of a posteriori
CCA by Sahai [179, 180], who followed and improved the ideas of Dolev, Dwork, and
Noar [77] (which were the first to construct public-key schemes that withstand a poste-
riori CCA and prove Theorem 5.4.31). Our presentation of the proof of Theorem 5.4.31
follows subsequent simplification due to [142]. The key role of non-interactive zero-
knowledge proofs in this context was suggested by Blum, Feldman, and Micali [40].
The fact that security and non-malleability are equivalent under a posteriori chosen
ciphertext attack was proven in [77, 16].

5.5.5. Suggestions for Further Reading

For discussion of Non-Malleable Cryptography, which actually transcends the domain
of encryption, see [77]. Specifically, we wish to highlight the notion of non-malleable
commitment schemes, which is arguably the most appealing instantiation of the “non-
malleability paradigm”: It is infeasible for a party that is given a non-malleable commit-
ment to produce a commitment to a related string. Note that ability to produce related
commitments may endanger some applications (see, e.g., [115]), even if this ability is
not decoupled from the ability to properly decommit (to the produced commitment)
once a decommitment to the original commitment is obtained.

Recall that there is a gap between the assumptions currently required for the con-
struction of private-key and public-key encryption schemes: Whereas the former can
be constructed based on any one-way functions, the latter seem to require a trapdoor

480

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.5 MISCELLANEOUS

permutation (or, actually, a “trapdoor predicate” [123]). A partial explanation to this
gap was provided by Impagliazzo and Rudich, who showed that generic (black-box)
constructions of public-key encryption schemes cannot rely on one-way functions [133]
(or even on one-way permutations [135]). This may explain the gap in our current state
of knowledge, but it does not indicate that this gap is inherent; that is, it is possible that
non-black-box constructions of public-key encryption schemes based on one-way func-
tions do exist. Indeed, Barak’s recent demonstrations of the power of non-block-box
proofs of security [5, 6] are a good lesson.

For a detailed discussion of the relationship among the various notions of secure
private-key and public-key encryption schemes, the reader is referred to [136] and [16],
respectively.

5.5.6. Open Problems

Secure public-key encryption schemes exist if there exist collections of (non-uniformly
hard) trapdoor permutations (cf. Theorem 5.3.15). It is not known whether the converse
holds (although secure public-key encryption schemes easily imply one-way func-
tions). Note that trapdoor permutations differ from general one-way functions in both
the 1-to-1 and trapdoor properties, and the former property should not be discarded
(see [23)).

Randomized RSA (i.e., Construction 5.3.16) is commonly believed to be a secure
public-key encryption scheme. It would be of great practical importance to gain addi-
tional support for this belief. As shown in Proposition 5.3.17, the security of Random-
ized RSA follows from the Large Hard-Core Conjecture for RSA, but the latter is not
known to follow from a more standard assumption, such as that RSA is hard to invert.
This is indeed the third place in the current work where we suggest the establishment
of the latter implication as an important open problem.

The constructions of public-key encryption schemes (secure against chosen cipher-
text attacks) that are presented in Section 5.4 should be considered plausibility re-
sults (which also offer some useful construction paradigms). Presenting “reasonably-
efficient” public-key encryption schemes that are secure against (a posteriori) chosen
ciphertext attacks, under general widely believed assumptions, is an important open
problem.>8

5.5.7. Exercises

Exercise 1: Secure encryption schemes imply secure communication protocols: A
secure communication protocol is a two-party protocol that allows the parties
to communicate in secrecy (i.e., as in Definition 5.2.1). We stress that the sender

38 We comment that the “reasonably-efficient” scheme of [68] is based on a strong assumption regarding a specific
computational problem related to the Diffie-Hellman Key Exchange. Specifically, it is assumed that for a prime P
and primitive element g, given (P, g, (g* mod P), (g© mod P), (g mod P)), it is infeasible to decide whether
z=xy (mod P —1).

481

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

enters such a protocol with input that equals the message to be delivered, and the
receiver enters with no input (or with input that equals the security parameter).

1. Show that any secure public-key encryption scheme yields a (two-message) secure
communication protocol.

2. Define secure communication protocol with initial set-up, and show that any se-
cure private-key encryption scheme yields such a (one-message) protocol. (Here,
the communicating parties obtain an [equal] auxiliary input that is generated at
random according to some pre-determined process.)

Advanced: Show that a secure communication protocol (even with initial set-up but
with a priori unbounded messages) implies the existence of one-way functions.

Guideline (advanced part): See guideline for Exercise 2.

Exercise 2: Secure encryption schemes imply one-way function [132]: Show that the
existence of a secure private-key encryption scheme (i.e., as in Definition 5.2.1)
implies the existence of one-way functions.

Guideline: Recall that, by Exercise 11 of Chapter 3 in Volume 1, it suffices to prove
that the former implies the existence of a pair of polynomial-time constructible
probability ensembles that are statistically far apart and still are computationally in-
distinguishable. To prove the existence of such ensembles, consider the encryption
of (n + 1)-bit plaintexts relative to a random #n-bit long key, denoted K,,. Specif-
ically, let the first ensemble be {(U,+1, E(Uy+1))}nen, Where E(x) = Ek, (x), and
the second ensemble be {(U,(IQI, E(U(z)l)) }nen, Where U(l)] and U(z)1 are inde-
pendently distributed. It is easy to show that these ensembles are computationally
indistinguishable and are both polynomial-time constructible. The more interesting
part is to show that these ensembles are statistically far apart. Note that the cor-
rect decryption condition implies that (K,,, Ex,(U,+1)) contains n + 1 — o(1) bits
of information about U, ;. On the other hand, if these ensembles are statistically
close, then Eg, (U,41) contains o(1) bits of information about U, . Contradiction
follows, because K,, may contain at most # bits of information.

