CHAPTER SIX

Digital Signatures and Message
Authentication

Message authentication and (digital) signatures were the first tasks that joined en-
cryption to form modern cryptography. Both message authentication and digital sig-
natures are concerned with the “authenticity” of data, and the difference between
them is analogous to the difference between private-key and public-key encryption
schemes.

In this chapter, we define message authentication and digital signatures, and the se-
curity notions associated with them. We show how to construct message-authentication
schemes using pseudorandom functions, and how to construct signature schemes using
one-way permutations. We stress that the latter construction employs arbitrary one-way
permutations, which do not necessarily have a trapdoor.

Organization. The basic definitions are presented in Section 6.1. Constructions of
message-authentication schemes and signature schemes are presented in Sections 6.3
and 6.4, respectively. Toward presenting these constructions, we discuss restricted types
of message authentication and signature schemes, which are of independent interest,
such as length-restricted schemes (see Section 6.2) and one-time signature schemes
(see Section 6.4.1). Additional issues are discussed in Sections 6.5 and 6.6.

Teaching Tip. In contrast to the case of encryption schemes (cf. Chapter 5), the def-
initional treatment of signatures (and message authentication) is quite simple. The
treatment of length-restricted schemes (see Section 6.2) plays an important role in
the construction of standard schemes, and thus we strongly recommend highlighting
this treatment. We suggest focusing on the presentation of the simplest construction of
message-authentication schemes (provided in Section 6.3.1) and on the (not-so-simple)
construction of signature schemes that is provided in Sections 6.4.1 and 6.4.2. As in
Chapter 5, we assume that the reader is familiar with the material in Chapters 2 and 3 of
Volume 1 (and specifically with Sections 2.2, 2.4, and 3.6). This familiarity is important
not only because we use some of the notions and results presented in these sections but
also because we use similar proof techniques (and do so while assuming that this is not
the reader’s first encounter with these techniques).
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

6.1. The Setting and Definitional Issues

Both signature schemes and message-authentication schemes are methods for “validat-
ing” data, that is, verifying that the data was approved by a certain party (or set of parties).
The difference between signature schemes and message-authentication schemes is that
“signatures” should be “universally verifiable,” whereas “authentication tags” are only
required to be verifiable by parties that are also able to generate them. It is customary
to discuss each of these two types of schemes separately, and we start by providing a
brief overview of such a nature. We then turn to our actual treatment, which applies to
both types of schemes in a unified manner.

6.1.1. The Two Types of Schemes: A Brief Overview

The need to discuss “digital signatures” has arisen with the introduction of computer
communication to the business environment (in which parties need to commit them-
selves to proposals and/or declarations that they make). Discussions of “unforgeable
signatures” also took place in previous centuries, but the objects of discussion were
handwritten signatures (and not digital ones), and the discussion was not perceived
as related to “cryptography.” Loosely speaking, a scheme for unforgeable signatures
should satisfy the following:

e Fach user can efficiently produce his/her own signature on documents of his/her
choice;

e every user can efficiently verify whether a given string is a signature of another
(specific) user on a specific document; but

e it is infeasible to produce signatures of other users to documents that they did not
sign.

We note that the formulation of unforgeable digital signatures also provides a clear
statement of the essential ingredients of handwritten signatures. The ingredients are
each person’s ability to sign for him/herself, a universally agreed-upon verification
procedure, and the belief (or assertion) that it is infeasible (or at least hard) to
forge signatures in a manner that passes the verification procedure. It is not clear
to what extent handwritten signatures do meet these requirements. In contrast, our
treatment of digital-signature schemes provides precise statements concerning the
extend to which digital signatures meet these requirements. Furthermore, unforge-
able digital signature schemes can be constructed based on the existence of one-way
functions.

Message authentication is a task related to the setting considered for encryp-
tion schemes; that is, communication over an insecure channel. This time, we con-
sider an active adversary that is monitoring the channel and may alter the mes-
sages sent on it. The parties communicating through this insecure channel wish
to authenticate the messages they send so that their counterpart can tell an orig-
inal message (sent by the sender) from a modified one (i.e., modified by the
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6.1 THE SETTING AND DEFINITIONAL ISSUES

adversary). Loosely speaking, a scheme for message authentication should satisfy the
following:

e Each of the communicating parties can efficiently produce an authentication tag to
any message of his/her choice;

¢ cach of the communicating parties can efficiently verify whether a given string is an
authentication tag of a given message; but

e it is infeasible for an external adversary (i.e., a party other than the communicating
parties) to produce authentication tags to messages not sent by the communicating
parties.

Note that in contrast to the specification of signature schemes, we do not require uni-
versal verification: Only the designated receiver is required to be able to verify the
authentication tags. Furthermore, we do not require that the receiver be unable to pro-
duce authentication tags by itself (i.e., we only require that external parties not be able
to do so). Thus, message-authentication schemes cannot convince a third party that the
sender has indeed sent the information (rather than the receiver having generated it by
itself). In contrast, signatures can be used to convince third parties. In fact, a signature
to a document is typically sent to a second party so that in the future, this party may
(by merely presenting the signed document) convince third parties that the document
was indeed generated (or sent or approved) by the signer.

6.1.2. Introduction to the Unified Treatment

Loosely speaking, message-authentication and signature schemes are supposed to en-
able reliable transmission of data between parties. That is, the basic setting consists of
a sender and a receiver, where the receiver may be either predetermined or determined
only after the data was sent. Loosely speaking, the receiver wishes to be guaranteed
that the data received was actually sent by the sender, rather than modified (or even
concocted) by somebody else (i.e., an adversary). The receiver may be a party that
shares an explicit (unreliable) point-to-point communication line with the sender; this
is indeed the typical setting in which message authentication is employed. However,
in other cases (typically when signature schemes are employed), the receiver may be
any party that obtains the data in the future and wishes to verify that it was indeed
sent by the declared sender. In both cases, the reliability (or authenticity) of the data is
established by an authentication process that consists of two main procedures:

1. A signing procedure that is employed by the alleged sender in order to produce
signatures to data of its choice.

2. A verification procedure that is employed by the receiver in order to determine the
authenticity of the data using the provided signature.

As in case of encryption schemes, the authentication process presupposes also a third
procedure called key-generation that allows the sender to generate a signing-key (to be
used in the signing procedure), along with a verification-key (to be used in the verifica-
tion procedure). The key-generation procedure is typically invoked by the sender, and
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

the possession of the signing-key constitutes the sender’s advantage over the adversary
(see analogous discussion in Chapter 5). That is, without the signing-key, it is infeasible
to generate valid signatures (with respect to the corresponding verification-key). Fur-
thermore, even after receiving signatures to messages of its choice, an adversary (lacking
the signing-key) cannot generate a valid signature to any other message.

As previously stated, the ability to produce valid signatures is linked to the knowl-
edge of the signing-key. Loosely speaking, “security” (or “unforgeability”) means the
infeasibility of producing valid signatures without knowledge of the signing-key, where
validity means passing verification with respect to the corresponding verification-key.
The difference between message-authentication and signature schemes amounts to the
question of whether “security” also holds when the verification-key is publicly known:
In the case of message-authentication schemes, the verification-key is assumed to be
kept secret (and so these schemes are of the “private-key” type), whereas in the case
of signature schemes, the verification-key may be made public (and so these schemes
are of the “public-key” type). Thus, the difference between message-authentication
and signature schemes is captured by the security definition, and effects the possible
applications of these schemes.

From the point of view of their functionality, the difference between message-
authentication and signature schemes arises from the difference in the settings for which
they are intended, which amounts to a difference in the identity of the receiver and in
the level of trust that the sender has in the receiver. Typically, message-authentication
schemes are employed in cases where the receiver is predetermined (at the time of
message transmission) and is fully trusted by the sender, whereas signature schemes
allow verification of the authenticity of the data by anybody (which is certainly not
trusted by the sender). In other words, signature schemes allow for universal verifica-
tion, whereas message-authentication schemes may only allow predetermined parties
to verify the authenticity of the data. Thus, in signature schemes the verification-key
must be known to anybody, and in particular is known to the adversary. In contrast, in
message-authentication schemes, the verification-key is only given to a set of predeter-
mined receivers that are all trusted not to abuse this knowledge; that is, in such schemes
it is postulated that the verification-key is not (a priori) known to the adversary. (See
Figure 6.1.)

Summary and Terminology. Message-authentication and signature schemes differ
in the question of whether the verification-key is “private” (i.e., a secret unknown to
the adversary) or “public” (i.e., known to everybody and in particular known to the
adversary). Thus, in a sense, these are private-key and public-key versions of a task that

Type Verification-key known Verification possible
Message auth. | to the designated for the designated
schemes (trusted) receiver(s) only | (trusted) receiver(s) only
Signature to everybody for anybody

schemes (including the adversary) | (including the adversary)

Figure 6.1: Message-authentication versus signature schemes.
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6.1 THE SETTING AND DEFINITIONAL ISSUES

lacks a good name (since both authentication and signatures are already taken by one
of the two versions). Still, seeking a uniform terminology, we shall sometimes refer to
message-authentication schemes (also known as Message Authentication Codes [MAC])
as to private-key signature schemes. Analogously, we shall sometimes refer to signature
schemes as to public-key signature schemes.

6.1.3. Basic Mechanism

We start by defining the basic mechanism of message-authentication and signature
schemes. Recall that this basic mechanism will support both the private-key and public-
key versions, and the difference between the two versions will only be reflected in
the definition of security. Indeed, the definition of the basic mechanism says nothing
about the security of the scheme (which is the subject of the next section), and thus is
the same for both the private-key and public-key versions. In both cases, the scheme
consists of three efficient algorithms: key generation, signing (or authenticating), and
verification. The basic requirement is that signatures that are produced by the signing
algorithm be accepted as valid by the verification algorithm, when fed a verification-key
corresponding to the signing-key used by the signing algorithm.

Definition 6.1.1 (signature scheme): A signature scheme is a triple, (G, S, V), of
probabilistic polynomial-time algorithms satisfying the following two conditions:

1. Oninput 1", algorithm G (called the key-generator) outputs a pair of bit strings.
2. For every pair (s, v) in the range of G(1"), and for every a € {0, 1}*, algorithms S
(signing) and V (verification) satisfy

PriV (v, a, S(s,a))=1]=1

where the probability is taken over the internal coin tosses of algorithms S and V.

The integer n serves as the security parameter of the scheme. Each (s, v) in the range
of G(1") constitutes a pair of corresponding signing/verification keys.

We sometimes call S(s, «) a signature to the document « produced using the
signing-key s. Likewise, when V(v, o, 8) = 1, we say that 8 is a valid signature
to o with respect to the verification-key v. (Indeed, at this point, we may assume that
algorithm V' is deterministic, but see subsequent comments.) This definition asserts that
any signature to « produced using the signing-key s is a valid signature to & with respect
to the corresponding verification-key v. Note that there may be valid signatures (with
respect to v) that are not produced by the signing process (using the corresponding s).

We stress that Definition 6.1.1 says nothing about security, and so trivial (i.e., inse-
cure) triples of algorithms may satisfy it (e.g., S(s, o) &0 and Vv, a, B) & 1, for all
s, v, a and B). Furthermore, Definition 6.1.1 does not distinguish private-key signature
schemes from public-key ones. The difference between the two types is introduced in
the security definitions: In a public-key scheme, the “adversary” gets the verification-
key (i.e., v) as an additional input (and thus v # s follows), whereas in private-key
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

schemes, v is not given to the “adversary” (and thus one may assume, without loss of
generality, that v = s).

Notation. In the rest of this work, we shall write Ss(c) instead of S(s, o) and V(cx, B)
instead of V' (v, «, B). Also, we let G1(1") (resp., G2(1")) denote the first (resp., second)
element in the pair G(1"). Thatis, G(1") = (G(1"), G2(1")). Without loss of generality,
we may assume that |G(1")| and |G,(1")| are polynomially related to n, and that each
of these integers can be efficiently computed from the other.

Comments: A Few Relaxations

Definition 6.1.1 may be relaxed in several ways without significantly harming its useful-
ness. For example, we may relax Condition (2) and allow a negligible verification error
(e.g., PriVy(a, Ss(a))£ 1] < 27"). Alternatively, one may postulate that Condition (2)
holds for all but a negligible measure of the key-pairs generated by G(1"). At least one
ofthese relaxations is essential for many suggestions of (public-key) signature schemes.

Especially in the case where we adopt the first relaxation of Condition (2), it makes
sense to consider also randomized verification algorithms. However, all natural signa-
ture schemes happen to employ a deterministic verification algorithm (see Exercise 1).
Still, in the case of probabilistic verification algorithms, we may define 8 as a valid
signature of o (with respect to v) if Pr[V,(«, B) = 1] > 1/2. The threshold 1/2 used
here is quite arbitrary, and the definition is essentially robust under the replacement of
1/2 by either 1/poly(n) or 1 — 27P°) 1 Alternatively, we may view f8 as a “fractionally
valid” signature of « with respect to v (i.e., valid with probability Pr[V,(«, 8) = 1]).

Another relaxation of Definition 6.1.1 consists of restricting the domain of pos-
sible documents. However, unlike the situation with respect to encryption schemes,
such a restriction is non-trivial in the current context, and is discussed at length in
Section 6.2.

6.1.4. Attacks and Security

Loosely speaking, secure signature schemes should prevent an adversary from generat-
ing valid signatures to “unauthentic” documents (i.e., documents that were not approved
by the legitimate signer). Thus, the potential adversary is “active” at least in the mild
sense that it attempts to “generate” something new and different from all that it holds
(rather than to “extract” information that is implicit in something that is given to it).?

! Indeed, robustness follows by “amplification” (i.e., error- reduction) of the verification algorithm. For example,
given V as here, one may consider V'’ that applies V' to the tested pair for a linear number of times and accepting
if and only if 7 has accepted in all tries.

2 Indeed, in general, the distinction between “generating something new” and “extracting something implicit”
cannot be placed on firm grounds. However, our reference to this distinction is merely at the motivational
level. Furthermore, this distinction can be formalized in the context that we care about, which is the context
of comparing encryption and signature schemes (or, rather, the adversaries attacking these schemes). In the
case of encryption schemes, we consider adversaries that try to extract information about the plaintext from
the ciphertext. That is, the desired object is a function of the given input. In contrast, in the case of signature
schemes, we consider adversaries that try to generate a valid signature with respect to a certain verification-key.
That is, the desired object is not a function of the given input.
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6.1 THE SETTING AND DEFINITIONAL ISSUES

Furthermore, the typical applications of signature schemes are to setting in which the
adversary may obtain from the legitimate signer valid signatures to some documents
of the adversary’s choice. For this reason, the basic definition of security of signature
schemes refers to such “chosen message attacks” (to be discussed and defined next).
(Indeed, the situation here is different from the case of encryption schemes, where the
basic definition refers to a “passive” adversary that only wire-taps a communication
line, in encrypted form, over this line.)

We shall consider a very strong definition of security (against “chosen message
attacks”). That is, we consider very powerful attacks on the signature scheme, as well
as a very liberal notion of breaking it. Specifically, during the course of the attack,
the attacker is allowed to obtain signatures to any document of its choice. One may
argue that in many applications, such a general attack is not possible (because, in
these applications, documents to be signed must have a specific format). Yet our view
is that it is impossible to define a general (i.e., application-independent) notion of
admissible documents, and thus a general/robust definition of an attack seems to have
to be formulated as suggested here. (Note that at worst, our approach is overly cautious.)
Likewise, the attacker is said to be successful if it can produce a valid signature to any
document for which it has not asked for a signature during its attack. Again, this defines
the ability to form signatures to possibly “nonsensical” documents as a breaking of the
scheme. Yet, again, we see no way to have a general (i.e., application-independent)
notion of “meaningful” documents (so that only forging signatures to them will be
considered a breaking of the scheme). This discussion leads to the following (slightly
informal) formulation:

e A chosen message attack is a process that can obtain signatures to strings of its
choice, relative to some fixed signing-key that is generated by G. We distinguish two
cases:

The private-key case: Here the attacker is given 1” as input, and the signatures are
produced relative to s, where (s, v) < G(1").

The public-key case: Here the attacker is given v as input, and the signatures are
produced relative to s, where (s, v) < G(1").

e Suchan attack is said to succeed (in existential forgery) if it outputs a valid signature
to a string for which it has not requested a signature during the attack. That is, the
attack is successful if it outputs a pair («, 8) such that V, (o, 8) = 1 (where v is as in
the previous item) and « is different from all strings for which a signature has been
required during the attack.

¢ A signature scheme is secure (or unforgeable) if every feasible chosen message
attack succeeds with at most negligible probability.

Formally, a chosen message attack is modeled by a probabilistic polynomial-time
oracle machine that is given oracle access to a “keyed signing process” (i.e., the signing
algorithm combined with a signing-key). Depending on the version (i.e., public-key
or not), the attacker may get the corresponding verification-key as input. We stress
that this is the only difference between the two cases (i.e., private-key and public-key),
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

which are spelled out in Definition 6.1.2. We refer the reader to the clarifying discussion
that follows Definition 6.1.2; in fact, some readers may prefer to read that discussion
first.

Definition 6.1.2 (unforgeable signatures): For a probabilistic oracle machine, M, we
denote by Q$(x) the set of queries made by M on input x and access to oracle O.
As usual, M9 (x) denotes the output of the corresponding computation. We stress that
0Y9(x) and MO(x) are dependent random variables that represents two aspects of the
same probabilistic computation.

The private-key case: A4 private-key signature scheme is secure if for every proba-
bilistic polynomial-time oracle machine M, every positive polynomial p, and all
sufficiently large n, it holds that

b [ Vel B=1& a ¢ 031" _ L
where (s, v) < G(1") and (&, B) < M*>(1") p(n)

where the probability is taken over the coin tosses of algorithms G, S, and V, as well
as over the coin tosses of machine M.

The public-key case: 4 public-key signature scheme is secure if for every probabilistic
polynomial-time oracle machine M, every positive polynomial p, and all sufficiently
large n, it holds that

pr[ Vol H=1& o & 0} (v) L
where (s, v) < G(1") and (a, B) < M (v) p(n)

where the probability is taken over the coin tosses of algorithms G, S, and V, as
well as over the coin tosses of machine M.

The definition refers to the following experiment. First a pair of keys, (s, v), is generated
by invoking G(1"), and is fixed for the rest of the discussion. Next, an attacker is invoked
on input 1” or v, depending on whether we are in the private-key or public-key case.
In both cases, the attacker is given oracle access to S;, where the latter may be a
probabilistic oracle rather than a standard deterministic one (e.g., if queried twice for
the same value, then the probabilistic signing-oracle may answer in different ways).
Finally, the attacker outputs a pair of strings («, 8). The attacker is deemed successful
if and only if the following two conditions hold:

1. The string « is different from all queries (i.e., requests for signatures) made by the
attacker; that is, the first string in the output pair (o, 8) = M5 (x) is different from
any string in Qi}(x), where x = 1" or x = v, depending on whether we are in the
private-key or public-key case.

We stress that both M5 (x) and Qi}(x) are random variables that are defined based
on the same random execution of M (on input x and oracle access to ;).

2. The pair (a, B) corresponds to a valid document-signature pair relative to the verifi-
cation key v. In case V' is deterministic (which is typically the case) this means that
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6.1 THE SETTING AND DEFINITIONAL ISSUES

Vy(a, B) = 1. The same applies also in case V' is probabilistic, and when viewing
Vy(e, B) = 1 as arandom variable. (Alternatively, in the latter case, a condition such
as Pr[V,(«, B) = 1] = 1/2 may replace the condition V,(«, B) = 1.)