Exercise 3: Encryption schemes with unbounded-length plaintexts: Suppose that the
definition of semantic security is modified so that no bound is placed on the length
of plaintexts. Prove that in such a case there exists no semantically secure encryption
scheme.

Guideline: A plaintext of length exponential in the security parameter allows the
adversary, which runs in time polynomial in its input, to find the decryption-key
by exhaustive search. In the case of public-key schemes, we merely search for a
choice of coins that make the key-generator algorithm output a key-pair with an
encryption-key that fits the one given to us. In the case of private-key schemes,
we assume that we are given all but the first bit of the plaintext (i.e., we refer to
h(1", ox) = x where o € {0, 1}), and search for an adequate key as well as the
value of 0.

Exercise 4: Encryption schemes must leak information about the length of the plain-
text: Suppose that the definition of semantic security is modified so that the

482

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.5 MISCELLANEOUS

algorithms are not given the length of the plaintext. Prove that in such a case there
exists no semantically secure encryption scheme.

Guideline: First show that for some polynomial p, |E(1")| < p(n) (always holds),
whereas for some x € {0, 1}7™ it must hold that Pr[|E(x)| < p(n)] < 1/2.

Exercise 5: Hiding partial information about the length of the plaintext: Using an ar-
bitrary secure encryption scheme, construct a correspondingly secure encryption
scheme that hides the exact length of the plaintext. In particular, construct an en-
cryption scheme that reveals only the following function A’ of the length of the
plaintext:

1. A'(m) = [m/n] - n, where n is the security parameter.
2. h'(m) = 2Mo&aml,

(Hint: Just use an adequate padding convention, making sure that it always allows
correct decryption.)

Exercise 6: Length parameters: Assuming the existence of a secure public-key (resp.,
private-key) encryption scheme, prove the existence of such a scheme in which the
length of the keys equal the security parameter. Furthermore, show that (without
loss of generality) the length of ciphertexts may be a fixed polynomial in the length
of the plaintext and the security parameter.

Exercise 7: On the distribution of public-keys: Let (G, E, D) be a secure public-key
encryption scheme. Prove that for every positive polynomial p, and all sufficiently
large n, it holds that max {Pr[G(1")=e]} < 1/p(n).

Guideline: Show that for any encryption-key e in the range of G(1"), one can find
a corresponding decryption-key in expected time 1/Pr[G(1")=e].

Exercise 8: Deterministic encryption schemes: Prove that a semantically secure public-
key encryption scheme must employ a probabilistic encryption algorithm.

Guideline: For any public-key encryption scheme having a deterministic encryp-
tion algorithm, given the encryption-key, one can distinguish the encryptions of two
candidate plaintexts by computing the unique ciphertext corresponding to each of
them.

Exercise 9: An alternative formulation of Definition 5.2.1: Prove that the following
definition, in which we use non-uniform families of polynomial-size circuits (rather
than probabilistic polynomial-time algorithms) is equivalent to Definition 5.2.1.

There exists a probabilistic polynomial-time transformation 7' such that for
every polynomial-size circuit family {C,},en, and for every {X,}uen, f> 7 :
{0, 1}* — {0, 1}*, p and n as in Definition 5.2.1

Pr[Cu(Eg,am(X), 1M1, n(1", X)) = (1", X,,)]
< Pr[C, ("™, h(1", X,)= (1", X,)] + L
p(n)
483

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

where C,, < T'(C,) and the probability is also taken over the internal coin
tosses of T'.

Formulate and show an analogous result for public-key encryption.

Guideline: The alternative view of non-uniformity, discussed in Section 1.3 of
Volume 1, is useful here. That is, we can view a circuit family as a sequence
of advices given to a universal machine. Thus, the alternative formulation of the
definition states that advices for a machine that gets the ciphertext can be efficiently
transformed into advices for a machine that does not get the ciphertext. However, we
can incorporate the (probabilistic) transformation program into the second universal
algorithm (which then become probabilistic). Consequently, the advices are identical
for both machines (and can be incorporated in the auxiliary input 4(1”, X,,) used
in Definition 5.2.1). Viewed this way, the alternative formulation is equivalent to
asserting that for some (universal) deterministic polynomial-time algorithm U, there
exists a probabilistic polynomial-time algorithm U’ such that for every {X,},en,
£, h {0, 1}* — {0, 1}*, p, and n as in Definition 5.2.1

Pr{U", Eg,an(X,), 1%, h(1", X,))= (1", X,,)]
1

< Priua”, %0 an, x,)=£(1", X,)] + —
p(n)

Still, a gap remains between Definition 5.2.1 and this definition: The last refers
only to one possible deterministic algorithm U, whereas Definition 5.2.1 refers
to all probabilistic polynomial-time algorithms. To close the gap, we first observe
that (by Propositions 5.2.7 and 5.2.6), Definition 5.2.1 is equivalent to a form
in which one only quantifies over deterministic polynomial-time algorithms A.
We conclude by observing that one can code any algorithm A4 (and polynomial
time-bound) referred to by Definition 5.2.1 in the auxiliary input (i.e., #(1", X},))
given to U.