6.1.5.* Variants

Clearly, any signature scheme that is secure in the public-key model is also secure in
the private-key model. The converse is not true: Consider, for example, the private-
key scheme presented in Construction 6.3.1 (as well as any other “natural” message-
authentication scheme). Following are a few other comments regarding the definitions.

6.1.5.1. Augmenting the Attack with a Verification Oracle

Itis natural to augment Definition 6.1.2 by providing the adversary with unlimited access
to the corresponding verification-oracle V,,. We stress that (in this augmented definition)
the documents that (only) appear in the verification queries are not added to the set Qij’,;
that is, the output (o, B) is considered a successful forgery even if the adversary made
a verification-query of the form («, -), but provided (as in Definition 6.1.2) that the
adversary did not make the signing-query a (and that V,(«, B) = 1).

Indeed, in the public-key case, the verification-oracle adds no power to the adversary,
because the adversary (which is given the verification-key) can emulate the verification-
oracle by itself. Furthermore, typically, also in the private-key model, the verification-
oracle does not add much power. Specifically, we have:

Proposition 6.1.3 (cases in which security extends to the augmented model):

1. Any secure public-key signature scheme is secure also under attacks that utilize a
verification-oracle (in addition to the signing-oracle).

2. Any secure private-key signature scheme that has unique valid signatures (as defined
next) is secure also under attacks that utilize a verification-oracle (in addition to the
signing-oracle).

A signature scheme (G, S, V) is said to have unique valid signatures if for every
verification-key v and document «, there exists a unique 8 such that Vy(«, 8) = 1
(or, such that Pr[V, (o, B) = 1] > 1/poly(|v|)). As discussed in Section 6.5.1 (see also
Exercises 1 and 2), any secure private-key signature scheme can be transformed into
one having a deterministic verification algorithm and unique valid signatures. In fact,
all private-key signature schemes presented in Section 6.3 have unique valid signatures.
We comment that the unique signature property is essential for the validity of Part 2;
see Exercise 3.

Proof Sketch: As stated previously, Part 1 is obvious (because a standard adversary can
emulate the verification-oracle by using the verification-key given to it). We prove Part 2
by showing that also in that case, a standard adversary can emulate the verification-
oracle. However, in this case, the emulation is less obvious, because the standard ad-
versary cannot test the validity of signatures by itself. Still, considering an arbitrary
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

combined attack on such a private-key signature scheme, we emulate the verification-
queries (in the standard model) as follows:

¢ For a verification-query (o, B), if o equals a previous signing-query, then we can
emulate the answer by ourselves. Specifically, if the signing-query o was answered
with §, then we answer the verification-query positively; otherwise we answer it
negatively. The correctness of the emulation follows from the hypothesis that this
signature scheme has unique valid signatures.

e Otherwise (i.e., for a verification-query (o, 8) such that o« does not equal any previous
signing-query), we may choose to either halt and output (o, ) as a candidate forgery
(gambling on V,(«, ) = 1) or continue and emulate a negative answer by ourselves
(gambling on V,(«, B) = 0). Specifically, for every such verification-query, we may
choose the first possibility with probability 1/#(n) and the second possibility oth-
erwise, where #(n) is a bound on the number of verification-queries performed by
the original augmented attack (which we emulate). It can be shown that the success
probability of the resulting standard adversary is at least a 1/#(n) fraction of the
success probability of the given adversary. For details see Exercise 3.

Thus, insecurity in the augmented model implies insecurity in the original model, and
the proposition follows. H

6.1.5.2. Inessential Generalities

The definitions presented here (specifically, Definition 6.1.1) were aimed at generality
and flexibility. We comment that several levels of freedom can be eliminated without loss
of generality (but with some loss of convenience). Firstly, as in the case of encryption
schemes, one may modify the key-generation algorithm so that on input 1” it outputs a
pair of n-bit long keys. Two more fundamental restrictions, which actually do not affect
the existence of secure schemes, follow.

Randomization in the Signing Process. In contrast to the situation with respect to
encryption schemes (see Sections 5.2 and 5.3), randomization is not essential to the
actual signing and verifying processes (but is, as usual, essential to key-generation). That
is, without loss of generality (but with possible loss in efficiency), the signing algorithm
may be deterministic, and in all of the schemes we present (in the current chapter), the
verification algorithm is deterministic. For further discussion, see Exercise 1.

Canonical Verification in the Private-Key Version. As hinted earlier, in the private-
key case, we may just identify the signing and verification keys (i.e., k& Ly = v).
Furthermore (following the comment about deterministic signing), without loss of
generality, verification may amount to comparing the alleged signature to one pro-
duced by the verification algorithm itself (which may just produce signatures exactly
as the signing algorithm). That is, for a deterministic signing process S, we may let

Vi(a, B) &' ifand only if B = S;(«). For details, see Exercise 2.
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6.2 LENGTH-RESTRICTED SIGNATURE SCHEME

6.1.5.3. Weaker Notions of Security and Some Popular Schemes

Weaker notions of security have been considered in the literature. The various notions
refer to two parameters: (1) the type of attack, and (2) when the adversary is consid-
ered to be successful. Indeed, Definition 6.1.2 refers to the most severe type of attacks
(i.e., unrestricted chosen message attacks) and to the most liberal notion of success
(i.e., the ability to produce a valid signature to any new message). For further discus-
sion, the interested reader is referred to Section 6.6.3. In particular, we note that plain
RSA, as well as plain versions of Rabin’s scheme and the DSS, are not secure under
Definition 6.1.2. However, these schemes satisfy weaker notions of security, provided
that some (standard) intractability assumptions hold. Furthermore, variants of these
signature schemes (in which the function is not applied directly to the document itself)
may be secure (under Definition 6.1.2).

6.2. Length-Restricted Signature Scheme

Restricted types of (public-key and private-key) signature schemes play an important
role in our exposition. The first restriction we consider is the restriction of signature
schemes to (apply only to) documents of a certain predetermined length. We call the re-
sulting schemes length-restricted. The effect of the length-restriction is more dramatic
here (in the context of signature schemes) than it is in the context of encryption schemes;
this can be appreciated by comparing (the length of) Section 6.2.2 to (the length of)
Section 5.3.2.2. Nevertheless, as we shall show (see Theorem 6.2.2), if the length re-
striction is not too low, then the full power of signature schemes can be regained; that
is, length-restricted signature schemes yield full-fledged ones.

6.2.1. Definition

The essence of the length-restriction is that security is guaranteed only with respect to
documents of the predetermined length. Note that the question of what is the result of
invoking the signature algorithm on a document of improper length is immaterial. What
is important is that an attacker (of a length-restricted scheme) is deemed successful only
if it produces a signature fo a (different) document of proper length. Still, for the sake of
concreteness (and simplicity of subsequent treatment), we define the basic mechanism
only for documents of proper length.

Definition 6.2.1 (signature scheme for fixed-length documents): Let £ : N — N. An
¢-restricted signature scheme is a triple, (G, S, V), of probabilistic polynomial-time
algorithms satisfying the following two conditions:

1. As in Definition 6.1.1, on input 1", algorithm G outputs a pair of bit strings.
2. Analogously to Definition 6.1. 1, for every n and every pair (s, v) in the range of G(1"),
and for every a € {0, 1Y'™, algorithms S and V satisfy Pr[Vy(a, Ss(a))=1] = 1.
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

Such a scheme is called secure (in the private-key or public-key model) if the (corre-
sponding) requirements of Definition 6.1.2 hold when restricted to attackers that only
make queries of length £(n) and output a pair (o, B) with |a| = £(n).

We stress that the essential modification is presented in the security condition. The latter
considers an adversary to be successful only in case it forges a signature to a (different)
document « of the proper length (i.e., |o| = €(n)).

6.2.2. The Power of Length-Restricted Signature Schemes

We comment that ¢-restricted private-key signature schemes for £(n) = O(logn) are
trivial (since the signing and verification keys may contain a table look-up associating
a secret with each of the 2" = poly(n) possible documents).? In contrast, this trivi-
ality does not hold for public-key signature schemes. (For details on both claims, see
Exercise 5.) On the other hand, in both (private-key and public-key) cases, ¢-restricted
signature schemes for any super-logarithmic ¢ (e.g., £(n) = n or even {(n) = logg n)
are as powerful as ordinary signature schemes:

Theorem 6.2.2: Suppose that £ is a super-logarithmically growing function. Then,
given an {L-restricted signature scheme that is secure in the private-key (resp., public-
key) model, one can construct a full-fledged signature scheme that is secure in the same
model.

Results of this flavor can be established in two different ways, corresponding to two
methods of converting an £-restricted signature scheme into a full-fledged one. Both
methods are applicable both to private-key and public-key signature schemes. The
first method (presented in Section 6.2.2.1) consists of parsing the original document
into blocks (with adequate “linkage” between blocks), and applying the ¢-restricted
scheme to each block. The second method (presented in Section 6.2.2.2) consists of
hashing the document into an ¢(n)-bit long value (via an adequate hashing scheme),
and applying the restricted scheme to the resulting value. Thus, the second method
requires an additional assumption (i.e., the existence of “collision-free” hashing), and
so Theorem 6.2.2 (as stated) is actually proved using the first method. The second
method is presented because it offers other benefits; in particular, it yields signatures
of fixed length (i.e., the signature-length only depends on the key-length) and uses a
single invocation of the restricted scheme. The latter feature will play an important role
in subsequent sections (e.g., in Sections 6.3.1.2 and 6.4.1.3).

6.2.2.1. Signing (Augmented) Blocks
In this subsection we present a simple method for constructing general signature

schemes out of length-restricted ones, and in doing so we establish Theorem 6.2.2.

3 Recall that such triviality does not hold in the context of encryption schemes, not even in the private-key case.
See Section 5.3.2.
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6.2 LENGTH-RESTRICTED SIGNATURE SCHEME

Loosely speaking, the method consists of parsing the original document into blocks
(with adequate “linkage” between blocks), and applying the length-restricted scheme
to each (augmented) block.

Letfand (G, S, V) beasin Theorem 6.2.2. We construct a general signature scheme,
(G, S, V'), with G’ = G, by viewing documents as sequences of strings, each of length
¢'(n) = £(n)/O(1). That is, we associate & = « - - - o; with the sequence («y, ..., o),
where each ¢; has length £'(n). (At this point, the reader may think of €'(n) = £(n),
but actually we will use £'(n) = £(rn)/4 in order to make room for some auxiliary
information.)

To motivate the actual construction, we consider first the following simpler schemes
all aimed at producing secure signatures for arbitrary (documents viewed as) sequences
of £/(n)-bit long strings. The simplest scheme consists of just signing each of the strings
in the sequence. That is, the signature to the sequence (a1, ..., &;), is a sequence of
Bi’s, each being a signature (with respect to the length-restricted scheme) to the cor-
responding «;. This will not do, because an adversary, given the (single) signature
(B1, B2) to the sequence (o, an) wWith «; # «rp, can present (B2, B1) as a valid signature
to (o, 1) # (a1, ar2). So how about foiling this forgery by preventing a reordering
of the “atomic” signatures (i.e., the §;’); that is, how about signing the sequence
(q, ..., ;) by applying the restricted scheme to each pair (7, «;), rather than to «; it-
self? This will not do either, because an adversary, given a signature to the sequence
(a1, a2, r3), can easily present a signature to the sequence (o, ;). So we also need
to include in each £(n)-bit string the total number of ¢;’s in the sequence. But even
this is not enough, because given signatures to the sequences (a1, @») and (o}, @),
with o # o] and a, # @), an adversary can easily generate a signature to (o, o).
Thus, we have to prevent the forming of new sequences of “basic signatures” by com-
bining elements from different signature sequences. This can be done by associating
(say, at random) an identifier with each sequence and incorporating this identifier in
each £(n)-bit string to which the basic (restricted) signature scheme is applied. This
discussion yields the signature scheme presented next, where a signature to a message
(g, ..., &0y) consists of a sequence of (basic) signatures to statements of the (effec-
tive) form “the string «; is the i-th block, out of t blocks, in a message associate with
identifier r.”

Construction 6.2.3 (signing augmented blocks): Let £ and (G, S, V') be as in The-
orem 6.2.2. We construct a general signature scheme, (G', S', V"), with G' = G, by
considering documents as sequences of strings. We construct S' and V' as follows,
using G’ = G and £'(n) = £(n)/4:

Signing with S’: On input a signing-key s (in the range of G1(1")) and a document

a € {0, 1}, algorithm S’ first parses « into a sequence of blocks (a1, ..., &), such
that o is uniquely reconstructed from the o; s and each o; is an £'(n)-bit long string.*

4 The parsing rule should apply to strings of arbitrary length, regardless of whether or not this length is a multiple

of ¢/(n). For example, we may parse « as (@, ..., @) such that oy - - -y = o - 10/ and j €{0, 1, ..., £'(n) — 1}.
(Note that under this parsing rule, if || is a multiple of ¢'(n), then | - - - | = || + €' (n).)
509

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:11, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.003


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.003
https:/www.cambridge.org/core

DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

Next, S’ uniformly selects r € {0, 1}, Fori =1, ..., t, algorithm S’ computes
131' <~ SS(V’ t, ia ai)

where i and t are represented as ' (n)-bit long strings. That is, B; is essentially
a signature to the statement “a; is the i-th block, out of # blocks, in a sequence
associate with identifier ».” Finally, S’ outputs as signature the sequence

(1", t, ,31, ey /3;)
Verification with V': On input a verifying-key v (in the range of G,(1")), a docu-
ment o € {0, 1}*, and a sequence (r, t, B1, ...., B;), algorithm V' first parses o into

Ay, ..., Ay, using the same parsing rule as used by S'. Algorithm V' accepts if and
only if the following two conditions hold:

1. t' = t, wheret' is obtained in the parsing of « and t is part of the alleged signature.
2. Fori =1, ...t it holds that V,((r, t, i, ;), B;) = 1, where «; is obtained in the
parsing of o« and the rest are as in the corresponding parts of the alleged signature.

Clearly, the triplet (G’, S, V) satisfies Definition 6.1.1. We need to show that is also
inherits the security of (G, S, V). That is:

Proposition 6.2.4: Suppose that (G, S, V) is an C-restricted signature scheme that is
secure in the private-key (resp., public-key) model. Then (G', S, V'), as defined in
Construction 6.2.3, is a full-fledged signature scheme that is secure in the private-key
(resp., public-key) model.

Theorem 6.2.2 follows immediately from Proposition 6.2.4.

Proof: Intuitively, ignoring the unlikely case that two messages signed by S, were
assigned the same random identifier, a forged signature with respect to (G’, S’, V')
must contain some Ss-signature that was not contained in any of the S;-signatures
(provided in the attack). Thus, forgery with respect to (G’, ', V') yields forgery with
respect to (G, S, V). Indeed, the proof is by a reducibility argument, and it holds for
both the private-key and the public-key models.

Given an adversary A’ attacking the complex scheme (G’, §’, V'), we construct an
adversary A that attacks the £-restricted scheme, (G, S, V). In particular, 4 invokes A’
with input identical to its own input (which is the security parameter or the verification-
key, depending on the model), and uses its own oracle in order to emulate the oracle
S! for A’. This can be done in a straightforward manner; that is, algorithm A will
act as S, does by using the oracle S;. Specifically, 4 parses each query o’ of 4’ into
a corresponding sequence («, ..., @), uniformly selects an identifier 7, and obtains
Sy-signatures to (', ¢/, J, a}), for j =1, ..., ¢'. When A’ outputs a document-signature
pair relative to the complex scheme (G’, §’, V'), algorithm A tries to use this pair in
order to form a document-signature pair relative to the £-restricted scheme, (G, S, V).

We stress that from the point of view of adversary A’, the distribution of keys and
oracle answers that A provides it with is exactly as in a real attack on (G’, &', V).
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6.2 LENGTH-RESTRICTED SIGNATURE SCHEME

This is a crucial point, because we use the fact that events that occur in a real attack
of A" on (G’, ', V') occur with the same probability in the emulation of (G’, S, V')
by A.

Assume that with (non-negligible) probability &'(n), the (probabilistic polynomial-
time) algorithm A’ succeeds in existentially forging relative to the complex scheme
(G, S', V). We consider the following cases regarding the forging event:

1. The identifier supplied in the forged signature is different from all the random identi-

fiers supplied (by A4) as part of the signatures givento A’. In this case, each £-restricted
signature supplied as part of the forged (complex) signature yields existential forgery
relative to the £-restricted scheme.
Formally, let oV, ..., a™ be the sequence of queries made by A’, and let
¢, 0, 8, A Lt B™) be the correspondmg (complex) 51gnatures sup-
plied to 4’ by 4 (using S; to form the ,8 ’s) It follows that each 8 @ consists of a
sequence of S;-signatures to £(n)-bit strings starting with ) € {0, 1}*"/4 and that
the oracle S; was invoked (by A4) only on strings of this form. Let («, (7, ¢, B, ..., Bt))
be the output of 4’, where « is parsed as («y, ..., @), and suppose that applying ¥
to the output of A yields 1 (i.e., the output is a valid document-signature pair for the
complex scheme). The case hypothesis states that » % @, for all i’s. It follows that
each of the B;’s is an S;-signature to a string starting with € {0, 1}*®/4  and thus
different from all queries made to the oracle S;. Thus, each pair ((, ¢, i, ;), Bi)
is a valid document-signature pair (because V,(c, (7,1, Bi, ..., Br)) = 1 implies
Vo((r, t, i, &), B;) = 1), with a document different from all queries made to S;.
This yields a successful forgery with respect to the £-restricted scheme.

2. The identifier supplied in the forged signature equals the random identifier supplied
(by A) as part of exactly one of the signatures given to A’. In this case, existen-
tial forgery relative to the £-restricted scheme is obtained by considering the rela-
tion between the output of 4" and the single supplied signature having the same
identifier.

As in the previous case, let 'V, ..., «™ be the sequence of queries made by 4’, and
let O, ¢, BV, .., #™, 1, B™) be the corresponding (complex) signatures
supplied to 4’ by 4. Let («, (, ¢, B1, ..., B:)) be the output of A’, where « is parsed as
(a1, ..., &), and suppose that o # «'?) for all i’s and that V)(e, (r, 2, 1, ..., Br)) = 1.
The hypothesis of the current case is that there exists a unique i so that r» = r®,
We consider two subcases regarding the relation between ¢ and #:

e ¢ %t 1In this subcase, each ¢-restricted signature supplied as part of the forged
(complex) signature yields existential forgery relative to the £-restricted scheme.
The argument is analogous to the one employed in the previous case. Specifically,
here each of the ;s is an S;-signature to a string starting with (7, ¢), and thus dif-
ferent from all queries made to the oracle Sy (because these queries either start with
r = rorstart with (), 1) # (r, £)). Thus, each pair ((r, ¢, j, @;), B;) is a valid
document-signature pair with a document different from all queries made to S;.

e t =+ In this subcase, we use the hypothesis o # o), which (comblned w1th
t = t©) implies that there exists a j such that o; # o ® Where oz( is the ;™
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block in the parsing of o”). For this j, the string  (supplied as part of the forged
complex-signature) yields existential forgery relative to the £-restricted scheme.
Specifically, we have V,((, t, j, o), B;) = 1, whereas (r, ¢, j, «;) is different
from each query (", @, j’, ay,/)) made by 4 to S.