Exercise 10: In continuation of Exercise 9, consider a definition in which the transfor-
mation 7 (of the circuit family {C,},en to the circuit family {C) },cy) is not even
required to be computable.’® Clearly, the new definition is not stronger than the one
in Exercise 9. Show that the two definitions are in fact equivalent.

Guideline: Use the furthermore-clause of Proposition 5.2.7 to show that the new
definition implies indistinguishability of encryptions, and conclude by applying
Proposition 5.2.6 and invoking Exercise 9.

Exercise 11: An alternative formulation of Definition 5.2.3: Prove that Definition 5.2.3
remains unchanged when supplying the circuit with auxiliary input. That is, an
encryption scheme satisfies the modified Definition 5.2.3 if and only if

39 Equivalently, one may require that for any polynomial-size circuit family {C, },<n there exists a polynomial-size
circuit family {C}, },en satisfying the relevant inequality.

484

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.5 MISCELLANEOUS

for every polynomial-size circuit family {C,}, every positive polynomial p,
all sufficiently large n, and every x, y € {0, 1}P°¥® (ie. |x| = |y|]) and z €
{0, 1jpob),

IPr[Ca(z, Egyan()=1] = Pr[Cy(z. Egyan(r)=1] | < ﬁ

(Hint: Incorporate z in the circuit C,.)

Exercise 12: Equivalence of the security definitions in the public-key model: Prove
that a public-key encryption scheme is semantically secure if and only if it has
indistinguishable encryptions.

Exercise 13: The technical contents of semantic security: The following explains the
lack of computational requirements regarding the function f, in Definition 5.2.1.
Prove that an encryption scheme, (G, E, D), is (semantically) secure (in the private-
key model) if and only if the following holds:

There exists a probabilistic polynomial-time algorithm 4” such that for ev-
ery {X,},eny and £ as in Definition 5.2.1, the following two ensembles are
computationally indistinguishable:

1‘ {EGl(l")(XVl)a lanla h(lna Xi‘l)}nEN-
2‘ {A//(lna lanla h(lna Xn))}neN-

Formulate and prove an analogous claim for the public-key model.

Guideline: We care mainly about the fact that the latter formulation implies se-
mantic security. The other direction can be proven analogously to the proof of
Proposition 5.2.7.

Exercise 14: Equivalent formulations of semantic security:

1. Prove that Definition 5.2.1 remains unchanged if we restrict the function /4 to
depend only on the length of its input or, alternatively, 2(1”, x) = A’(n) for some
h N —{0,1}*.

2. Prove that Definition 5.2.1 remains unchanged if we may restrict the function
h and the probability ensemble {X},},cn such that they are computable (resp.,
sampleable) by polynomial-size circuits.

Guideline (Part 1): Prove that this special case (i.e., obtained by the restriction on
h) is equivalent to the general one. This follows by combining Propositions 5.2.7
and 5.2.6. Alternatively, this follows by considering all possible probability ensem-
bles { X, },en obtained from { X, },en by conditioning that #(1", X,,) = a, (for every
possible sequence of a,’s).

Guideline (Part 2): The claim regarding / follows from Part 1. To establish the
claim regarding X,,, observe that (by Propositions 5.2.7 and 5.2.6) we may consider
the case in which X, ranges over two strings.

485

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Exercise 15: A4 variant on Exercises 13 and 14.1: Prove that an encryption scheme,
(G, E, D), is (semantically) secure (in the private-key model) if and only if the
following holds:

For every probabilistic polynomial-time algorithm A there exists a probabilistic
polynomial-time algorithm A4’ such that for every ensemble {X,},cn, With
| X»| = poly(n), and polynomially-bounded 4’, the following two ensembles
are computationally indistinguishable.

L A{A41", Eg,an(X), 11 B'(1M)}pen.
2.{4'(, Tl B (1)

An equivalent form is obtained by replacing #’(1") with a poly(n)-bit long string v,.
Formulate and prove an analogous claim for the public-key model.

Guideline: Again, we care mainly about the fact that this variant implies seman-
tic security. The easiest proof of this direction is by applying Propositions 5.2.7
and 5.2.6. A more interesting proof is obtained by using Exercise 13: Indeed, the
current formulation is a special case of the formulation in Exercise 13, and so
we need to prove that it implies the general case. The latter is proven by observ-
ing that otherwise — using an averaging argument — we derive a contradiction in
one of the residual probability spaces defined by conditioning on 4(1”, X)) (i.e.,
(X,|h(1", X)) = v) for some v).

Exercise 16: Semantic security with respect to relations: The formulation of seman-
tic security in Definition 5.2.1 refers to computing a function (i.e., f) of the
plaintext. Here we present a (related) definition that refers to finding strings that
are in a certain relation to the plaintext. Note that, unlike in Definition 5.2.1,
here we consider only efficiently recognizable relations. Specifically, we require the
following:

For every probabilistic polynomial-time algorithm A there exists a proba-
bilistic polynomial-time algorithm A4’ such that for every ensemble {X},},cn,
with | X, | = poly(n), every polynomially bounded function 4, every polyno-
mially bounded relation R that is recognizable by a (non-uniform) family
of polynomial-size circuits, every positive polynomial p, and all sufficiently
large n

Pr [(X}’H A(lns EGl(l")(Xn)s I‘X”‘s h(lns Xn))) € R]

< Pr[(X,, 4'(1", 1" n(1", X,))) € R] + b
p(n)

1. Prove that this definition is in fact equivalent to the standard definition of semantic
security.

2. Show that if the computational restriction on the relation R is removed, then no
encryption scheme can satisfy the resulting definition.