Justification for (r, ¢, j, a;) # (*©), 1@, j, otﬁ.i,,)): In case i’ # i, it must hold
that () = r (by the [Case 2] hypothesis regarding the uniqueness of i s.t.
r@ = ). Otherwise (i.e., in case i’ = i), either ;' # j or aﬁ.’,/) = ay) #aj,
where the inequality is due to the hypothesis regarding ;.

Thus, ((r, t, j, o), B;) is a valid document-signature pair with a document dif-
ferent from all queries made to ;.

3. The identifier supplied in the forged signature equals the random identifiers supplied
(by A) as part of at least two signatures given to A’. In particular, it follows that two
signatures given to 4 use the same random identifier. The probability that this event
occurs is at most

(m) Lot 2 p—tin)/4
2

However, m = poly(n) (since A’ runs in polynomial-time), and 2~4"/4 is negligible

(since ¢ is super-logarithmic). So this case occurs with negligible probability and
may be ignored.

Note that 4 can easily determine which of the cases occurs and act accordingly.’ Thus,
assuming that A’ forges relative to the complex scheme with non-negligible probabil-
ity &'(n), it follows that 4 forges relative to the length-restricted scheme with non-
negligible probability s(n) > &'(n) — poly(n) - 2~4"/4 in contradiction to the proposi-
tion’s hypothesis. H

Comment. We call the reader’s attention to the essential role of the hypothesis that
£ is super-logarithmic in the proof of Proposition 6.2.4. Indeed, Construction 6.2.3 is
insecure in case £(n) = O(logn). The reason is that by asking for polynomially many
signatures, the adversary may obtain two S;-signatures that use the same (random)
identifier. Furthermore, with some care, these signatures yield existential forgery (see
Exercise 6).

6.2.2.2. Signing a Hash Value

In this subsection, we present an alternative method for constructing general signature
schemes out of length-restricted ones. Loosely speaking, the method consists of hashing
the document into a short (fixed-length) string (via an adequate hashing scheme), and
applying the length-restricted signature scheme to the resulting hash-value. This two-
stage process is referred to as the hash and sign paradigm.

5 This observation only saves us a polynomial factor in the forging probability. That is, if 4 did not know which
part of the forged complex-signature to use for its own forgery, it could have just selected one at random (and
be correct with probability 1/poly(n) because there are only poly(n)-many possibilities).
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6.2 LENGTH-RESTRICTED SIGNATURE SCHEME

Let £ and (G, S, V') be as in Theorem 6.2.2. The second method of constructing a
general signature scheme out of (G, S, V') consists of first hashing the document into
an {(n)-bit long value and then applying the ¢-restricted scheme to the hashed value.
Thus, in addition to an £-restricted scheme, this method employs an adequate hashing
scheme. In particular, one way of implementing this method is based on “collision-free
hashing” (defined next). An alternative implementation, based on “universal one-way
hashing,” is deferred to Section 6.4.3.

Collision-Free Hashing Functions. Loosely speaking, a collision-free hashing scheme
(aka a collision-resistent hashing scheme) consists of a collection of functions {/; :
{0, 1}* — {0, 1}!}5¢(0,1)- such that given s and x it is easy to compute /(x), but given
arandom s it is hard to find x # x’ such that &,(x) = Ay (x").

Definition 6.2.5 (collision-free hashing functions): Let £ : N — N. 4 collection of
Sfunctions {hy : {0, 1}* — {0, 1}¥0D} 1 1)+ is called collision-free hashing if there ex-
ists a probabilistic polynomial-time algorithm I such that the following holds:

1. (admissible indexing — technical):® For some polynomial p, all sufficiently large n's,
and every s in the range of [(1"), it holds that n < p(|s|). Furthermore, n can be
computed in polynomial-time from s.

2. (efficient evaluation): There exists a polynomial-time algorithm that, given s and x,
returns hg(x).

3. (hard-to-form collisions): We say that the pair (x, x") forms a collision under the
function 2 if h(x) = h(x") butx # x'. We require that every probabilistic polynomial-
time algorithm, given 1(1") as input, outputs a collision under h 1~ with negligible
probability. That is, for every probabilistic polynomial-time algorithm A, every pos-
itive polynomial p, and all sufficiently large n's,

1
Pr|A(1(1%)) is a collision under /()| < ——
[ (1 )] p(n)

where the probability is taken over the internal coin tosses of algorithms I and A.

The function £ is called the range specifier of the collection.

Note that the range specifier must be super-logarithmic (or else one may easily find a
collision by selecting 2¢™ + 1 different pre-images and computing their image under
the function). In Section 6.2.3, we show how to construct collision-free hashing func-
tions using claw-free collections. But first, we show how to use the former in order to
convert a length-restricted signature scheme into a full-fledged one.

6 This condition is made merely in order to avoid annoying technicalities. In particular, this condition allows the
collision-forming adversary to run for poly(n)-time (because by this condition n = poly(|s])), as well as allows
for determining » from s. Note that |s| = poly(n) holds by definition of /.
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Construction 6.2.6 (hash and sign): Let £ and (G, S, V') be as in Theorem 6.2.2, and
let {h, : {0, 1}* — {0, 1}*UrD}, (0.1}« be as in Definition 6.2.5. We construct a general
signature scheme, (G', S', V'), as follows:

Key-generation with G: On input 1”, algorithm G’ first invokes G to obtain (s, v) <
G(1™). Next, it invokes I, the indexing algorithm of the collision-free hashing col-
lection, to obtain r < I(1"). Finally, G’ outputs the pair ((r, s), (r, v)), where (r, s)
serves as a signing-key and (r, v) serves as a verification-key.

Signing with S’: On input a signing-key (r, s) (in the range of G',(1")) and a document
a € {0, 1}*, algorithm S’ invokes S once to produce and output Ss(h,()).

Verification with V': On input a verifying-key (r, v) (in the range of G,(1")), a docu-
ment « € {0, 1}*, and an alleged signature B, algorithm V' invokes V and outputs

Vo(hr(a), B).

Note that the resulting signature scheme applies the original one once (per each invo-
cation of the resulting scheme). We stress that the length of resulting signatures only
depend on the length of the signing-key and is independent of the document being
signed; that is, |S] ()| = |S;(/-())|, which in turn is bounded by poly(|s|, £(|])).

Proposition 6.2.7: Suppose that (G, S, V) is an L-restricted signature scheme that
is secure in the private-key (resp., public-key) model. Suppose that {h, : {0, 1}* —
{0, l}l("‘)}re{o,l}* is indeed a collision-free hashing collection. Then (G', S', V'), as
defined in Construction 6.2.6, is a full-fledged signature scheme that is secure in the
private-key (resp., public-key) model.

Proof: Intuitively, the security of (G’, §’, V') follows from the security of (G, S, V)
and the collision-freeness property of the collection {#, }. Specifically, forgery relative
to (G', §’, V') can be obtained either by a forged S-signature to a hash-value different
from all hash-values that appeared in the attack or by forming a collision under the
hash function. The actual proof is by a reducibility argument. Given an adversary A’
attacking the complex scheme (G’, ', V'), we construct an adversary A that attacks the
£-restricted scheme, (G, S, V'), as well as an algorithm B forming collisions under the
hashing collection {#, }. Both 4 and B will have running time related to that of 4’. We
show if A’ is successful with non-negligible probability, than the same holds for either
A or B. Thus, in either case, we reach a contradiction. We start with the description of
algorithm A, which is designed to attack the £-restricted scheme (G, S, V). We stress
that almost the same description applies in both the private-key and public-key case.
On input x, which equals the security parameter 1” in the private-key case and a
verification-key v otherwise (i.e., in the public-key case), the adversary A operates as
follows. First, 4 uses / (the indexing algorithm of the collision-free hashing collection)
to obtain r <— [(1"), exactly as done in the second step of G’. Next, 4 invokes A’ (on
input 1” or (r, v), depending on the case) and uses » as well as its own oracle S; in order
to emulate the oracle §]  for 4". The emulation is done in a straightforward manner;
that is, algorithm 4 will act as 5] | does by using the oracle S; (i.e., to answer query
q, algorithm A makes the query 4,(g)). When 4’ outputs a document-signature pair
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relative to the complex scheme (G', S’, V'), algorithm A tries to use this pair in order
to form a document-signature pair relative to the £-restricted scheme, (G, S, V). That
is, if A’ outputs the document-signature pair (o, 8), then 4 will output the document-
signature pair (4, («), B).

As in the proof of Proposition 6.2.4, we stress that the distribution of keys and oracle
answers that 4 provides 4’ is exactly as in a real attack of 4’ on (G’, §’, V). This is
a crucial point, because we use the fact that events that occur in a real attack of 4" on
(G, §', V') occur with the same probability in the emulation of (G', S’, V') by 4.

Assume that with (non-negligible) probability &’(n), the (probabilistic polynomial-
time) algorithm A4’ succeeds in existentially forging relative to the complex scheme
(G, §', V). We consider the following two cases regarding the forging event, letting
(), D) denote the i-th query and answer pair made by A’, and («, B) denote the
forged document-signature pair that A" outputs (in case of success):

Case 1: h,.(a) # h.(a®)foralli’s. (Thatis, the hash-value used in the forged signature
is different from all hash-values used in the queries to S;.) In this case, the pair
(h, (), B) constitutes a success in existential forgery relative to the £-restricted
scheme.

Case 2: h,(a) = h,.(a") for some i. (That is, the hash-value used in the forged sig-
nature equals the hash-value used in the i-th query to Sy, although a # «®).) In this
case, the pair (o, ")) forms a collision under /, (and we do not obtain success in
existential forgery relative to the £-restricted scheme).

Thus, if Case 1 occurs with probability at least '(n)/2, then 4 succeeds in its attack
on (G, S, V) with probability at least £'(n)/2, which contradicts the security of the
£-restricted scheme (G, S, V). On the other hand, if Case 2 occurs with probability
at least ¢'(n)/2, then we derive a contradiction to the collision-freeness of the hashing
collection {4, : {0, 1}* — {0, 1}“"”},6{0,1}*.Details (regarding the second case) follow.

We construct an algorithm, denoted B, that given » < /(1"), attempts to form col-
lisions under %, as follows. On input », algorithm B generates (s, v) < G(1") and
emulates the attack of 4 on this instance of the ¢-restricted scheme, with the exception
that B does not invoke algorithm / to obtain an index of a hash function but rather uses
the index r (given to it as input). Recall that 4, in turn, emulates an attack of 4’ on
the signing-oracle S; , and that 4 answers the query ¢’ made by A’ by forwarding the
query ¢ = h,(q")to Sy. Thus, B actually emulates the attack of A’ (on the signing-oracle
S, ;) and does so in a straightforward manner; that is, to answer query ¢’ made by 4/,
algorithm B first obtains ¢ = /,(¢") (using its knowledge of r) and then answers with
Ss(q) (using its knowledge of s). Finally, when A’ outputs a forged document-signature
pair, algorithm B checks whether Case 2 occurs (i.e., whether 4, (a) = A,(a")) holds
for some i), in which case it obtains (and outputs) a collision under /,. (Note that in
the public-key case, B invokes 4’ on input (r, v), whereas in the private-key case, B
invokes A’ on input 1”. Thus, in the private-key case, B actually does not use » but
rather only uses an oracle access to 4,..)

We stress that from the point of view of the emulated adversary A, the execu-
tion is distributed exactly as in its attack on (G, S, V). Thus, since we assumed that
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the second case occurs with probability at least ¢/(n)/2 in a real attack, it follows
that B succeeds in forming a collision under 4 ,(1») with probability at least &'(n)/2.
This contradicts the collision-freeness of the hashing functions, and the proposition
follows. M

Comment. For the private-key case, the proof of Proposition 6.2.7 actually established
a stronger claim than stated. Specifically, the proof holds even for a weaker definition of
collision-free hashing in which the adversary is not given a description of the hashing
function, but can rather obtain its value at any pre-image of its choice. This observation
is further pursued in Section 6.3.1.3.

On Using the Hash-and-Sign Paradigm in Practice. The hash-and-sign paradigm,
underlying Construction 6.2.6, is often used in practice. Specifically, a document is
signed using a two-stage process: First, the document is hashed into a (relatively) short
bit string, and next, a basic signature scheme is applied to the resulting string. One
appealing feature of this process is that the length of resulting signatures only depends
on the length of the signing-key (and is independent of the document being signed). We
stress that this process yields a secure signature scheme only if the hashing scheme is
collision-free (as defined previously). In Section 6.2.3, we present several constructions
of collision-free hashing functions (based on general assumptions). Alternatively, one
may indeed postulate that certain off-the-shelf products (such as MD5 or SHA) are
collision-free, but such assumptions need to be seriously examined (and indeed may
turn out false).” We stress that using a hashing scheme, in the two-stage (hash-and-
sign) process, without seriously evaluating whether or not it is collision-free is a very
dangerous practice.

We comment that a variant on the hash-and-sign paradigm will be presented in
Construction 6.4.30. The two variants are compared in Section 6.4.3.4.

6.2.3.* Constructing Collision-Free Hashing Functions

In view of the relevance of collision-free hashing to signature schemes, we now take a
small detour from the main topic and consider the construction of collision-free hash-
ing. Most importantly, we show how to construct collision-free hashing functions using
a claw-free collection of permutations. In addition, we show two different construc-
tions that use a restricted type of collision-free hashing in order to obtain full-fledged
collision-free hashing.

6.2.3.1. A Construction Based on Claw-Free Permutations

In this subsection, we show how to construct collision-free hashing functions using a
claw-free collection of permutations as defined in Section 2.4.5 of Volume 1. Recall
that such a collection consists of pairs of permutations, (2, f.!), such that both /s

7 See, for example, [76].
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are permutations over a set Dy, augmented with a probabilistic polynomial-time index
selection algorithm / such that the following conditions hold:

1. The domain is easy to sample: There exists a probabilistic polynomial-time algorithm
that, given s, outputs a string uniformly distributed over Dj.

2. The permutations are easy to evaluate: There exists a polynomial-time algorithm
that, given s, o and x € Dy, outputs 7 (x).

3. It is hard to form claws: Every probabilistic polynomial-time algorithm, given
s < I(1"), outputs a pair (x, y) such that f°(x) = f!(y) with at most negligible
probability. That is, a pair (x, y) satisfying f°(x) = £.(») is called a claw for index
s. (We stress that x = y may hold.) Then, it is required that for every probabilistic
polynomial-time algorithm, A’, every positive polynomial p(-), and all sufficiently
large n’s

/ n 1
Pr[4'(1(1") € Cian] < D)

where C; denote the set of claws for index s.

Note that since [0 and f' are permutations over the same set, many claws do exists
(i.e., |Cs| = | Ds]). However, the third condition postulates that for s generated by /(1%),
such claws are hard to find. We may assume, without loss of generality, that for some
¢:N — N and all s, it holds that D, C {0, 1}*(sD_ Indeed, ¢ must be polynomially
bounded. For simplicity, we assume that /(1”) € {0, 1}". Recall that such collections
of permutation pairs can be constructed based on the standard DLP or factoring in-
tractability assumptions (see Section 2.4.5).

Construction 6.2.8 (collision-free hashing based on claw-free permutations pairs):
Given an index selecting algorithm I for a collection of permutation pairs {( £, f1)}s
as in the foregoing discussion, we construct a collection of hashing functions {h ) :
{0, 1}* — {0, 11"} 1eq0, 1y x (0,1 as follows:

Index selection algorithm: On input 1%, we first invoke I to obtain s <— I(1"), and next
use the domain sampler to obtain a string r that is uniformly distributed in D.
We output the index (s, r) € {0, 1} x {0, 1}, which corresponds to the hashing
function

def

his(x) = fOUf5 - S (0)

where yi - -+ y; is a prefix-free encoding of x; that is, for any x # x' the coding
of x is not a prefix of the coding of x'. For example, we may code x1x; - - - X, by
X1X1X2X2 « + + XX, 01.

Evaluation algorithm: Given an index (s, r) and a string x, we compute h . (x) in
a straightforward manner. That is, first we compute the prefix-free encoding of x,
denoted y, - - - y;. Next, we use the evaluation algorithm of the claw-free collection
to compute f3' fi* - fI"(r), which is the desired output.
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Actually, as will become evident from the proof of Proposition 6.2.9, as far as
Construction 6.2.8 is concerned, the definition of claw-free permutations can be re-
laxed: We do not need an algorithm that, given an index s, generates a uniformly
distributed element in Dy; any efficient algorithm that generates elements in D, will do
(regardless of the distribution induced on Dy, and in particular, even if the algorithm
always outputs the same element in Dy).

Proposition 6.2.9: Suppose that the collection of permutation pairs {(f2, f}s, to-
gether with the index-selecting algorithm I, constitutes a claw-free collection. Then,
the function ensemble {h ) : {0, 1}* — {0, l}w}(s,r)e{O,l}*x{O,l}* as defined in Con-
struction 6.2.8 constitutes a collision-free hashing with a range specifying function €'
satisfying £'(n + £(n)) = £(n).

Proof: Intuitively, forming collisions under /4, ) means finding two different sequences
of functions from { £, '} that (when applied to ) yield the same image (e.g., f.! o
f20 f2%r) = flo fl(r) o £1(r)). Since these two sequences cannot be a prefix of one
another, it must be that somewhere along the process (of applying these f’s), the
application of two different functions yields the same image (i.e., a claw).

The proof is by a reducibility argument. Given an algorithm A’ that on input (s, )
forms a collision under 4, ), we construct an algorithm A that on input s forms a
claw for index s. On input s (supposedly generated by /(1")), algorithm A4 selects r
(uniformly) in Dy, and invokes algorithm A4’ on input (s, 7). Suppose that 4’ outputs a
pair (x, x’) so that A »y(x) = h,(x") but x # x’. Without loss of generality,® assume
that the coding of x equals y; ---y;_10z;11 - - - z;, and that the coding of x’ equals
yi---yi—tlzi, | ---z,. By the definition of /), it follows that

fsyl . ,,fSnySOfsziH . fszt(’”) — fsyl . fsymfslfszz/‘ﬂ L fSZ;/(V) (6.1)

Since each of the f’sis 1-1, Eq. (6.1) implies that

f:gongiH .. f:th(r) — f;l ﬁZ:+1 e ng”, (]/') (62)

Computing w Lf gz Sfi(r) and w' & i 57 (r), algorithm A obtains a pair

(w, w') such that f2(w) = f!(w’). Thus, algorithm A4 forms claws for index 7(1")
with probability that is lower-bounded by the probability that A" forms a collision
under % /(1n), where I’ is the index-selection algorithm as defined in Construction 6.2.8.
Using the hypothesis that the collection of pairs (together with 1) is claw-free, the
proposition follows. H

8 Let C(x) (resp., C(x")) denote the prefix-free coding of x (resp., x). Then C(x) is not a prefix of C(x’), and
C(x") is not a prefix of C(x). It follows that C(x) = uv and C(x") = uv’, where v and v’ differ in their leftmost
bit. Without loss of generality, we may assume that the leftmost bit of v is 0, and the leftmost bit of v is 1.
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6.2.3.2. Collision-Free Hashing via Block-Chaining

In this subsection, we show how a restricted type of Collision-Free Hashing (CFH) can
be used to obtain full-fledge collision-free hashing (CFH). Specifically, we refer to the
following restriction of Definition 6.2.5:

Definition 6.2.10 (length-restricted collision-free hashing functions): Let ¢/, £ : N —
N. 4 collection of functions {hy : {0, 1}¢UD — {0, 1}¢0D} (o 1y is called ¢'-restricted
collision-free hashing if there exists a probabilistic polynomial-time algorithm I such
that the following holds:

1. (admissible indexing — technical): As in Definition 6.2.5.