486

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.5 MISCELLANEOUS

Formulate and prove analogous claims for the public-key model.

Guideline (for Part 1): Show that the new definition is equivalent to indistinguisha-
bility of encryptions. Specifically, follow the proofs of Propositions 5.2.6 and 5.2.7,
using the circuits guaranteed for R in the first proof, and noting that the second
proof holds intact.

Guideline (for Part 2): Consider the relation R = {(x, E.(x)) : |x| = 2|e|}, and the
distribution X,, = U,,. (Note that if the encryption scheme is semantically secure,
then this R is not recognizable by small circuits.)

Exercise 17: Semantic security with a randomized h: The following syntactic strength-
ening of semantic security is important in some applications. Its essence is in consid-
ering information related to the plaintext, in the form of a related random variable,
rather than partial information about the plaintext (in the form of a function of
it). Prove that an encryption scheme, (G, E, D), is (semantically) secure (in the
private-key model) if and only if the following holds:

For every probabilistic polynomial-time algorithm A there exists a proba-
bilistic polynomial-time algorithm A’ such that for every {(X,, Z,)},en, With
(X, Zy)| = poly(n), where Z, may depend arbitrarily on X, and f, p, and
n as in Definition 5.2.1

PrA(1", Eg,an(Xy), 1%, Z)= £(1", X,)]

re1n 11Xl n 1
<Pr[A(171 n’Zn):f(l :Xn)]+_
p(n)
That is, the auxiliary input £(1”, X,,) of Definition 5.2.1 is replaced by the random
variable Z,. Formulate and prove an analogous claim for the public-key model.

Guideline: Definition 5.2.1 is clearly a special case of the latter formulation. On
the other hand, the proof of Proposition 5.2.6 extends easily to this (seemingly
stronger) formulation of semantic security.

Exercise 18: Semantic Security with respect to Oracles (suggested by Boaz Barak):
Consider an extended definition of semantic security in which, in addition to the
regular inputs, the algorithms have oracle access to a function H», : {0, 1}* —
{0, 1}* (instead of being given the value (1", x)). The H;» ,’s have to be restricted to
have polynomial (in z + |x|) size circuits. That is, an encryption scheme, (G, E, D),
is extended-semantically secure (in the private-key model) if the following holds:

For every probabilistic polynomial-time algorithm A there exists a proba-
bilistic polynomial-time algorithm B such that for every ensemble { X, },cn,
with | X,,| = poly(n), every polynomially bounded function f, every family of
polynomial-sized circuits {H» y }nen xe(0, 1)+ €very positive polynomial p, and
all sufficiently large n

Pr{4™mo (1", Eg,an(X,), 1M = £(1", X,)]

1
Hin y, (11 11Xy — n
<Pr[B (1", 1%h=ra, x,)] + D)

487

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

The definition of public-key security is analogous.

1. Show that if (G, E, D) has indistinguishable encryptions, then it is extended-
semantically secure.

2. Show that if no restrictions are placed on the Hi.,’s, then no scheme can be
extended-semantically secure (in this unrestricted sense).

Guideline (for Part 1): The proof is almost identical to the proof of Proposi-
tion 5.2.6: The algorithm B forms an encryption of 1/*"!, and invokes 4 on it. In-
distinguishability of encryptions is used in order to establish that B (17, 11%:1)
performs essentially as well as 47".x (1", 141 E(X,)). Otherwise, we obtain a
distinguisher of E(x,) from E (1), for some infinite sequence of x,,’s. In particu-
lar, the oracle H;» ,, (being implementable by a small circuit) can be incorporated
into a distinguisher.

Guideline (for Part 2): In such a case, H}» , may be defined such that, when queried
about a ciphertext, it reveals the decryption-key in use.®® Such an oracle allows 4
(which is given a ciphertext) to recover the corresponding plaintext, but does not
help A4’ (which is only given 17, 1M41) to find any information about the value of
X,.

Exercise 19: Another equivalent definition of security: The following exercise is inter-
esting mainly for historical reasons. In the definition of semantic security appearing
in [123], the term max, ,{Pr[(1", X,,)=v|h(1", X,,)=u]} appears instead of the
term Pr[4’(17, 1% h(1", X)) = f(1", X,))]. That is, it is required that the follow-
ing holds:

For every probabilistic polynomial-time algorithm A4, every ensemble { X, },,cn,
with | X},| = poly(n), every pair of polynomially bounded functions f, /4 :
{0, 1}* — {0, 1}*, every positive polynomial p, and all sufficiently large n

PrA(1", Eg,an(X,), 1M1 h(1", X,)= £ (1", X,)]

< max {Pr[f(1", X,)=vlh(1", X;)=ul} + —
v p(n)

Prove that this formulation is in fact equivalent to Definition 5.2.1.

Guideline: First, note that this definition is implied by Definition 5.2.1 (be-
cause max, ,{Pr[f(1", X,) = v|h(1", X,,)) = u]} > Pr[4’(1", 11 h(1", X,))) =
11", X,)], for every algorithm A’). Next note that in the special case, in which X,
satisfies Pr[(1", X,)=0|h(1", X,)=u] = Pr[f(1", X,,)=1|h(1", X,))=u] = %,
for all u’s, the previous terms are equal (because 4’ can easily achieve success prob-
ability 1/2 by simply always outputting 1). Finally, combining Propositions 5.2.7
and 5.2.6, infer that it suffices to consider only the latter special case.