2. (efficient evaluation): There exists a polynomial-time algorithm that, given s and
x € {0, 1}¢GD returns hy(x).

3. (hard-to-form collisions): 4s in Definition 6.2.5, we say that the pair (x, x') forms
a collision under the function & if h(x) = h(x') but x # x'. We require that ev-
ery probabilistic polynomial-time algorithm, given I(1") as input, outputs a pair
in {0, 130D x {0, 1Y) that forms a collision under h rm with negligible proba-
bility. That is, for every probabilistic polynomial-time algorithm A, every positive
polynomial p, and all sufficiently large n's,

T - .. 1
Pr[A(I(1M) € {0, 1}**0709D js a collision under A ;n] < )
p(n

where the probability is taken over the internal coin tosses of algorithms I and A.

Indeed, we focus on the case £'(n) = poly(n), or else the hardness condition holds
vacuously (since no polynomial-time algorithm can print a pair of strings of super-
polynomial length). On the other hand, we only care about the case ¢'(n) > £(n) (oth-
erwise the functions may be 1-1). Finally, recall that £ must be super-logarithmic.
Following is a simple construction of full-fledge collision-free hashing based on any
2¢-restricted collision-free hashing (see also Figure 6.2).

Construction 6.2.11 (from 2¢-restricted CFH to full-fledged CFH): Let {A :
{0, 1}240sD — {0, 13400y 10.1y+ be a collection of functions. Consider the collection
{hs : {0, 1}* — {0, 12D} 0.1)+, where hy(x) is defined by the following process,
which we call block-chaining:

1. Break x into t = [1x]/€(]s])] consecutive blocks, while possibly padding the last
block with 0, such that each block has length {(|s|). Denote these £(|s|)-bit long
blocks by x1, ..., x;. That is, x - - - x; = x 0" ¢IsD=Ix],

[ x1 | x | x3 | x4 | x5 | x6 | x1 |

2 b 2 b b b
yl hS y2 hS y3 hS y4 hS y5 hS y6 hS y7

Figure 6.2: Collision-free hashing via block-chaining (for r = 7).
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For the sake of uniformity, in case |x| < £(|s|), we lett = 2 and x,x; = x0>(sD=IxI,
On the other hand, we may assume that |x| < 2°D, and so |x| can be represented
by an £(|s|)-bit long string.’

2. Let y; dzefxl. Fori =2, ..,t, compute y; = h\(yi—1x;).

3. Set hy(x) to equal (y;, |x|).

An interesting property of Construction 6.2.11 is that it allows for computing the hash-
value of an input string while processing the input in an on-line fashion; that is, the
implementation of the hashing process may process the input x in a block-by-block
manner, while storing only the current block and a small amount of state information
(i.e., the current y; and the number of blocks encountered so far). This property is
important in applications in which one wishes to hash a long stream of input bits.

Proposition 6.2.12: Let {h : {0, 1}>ID — (0, 1}¢0D} 0.1y and {hy : {0, 1}* —
{0, 132400}, 10,1y« be as in Construction 6.2.11, and suppose that the former is a col-
lection of 2€-restricted collision-free hashing functions. Then the latter constitutes a
(full-fledged) collection of collision-free hashing functions.

Proof: Recall that forming a collision under /; means finding x # x’ such that 4,(x) =
hg(x"). By the definition of 4, this means that (y;, [x|) = hy(x) = hy(x") = (3, |x]),
where ¢, ¢ and y, y, are determined by /,(x) and A,(x"). In particular, it follows that
|x| = |x’|andsot = ¢’ (where, except when |x| < £(|s]),itholdsthatt = [|x|/£(|s])] =
[x"|/€(]s[)] = t’). Recall that y, = y, and consider two cases:

Case 1: If (y;—1,x:) # (y,_;,x;), then we obtain a collision under A} (since
h(yi—1x;) =y =y, = h,(y,_,x;)), and derive a contradiction to its collision-free
hypothesis.

Case 2: Otherwise (y,—1, X;) = (¥,_;, x,), and we consider the two corresponding cases
with respect to the relation of (y,_», x,—1) to (y,_,, x,_,); that is, we further consider
whether or not (y,_2, x,—1) equals (y,_,, x,_;).

Eventually, since x # x’, we get to a situation in which y; = y/ and (y;—1, x;) #
(i_;, x]), which is handled as in the first case.

We now provide a formal implementation of this intuitive argument. Suppose toward the
contradiction that there exists a probabilistic polynomial-time algorithm A that on input
s forms a collision under /4, (with certain probability). Then, we construct an algorithm
that will, with similar probability, succeed to form a suitable (i.e., length-restricted)
collision under /. Algorithm A’(s) operates as follows:

1. A'(s) invokes A(s) and obtains (x, x’) < A(s).

If either /,(x) # hg(x") or x = x’, then A failed, and A4’ halts without output. In the
sequel, we assume that s,(x) = hy(x") and x # x'.

9 The adversary trying to form collisions with respect to / runs in poly(|s|)-time. Using £(|s|) = w(log|s|), it
follows that such an adversary cannot output a string of length 2¢05). (The same also holds, of course, for
legitimate usage of the hashing function.)
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2. A'(s) computes t,xi,...,x; and yi, ...,y (resp., ¢, x{,....,x; and y|, ..., y)) as
in Construction 6.2.11. Next, A'(s) finds an i € {2, ..., t} such that y; = »/ and
(Vi-1, x;) # (¥{_,, x}), and outputs the pair (y;—1x;, yi_,x;). (We will show next that
such an 7 indeed exists.)

Note that (since /(x) = hy(x")) it holds that = ' and y; = ;. On the other hand,
(X1, «eey X;) # (X1, ..., X7). As argued in the motivating discussion, it follows that there
existsani € {2, ..., t} such that y; = y/ and (y;—1, x;) # (¥/_,, X/).

On the existence of a suitable i (more details): Suppose, toward the contra-
diction that, for every i € {2, ..., ¢}, it holds that either y; # y/ or (yi—1, X;) =
(¥i_,, x}). Using the hypothesis y, = y;, it follows (by descending induction on
J) that (y;—1, x;) = (V;_, x}), for j =1¢,...,2. Using y; = x; and y| = xj, it
follows that x; = x;. for every j =1, ..., t, which contradicts the hypothesis

(1, oo X)) # (x], - x)).

Clearly, the output pair (y;—1x;, y/_,x;) constitutes a collision under 4, (because
h;()}i—lxi) =)i = y,f = h;(ylfflxlf), whereas y;_1x; # )’lez{)-

Thus, whenever A(s) forms a collision under /4y, it holds that 4'(s) outputs a pair of
2{(s)-bit long strings that form a collision under /4. The proposition follows. N

Variants on Construction 6.2.11. The said construction can be generalized to use
any (non-trivial) length-restricted collision-free hashing. That is, for any ¢’ > ¢, let
{h. 2 {0, 1} ID — {0, 1}40sD} o 11~ be a collection of ¢'-restricted collision-free hash-
ing functions, and consider a parsing of the input string x into a sequence xi, ..., X;
of (¢/(|s|) — £(]s]))-bit long blocks. Then we get a full-fledged collision-free hashing
family {A; : {0, 1}* — {0, 1}2°4sD} by letting /,(x) = (v, |x|), where y; = A’ (yi_1x;)
fori =2, ..., t. (Construction 6.2.11 is obtained as a special case, for £'(n) = 2£(n).) In
case £'(n) — £(n) = w(logn), we obtain another variant by letting A,(x) = A (y;, |x|)
(rather than /,(x) = (34, |x1|)), where y, is as in Construction 6.2.11. The latter variant is
quite popular. In establishing its security, when considering a collision /;(x) = hs(x’),
we distinguish the case (y;, |x|) = (y;, [x']) (which is handled as in the proof of
Proposition 6.2.12) from the case (y;, |x|) # (y;, |x]) (which yields an immediate col-
lision under £).

6.2.3.3. Collision-Free Hashing via Tree-Hashing

Using 2¢-restricted collision-free hashing functions, we now present an alternative
construction of (full-fledged) collision-free hashing functions. The alternative con-
struction will have the extra property of supporting verification of a bit in the input
(with respect to the hash-value) within complexity that is independent of the length of
the input.

Construction 6.2.13 (from 2¢-restricted CFH to full-fledged CFH — an alternative
construction (see also Figure 6.3.)): Let {h. : {0, 1}*UsD — {0, 1}40sD} 1.1y« be a
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Figure 6.3: Collision-free hashing via tree-chaining (for ¢ = 8).

collection of functions. Consider the collection {hy : {0, 1}* — {0, 1}?“UD} 1.1y,
where hy(x) is defined by the following process, called tree-hashing:

1. Break x into t & 2Mo0(x1/D consecutive blocks, while possibly adding dummy
0-blocks and padding the last block with 0%, such that each block has length £(]s]).
Denote these {(|s|)-bit long blocks by xy, ..., x;. That is, x; - - - x, = x0""tUsD=II,

Let d = log, t, and note that d is a positive integer.

Again, for the sake of uniformity, in case |x| < £(|s|), we let t =2 and x1x, =
x02YUD=II_On the other hand, again, we assume that |x| < 26D, and so |x| can be
represented by an {(|s|)-bit long string.

2. Fori=1,..,t lety;; défx,».

3. Forj=d—1,.,1,0andi =1,..,2/, compute y;; = h(yj112-1Yj+1,2)-

4. Set hy(x) to equal (yo1, |x|).

That is, hashing is performed by placing the £(|s|)-bit long blocks of x at the leaves of
a binary tree of depth d, and computing the values of internal nodes by applying 4/ to
the values associated with the two children (of the node). The final hash-value consists
of the value associated with the root (i.e., the only level-0 node) and the length of x.

Proposition 6.2.14: Let {h’ : {0, 1}**5D — {0, 1YY 0.1y and {hy : {0, 1}* —
{0, 132400} c0.1)+ be as in Construction 6.2.13, and suppose that the former is a col-
lection of 2L-restricted collision-free hashing functions. Then the latter constitutes a
(full-fledged) collection of collision-free hashing functions.

Proof Sketch: Recall that forming a collision under /; means finding x # x’ such that
hs(x) = hy(x). By the definition of &g, this means that (yo 1, |x|) = As(x) = hy(x') =
(¥0.1> 1X']), where (¢, d) and yo1 (resp., (', d') and y; ,) are determined by A (x) (resp.,
hy(x")). In particular, it follows that |x| = |x’] and so d = d’ (because 2¢ =t =t =
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6.3 CONSTRUCTIONS OF MESSAGE-AUTHENTICATION SCHEMES

24"). Recall that yg | = ¥o.1» and let us state this fact by saying that for j = 0 and for
everyi € {1, ...,2/},itholdsthaty;; = y}’i. Starting with j = 0, we consider two cases
(for level j + 1 in the tree):

Case 1: If for some i € {1, ..., 2/*!} it holds that Vitli # J’}+1,i’ then we obtain a
collision under %/, and derive a contradiction to its collision-free hypothesis. Specif-
ically, the collision is obtained because z &ef Vj+1,2[i/21-1Yj+1,2i 21 18 different from

def
2" = Visrani-1Y 41,2101, Whereas h(z) = yj i1 = V) 1 = h(2).

Case 2: Otherwise foreveryi € {1, ..., 2/*1}, it holds that Vitli = y}H’[. In this case,

we consider the next level.

Eventually, since x # x’, we get to a situatiogl fin which for some j € {1, ...,d —
1} and saople i €{l,..., 2/t it holds that z = Yi+1,21i/21-1Yj+1,21i/2] 18 different

c .
fromz' = ¥/ 550121V 41.211/27> Whereas h(z) = v i1 = V) 1/ = hi(2'). This
situation is handled as in the first case.

The actual argument proceeds as in the proof of Proposition 6.2.12. W

A Local Verification Property. Construction 6.2.13 has the extra property of support-
ing efficient verification of bits in x with respect to the hash-value. That is, suppose
that for a randomly selected /4, one party holds x and the other party holds /,(x).
Then, for every i, the first party may provide a short (efficiently verifiable) certifi-
cate that x; is indeed the i-th block of x. The certificate consists of the sequence
of pairs (ya,21i/21-1, Y, 21i/21) ---» (V1,2i/241—1, Y1,27i/2¢1), Where d and the y;;’s are
computed as in Construction 6.2.13 (and (yo,1, |x|) = hs(x)). The certificate is ver-
ified by checking whether or not y;_; ;aa-i+17 = hi(y; 21 j24-1+17-1¥j,27i j2¢-i+17), for
every j € {1, ..., d}. Note that if the first party can present two different values for
the i-th block of x along with corresponding certificates, then it can also form col-
lisions under 4. Construction 6.2.13 and its local-verification property were already
used in this work (i.e., in the construction of highly- efficient argument systems, pre-
sented in Section 4.8.4 of Volume 1). Jumping ahead, we note the similarity between
the local-verification property of Construction 6.2.13 and the authentication-tree of
Section 6.4.2.2.

6.3. Constructions of Message-Authentication Schemes

In this section, we present several constructions of secure message-authentication
schemes (referred to earlier as secure private-key signature schemes). Here, we some-
times refer to such a scheme by the popular abbreviation MAC (which actually abbre-
viates the more traditional term of a Message Authentication Code).

6.3.1. Applying a Pseudorandom Function to the Document

A scheme for message authentication can be obtained by applying a pseudorandom
function (specified by the key) to the message (which one wishes to authenticate). The
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

simplest implementation of this idea is presented in Section 6.3.1.1, whereas more
sophisticated implementations are presented in Sections 6.3.1.2 and 6.3.1.3.

6.3.1.1. A Simple Construction and a Plausibility Result

Message-authentication schemes can be easily constructed using pseudorandom
functions (as defined in Section 3.6 of Volume 1). Specifically, by Theorem 6.2.2,
it suffices to construct an £-restricted message-authentication scheme for any super-
logarithmically growing £. Indeed, this is our starting point.

Construction 6.3.1 (an ¢-restricted MAC based on pseudorandom functions): Let ¢
be a super-logarithmically growing function, and { f; : {0, 1}40sD — {0, I}Z“S')}se{o’”*
be as in Definition 3.6.4. We construct an £-restricted message-authentication scheme,

(G, S, V), as follows:

Key-generation with G: On input 1", we uniformly select s € {0, 1}", and output the
key-pair (s, s). (Indeed, the verification-key equals the signing-key.)

Signing with S: On input a signing-key s € {0, 1}" and an €(n)-bit string o, we compute
and output fi(o) as a signature of «.

Verification with V': On input a verification-key s € {0, 1}, an £(n)-bit string o, and
an alleged signature 3, we accept if and only if B = f(@).

Indeed, signing amounts to applying f; to the given document string, and verification
amounts to comparing a given value to the result of applying f; to the document. Analo-
gous constructions can be presented by using the generalized notions of pseudorandom
functions defined in Definitions 3.6.9 and 3.6.12 (see further comments in the follow-
ing subsections). In particular, using a pseudorandom function ensemble of the form
{fs : {0, 1}* — {0, 1}|S‘}S€{O,1}*, we obtain a general message-authentication scheme
(rather than a length-restricted one). In the following proof, we only demonstrate the
security of the £-restricted message-authentication scheme of Construction 6.3.1. (The
security of the general message-authentication scheme can be established analogously;
see Exercise 8.)

Proposition 6.3.2: Suppose that {f; : {0, 1}*05D — {0, 1}05D} 101y is a pseudoran-
dom function, and that £ is a super-logarithmically growing function. Then Construc-
tion 6.3.1 constitutes a secure {-restricted message-authentication scheme.

Proof: The proof follows the general methodology suggested in Section 3.6.3. Specif-
ically, we consider the security of an ideal scheme in which the pseudorandom function
is replaced by a truly random function (mapping £(n)-bit long strings to £(n)-bit long
strings). Clearly, an adversary that obtains the values of this random function at ar-
guments of its choice cannot predict its value at a new point with probability greater
than 274", Thus, an adversary attacking the ideal scheme may succeed in existen-
tial forgery with at most negligible probability. The same must hold for any efficient
adversary that attacks the actual scheme, because otherwise such an adversary yields
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6.3 CONSTRUCTIONS OF MESSAGE-AUTHENTICATION SCHEMES

a violation of the pseudorandomness of {f; : {0, 1} — {0, 1}0sD} 1 ;). Details
follow.

The actual proofis by a reducibility argument. Given a probabilistic polynomial-time
A attacking the scheme (G, S, V'), we consider what happens when A attacks an ideal
scheme in which a random function is used instead of a pseudorandom one. That is, we
refer to two experiments:

1. Machine A attacks the actual scheme: On input 1”, machine 4 is given oracle access
to (the signing process) f; : {0, 1}V — {0, 1}, where s is uniformly selected in
{0, 1}". After making some queries of its choice, 4 outputs a pair («, 8), where
« is different from all its queries. Machine A4 is deemed successful if and only if
B = fs(a).

2. Machine A attacks the ideal scheme: On input 1”7, machine 4 is given oracle access
to a function ¢ : {0, 1}® — {0, 1}, uniformly selected among all such possible
functions. After making some queries of its choice, 4 outputs a pair («, ), where
« is different from all its queries. Again, 4 is deemed successful if and only if
B = ¢(a).

Clearly, A’s success probability in this experiment is at most 2~ which is a
negligible function (since £ is super-logarithmic).

Assuming that 4’s success probability in the actual attack is non-negligible, we derive
a contradiction to the pseudorandomness of the function ensemble { f;}. Specifically,
we consider a distinguisher D that, on input 1” and oracle access to a function f :
{0, 1}¥0) — {0, 1}, behaves as follows: First D emulates the actions of A, while
answering A4’s queries using its oracle . When A4 outputs a pair (¢, 8), the distinguisher
makes one additional oracle query to f and outputs 1 if and only if f(«) = 8.

Note that when f is selected uniformly among all possible {0, 1} — {0, 1}¢™
functions, D emulates an attack of 4 on the ideal scheme, and thus outputs 1 with
negligible probability (as explained in the beginning of the proof). On the other hand,
if f is uniformly selected in { f;}se0,1)», then D emulates an attack of 4 on the actual
scheme, and thus (due to the contradiction hypothesis) outputs 1 with non-negligible
probability. We reach a contradiction to the pseudorandomness of { fi}sc(0,1)». The
proposition follows. H

A Plausibility Result. Combining Theorem 6.2.2, Proposition 6.3.2, and Corol-
lary 3.6.7, it follows that the existence of one-way functions implies the existence
of message-authentication schemes. The converse also holds; see Exercise 7. Thus, we
have:

Theorem 6.3.3: Secure message-authentication schemes exist if and only if one-way
functions exist.

In contrast to the feasibility result stated in Theorem 6.3.3, we now present alterna-
tive ways of using pseudorandom functions to obtain secure message-authentication
schemes (MACs). These alternatives yield more efficient schemes, where efficiency is
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

measured in terms of the length of the signatures and the time it takes to produce and
verify them.