60 This refers to the private-key case, whereas in the public-key case, H»_, may be defined such that, when queried
about an encryption-key, it reveals the decryption-key in use.

488

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.5 MISCELLANEOUS

Exercise 20: Multiple messages of varying lengths: In continuation of Section 5.2.4,
generalize the treatment to the encryption of multiple messages of varying lengths.
That is, provide adequate definitions and analogous results.

Guideline: For example, a generalization of the first item of Definition 5.2.8
postulates that for every probabilistic polynomial-time algorithm A, there ex-
ists a probabilistic polynomial-time algorithm A’ such that for every ensemble
(X, = X, .., XUy, with #(n) < poly(n) and | XY| < poly(n), every pair
of polynomially bounded functions f, 4 : {0, 1}* — {0, 1}*, every positive polyno-
mial p, and all sufficiently large »n

— — 1) 1(n)) — —
Pr [A(l”, Eg,1m(Xa), (171 114 ‘),h(l",Xn))=f(1",Xn)]

< Pr [A/(l”, ax’l 1 pan, Y,,)):f(l”,?n)] T
p(n)

Exercise 21: Private-key encryption secure with respect to exactly t messages. In con-
tinuation of Proposition 5.2.12, show that if secure private-key encryption schemes
exist, then for every ¢ there are such schemes that are secure with respect to the
encryption of # messages but not with respect to the encryption of # + 1 messages.

Guideline: Given an arbitrary private-key encryption scheme (G, E, D), consider
the following private-key encryption scheme (G’, E’, D'):

® G'(1") = (k, k), where k = (ko, ki, ..., k;) such that (ko, ko) < G(1") and
ki, ..., k, are uniformly and independently selected in {0, 1}" (without loss of
generality, n = |ko|);

. E(/kn,k],“.,k,)(x) = (Eg(x), 7, Y i_o kir'), where r is uniformly selected in {0, 1}”,
and the arithmetics is of the field GF(2");

e and D(’ku’kl"_.’kt)(y, r, v) = Dy, ().

Essentially, the original scheme is augmented with a (¢ 4+ 1)-out-of-2" secret sharing
scheme (see Definition 7.5.34), such that a share of the original key is revealed by
each encryption.

Exercise 22: Known plaintext attacks: Loosely speaking, in a known plaintext attack
on a private-key (resp., public-key) encryption scheme, the adversary is given some
plaintext/ciphertext pairs in addition to some extra ciphertexts (without correspond-
ing plaintexts). Semantic security in this setting means that whatever can be effi-
ciently computed about the missing plaintexts can also be efficiently computed given
only the length of these plaintexts.

1. Provide formal definitions of security under known plaintext attacks, treating both
the private-key and public-key models and referring to both the single-message
and multiple-message settings.

2. Prove that any secure public-key encryption scheme is also secure in the presence
of known plaintext attacks.

3. Prove that any private-key encryption scheme that is secure in the multiple-
message setting is also secure in the presence of known plaintext attacks.

489

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Guideline (for Part 3): Consider a function / in the multiple-message setting that
reveals some of the plaintexts.

Exercise 23: A variant on the uniform-complexity treatment (suggested by Johan
Hastad): The original motivation for the following variant of semantic security was
to allow equivalence to indistinguishability of encryptions also in the single-message
case. Intuitively, the definition asserts that whatever can be efficiently inferred from
the encryption of one piece of partial information and a second piece of partial in-
formation can be efficiently inferred only from the latter. (This should be contrasted
with Definition 5.2.13, in which the encryption is applied to the entire informa-
tion.) That is, as a variant of Definition 5.2.13, we say that an encryption scheme,
(G, E, D), is uniformly semantically secure in the public-key model if

for every probabilistic polynomial-time algorithm A there exists a proba-
bilistic polynomial-time algorithm A’ such that for every polynomial ¢, ev-
ery polynomial-time computable functions 4, &; : {0, 1}* — {0, 1}*, every
f:{0, 1}* — {0, 1}*, every positive polynomial p, and all sufficiently large
n’s

Pr4(1", Gi(1"), Eg,an(h1(Ugw)), 1"V 1y (Ugony)) = f(Uiiny)]

< Prl4q", l\hl(Ue(n))l, ha(Ugn) = f (Ui | + —
[(n) (m)] p(n)

where, for simplicity of notation, we have omitted the argument 1”7 from all

functions.

Show that this definition is equivalent to the single-message version of Defini-
tion 5.2.14 (i.e., its restriction to the case of # = 1). Show that the non-uniform
variant of this definition (i.e., allowing /4, and 4, to be any polynomially bounded
functions) is equivalent to Definition 5.2.1. (Provide two alternative proofs to the
latter statement, with and without invoking Theorem 5.2.5.)

Exercise 24: Alterntaive formulation of state-based ciphers: For E = (E’, E”) and
D = (D', D"), consider the following reformulation of Item 2 of Definition 5.3.1:
For every pair (e, d¥) in the range of G(1”), every sequence of plaintexts a)’s, and
every i, itholds that D'(d=D, E'(e%~D, a®)) = a®, where eV) = E"(eU~D, 11¢”])
and dV) = D" (dV V), l'E/("’(M’l‘a(/)‘)|) for j =1, ...,i — 1. Prove the equivalence of
the two formulations.