6.3.1.2.* Using the Hash-and-Sign Paradigm

Theorem 6.3.3 was proved by combining the length-restricted MAC of Construc-
tion 6.3.1 with the simple but wasteful idea of providing signatures (authentication
tags) for each block of the document (i.e., Construction 6.2.3). In particular, the signa-
ture produced this way is longer than the document. Instead, here we suggest using the
second method of converting length-restricted MACs into full-fledged ones; that is, the
hash-and-sign method of Construction 6.2.6. This will yield signatures of a fixed length
(i.e., independent of the length of the document). Combining the hash-and-sign method
with a length-restricted MAC of Construction 6.3.1 (which is based on pseudorandom
functions), we obtain the following construction:

Construction 6.3.4 (hash and sign using pseudorandom functions): Let {f; :
{0, 1}1 — {0, 1}}5c(0.1) be a pseudorandom function ensemble and {h, : {0, 1}* —
{0, 1}I1},.c10.1)+ be a collection of collision-free hashing functions. Furthermore, for
simplicity we assume that, when invoked on input 1", the indexing algorithm I of the
collision-free hashing collection outputs an n-bit long index. The general message-
authentication scheme, (G, S, V'), is as follows:

Key-generation with G: On input 1", algorithm G selects uniformly s € {0, 1}, and
invokes the indexing algorithm I to obtain r <— I(1"). The key-pair output by G is
((r, 5), (r, 5)).

Signing with S: On input a signing-key (r, s) in the range of G1(1") and a document
a € {0, 1}, algorithm S outputs the signature/tag f;(h,(a)).

Verification with V': On input a verification-key (v, s) in the range of Go(1"), a doc-
ument o € {0, 1}*, and an alleged signature B, algorithm outputs 1 if and only if

Ss(hr(@)) = B.

Combining Propositions 6.2.7 and 6.3.2, it follows that Construction 6.3.4 constitutes
a secure message-authentication scheme (MAC), provided that the ingredients are
as postulated. In particular, this means that Construction 6.3.4 yields a secure MAC,
provided that collision-free hashing functions exist (and are used in Construction 6.3.4).
While this result uses a seemingly stronger assumption than the existence of one-way
functions (used to establish the Theorem 6.3.3), it yields more efficient MACs, both
in terms of signature length (as discussed previously) and authentication time (to be
discussed next).

Construction 6.3.4 yields faster signing and verification algorithms than the construc-
tion resulting from combining Constructions 6.2.3 and 6.3.1, provided that hashing a
long string is less time-consuming than applying a pseudorandom function to it (or to all
its blocks). The latter assumption is consistent with the current state of the art regarding
the implementation of both primitives. Further speed improvements are discussed in
Section 6.3.1.3.
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An Alternative Presentation. Construction 6.3.4 was analyzed by invoking the hash-
and-sign paradigm (i.e., Proposition 6.2.7), while referring to the fixed-length MAC
arising from the pseudorandom function ensemble { f; : {0, 1}*l — {0, 1}}5¢(0.1)+- An
alternative analysis may proceed by first establishing that {g, , = f © A, }seqo, 1), r <1151
is a generalized pseudorandom function (as per Definition 3.6.12), and next observing
that any such ensemble yields a full-fledged MAC (see Exercise 8).

6.3.1.3.* A Variation on the Hash-and-Sign Paradigm
(or Using Non-Cryptographic Hashing Plus Hiding)

Construction 6.3.4 combines the use of a collision-free hashing function with the ap-
plication of a pseudorandom function. Here we take another step toward speeding-up
message authentication by showing that the collision-free hashing can be replaced
with ordinary (i.e., non-cryptographic) hashing, provided that a pseudorandom func-
tion (rather than a generic MAC) is applied to the result. Consequently, we also
reduce the intractability assumptions used in the analysis of the construction. Be-
fore getting into details, let us explain why we can use non-cryptographic hash-
ing and why this may lead to reduced intractability assumptions and to efficiency
improvements.

¢ Since we are in the private-key setting, the adversary does not get the description
of the hash function used in the hash-and-sign process. Furthermore, applying the
pseudorandom function to the hash-value hides it from the adversary. Thus, when
trying to form collisions under the hash function, the adversary is in “total darkness”
and may only rely on the collision probability of the hashing function (as defined
next). (Recall that in case the adversary fails to form a collision, it must succeed in
forging with respect to the length-restricted scheme if it wishes to forge with respect
to the full-fledged scheme.)

e Using an ordinary hashing instead of a collision-free hash function means that the

only intractability assumption used is the existence of pseudorandom functions (or,
equivalently, of one-way functions).
The reason that applying an ordinary hashing, rather than a collision-free hash func-
tion, may yield an efficiency improvement is that the former is likely to be more
efficient than the latter. This is to be expected, given that ordinary hashing need only
satisfy a weak (probabilistic) condition, whereas collision-free hashing refers to a
more complicated (intractability) condition. !

By ordinary hashing we mean function ensembles as defined in Section 3.5.1.1 of
Volume 1. For starters, recall that these are collections of functions mapping £(n)-
bit strings to m(n)-bit strings. These collections are associated with a set of strings,

denoted SZ%) , and we may assume that SZZ;’;) = {0, 1}". Specifically, we call {SZ;’;)}%N

10 This intuition may not hold when comparing a construction of ordinary hashing that is rigorously ana-
lyzed with an ad hoc suggestion of a collision-free hashing. But it certainly holds when comparing the
former to the constructions of collision-free hashing that are based on a well-established intractability
assumption.
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a hashing ensemble if it satisfies the following three conditions:

1. Succinctness: n = poly(£(n), m(n)).

2. Efficient evaluation: There exists a polynomial-time algorithm that, on input a rep-
resentation of a function, /4 (in SZ;’;)), and a string x € {0, 1}, returns h(x).

3. Pairwise independence: For every x # y € {0, 1}Y?, if h is uniformly selected in
SZS;), then A(x) and /(y) are independent and uniformly distributed in {0, 1},

That is, for every o, B € {0, 1},
Polh(x)=a A h(y)=p] = 27"

In fact, for the current application, we can replace the third condition by the following
weaker condition, parameterized by a function cp:N— [0, 1] (s.t. cp(n) > 27"(): For
every x # y € {0, 1}¢®),

Pralh(x) =h(»)] = cp(n) (6.3)

Indeed, the pairwise independence condition implies that Eq. (6.3) is satisfied with
cp(n) = 27" Note that Eq. (6.3) asserts that the collision probability of SZ}S’;) is
at most cp(n), where the collision probability refers to the probability that s (x) =
h(y) when £ is uniformly selected in SZ;’;) and x # y € {0, 1} are arbitrary fixed
strings.

Hashing ensembles with n < £(n) + m(n) and cp(n) = 27" can be constructed
(for a variety of functions ¢, m:N— N, e.g., £(n) = 2n/3 and m(n) = n/3); see Ex-
ercise 22. Using such ensembles, we first present a construction of length-restricted
message-authentication schemes (and later show how to generalize the construction to

obtain full-fledged message-authentication schemes).

Construction 6.3.5 (Construction 6.3.4, revisited — length-restricted version): Let

{h, {0, 1}D — {0, 130D}, i1y and {f; : {0, 1)) — {0, 170D} 10,1y be effi-

ciently computable function ensembles. We construct the following £-restricted scheme,

(G, S, V)

Key-generation with G: On input 1", algorithm G selects independently and uniformly
r,s € {0, 1}". The key-pair output by G is ((r, s), (7, 5)).

Signing with S: On input a signing-key (r, s) in the range of G(1") and a document
a € {0, 1M, algorithm S outputs the signature/tag f,(h,(@)).

Verification with V: On input a verifying-key (v, s) in the range of G,(1"), a docu-
ment a € {0, 1}, and an alleged signature B, algorithm outputs 1 if and only if

Ss(hr(@)) = B.

Note that a generalization of Construction 6.3.5 in which the pseudorandom function is
replaced by an arbitrary (length-restricted) secure message-authentication scheme may
be insecure; see Exercise 9.

Proposition 6.3.6: Suppose that { f; : {0, 1}"5D — (0, 1)V} 0.1y« is a pseudoran-
dom function, and that the collision probability of the collection {h, : {0, 1}*(") —
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{0, l}’”“r')}re{o,l]* is a negligible function of |r|. Then Construction 6.3.5 constitutes a
secure L-restricted message-authentication scheme.

In particular, the second hypothesis requires that 27" be a negligible function in n. By
the previous discussion, adequate collections of hashing functions (i.e., with collision
probability 27" exists for £(n) = 2n/3 (and m(n) = n/3). We comment that, under
the hypothesis of Proposition 6.3.6, the collection {g,, : fs o A, }sj=|-| constitutes a
pseudorandom function ensemble. This is implicitly shown in the following proof, and
is related to Exercise 31 in Chapter 3.

Proof Sketch: As in the proof of Proposition 6.3.2, we first consider the security of
an ideal scheme in which the pseudorandom function is replaced by a truly random
function (mapping m (n)-bit long strings to m(n)-bit long strings). Consider any (proba-
bilistic polynomial-time) adversary attacking the ideal scheme. Such an adversary may
obtain the signatures to polynomially -many £(n)-bit long strings of its choice. How-
ever, except with negligible probability, these strings are hashed to different m(n)-bit
long strings, which in turn are mapped by the random function to totally independent
and uniformly distributed m(n)-bit long strings. Furthermore, except with negligible
probability, the £(n)-bit long string « contained in the adversary’s (alleged message-
signature) output pair is hashed to an m(n)-bit long string that is different from all the
previous hash-values, and so the single valid signature corresponding to « is a uniformly
distributed m(n)-bit long string that is independent of all previously seen signatures.

On the distribution of signatures in the ideal scheme: Suppose that the hashing
collection {#, : {0, 1}*I"D — {0, 1}"("D}, 0 1y» has collision probability cp(n), and
¢ 1 {0, 1" — {0, 1}™ is a random function. Then, we claim that an adversary
that obtains signatures to #(n) — 1 strings of'its choice succeeds in forging a signature
to a new string with probability at most #(1)? - cp(n) + 27", regardless of its
computational powers. The claim is proved by showing that, except with probability
at most #(n)? - cp(n), the #(n) strings selected by the adversary are mapped by
h, to distinct values. The latter claim is proved by induction on the number of
selected strings, denoted i, where the base case (i.e., i = 1) holds vacuously. Let
Ss1, ..., S; denote the strings selected so far, and suppose that with probability at
least 1 — i% - cp(n), the i hash-values £, (s;)’s are distinct. The adversary only sees
the corresponding ¢(4,(s;))’s, which are uniformly and independently distributed
(in a way independent of the values of the %,(s;)’s). Thus, loosely speaking, the
adversary’s selection of the next string, denoted s;1, is independent of the values
of the 4,(s;)’s, and so a collision of 4, (s;4.1) with one of the previous /,(s;)’s occurs
with probability at most - cp(). The induction step follows (since 1 — % - cp(n) —

i-cp(n)>1—(@G+1)?-cpn)).

It follows that any adversary attacking the ideal scheme may succeed in existential
forgery with at most negligible probability (provided it makes at most polynomially
many queries). The same must hold for any efficient adversary that attacks the actual
scheme, since otherwise such an adversary yields a violation of the pseudorandomness
of {f; : {0, 1}™UsD — {0, 1}™(sD} 1 1)+. The exact implementation of this argument
follows the details given in the proof of Proposition 6.3.2. W
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Obtaining Full-Fledged MACs. Construction 6.3.5 can be generalized to obtain full-
fledged MACs by using generalized hashing families that map arbitrary strings (rather
than fixed-length ones) to fixed-length strings. Specifically, for £ : N — N and cp :
N —[0,1], we call {%, : {0, 1}* — {0, 1}"("D}, y a generalized hashing ensemble
with a (¢, cp)-collision property if it satisfies the following two conditions:

1. Efficient evaluation: There exists a polynomial-time algorithm that, on input » (rep-
resenting the function 4, ) and a string x € {0, 1}*, returns 4, (x).

2. Collision probability:'! For every n € N and x # y such that |x|, |y| < £(n), the
probability that 4, (x) = &, (y) when r is uniformly selected in {0, 1}" is at most

cp(n).

For our construction of a full-fledged MAC, we need a generalized hashing ensemble
with an (¢, cp)-collision property for some super-polynomial £(n) and negligible cp(n)
(e.g., £(n) = 1/cp(n) = 2™ for some constant & > 0). The existence of such ensembles
will be discussed after the proof of Proposition 6.3.7.

Proposition 6.3.7 (Construction 6.3.4, revisited — full-fledged version): Suppose that
{f; : {0, 1})"0sh — 0, 1}”’(““D}SE{0,1}* is a pseudorandom function ensemble. For some
super-polynomial £ : N — N and negligible cp: N —[0, 1], suppose that {h, :
{0, 1}* — {0, l}m("‘)}re{o,]}* is a generalized hashing ensemble with an (£, cp)-collision
property. Then (G, S, V) as in Construction 6.3.4 constitutes a secure MAC. That is,
we refer to the following scheme:

Key-generation with G: Oninput 1", algorithm G selects independently and uniformly
r,s € {0, 1}, and outputs ((r, s), (r, 5)).

Signing with S: On input a signing-key (r, s) and a document o € {0, 1}*, algorithm
S outputs the signature/tag fs(h,()).

Verification with V: On input a verifying-key (r, s), a document o € {0, 1}*, and an
alleged signature B, algorithm outputs 1 if and only if fi(h,(x)) = B.

Proof Sketch: The proofis identical to the proof of Proposition 6.3.6, except that here
the (polynomial-time) adversary attacking the scheme may query for the signatures
of strings of various lengths. Still, all these queries (as well as the final output) are
of polynomial length and thus shorter than £(n). Thus, the (¢, cp)-collision property
implies that, except with negligible probability, all these queries (as well as the relevant
part of the output) are hashed to different values. H

On Constructing Adequate Hashing Ensembles. For some ¢ > 0 and f(n) = 2",
generalized hashing ensembles with a ( f, 1/f)-collision property can be constructed
is several ways. One such way is by applying a tree-hashing scheme as in Construc-
tion 6.2.13; see Exercise 23. For further details about constructions of generalized

11 Note that it is essential to restrict the collision condition to strings of bounded length. In contrast, for every finite
family of functions H, there exist two different strings that are mapped to the same image by each function in
H. For details, see Exercise 21.
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6.3 CONSTRUCTIONS OF MESSAGE-AUTHENTICATION SCHEMES

hashing ensembles, see Section 6.6.5. Combining any of these constructions with
Proposition 6.3.7, we get:

Theorem 6.3.8: Assuming the existence of one-way functions, there exist message-
authentication schemes with fixed-length signatures; that is, signatures of length that
depend on the length of the signing-key but not on the length of the document.

An Alternative Presentation. The proofs of Propositions 6.3.6 and 6.3.7 actually
establish that {g;, = fi o A, }se(0,1)+,re(0,1)1 15 @ generalized pseudorandom function
(as per Definition 3.6.12). For further discussion of this aspect, see Section C.2 in
Appendix C. Hence, the actual claim of these propositions (i.e., the security of the
constructed MAC) can be derived from the fact that any generalized pseudorandom
function yields a full-fledged MAC (see Exercise 8).

6.3.2.* More on Hash-and-Hide and State-Based MACs

The basic idea underlying Construction 6.3.5 (as well as Proposition 6.3.7) is to combine
a “weak tagging scheme” with an adequate “hiding scheme.” Specifically, the weak
tagging scheme should be secure against forgery provided that the adversary does not
have access to the scheme’s outcome, and the hiding scheme implements the latter
provision in a setting in which the actual adversary does obtain the value of the MAC.
In Construction 6.3.5 (and in Proposition 6.3.7), the tagging scheme was implemented
by ordinary hashing and hiding was obtained by applying a pseudorandom function to
the string that one wishes to hide.!?

One more natural “hiding scheme” (which can also be implemented using pseu-
dorandom functions) is obtained by using certain private-key encryption schemes. For
example, we may use Construction 5.3.9 (in which the plaintext x is encrypted/hidden by
the pair (u, x ® f;(u)), where u is uniformly selected), instead of hiding x by the value
Js(x) (as in Construction 6.3.5 and Proposition 6.3.7). The resulting MAC is as follows:

Key-generation: On input 1”7, we select independently and uniformly r, s € {0, 1}",
where r specifies a hashing'® function 4, : {0, 1}* — {0, 1}("D and s specifies
a pseudorandom function f; : {0, 1}”(sD — {0, 1}"(IsD. We output the key-pair
((r, 5), (r, 5)).

Signing: On input a signing-key (r, s) and a document o € {0, 1}*, we uniformly select
u € {0, 1}"1sD_and output the signature/tag (u, h,.(a) @ f;(u)).

Verification: On input a verifying-key (7, s), a document « € {0, 1}*, and an alleged
signature (¢, v), we output 1 if and only if v = &, () D fs(u).

Alternative implementations of the same underlying idea are more popular, especially
in the context of state-based MACs. We start by defining state-based MACs, and

12 We comment that this specific hiding method is not 1-1, and furthermore, it is not clear whether it can also be
efficiently inverted when given the “secret key” (i.e., the seed of the pseudorandom function). In contrast, the
alternative hiding method described next is 1-1 and can be efficiently inverted when given the secret key.

13 The hashing function should belong to an AXU family, as defined in Section 6.3.2.2.
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

then show how to construct them based on the hash-and-hide (or rather tag-and-hide)
paradigm.

6.3.2.1. The Definition of State-Based MACs

As in the case of steam-ciphers discussed in Section 5.3.1, we extend the mechanism
of message-authentication schemes (MACs) by allowing the signing and verification
processes to maintain and update a state. Formally, both the signing and the verification
algorithms take an additional input and emit an additional output, corresponding to their
state before and after the operation. The length of the state is not allowed to grow by too
much during each application of the algorithm (see Condition 3 in Definition 6.3.9), or
else efficiency of the entire “repeated signing” process cannot be guaranteed. For the
sake of simplicity, we incorporate the key in the state of the corresponding algorithm.
Thus, the initial state of each of the algorithms is set to equal its corresponding key.
Furthermore, one may think of the intermediate states as of updated values of the
corresponding key.

In the following definition, we follow conventions similar to those used in defin-
ing state-based ciphers (i.e., Definition 5.3.1). Specifically, for simplicity, we assume
that the verification algorithm (i.e., V) is deterministic (otherwise the formulation
would be more complex). Intuitively, the main part of the verification condition (i.e.,
Condition 2) is that the (proper) iterative signing-verifying process always accepts.
The additional requirement in Condition 2 is that the state of the verification algorithm
be updated correctly as long as it is fed with strings of length equal to the length of
the valid document-signature pairs. The importance of this condition was discussed in
Section 5.3.1 and is further discussed following Definition 6.3.9.

Definition 6.3.9 (state-based MAC — the mechanism): 4 state-based message-
authentication scheme is a triple, (G, S, V'), of probabilistic polynomial-time algo-
rithms satisfying the following three conditions:

1. Oninput 1", algorithm G outputs a pair of bit strings.

2. For every pair (s, v) in the range of G(1"), and every sequence of a5, the
Jollowing holds: If (s, B) <= S(s~V, a®D) and (v, y D) < V(uI=D, a®, D)
fori=1,2, ... then y® =1 for every i.

Furthermore, for every i and every (a, ) € {0, 1}")‘([)| x {0, 1}"3“”, it holds that
V', a, B) = (D, .). That is, vV is actually determined by v'=Y and
(la®], |BOD. 1

3. There exists a polynomial p such that for every pair (s, v?) in the range of
G(1™), and every sequence of o)’s and s s as in Condition 2, it holds that |s®)| <
IsC=D) + | D] - p(n). Similarly for the v s.