Exercise 25: On the standard notion of block-cipher: A standard block-cipher is a
triple, (G, E, D), of probabilistic polynomial-time algorithms that satisfies Defini-
tion 5.3.5 as well as | E.(«)| = £(n) for every pair (e, d) in the range of G(1") and
every a € {0, 1}¢®,

1. Prove that a standard block-cipher cannot be semantically secure (in the multiple-
message private-key model). Furthermore, show that any semantically secure
encryption scheme must employ ciphertexts that are longer than the corresponding
plaintexts.

490

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.5 MISCELLANEOUS

2. Present a state-based version of the definition of a (secure) standard (private-key)
block-cipher, and note that Construction 5.3.3 satisfies it.

Guideline (for Part 1): Consider the encryption of a pair of two identical messages
versus the encryption of a pair of two different messages, and use the fact that
E. must be a permutation of {0, 1}*. Extend the argument to any encryption
scheme in which plaintexts of length £(n) are encrypted by ciphertexts of length
£(n) + O(log n), observing that in this case most plaintexts have only poly(#)-many
ciphertexts under E,.

Exercise 26: A secure private-key encryption scheme: Assuming that F' is pseudo-
random with respect to polynomial-size circuits, prove that Construction 5.3.12
constitutes a secure private-key encryption scheme.

Guideline: Adapt the proof of Proposition 5.3.10. When referring to the security of
t = poly(n) messages, each of length £ = poly(n), the adaptation requires bounding
the probability that for # uniformly selected /)s there exists ji, j» € {1, ..., 1} and
i1, ir € {1, ..., £/n} such that »U) 4 i} = rU2) 4 i, (mod 2").

Exercise 27: The Blum-Goldwasser public-key encryption scheme was presented in
Construction 5.3.20 as a block-cipher (with arbitrary block-length). Provide an al-
ternative presentation of this scheme as a full-fledged encryption scheme (rather
than a block-cipher), and prove its security (under the factoring assumption).

Guideline: In the alternative presentation, the values of dp and d cannot be deter-
mined at key-generation time, but are rather computed by the decryption process.
(This means that decryption requires two additional modular exponentiations.)

Exercise 28: On theimportance of restricting the ensembles {h.}ce(0,1y- and { X} ee(0, 1)+
in Definition 5.4.1:

1. Show that if one allows arbitrary function ensembles {/.}ceo,1)» in Defini-
tion 5.4.1, then no encryption scheme can satisfy it.

2. Show that if one allows arbitrary probability ensembles {X,}cc(o,1}+ in Defini-
tion 5.4.1, then no encryption scheme can satisfy it, even if one uses only a single
function 4 that is polynomial-time computable.

Guideline: For Part 1, consider the functions 4.(x) = d, where d is a decryption-
key corresponding to the encryption-key e. For Part 2, consider the random variable
X, = (d, Uj), where d is as before, and the function A(x’, x”) = x’.

Exercise 29: An alternative formulation of Definition 5.4.1: Show that the following
formulation of the definition of admissible ensembles {4.}. and {X.}. is equivalent
to the one in Definition 5.4.1:

e There is a non-uniform family of polynomial-size circuits {7,} that transform
encryption-keys (i.e., e in G{(1")) into circuits that compute the corresponding
functions (i.e., 4.). Thatis, on inpute <— G(1"), the circuit 7, outputs a circuit C,
such that C.(x) = h.(x) holdsfor all strings of adequate length (i.e., < poly(|el)).

491

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

e There is a non-uniform family of polynomial-size circuits {7,} that trans-
form encryption-keys (i.e., e in G(1")) into circuits that sample the cor-
responding distributions (i.e., X,). That is, on input e <— G(1"), the cir-
cuit 7, outputs a circuit S, such that S,(U,,) is distributed identically to X,,
where U,, denotes the uniform distribution over the set of strings of length
m = m(e).

Note that this formulation is in greater agreement with the motivating discussion pre-
ceding Definition 5.4.1. The formulation in Definition 5.4.1 was preferred because
of its relative simplicity.

Guideline: Consider, for example, the condition regarding {/.}. The formulation in
Definition 5.4.1 is shown to imply the one in this exercise by considering the circuit
family {7} such that on input e (in the range of G(1")), the circuit 7, outputs
the circuit C,(+) &ef H,(e, -), where H, is the circuit guaranteed by Definition 5.4.1.
That is, 7, has the description of H, hard-wired, and outputs the description of
the circuit obtained from H, by fixing its first input to be e. On the other hand,
given a circuit family {7},} that transforms e — C, as here, we obtain a circuit H,
as required in the formulation of Definition 5.4.1 as follows. The circuit H, has
T, hard wired, and so, on input (e, x), the circuit H, first reconstructs the circuit
C, < T,(e), and then emulates the computation of the value C,(x).

Exercise 30: Alternative formulations of Definitions 5.4.1 and 5.4.2: Following the
framework of Section 5.4.3, present alternative definitions of security for key-
dependent passive attacks (by replacing the oracle machines A; and A, in Def-
initions 5.4.8 and 5.4.9 with ordinary machines). Show that these definitions are
equivalent to Definitions 5.4.1 and 5.4.2.

Guideline: For example, show how to derive circuits P, and C, (as in Defini-
tion 5.4.2) from the machines 4;, 4, and the auxiliary input z (of Definition 5.4.9).

Exercise 31: Multiple-message security in the context of key-dependent passive at-
tacks on public-key schemes.: Formulate multiple-message generalizations of Defi-
nitions 5.4.1 and 5.4.2, and prove that both are equivalent (in the public-key model)
to the single-message definitions.