14 Alternatively, we may decompose the verification (resp., signing) algorithm into two algorithms, where the first
takes care of the actual verification (resp., signing) and the second takes care of updating the state. For details,
see Exercise 18.
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6.3 CONSTRUCTIONS OF MESSAGE-AUTHENTICATION SCHEMES

That is, as in Definition 6.1.1, the signing-verification process operates properly pro-
vided that the corresponding algorithms get the corresponding keys (states). Note that
in Definition 6.3.9, the keys are modified by the signing-verification process, and so
correct verification requires holding the correctly updated verification-key. We stress
that the furthermore-clause in Condition 2 guarantees that the verification-key is cor-
rectly updated as long as the verification process is fed with strings of the correct lengths
(but not necessarily with the correct document-signature pairs). This extra requirement
implies that, given the initial verification-key and the current document-signature pair,
as well as the lengths of all previous pairs (which may be actually incorporated in
the current signature), one may correctly decide whether or not the current document-
signature pair is valid. As in the case of state-based ciphers (cf. Section 5.3.1), this fact
is interesting for two reasons:

A theoretical reason: It implies that without loss of generality (alas, with possible loss
in efficiency), the verification algorithm may be stateless. Furthermore, without loss
of generality (alas, with possible loss in efficiency), the state of the signing algorithm
may consist of the initial signing-key and the lengths of the messages signed so far.
(We assume here that the length of the signature is determined by the length of the
message and the length of the signing-key.)

A practical reason: It allows for recovery from the loss of some of the message-
signature pairs. That is, assuming that all messages have the same length (which
is typically the case in MAC applications), if the receiver knows (or is given) the
total number of messages sent so far, then it can verify the authenticity of the current
message-signature pair, even if some of the previous message-signature pairs were
lost.

We stress that Definition 6.3.9 refers to the signing of multiple messages (and
is meaningless when considering the signing of a single message). However, Defi-
nition 6.3.9 (by itself) does not explain why one should sign the i-th message us-
ing the updated signing-key s@~1, rather than by reusing the initial signing-key s
(where all corresponding verifications are done by reusing the initial verification-key
v®). Indeed, the reason for updating these keys is provided by the following secu-
rity definition that refers to the signing of multiple messages, and holds only in case
the signing-keys in use are properly updated (in the multiple-message authentication
process).

Definition 6.3.10 (security of state-based MACs):

* 4 chosen message attack on a state-based MAC, (G, S, V), is an interactive
process that is initiated with (s, v?) <~ G(1"), and proceeds as follows: In the
i-th iteration, based on the information gathered so far, the attacker selects a string
o, and obtains BD, where (s©, D) « S(sC~D, o).

o Such an attack is said to succeed if it outputs a valid signature to a string for which
it has not requested a signature during the attack. That is, the attack is successful
if it outputs a pair (o, B) such that o is different from all signature-queries made
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

during the attack, and V(v'~V, a, B) = (-, 1) holds for some intermediate state
(verification-key) vU~Y (as in Definition 6.3.9).3

o A state-based MAC is secure if every probabilistic polynomial-time chosen message
attack as in the first item succeeds with at most negligible probability.

Note that Definition 6.3.10 (only) differs from Definition 6.1.2 in the way that the
signatures B*)’s are produced (i.e., using the updated signing-key s ~1, rather than the
initial signing-key s(©). Furthermore, Definition 6.3.10 guarantees nothing regarding
a signing process in which the signature to the i-th message is obtained by invoking
S(s©, ) (as in Definition 6.1.2).

6.3.2.2. State-Based Hash-and-Hide MACs

We are now ready to present alternative implementations of the hash-and-hide paradigm.
Recall that in Section 6.3.1.3, the document was hashed (by using an adequate hashing
function), and the resulting hash-value was (authenticated and) hidden by applying a
pseudorandom function to it. In the current subsection, hiding will be obtained in a
more natural (and typically more efficient) way, that is, by XORing the hash-value with
a new portion of a (pseudorandom) one-time pad. Indeed, the state is used in order to
keep track of what part of the (one-time) pad was already used (and should not be used
again). Furthermore, to obtain improved efficiency, we let the state encode information
that allows fast generation of the next portion of the (pseudorandom) one-time pad. This
is obtained using an (on-line) pseudorandom generator (see Sections 3.3.3 and 5.3.1).

Recall that on-line pseudorandom generators are a special case of variable-output
pseudorandom generators (see Section 3.3.3), in which a hidden state is maintained
and updated so as to allow generation of the next output bit in time polynomial in the
length of the initial seed, regardless of the number of bits generated so far. Specifically,
the next (hidden) state and output bit are produced by applying a (polynomial-time
computable) function g:{0, 1} — {0, 1}"*! to the current state (i.e., (s, o) < g(s),
where s is the current state, s’ is the next state and o is the next output bit). Analogously
to Construction 5.3.3, the suggested state-based MAC will use an on-line pseudorandom
generator in order to generate the required pseudorandom one-time pad, and the latter
will be used to hide (and authenticate) the hash-value (obtained by hashing the original
document).

Construction 6.3.11 (a state-based MAC): Let g:{0, 1}* — {0, 1}* such that |g(s)| =
|s| + 1, for every s € {0, 1}*. Let {h, : {0, 1}* — {0, 1}”’(‘”)}%{0’1}* be a family of func-
tions having an efficient evaluation algorithm.

15 In fact, one may strengthen the definition by using a weaker notion of success in which it is only required that
o # a® (rather than requiring that o & {a'/)} 7)- That is, the attack is successful if, for some i, it outputs a
pair (a, B) such that o # ) and ¥ (v¥=D, &, B) = (-, 1), where the «/)’s and v/)’s are as in Definition 6.3.9.
The stronger definition provides “replay protection” (i.e., even if the adversary obtains a valid signature that
authenticates « as the j-th message, it cannot produce a valid signature that authenticates « as the i-th message,
unless & was actually authenticated as the i-th message).
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6.3 CONSTRUCTIONS OF MESSAGE-AUTHENTICATION SCHEMES

Key-generation and initial state: Uniformly select s,r € {0, 1}", and output the key-
pair ((s, ), (s, 7)). The initial state of each algorithm is set to (s, r, 0, s).

(We maintain the initial key (s, r) and a step-counter in order to allow recovery from
loss of message-signature pairs.)

e . def .
Signing message « with state (s, r, ¢, s'): Let s =s. Fori=1,.., m(n), compute

s;0; = g(si—1), where |s;| =n and o; € {0, 1}. Output the signature h,() ®
01 Omn), and set the new state to (s, 7, t + m(n), Smn))-

Verification of the pair («, 8) with respect to the state (s, 7, ¢, s'): Compute o1- - - Oy
and Swy as in the signing process; that is, for i =1, ..., m(n), compute s;o; =

2(s;_1), where s LE s Set the new state to (s, 7, t +mn), Smn), and accept if and
Ol’lly lfﬂ = h,,(C() Qop--- Om(n)-

Special recovery procedure: When notified that some message-signature pairs may
have been lost and that the current message-signature pair has index t', one first
recovers the correct current state, which as in the ordinary verification (of the pre-

vious paragraph) will be denoted s(. This is done by setting s_, &5 and computing
Si_p0i_y = g(si_y_1), for i =1, ..., t. Indeed, recovery of sy is required only if

t # [-16

Note that both the signing and verification algorithms are deterministic, and that the
state after authentication of # messages has length 3n + log,(¢ - m(n)) < 4n, provided
that t < 2" /m(n).

We now turn to the analysis of the security of Construction 6.3.11. The hashing
property of the collection of 4,’s should be slightly stronger than the one used in
Section 6.3.1.3. Specifically, rather than a bound on the collision probability (i.e., the
probability that 4,(x) = h,(y) for any relevant fixed x, y and a random r), we need
a bound on the probability that 4, (x) & &, (y) equals any fixed string (again, for any
relevant fixed x, y and a random ). This property is commonly referred to by the name
Almost-Xor-Universal (AXU). That is, {, : {0, 1}* — {0, 1}"("D}, (.1} is called an
(¢, £)-AXU family if for every n € N, every x # y such that |x|, |y| < £(n), and every
z, it holds that

Priay, () @ hy,(v) =z] =< &) (6.4)

References to constructions of such families are provided in Section 6.6.5.

Proposition 6.3.12: Suppose that g is a pseudorandom generator,'’ and that {h,} is
a (£, &)-AXU family, for some super-polynomial £ and negligible ¢. Then Construc-
tion 6.3.11 constitutes a secure state-based MAC. Furthermore, security holds even
with respect to the stronger notion discussed in footnote 15.

16 More generally, if the verification procedure holds the state at time ¢ < ¢/, then it need only compute
St41—t"5 -5 S0-

17 In fact, as shown in the proof, it suffices to assume that g is a next-step function of an on-line pseudorandom
generator.

535

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:11, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.003


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.003
https:/www.cambridge.org/core

DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

Proof Sketch: By Exercise 21 of Chapter 3, if g is a pseudorandom generator, then for
every polynomial p the ensemble {G7},cy is pseudorandom, where G} is defined by
the following random process:

Uniformly select 59 € {0, 1}";
Fori = 1to p(n), let s;o; < g(s;_1), where o; € {0, 1} (and s; € {0, 1}");
Output 01032 -+ - Op(n)-

Recall that, in such a case, we said that g is a next-step function of an on-line pseu-
dorandom generator.

As in previous cases, it suffices to establish the security of an ideal scheme in which
the sequence (of m(n)-bit long blocks) produced by iterating the next-step function g
is replaced by a truly random sequence (of m(n)-bit long blocks). In the ideal scheme,
all that the adversary may obtain via a chosen message attack is a sequence of m(n)-bit
long blocks, which is uniformly distributed among all such possible sequences. Note
that each of the signatures obtained during the attack, as well as the forged signature,
refers to a single block in this sequence (e.g., the i-th obtained signature refers to the
i-th block). We consider two types of forgery attempts:

1. In case the adversary tries to forge a signature referring to an unused (during the
attack) block, it may succeed with probability at most 27 because we may think
of this block as being chosen after the adversary makes its forgery attempt. Note
that 27 is negligible, because &(n) > 27" must hold (i.e., 27" lower-bounds
the collision probability).

2. The more interesting case is when the adversary tries to forge a signature referring to
a block, say the i-th one, that was used (to answer the i-th query) during the attack.
Denote the j-th query by /), the (random) j-th block by 5, and the forged
document by «. Then, at the time of outputting the forgery attempt (¢, 8), the
adversary only knows the sequence of b") @ h,.(a))’s (as well as the @)’ that
were chosen by it), but this yields no information on r (because the »/)’s are random
and unknown to the adversary). Note that the adversary succeeds if and only if

b @ hy () = B, where B0 & b® @ h,(a) is known to it. Thus, the adversary
succeeds if and only if 72, (a)) @ h,.(a) = BD @ B, where a), B, a, B are known
to the adversary and 7 is uniformly distributed.

Further clarification: Considering the distribution of » conditioned on partial
transcripts of the attack (i.e., the sequence of queries and answers), we claim
that at any time, 7 is uniformly distributed in {0, 1}". The claim holds because,
for each possible value of , the answers to the different queries are all uniformly
distributed (because they are XORed with random b’s). Thus, r is uniformly
distributed also conditioned on the transcript at the time that the adversary outputs
its forgery attack, which in turn is successful ifand only if b & h,.(o) = B holds,
where b0 = h.(a) @ D and «®, O, o, B are fixed by this transcript. Thus,
asuccessful forgery implies 4, () @ 4, («) = B @ B, for fixeda®, gD, «, B
and uniformly distributed r.

Hence, by the AXU property, the probability that the adversary succeeds is at most
e(n).
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The security of the real scheme follows (or else one could have distinguished
the sequence produced by iterating the next-step function g from a truly random
sequence). H

Construction 6.3.11 Versus the Constructions of Section 6.3.1.3: Recall that all
these schemes are based on the hash-and-hide paradigm. The difference between the
schemes is that in Section 6.3.1.3, a pseudorandom function is applied to the hash-value
(i.e., the signature to o is fi(%,(c))), whereas in Construction 6.3.11, the hash-value
is XORed with a pseudorandom value (i.e., we may view the signature as consisting
of (¢, h,(a) ® fs(c)), where c is a counter value and f;(c) is the c-th block produced
by iterating the next-step function g starting with the initial seed s). We note two ad-
vantages of the state-based MAC over the MACs presented in Section 6.3.1.3: First,
applying an on-line pseudorandom generator is likely to be more efficient than ap-
plying a pseudorandom function. Second, a counter allows for securely authenticating
more messages than can be securely authenticated by applying a pseudorandom func-
tion to the hashed value. Specifically, the use of an an m-bit long counter allows for
securely authenticating 2™ messages, whereas using an m-bit long hash-value suffers
from the “birthday effect” (i.e., collisions are likely to occur when /2 messages are
authenticated). Indeed, these advantages are relevant only in applications in which us-
ing state-based MAC:s is possible, and are most advantageous in applications where
verification is performed in the same order as signing (e.g., in FIFO communication).
In the latter case, Construction 6.3.11 offers another advantage: “replay protection” (as
discussed in footnote 15).

6.4. Constructions of Signature Schemes

In this section, we present several constructions of secure public-key signature schemes.
In the sequel, we refer to such schemes as signature schemes, which is indeed the
traditional term.

Two central paradigms in the construction of signature schemes are the “refreshing”
ofthe “effective” signing-key (see Section 6.4.2.1), and the usage of an “authentication-
tree” (see Section 6.4.2.2). In addition, the “hash-and-sign paradigm” (employed also
in the construction of message-authentication schemes) plays an even more crucial role
in the following presentation. In addition, we use the notion of a one-time signature
scheme (see Section 6.4.1).

The current section is organized as follows. In Section 6.4.1 we define and construct
various types of one-time signature schemes. The hash-and-sign paradigm plays a
crucial role in one of these constructions, which in turn is essential for Section 6.4.2.
In Section 6.4.2 we show how to use one-time signature schemes to construct general
signature schemes. This construction utilizes the “refreshing paradigm” (as applied to
one-time signature schemes) and an authentication-tree. Thus, assuming the existence
of collision-free hashing, we obtain (general) signature schemes.

In Section 6.4.3, wishing to relax the conditions under which signature schemes
can be constructed, we define universal one-way hashing functions, and show how to
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use them instead of collision-free hashing (in the aforementioned constructions and,
in particular, within a modified hash-and-sign paradigm). Indeed, the gain in using
universal one-way hashing (rather than collision-free hashing) is that the former can be
constructed based on any one-way function (whereas this is not known for collision-free
hashing). Thus, we obtain:

Theorem 6.4.1: Secure signature schemes exist if and only if one-way functions exist.

The difficult direction is to show that the existence of one-way functions implies the
existence of signature schemes. For the opposite direction, see Exercise 7.

6.4.1. One-Time Signature Schemes

In this section we define and construct various types of one-time signature schemes.
Specifically, we first define one-time signature schemes, next define a length-restricted
version of this notion (analogous to Definition 6.2.1), then present a simple construction
of the latter, and finally show how such a construction, combined with collision-free
hashing, yields a general one-time signature scheme.

6.4.1.1. Definitions

Loosely speaking, one-time signature schemes are signature schemes for which the
security requirement is restricted to attacks in which the adversary asks for at most
one string to be signed. That is, the mechanics of one-time signature schemes is as
of ordinary signature schemes (see Definition 6.1.1), but the security requirement is
relaxed as follows:

¢ A chosen one-message attack is a process that can obtain a signature to at most
one string of'its choice. That is, the attacker is given v as input, and obtains a signature
relative to s, where (s, v) <— G(1") for an adequate #.
(Note that in this section, we focus on public-key signature schemes and thus present
only the definition for this case.)

e Such an attack is said to succeed (in existential forgery) if it outputs a valid signature
to a string for which it has not requested a signature during the attack.
(Indeed, the notion of success is exactly as in Definition 6.1.2.)

e A one-time signature scheme is secure (or unforgeable) if every feasible chosen
one-message attack succeeds with at most negligible probability.

Moving to the formal definition, we again model a chosen message attack as a proba-
bilistic oracle machine; however, since here we care only about one-message attacks, we
consider only oracle machines that make at most one query. Let M be such a machine.
As before, we denote by Q¢ (x) the set of queries made by M on input x and access
to oracle O, and let M?(x) denote the output of the corresponding computation. Note
that here | Q¢ (x)| < 1 (i.e., M may make either no queries or a single query).
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6.4 CONSTRUCTIONS OF SIGNATURE SCHEMES

Definition 6.4.2 (security for one-time signature schemes): 4 one-time signature
scheme is secure if for every probabilistic polynomial-time oracle machine M that
makes at most one query, every positive polynomial p, and all sufficiently large n, it
holds that

or [ Vole =1 & o ¢ 0(1") - L
where (s, v) < G(1") and (a, B) < M5 (v) p(n)

where the probability is taken over the coin tosses of algorithms G, S, and V, as well
as over the coin tosses of machine M.

We now define a length-restricted version of one-time signature schemes. The definition
is indeed analogous to Definition 6.2.1:

Definition 6.4.3 (length-restricted one-time signature schemes): Let £ : N — N. An
¢-restricted one-time signature scheme is a wiple, (G, S, V), of probabilistic
polynomial-time algorithms satisfying the the mechanics of Definition 6.2.1. That is, it
satisfies the following two conditions:

1. As in Definition 6.1.1, on input 1", algorithm G outputs a pair of bit strings.
2. Analogously to Definition 6.1. 1, for every n and every pair (s, v) in the range of G(1"),
and for every a € {0, 1Y, algorithms S and D satisfy Pr[Vy(a, Sy())=1] = 1.

Such a scheme is called secure (in the one-time model) if the requirement of Defini-
tion 6.4.2 holds when restricted to attackers that only make queries of length {(n) and
output a pair (o, B) with || = £(n). That is, we consider only attackers that make at
most one query, with the requirements that this query be of length {(n) and that the
output (o, B) satisfies |a| = £(n).

Note that even the existence of secure 1-restricted one-time signature schemes implies
the existence of one-way functions, see Exercise 13.

6.4.1.2. Constructing Length-Restricted One-Time Signature Schemes

We now present a simple construction of length-restricted one-time signature schemes.
The construction works for any length-restriction function ¢, but the keys will have
length greater than £. The latter fact limits the applicability of such schemes and will be
removed in the next subsection. But first, we construct £-restricted one-time signature
schemes that are based on any one-way function f. Loosely speaking, the verification-
key will consist of £ pairs of images (of f), and a signature will consist of £ pre-images
(under f) corresponding to £ out of these 2¢ images, where the selection of images is
determined by the corresponding bits of the message. We may assume for simplicity
that f is length-preserving.

Construction 6.4.4 (an (-restricted one-time signature scheme): Let £ : N — N be
polynomially bounded and polynomial-time computable, and f : {0, 1}* — {0, 1}* be
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polynomial-time computable and length-preserving. We construct an £-restricted one-
time signature scheme, (G, S, V'), as follows:

Key-generation with G: On input 1", we uniformly select s\, s\, ..., Sy, Sj €
{0, 1}, and compute vij = f(sl]) fori=1,...,8(n) and j=0,1. We let s =
((sV, s, ..., (s?(n), sel(n))), andv = (9, v}), ..., (vg(n), v}(n))), and output the key-pair
(s, v).

(Note that |s| = [v| =2 - £(n) - n.)
Signing with S: On input a signing-key s = ((s), s}), ..., (s?(n), sl}(n))) and an £(n)-bit

. O¢(n .
String o = oy - - - Oy(n), we output (s7', ..., se{;))) as a signature of «.

Verification with V': On input a verification-key v = ((v?, v}), ..., (vg(n), vl}(n))), an
£(n)-bit string o = o1 - - - Oy, and an alleged signature = (Bi, ..., Bew)), we ac-
cept if and only if vi' = f(B;), fori =1, ..., £(n).

Proposition 6.4.5: If f is a one-way function, then Construction 6.4.4 constitutes a
secure L-restricted one-time signature scheme.