Guideline: Note that admissibility for the multiple-message generalization of Def-
inition 5.4.2 means that, given an encryption-key e, one can compute (via a
polynomial-size circuit that depends only on |e|) a corresponding pair of sequences
((x x, £’(“"”) (y(l) . ([(‘el)))) Thus, ability to distinguish corresponding se-
quences of encryptions ylelds ability to distinguish, for some i, the encryption of xP
from the encryption of yL , where the latter distinguisher generates the correspond-
ing x-y hybrid (by using the circuit guaranteed by the admissibility condition and
the input encryption-key e), and invokes the former distinguisher on the resulting
sequence of encryptions.

Exercise 32: Key-oblivious versus key-dependent passive attacks: Assuming the ex-
istence of secure public-key encryption schemes, show that there exists one that

492

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.5 MISCELLANEOUS

satisfies the basic definition (i.e., as in Definition 5.2.2) but is insecure under
key-dependent passive attacks (i.e., as in Definition 5.4.1).

Guideline: Given a scheme (G, E, D), define (G, E’, D’) such that E/(x) =
(1, Ec(x))if x # e and E/(x) = (0, x) otherwise (i.e., for x = e). Using Exercise 7
(which establishes that each encryption-key is generated with negligible proba-
bility), show that (G, E’, D') satisfies Definition 5.2.2. Alternatively, use G'(1") =
((r, G1(1M)), G2(1™)), where r is uniformly distributed in {0, 1}", which immediately
implies that each encryption-key is generated with negligible probability.

Exercise 33: Passive attacks versus Chosen Plaintext Attacks: Assuming the existence
of secure private-key encryption schemes, show that there exists one that is secure
in the standard (multi-message) sense (i.e., as in Definition 5.2.8) but is insecure
under a chosen plaintext attack (i.e., as in Definition 5.4.8).

Guideline: Given a scheme (G, E, D), define (G', E’, D’) such that

1. G’(") = ((k, r), (k, 7)), where (k, k) < G(1") and r is selected uniformly in
{0, 1}".

2. Ej (x) = (L, Ex(x)) if x # 7 and Ej; (x) = (0, k, x) otherwise (i.e., for
x=r).

Show that (G’, E’, D') is secure in the standard sense, and present a (simple but
very “harmful”) chosen plaintext attack on it.

Exercise 34: Alternative formulations of semantic security for CPA and CCA: Consider
an alternative form of Definition 5.4.8 (resp., Definition 5.4.13) in which 4}(1, z) is
replaced by Af"’(e, z) (resp., Afe’Dd (e, z)), where (e, d) < G(1") and Condition 2
is omitted. Show that the current form is equivalent to the one presented in the main
text.

Guideline: The alternative forms presented here restrict the choice of 4 (to a
canonical one), and thus the corresponding definitions are at least as strong as the
ones in the main text. However, since Theorem 5.4.11 (resp., Theorem 5.4.15) is
established using the canonical 47, it follows that the current definitions are actually
equivalent to the ones in the main text. We comment that we consider the formulation
in the main text to be more natural, alas more cumbersome.

Exercise 35: Chosen Plaintext Attacks versus Chosen Ciphertext Attacks: Assuming
the existence of private-key (resp., public-key) encryption schemes that are secure
under a chosen plaintext attack, show that there exists one that is secure in the
former sense but is not secure under a chosen ciphertext attack (not even in the a
priori sense).

Guideline: Given a scheme (G, E, D), define (G', E’, D) such that G’ = G and

1. E/(x) = (1, E(x)) with probability 1 — 27l and E/(x) = (0, x) otherwise.
2. Dy(1, y) = Da(y) and Dy(0, y) = (d, y).
Recall that decryption is allowed to fail with negligible probability, and note that the

construction is adequate for both public-key and private-key schemes. Alternatively,
to obtain error-free decryption, define E,(x) = (1, E.(x)), D,(1, y) = D4(y) and

493

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

D)0, y) = (d, y). In the case of private-key schemes, we may define E (k) =
(0, 1"y and E}(x) = (1, Ex(x)) for x # k.

Exercise 36: Chosen Ciphertext Attacks: a priori versus a posteriori: Assuming the
existence of private-key (resp., public-key) encryption schemes that are secure under
an a priori chosen plaintext attack, show that there exists one that is secure in the
former sense but is not secure under an a posteriori chosen ciphertext attack.

Guideline: Given a scheme (G, E, D), define (G’, E’, D) such that G’ = G and

1. E/(x) & (b, E.(x)), where b is uniformly selected in {0, 1}.

2. Db, y) € Da(y).

Exercise 37: Multiple-challenge CCA security implies a posteriori CCA security.
Show that Definition 5.4.16 implies security under a posteriori CCA.

Guideline: It is tempting to claim that Definition 5.4.13 is a special case of Defi-
nition 5.4.16 (obtained when allowing only one challenge query). However, things
are not so simple: In Definition 5.4.13 the challenges are required to be identically
distributed (in the two cases), whereas in Definition 5.4.16 only computational in-
distinguishability is required. Instead, we suggest showing that Definition 5.4.14
(which is equivalent to Definition 5.4.13) is implied by the (very) restricted case of
Definition 5.4.16 discussed following the definition (i.e., a canonical adversary that
makes a single challenge query).°!

Exercise 38: Equivalent forms of multiple-challenge CCA security:

1. Consider a modification of Definition 5.4.16 in which challenge queries of the
form (S, &) are answered by (£.(S(r)), h(r)), rather than by (E.(S(r)), A(S(r))).
Prove that the original definition is equivalent to the modified one.

2. Consider a modification of Definition 5.4.16 in which the challenge queries of the
form (S, /) are replaced by two types of queries: partial-information queries of
the form (leak, /) that are answered by /(r), and partial-encryption queries of
the form (enc, S) that are answered by E.(S()). Prove that the original definition
is equivalent to the modified one.

Guideline: Show how the modified model of Part 1 can emulate the original model
(that’s easy), and how the original model can emulate the modified model of Part 1
(e.g., replace the query (S, /) by the pair of queries (S, 0) and (id, /)). Next relate
the models in Parts 1 and 2.

Exercise 39: On the computational restriction on the choice of input in the definition
of adaptive NIZK: Show that if Definition 5.4.22 is strengthened by waiving the
computational bounds on &, then only trivial NIZKs (i.e., languages in BPP) can
satisfy it.

61 Furthermore, we may even restrict this challenge query to be of the form (S, 0), where 0 is the all-zero function
(which yields no information).

494

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

5.5 MISCELLANEOUS

Guideline: Show that allowing a computationally unbounded E forces the simula-
tor to generate a reference string that is statistically close to the uniform distribution.
Thus, soundness implies weak simulation-soundness in the strong sense of Exer-
cise 40 (i.e., with respect to a computationally unbounded IT as in Definition 5.4.22),
and by applying Exercise 40 we are done.

Exercise 40: Weak simulation-soundness can hold only with respect to computationally
bounded cheating provers. Show that if Definition 5.4.24 is strengthened by waiving
the computational bounds on IT, then only trivial NIZKs (i.e., for languages in BPP)
can satisfy it.

Guideline: Show that otherwise the two-stage simulation procedure, S = (5, S,),
can be used to distinguish inputs in the language L from inputs outside the language,
because in the first case it produces a valid proof whereas in the second case it cannot
do so. The latter fact is proved by showing that if S, (which also gets an auxiliary
input s produced by S; along with the reference string) produces a valid proof for
some x ¢ L, then a computationally unbounded prover may do the same by first
generating s according to the conditional distribution induced by the reference string
(and then invoking S,).

Exercise 41: Does weak simulation-soundness hold for all adaptive NIZKs?

1. Detect the flaw in the following argument toward an affirmative answer: If weak
simulation-soundness does not hold, then we can distinguish a uniformly selected
reference string (for which soundness holds) from a reference string generated
by S; (for which soundness does not hold).

2. Assuming the existence of one-way permutations (and adaptive NIZKs), show
an adaptive NIZK with a suitable simulator such that weak simulation-soundness
does not hold.

3. (Suggested by Boaz Barak and Yehuda Lindell): Consider languages containing
pairs («, x) such that one can generate o’s along with suitable trapdoors #(«)’s that
allow for determining whether or not inputs of the form («, -) are in the language.
For such languages, define a weaker notion of simulation-soundness that refers
to the setting in which a random « is generated and then one attempts to produce
valid proofs for a no-instance of the form («, -) with respect to a reference-string
generated by S;. (The weaker notion asserts that in this setting it is infeasible to
produce a valid proof for such a no-instance.) Provide a clear definition, prove
that it is satisfied by any adaptive NIZK for the corresponding language, and show
that this definition suffices for proving Theorem 5.4.27.

Guideline (Part 1): The existence of an efficient C = (&, I1) that violates weak
simulation-soundness only means that for a reference string generated by S, the
cheating IT generates a valid proof for a no-instance selected by E. When C is given
a uniformly selected reference string, it either may fail to produce a valid proof or
may produce a valid proof for a yes-instance. However, we cannot necessarily
distinguish no-instances from yes-instances (see, for example, Part 2). This gap is
eliminated in Part 3.

495

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

ENCRYPTION SCHEMES

Guideline (Part 2): Given a one-way permutation f with a corresponding hard-core
predicate b, consider the pseudorandom generator G(s) &ef (G'(s), f21(s)), where
G'(5) Z b(s)b(f(5)) - - - b(£25-1(5)) (see proof of Proposition 5.3.19). Let L de-
note the set of strings that are not images of G, and note that L is in NP (because
L ={(a, B):3sst. = f?5I(s) A a#£G'(s)}). Given any adaptive NIZK for L,
denoted (P, V), consider the modification (P’, V') such that P'(x, w, (r1, r2)) =
P(x,w,r)and V'(x, (r1, r2),) = 1ifeither V(x, w, 7;) = 1 orx = r,. The mod-
ified simulator is derived by S7(1") & ((r1, r2), 8), where (r,s) < Si(1") and
ry < G(U,) (and S)(x, s) &f S>(x, 5)). Verify that the modified algorithms sat-
isfy the definition of an adaptive NIZK, and note that weak simulation-soundness
is easily violated by E(ry, 72) = r, € L (and any IT).

Exercise 42: On defining non-malleability: Show that when defining non-malleability
(i.e., in Definitions 5.4.32 and 5.4.33), it is essential to prevent 4 from outputting
the ciphertext that is given to it.

Guideline: Consider the identity relation, a constant function %, and let X, be
uniform over {0, 1}". Note that 4 gets (e, E.(X,), 1), whereas A" only gets 1”.

496

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:00, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.002

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.002
https:/www.cambridge.org/core