Note that Construction 6.4.4 does not constitute a (general) £-restricted signature
scheme: An attacker that obtains signatures to fwo strings (e.g., to the strings 0¢”
and 1¢™), can present a valid signature to any £(n)-bit long string (and thus totally
break the system). However, here we consider only attackers that may ask for at most
one string (of their choice) to be signed. As a corollary to Proposition 6.4.5, we obtain:

Corollary 6.4.6: Ifthere exist one-way functions, then for every polynomially bounded
and polynomial-time computable £:N— N, there exist secure {-restricted one-time
signature schemes.

Proof of Proposition 6.4.5: Intuitively, forging a signature (after seeing at most one sig-
nature to a different message) requires inverting f on some random image (correspond-
ing to a bit location on which the two £(n)-bit long messages differ). The actual proof
is by a reducibility argument. Given an adversary A attacking the scheme (G, S, V),
while making at most one query, we construct an algorithm A4’ for inverting f.

As a warm-up, let us first deal with the case in which 4 makes no queries at all. In
this case, on input y (supposedly in the range of f), algorithm A’ proceeds as follows.
First A" selects uniformly and independently a position p in {1, ..., £(n)}, a bit b, and
a sequence of (2¢(n) many) n-bit long strings s, 51, ..., $§,)» S5 (Actually, s> is not
used and needs not be selected.) Forevery i € {1, ..., €(n)} \ {p}, and every j € {0, 1},
algorithm A4’ computes v/ = f(s]). Algorithm A’ also computes v},’b =f (sll,’b), and
sets vh = y and v = ((v], V1), ..., (V> Vi())- Note that if y = £(x), for a uniformly
distributed x € {0, 1}", then for each possible choice of p and b, the sequence v is
distributed identically to the public-key generated by G(1"). Next, A" invokes 4 on
input v, hoping that 4 will forge a signature, denoted B = 7y - - - Ty(s), to a message
o = 0y - - Oy SO that o, = b. If this event occurs, A" obtains a pre-image of y under
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f, because the validity of the signature implies that f(t,) = v;” = vz = y. Observe
that conditioned on the value of v and the internal coin tosses of A, the value b is
uniformly distributed in {0, 1}. Thus, A’ inverts f with probability (n)/2, where &(n)
denotes the probability that 4 succeeds in forgery.

We turn back to the actual case in which 4 may make a single query. Without loss
of generality, we assume that 4 always makes a single query; see Exercise 11. In this
case, on input y (supposedly in the range of f), algorithm A’ selects p, b and the 57,
and forms the vij ’s and v exactly as in the previous warm-up discussion. Recall that if
y = f(x), for a uniformly distributed x € {0, 1}", then for each possible choice of p
and b, the sequence v is distributed identically to the public-key generated by G(1").
Also note that for each vl.] other than vg =y, algorithm A’ holds a random pre-image

(of vf ) under f. Next, A’ invokes 4 on input v, and tries to answer its query, denoted
o = 01 - - - Oyn). We consider two cases regarding this query:

1. If 0, = b, then A’ cannot supply the desired signature because it lacks a pre-image
of sg = y under f. Thus, in this case A" aborts. However, this case occurs with
probability %, independently of the actions of 4 (because v yields no information
on either p or b).

(That is, conditioned on the value of v and the internal coin tosses of 4, this case
occurs with probability 5.)'®

2.If 0, =1 — b, then A’ can supply the desired signature because it holds all the

relevant s/ ’s (i.e., random pre-images of the relevant v/ s under f). In particular, 4’
Oe(n)

holds both s;/ s, fori £ p, as well as s;fb. Thus, A" answers with (s, ..., Son )-

Note that conditioned on the value of v, on the internal coin tosses of 4, and on the
second case occuring, p is uniformly distributed in {1, ..., £(n)}. When the second case
occurs, 4 obtains a signature to «, and this signature is distributed exactly as in a
real attack. We stress that since 4 asks at most one query, no additional query will be
asked by 4. Also note that, in this case (i.e., o, = 1 — b), algorithm 4 outputs a forged
message-signature pair, denoted (', 8’), with probability exactly as in a real attack.
We now turn to the analysis of 4’, and consider first the emulated attack of 4. Recall
that & = o1 - - - () denotes the (single) query'” made by 4, and let o’ = o7 - -- 0y,
and B’ = s -+ -5y, where (¢, B') is the forged message-signature pair output by A.
By our hyp,othesis (that this is a forgery-success event), it follows that o’ # « and that
f(s) = v? " for all i’s. Now, considering the emulation of 4 by A’, recall that (under
all these conditions) p is uniformly distributed in {1, ..., £(n)}. Hence, with probability

% > ﬁ, it holds that o, # O’/p, and in that case, 4’ obtains a pre-image of y

. , . N - . . -0,
under f (since s, satisfies f(s),) = v,", which in turn equals v,

:vﬁ’; = ).

18 This follows from an even stronger statement by which conditioned on the value of v, on the internal coin tosses
of 4, and on the value of p, the current case happens with probability % The stronger statement holds because
L:nder all these conditions, b is uniformly distributed in {0, 1} (and so o, = b happens with probability exactly
3)-

19 Recall that, without loss of generality, we may assume that 4 always makes a single query; see Exercise 11.
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To summarize, assuming that 4 succeeds in a single-message attack on (G, S, V)
with probability &(n), algorithm A’ inverts f on a random image (i.e., on f(U,)) with
probability

o) #oi}l _ e(n)
t(n) = 2¢(n)

Thus, if A4 is a probabilistic polynomial-time chosen one-message attack that forges
signatures with non-negligible probability, then A’ is a probabilistic polynomial-time
algorithm that inverts f* with non-negligible probability (in violation of the hypothesis
that f is a one-way function). The proposition follows. W

1
8(,1).5.

6.4.1.3. From Length-Restricted Schemes to General Ones

Using the hash-and-sign paradigm (i.e., Construction 6.2.6), we transform length-
restricted one-time signature schemes into one-time signature schemes. That is, we
use collision-free hashing and apply Construction 6.2.6, except that here (G, S, V) is
an £-restricted one-time signature scheme, rather than an £-restricted (general) signature
scheme. Analogously to Proposition 6.2.7, we obtain:

Proposition 6.4.7: Suppose that (G, S, V) is a secure £-restricted one-time signature
scheme, and that {h, : {0, 1}* — {0, 1}*("D}, 0.1y is a collision-free hashing collec-
tion. Then (G', S', V'), as defined in Construction 6.2.6, is a secure one-time signature
scheme.

Proof: The proof'is identical to the proof of Proposition 6.2.7; we merely notice that if
the adversary A’, attacking (G, ', V'), makes at most one query, then the same holds
for the adversary A that we construct (in that proof) to attack (G, S, V). In general,
the adversary A4 constructed in the proof of Proposition 6.2.7 makes a single query per
each query of the adversary 4. W

Combining Proposition 6.4.7, Corollary 6.4.6, and the fact that collision-free hashing
collections, imply one-way functions (see Exercise 14), we obtain:

Corollary 6.4.8: [fthere exist collision-free hashing collections, then there exist secure
one-time signature schemes. Furthermore, the length of the resulting signatures depends
only on the length of the signing-key.

Comments. We stress that when using Construction 6.2.6, signing each document
under the (general) scheme (G’, ', V') only requires signing a single string under the
£-restricted scheme (G, S, V). This is in contrast to Construction 6.2.3, in which signing
a document under the (general) scheme (G', §’, V') requires signing many strings under
the ¢-restricted scheme (G, S, V'), where the number of such strings depends (linearly)
on the length of the original document.

Construction 6.2.6 calls for the use of collision-free hashing. The latter can be con-
structed using any claw-free permutation collection (see Proposition 6.2.9); however,
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it is not know whether collision-free hashing can be constructed based on any one-way
function. Wishing to construct signature schemes based on any one-way function, we
later avoid (in Section 6.4.3) the use of collision-free hashing. Instead, we use “universal
one-way hashing functions” (to be defined), and present a variant of Construction 6.2.6
that uses these functions, rather than collision-free ones.

6.4.2. From One-Time Signature Schemes to General Ones

In this section we show how to construct general signature schemes using one-time
signature schemes. That is, we shall prove:

Theorem 6.4.9: [fthere exist secure one-time signature schemes, then secure (general)
signature schemes exist as well.

Actually, we can use length-restricted one-time signature schemes, provided that the
length of the strings being signed is at least twice the length of the verification-key.
Unfortunately, Construction 6.4.4 does not satisfy this condition. Nevertheless, Corol-
lary 6.4.8 does provide one-time signature schemes. Thus, combining Theorem 6.4.9
and Corollary 6.4.8, we obtain:

Corollary 6.4.10: [f there exist collision-free hashing collections, then there exist se-
cure signature schemes.

Note that Corollary 6.4.10 asserts the existence of secure (public-key) signature
schemes, based on an assumption that does not mention trapdoors. We stress this point
because of the contrast to the situation with respect to public-key encryption schemes,
where a trapdoor property seems necessary for the construction of secure schemes.

6.4.2.1. The Refreshing Paradigm

The so-called “refreshing paradigm” plays a central role in the proof of Theorem 6.4.9.
Loosely speaking, the refreshing paradigm suggests reducing the dangers of a chosen
message attack on the signature scheme by using “fresh” instances of the scheme for
signing each new document. Of course, these fresh instances should be authenticated
by the original instance (corresponding to the verification-key that is publicly known),
but such an authentication refers to a string selected by the legitimate signer, rather
than by the adversary.

Example. To demonstrate the refreshing paradigm, consider a basic signature scheme
(G, S, V) used as follows. Suppose that the user U has generated a key-pair, (s, v) <
G(1™), and has placed the verification-key v on a public-file. When a party asks U to
sign some document «, the user U generates a new (fresh) key-pair, (s, v') < G(1"),
signs v’ using the original signing-key s, signs « using the new (fresh) signing-key s,
and presents (Sy(v'), v, Sy(@)) as a signature to «. An alleged signature, (81, v, B2), is
verified by checking whether both V,(v/, 81) = 1 and V,(«, 82) = 1 hold. Intuitively,
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the gain in terms of security is that a full-fledged chosen message attack cannot be
launched on (G, S, V). All that an attacker may obtain (via a chosen message attack
on the new scheme) is signatures, relative to the original signing-key s, to randomly
chosen strings (taken from the distribution G,(1")), as well as additional signatures
each relative to a random and independently chosen signing-key.

We refrain from analyzing the features of the signature scheme presented in this
example. Instead, as a warm-up to the actual construction used in the next section (in
order to establish Theorem 6.4.9), we present and analyze a similar construction (which
is, in some sense, a hybrid of the two constructions). The reader may skip this warm-up,
and proceed directly to Section 6.4.2.2.

Construction 6.4.11 (a warm-up): Let (G, S, V) be a signature scheme and

(G, S, V') be a one-time signature scheme. Consider a signature scheme, (G", ", V"),
with G" = G, as follows:

Signing with S”: On input a signing-key s (in the range of G{(1")) and a document
a € {0, 1}*, first invoke G’ to obtain (s', v') <= G'(1"). Next, invoke S to obtain
B1 < Ss(V'), and S’ to obtain B, < S.(a). The final output is (B, V', B2).

Verification with V”: On input a verifying-key v, a document a € {0, 1}*, and an al-
leged signature B = (B1, V', B2), we output 1 if and only if both V,(v', B1) = 1 and
Vi, o) = 1.

Construction 6.4.11 differs from the previous example only in that a one-time signature
scheme is used to generate the “second signature” (rather than using the same ordinary
signature scheme). The use of a one-time signature scheme is natural here, because it
is unlikely that the same signing-key s’ will be selected in two invocations of S”.

Proposition 6.4.12: Suppose that (G, S, V) is a secure signature scheme, and that
(G', S, V') is a secure one-time signature scheme. Then (G", 8", V"), as defined in
Construction 6.4.11, is a secure signature scheme.

We comment that the proposition holds even if (G, S, V') is secure only against attackers
that select queries according to the distribution G5(1"). Furthermore, (G, S, V') need
only be £-restricted, for some suitable function £ : N — N.

Proof Sketch: Consider an adversary A” attacking the scheme (G”, S”, V""). We may
ignore the case in which two queries of 4” are answered by triplets containing the
same one-time verification-key v’ (because if this event occurs with non-negligible
probability, then the one-time scheme (G’, S’, V) cannot be secure). We consider two
cases regarding the relation of the one-time verification-keys included in the signatures
provided by S/ and the one-time verification-key included in the signature forged by 4”.

1. In case, for some i, the one-time verification-key v’ contained in the forged message
equals the one-time verification-key v") contained in the answer to the i-th query,
we derive violation to the security of the one-time scheme (G’, S’, V).
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Specifically, consider an adversary A’ that on input a verification-key v’ for the one-
time scheme (G’, §’, V'), generates (s, v) < G(1") at random, selects i at random
(among polynomially many possibilities), invokes 4” on input v, and answers its
queries as follows. The i-th query of 4”, denoted a”), is answered by making the only
queryto S/, obtaining 8’ = (")), and returning (S (v'), v’, B') to A”. (Note that 4’
holds s.) Each other query of A4”, denoted a/), is answered by invoking G’ to obtain
(sV), v) <= G'(1"), and returning (S;(v"), v, S/, (@) to A”. If A” answers
with a forged signature and v’ is the verification-key contained in it, then 4’ obtains
a forged signature relative to the one-time scheme (G’, S, V') (i.e., a signature to a
message different from o), which is valid with respect to the verification-key v’).
Furthermore, conditioned on the case hypothesis and a forgery event, the second
event (i.e., v’ is the verification-key contained in the forged signature) occurs with
probability 1/poly(n). Note that, indeed, A" makes at most one query to S;,, and that
the distribution seen by A” is exactly as in an actual attack on (G”, S”, V).

2. In case, for all i, the one-time verification-key v’ contained in the forged message is

different from the one-time verification-key v) contained in the answer to the i-th
query, we derive violation to the security of the scheme (G, S, V).
Specifically, consider an adversary A4 that on input a verification-key v for the scheme
(G, S, V), invokes A4” on input v, and answers its queries as follows. To answer the
Jj-th query of A”, denoted «'/), algorithm A4 invokes G’ to obtain (s, v)) «
G'(1"), queries S, for a signature to v/), and returns (Sy(v/)), v, 8, (a))) to 4"
When A4” answers with a forged signature and v’ ¢ {v) : j =1, ..., poly(n)} is the
one-time verification-key contained in it, 4 obtains a forged signature relative to the
scheme (G, S, V) (i.e., a signature to a string v’ different from all v/)’s, which is
valid with respect to the verification-key v). (Note again that the distribution seen
by A" is exactly as in an actual attack on (G”, S”, V'").)*

Thus, in both cases we derive a contradiction to some hypothesis, and the proposition
follows. W

6.4.2.2. Authentication-Trees

The refreshing paradigm by itself (i.e., as employed in Construction 6.4.11) does not
seem to suffice for establishing Theorem 6.4.9. Recall that our aim is to construct
a general signature scheme based on a one-time signature scheme. The refreshing
paradigm suggests using a fresh instance of a one-time signature scheme in order to
sign the actual document; however, whenever we do so (as in Construction 6.4.11), we
must authenticate this fresh instance relative to the single verification-key that is public.
A straightforward implementation of this scheme (as presented in Construction 6.4.11)
calls for many signatures to be signed relative to the single verification-key that is
public, and so a one-time signature scheme cannot be used (for this purpose). Instead,
a more sophisticated method of authentication is called for.

20 Furthermore, all queries to S are distributed according to G»(1"), justifying the comment made just before the
proof sketch.

545

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:11, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.003


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.003
https:/www.cambridge.org/core

DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

The (verification-key of a) node labeled x authenticates (the verification-keys of)
its children, labeled x0 and x 1, respectively. The authentication is via a one-time
signature of the text v,ov,; using the signing-key s,, and it is verifiable with
respect to the verification-key v,.

Figure 6.4: Authentication-trees: the basic authentication step.

Let us try to sketch the basic idea underlying the new authentication method. The
idea is to use the public verification-key (of a one-time signature scheme) in order
to authenticate several (e.g., two) fresh instances (of the one-time signature scheme),
use each of these instances to authenticate several fresh instances, and so on. We
obtain a tree of fresh instances of the one-time signature, where each internal node
authenticates its children. We can now use the leaves of this tree in order to sign
actual documents, where each leaf is used at most once. Thus, a signature to an actual
document consists of (1) a one-time signature to this document authenticated with
respect to the verification-key associated with some leaf, and (2) a sequence of one-
time verification-keys associated with the nodes along the path from the root to this leaf,
where each such verification-key is authenticated with respect to the verification-key
of its parent (see Figures 6.4 and 6.5). We stress that each instance of the one-time
signature scheme is used to sign at most one string (i.e., several verification-keys if the
instance resides in an internal node, and an actual document if the instance resides in a
leaf).

This description may leave the reader wondering how one actually signs (and verifies
signatures) using the process outlined here. We start with a description that does not fit
our definition of a signature scheme, because it requires the signer to keep a record of
its actions during all previous invocations of the signing process.?! We refer to such a
scheme as memory dependent, and define this notion first.

21 This (memory) requirement will be removed in the next section.
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Figure 6.5: An authentication path for nodes 010 and 011.

Definition 6.4.13 (memory-dependent signature schemes):

Mechanics: Item I of Definition 6.1.1 stays as it is, and the initial state (of the signing
algorithm) is defined to equal the output of the key-generator. Item 2 is modified
such that the signing algorithm is given a state, denoted y, as auxiliary input and
returns a modified state, denoted §, as auxiliary output. It is required that for every
pair (s, v) in the range of G(1"), and for every o, y € {0, 1}*, if (B, 8) < Ss(o, ¥),
then Vy(a, B) = 1 and |§] < |y| + || - poly(n).

(That is, the verification algorithm accepts the signature 8 and the state does not
grow by too much.)

Security: The notion of a chosen message attack is modified so that the oracle S; now
maintains a state that it updates in the natural manner; that is, when in state y and
faced with query «, the oracle sets (B, §) < Ss(«, v), returns B, and updates its
state to 8. The notions of success and security are defined as in Definition 6.1.2,
except that they now refer to the modified notion of an attack.

The definition of memory-dependent signature schemes (i.e., Definition 6.4.13) is re-
lated to the definition of state-based MACs (i.e., Definition 6.3.10). However, there
are two differences between these two definitions: First, Definition 6.4.13 refers
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

to (public-key) signature schemes, whereas Definition 6.3.10 refers to MACs. Sec-
ond, in Definition 6.4.13, only the signing algorithm is state-based (or memory-
dependent), whereas in Definition 6.3.10 also the verification algorithm is state-
based. The latter difference reflects the difference in the applications envisioned for
both types of schemes. (Typically, MACs are intended for communication between
a predetermined set of “mutually synchronized” parties, whereas signature schemes
are intended for production of signatures that may be universally verifiable at any
time.)

We note that memory-dependent signature schemes may suffice in many applications
of signature schemes. Still, it is preferable to have memoryless (i.e., ordinary) signa-
ture schemes. In the following, we use any one-time signature schemes to construct a
memory-dependent signature scheme. The memory requirement will be removed in the
next section, so as to obtain a (memoryless) signature scheme (as in Definition 6.1.1).

The memory-dependent signature scheme presented (in Construction 6.4.14) main-
tains a binary tree of depth n, associating to each node an instance of a one-time
signature scheme. Each node in the tree is labeled by a binary string, denoted o - - - o;
for some i € {0, 1, ..., n}, and is associated with a (signing and verification) key-pair,
denoted (S4,...5,» Vsy--0;)- The root of the tree is labeled by the empty string, A, and
the verification-key v, associated with it is used as the verification-key of the en-
tire (memory-dependent) signature scheme. The children of an internal node labeled
o1 ---0; are labeled o} - - - 0,0 and o7 - - - 0;1, and their verification-keys (i.e., Vs,...0,0
and v,,...;1) are authenticated with respect to the verification-key v, ....,. With the ex-
ception of the (one-time) instance associated with the root of the tree, all the other
instances are generated (when needed) on the fly, and are stored in memory (along with
their authentication with respect to their parents). A new document is signed by allocat-
ing a new leaf, authenticating the actual document with respect to the verification-key
associated with this leaf, and authenticating each relevant verification-key with respect
to the verification-key associated with its parent. The relevant key-pairs (as well as their
authentication with respect to their parents) are generated on the fly, unless they are
already stored in memory (which means that they were generated in the course of sign-
ing a previous document). Thus, the verification-key associated with the relevant leaf
is authenticated with respect to the verification-key associated with its parent, which in
turn is authenticated with respect to the verification-key associated with its own par-
ent, and so on up to the authentication (of the verification-keys of the root’s children)
with respect to the verification-key associated with the root. The latter sequence of
authentications (of each node’s verification-key with respect to the verification-key of
its parent) is called an authentication path (see Figure 6.5). We stress that the (one-time)
instance associated with each node is used to authenticate at most one string. A formal
description of this memory-dependent signature scheme follows:

Construction 6.4.14 (a memory-dependent signature scheme): Let (G, S, V') be a one-
time signature scheme. Consider the following memory-dependent signature scheme,
(G', S, V"), with G’ = G. On security parameter n, the scheme uses a full binary tree
of depth n. Each of the nodes in this tree is labeled by a binary string so that the root is
labeled by the empty string, denoted A, and the left (resp., right) child of a node labeled
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6.4 CONSTRUCTIONS OF SIGNATURE SCHEMES

by x is labeled by x 0 (resp., x 1). Here we refer to the current state of the signing process
as to a record.

Initiating the scheme: 7o initiate the scheme, on security parameter n, we invoke G(1")
and let (s, v) < G(1"). We record (s, v) as the key-pair associated with the root,
and output v as the (public) verification-key.

In the rest of the description, we denote by (sx, vy) the key-pair associated with the
node labeled x; thus, (s;, vy) = (s, v).

Signing with S using the current record: Recall that the current record contains the
signing-key s = s,, which is used to produce auth,, (defined in the sequel).

To sign a new document, denoted o, we first allocate an unused leaf. Let o1 - - - 0, be
the label of this leaf. For example, we may keep a counter of the number of documents
signed, and determine o - - - 0, according to the counter value (e.g., if the counter
value is c, then we use the c-th string in lexicographic order).??

Next, for everyi = 1, ..., n and every t € {0, 1}, we try to retrieve from our record
the key-pair associated with the node labeled o - - - 0;_T. In case such a pair is not
found, we generate it by invoking G(1") and store it (i.e., add it to our record) for
future use; that is, we let (Sq,..q,_,7»> Vo,0,_yz) < G(17).

Next, for every i = 1, ..., n, we try to retrieve from our record a signature to the
StFing Vo, ...s,_,0 Vo, 0,1 Felative to the signing-key g, ...,_,. In case such a signature
is not found, we generate it by invoking S;, , ., and store it for future use; that
is, we obtain SSOI___UH (Voy-0,_10 Voy0;_11)- (The ability to retrieve this signature from
memory, for repeated use, is the most important place in which we rely on the memory
dependence of our signature scheme.)*> We let

def

authg,..., , = (vgl...gi_lo, Vo311 5 SSU]---H,»,I(UUI'“OY—IO vgl..m_ll))

(Intuitively, via auth,,.., ,, the node labeled o ---0;_; authenticates the
verification-keys associated with its children.)

Finally, we sign o by invoking S;,, , . and output
(o1 - 0op, authy, authg,, ..., authg, .., |, S, ., (@)

Verification with V': On input a verification-key v, a document «, and an alleged
signature B, we accept if and only if the following conditions hold:

1. B has the form

(o1 0n, (V0,05 V0,15 Bo)s (V1,05 V1,15 B1)s s Wn—1,0, Un—1,15 Bu=1)> Bn)

22 Alternatively, as done in Construction 6.4.16, we may select the leaf at random (while ignoring the negligible
probability that the selected leaf is not unused).

23 This allows the signing process S. to use each (one-time) signing-key s, for producing a single S, -signature.
In contrast, the use of a counter for determining a new leaf can be easily avoided, by selecting a leaf at random.
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

where the o; s are bits and all other symbols represent strings.

(Jumping ahead, we mention that v; . is supposed to equal vg,....,r; that is,
the verification-key associated by the signing process with the node labeled
o1 ---0;7. In particular, v;_ 4, is supposed to equal v, ..., .)

2. Vy(vo,0vo,1, Bo) = 1.
(Thatis, the public-key (i.e., v) authenticates the two strings vy o and vo ; claimed
to correspond to the instances of the one-time signature scheme associated with
the nodes labeled 0 and 1, respectively.)

3. Fori=1,...,n—1,it holds that VvH,a,- (viovi1, Bi) = 1.
(That is, the verification-key v;_; ,,, which is already believed to be authentic
and supposedly corresponds to the instance of the one-time signature scheme
associated with the node labeled o - - - o;, authenticates the two strings v; o and
v;, that are supposed to correspond to the instances of the one-time signature
scheme associated with the nodes labeled o - - - 0;0 and oy - - - 07 1, respectively.)

4. Vo, (@ B =1
(That is, the verification-key v,_1 4, , Which is already believed to be authentic,
authenticates the actual document «.)

Regarding the verification algorithm, note that Conditions 2 and 3 establish that v; , ,, is
authentic (i.e., equals vy, ...5,5,,, ). That is, v = v, authenticates v,, , which authenticates
V510> and SO on up-to vy, ..., . The fact that the v; 5,,,’s are also proven to be authentic
(i.e., equal to the vg,...q,5,,, s, where & = 1 — o) is not really useful (when signing a
message using the leaf associated with o - - - 0,,). This excess is merely an artifact of
the need to use s,,...,; only once during the entire operation of the memory-dependent
signature scheme: In the currently (constructed) S, -signature, we may not care about the
authenticity of some vy,...,7,,,, but we may care about it in some other S;-signatures.
For example, if we use the leaf labeled 0" to sign the first document and the leaf
labeled 0”1 to sign the second, then in the first S/-signature we care only about the
authenticity of vy., whereas in the second S;-signature we care about the authenticity
of vg-17.

Proposition 6.4.15: If(G, S, V) is a secure one-time signature scheme, then Construc-
tion 6.4.14 constitutes a secure memory-dependent signature scheme.

Proof: Recall that a S| -signature to a document « has the form
(01 -0y, authy, authy,, ..., authy,..q, , S5, , (@) (6.5)
where the auth,’s, v, ’s, and s, ’s satisfy

auth, = (vx() > Uxl s Ssx(va le)) (66)

(See Figure 6.4.) In this case, we say that this S;-signature uses the leaf labeled
o---0,. For every i =1, ..., n, we call the sequence (auth,, auth,,, ..., auth,, .., ,)
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an authentication path for v,,...,,; see Figure 6.5. (Note that this sequence is also an
authentication path for v,, ..., ,7,, where & = 1 — ¢.) Thus, a valid S;-signature to a
document « consists of an n-bit string oy - - - 0, authentication paths for each vy, ...,
(i =1, ..., n),and a signature to o with respect to the one-time scheme (G, S, V') using
the signing-key Sy,...q, -

Intuitively, forging an S;-signature requires either using only verification-keys sup-
plied by the signer (i.e., supplied by S, as part of an answer to a query) or producing
an authentication path for a verification-key that is different from all verification-keys
supplied by the signer. In both cases, we reach a contradiction to the security of the one-
time signature scheme (G, S, V). Specifically, in the first case, the forged S;-signature
contains a one-time signature that is valid with respect to the one-time verification-key
associated by the signing process with a leaf labeled o - - - 0,,, because by the case’s
hypothesis, the forged signature utilizes only verification-keys supplied by the signer.
This yields forgery with respect to the instance of the one-time signature scheme as-
sociated with the leaf labeled o - - - 0, (because the document that is S;-signed by the
forger must be different from all S;-signed documents, and thus the forged document
is different from all strings to which a one-time signature associated with a leaf was
applied).>* We now turn to the second case (i.e., forgery with respect to (G', S', V') is
obtained by producing an authentication path for a verification-key that is different from
all verification-keys supplied by the signer). As in the first case, we denote by g7 - - - 0,
the label of the leaf used for the (forged) signature. Leti € {0, ..., n — 1} be the largest
integer such that the signature produced by the forger refers to the verification-key
Vg,.-0; (as supplied by the signer), rather than to a different value (claimed by the forger
to be the verification-key associated with the node labeled oy - - - ;). (Note that i = 0
corresponds to the forger not even using v,,, whereas i < n by the case hypothesis.)
For this 7, the triple authy, ..., = (v} ¢, v} ;, ;) that is contained in the S;-signature pro-
duced by the forger contains a one-time signature (i.e., 8;) that is valid with respect to
the one-time verification-key associated by the signing process with the node labeled
o1 - - - 0; (where v;, is always used by the signing process). Furthermore, by maximality
of i, the latter signature is to a string (i.e., vj yv; ) that is different from the string
to which the S;-signer has applied S (i.e., v;’am # Vg,..0,,,)- This yields forgery
with respect to the instance of the one-time signature scheme associated with the node
labeled oy - - - 0;.

The actual proof'is by a reducibility argument. Given an adversary 4’ attacking the
complex scheme (G, S’, V'), we construct an adversary A that attacks the one-time
signature scheme, (G, S, V). Inparticular, the adversary 4 will use its (one-time) oracle
access to S, in order to emulate the memory-dependent signing oracle for 4. We stress
that the adversary 4 may make at most one query to its S;-oracle. Following is a detailed
description of the adversary 4. Since we care only about probabilistic polynomial-time
adversaries, we may assume that 4’ makes at most ¢ = poly(n) many queries, where n
is the security parameter.

010

24 Note that what matters is merely that the document S/ -signed by the forger is different from the (single) document
to which Sxol...a,, was applied by the S, -signer, in case Syglv_ﬁn was ever applied by the S-signer.

551

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:11, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.003


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.003
https:/www.cambridge.org/core
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The Construction of Adversary A: Suppose that (s, v) is in the range of G(1"). On
input v and one-query oracle access to Sy, adversary A proceeds as follows:

1. Initial choice: A uniformly selects j € {1, ..., 2n + 1) - t}.

(The integer j specifies an instance of (G, S, V') generated during the emulated attack
of A" on (G’, §’, V). This instance will be attacked by 4. Note that since 2n + 1
instances of (G, S, V') are referred to in each signature relative to (G', §’, V'), the
quantity (2n + 1) - ¢ upper-bounds the total number of instances of (G, S, V) that
appear during the entire attack of 4’. This upper bound is not tight.)

2. Invoking A’: If j = 1, then 4 sets v; = v and invokes 4’ on input v. In this case 4
does not know s;, which is defined to equal s, yet A can obtain a single signature
relative to the signing-key s by making a (single) query to its own oracle (i.e., the
oracle Sy).

Otherwise (i.e., j > 1), machine 4 invokes G, obtains (s’, v') < G(1"), sets
(55, v;) = (s/, v'), and invokes A4’ on input v'. We stress that in this case A
knows ;.

Indeed, in both cases, 4’ is invoked on input v;. Also, in both cases, the one-
time instance associated with the root (i.e., the node labeled A) is called the first
instance.

3. Emulating the memory-dependent signing oracle for A': The emulation is analogous
to the operation of the signing procedure as specified in Construction 6.4.14. The
only exception refers to the j-th instance of (G, S, V) that occurs in the memory-
dependent signing process. Here, 4 uses the verification key v, and if an S;-signature
needs to be produced, then 4 queries S for it. We stress that at most one signature
need ever be produced with respect to each instance of (G, S, V) that occurs in the
memory-dependent signing process, and therefore S; is queried at most once. Details
follow.

Machine 4 maintains a record of all key-pairs and one-time signatures it has gen-
erated and/or obtained from S;. When 4 is asked to supply a signature to a new
document, denoted «, it proceeds as follows:

(a) A allocates a new leaf-label, denoted o, - - - 0,,, exactly as done by the signing
process.

(b) Foreveryi =1, ..., n and every t € {0, 1}, machine 4 tries to retrieve from its
record the one-time instance associated with the node labeled o - - -0, 7. If
such an instance does not exist in the record (i.e., the one-time instance associated
with the node labeled o - - - 0;_ 7 did not appear so far), then 4 distinguishes
two cases:

i. Ifthe record so far contains exactly j — 1 one-time instances (i.e., the current
instance is the j-th one to be encountered), then 4 sets vy,....;_,r < v, and
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adds ittoits record. In this case, 4 does not know sy,..., -, which is defined to
equal s, yet A can obtain a single signature relative to s by making a (single)
query to its own oracle (i.e., the oracle S;).

From this point on, the one-time instance associated with the node labeled
oy ---0;—17 will be called the j-th instance.

ii. Otherwise (i.e., the current instance is not the j-th one to be encountered), 4

acts as the signing process: It invokes G(17"), obtains (Sg,...0, 7> Voy-0,_y7) <
G(1™), and adds it to the record. (Note that in this case, 4 knows Sg,...0, =
and can generate by itself signatures relative to it.)
The one-time instance just generated is given the next serial number. That
is, the one-time instance associated with the node labeled oy - - - 0;,_; 7 will
be called the k-th instance if the current record (i.e., after the generation of
the one-time key-pair associated with the node labeled o7 - - - 0;_; T) contains
exactly k instances.

(c) Foreveryi =1, ..., n, machine A tries to retrieve from its record a (one-time)
signature to the string ve,..s,_,0 Vo,.0;_,1, relative to the signing-key so,..4,_, -
If such a signature does not exist in the record then A distinguishes two
cases:

i. If the one-time signature instance associated with the node labeled
o1---0;_1 1s the j-th such instance, then A obtains the one-time signa-
ture S-Yalon (Voy--0;_,0 Voy0;_, 1) DY querying S, and adds this signature to
the record.

Note that by the previous steps (i.e., Step 3(b)i as well as Step 2), s is identified
with s,,...,_, , and that the instance associated with anode labeled o - - - 071 is
only used to produce a single signature; that is, to the string ve,...s,_,0 Voy-0;_,1-
Thus, in this case, 4 queries Sy at most once.

We stress that this makes crucial use of the fact that, for every t, the
verification-key associated with the node labeled o - - - 0;_| 7 is identical in all
executions of the current step. This fact guarantees that 4 only needs a single
signature relative to the instance associated with a node labeled o} - - - 0;_1,
and thus queries S; at most once (and retrieves this signature from memory
if it ever needs this signature again).

ii. Otherwise (i.e., the one-time signature instance associated with the node
labeled o, - - - ;1 is not the j-th such instance), 4 acts as the signing process:
It invokes SSUI___”F1 , obtains the one-time signature SSOI,__GH1 (Voyv0;_,0 Vopoy_11)s
and adds it to the record. (Note that in this case, 4 knows s,,....,_, and can
generate by itself signatures relative to it.)

Thus, in both cases, 4 obtains auth,,...;, , = (Vgy0,_,0 5 Vopos_y15 Bi—1), Where

ﬂi—l = Ss(,l...(,l;l (UO’I---U,-_IO UU]---O’,'_ll)'

(d) Machine 4 now obtains a one-time signature of « relative to Sty - (Since

a new leaf is allocated for each query made by A’, we need to generate at
most one signature relative to the one-time instance Ssoron associated with the
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leaf o1 --- 0,.) This is done analogously to the previous step (i.e., Step 3c).
Specifically:

i. If the one-time signature instance associated with the (leaf) node labeled
oy - -+ g, is the j-th instance, then A4 obtains the one-time signature Ssal---an ()
by querying S;.

Note thatin this case, s is identified with s,,..., , and that an instance associated
with a leaf is only used to produce a single signature. Thus, also in this case
(which is disjoint of Case 3(c)i), 4 queries S; at most once.

ii. Otherwise (i.e., the one-time signature instance associated with the node
labeled o7 - - - 0, is not the j-th instance), 4 acts as the signing process: It
invokes S5 and obtains the one-time signature S5y (@) (Again, in this
case 4 knows s,,...,, and can generate by itself signatures relative to it.)

Thus, in both cases, 4 obtains 8, = SSUI___W ().

(e) Finally, 4 answers the query o with
(o1- - - oy, auth,, authy,,, ..., authg,...o, ,, By)

4. Using the output of A’: When A’ halts with output («’, '), machine A4 checks
whether this is a valid document-signature pair with respect to V) and whether the
document o’ did not appear as a query of A’. If both conditions hold, then A4 tries
to obtain forgery with respect to ;. To explain how this is done, we need to take a
closer look at the valid document-signature pair, (&', 8'), output by A’. Specifically,
suppose that 8" has the form

(01 0, (V9,05 V0,15 Bo)s (V1,05 V115 BLs s (U105 Up1.1> Br1)s Br)

and that the various components satisfy all conditions stated in the verification
procedure. (In particular, the sequence (vg g, Vg 15 Bg)s s (V,_ 105 Vp1.15 Bry) 18
the authentication path (for v, _, ) output by A’.) Recall that strings of the form
vy, denote the verification-keys included in the output of A’, whereas strings of the
form v, denote the verification-keys (as used in the answers given to 4’ by 4 and)
as recorded by A4.

Let i be maximal such that the sequence of key-pairs (vg g, Vg 1) - (V] 05 V;_1.1)
appears in some authentication path supplied to A4’ (by 4).> Note that
i €{0,..,n}, where i =0 means that (v{)’o, v()’]) differs from (vg, v;), and
i =n means that the sequence ((vg g,V 1)s > (U, 105 Vy 1)) €quals the
sequence ((vo, V1), -+, (Vo/.07_ 0> Vojo7_ 1))- In general, the sequence ((Ué,o’

n—1
Vo.1)s - (V]_1.05 Vj_.1)) equals the sequence ((vo, V1), .-, (Voi.o! 05 Voioy_,1))- I

particular, for i > 1, it holds that vlLI » = Vo/..c/, Whereas for i = 0 we shall only

25 That is, i is such that for some By, ..., fi—1 (which may but need not equal Bi» - Bi_,), the sequence
(U(/),o’ v(’,)l, Bo)s s (”f—l,o’ v;_],l, Bi—1) is a prefix of some authentication path (for some vglr___g’_rgl,ﬂ___oﬂ) sup-
plied to 4" by A. We stress that here we only care about whether or not some v; _’s equal the corresponding
verification-keys supplied by 4, and ignore the question of whether (in case of eciuality) the verification-keys
were authenticated using the very same (one-time) signature. We mention that things will be different in the
analogous part of the proof of Theorem 6.5.2 (which refers to super-security).
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refer to v, (which is the verification-key attacked by A’). In both cases, the output
of A’ contains a one-time signature relative to Vo/..s!» and this signature is to a string
different from the (possibly) only one to which a signature was supplied to 4" by
A. Specifically, as in the motivating discussion (in the beginning of the proof), we
distinguish the casesi = n and i < n:

(a) Incasei = n, the output of 4’ contains the (one-time) signature 3, that satisfies
Voyr.or (o, B)) = 1. Furthermore, o’ is different from the (possibly) only docu-
meht to which Sy, . was applied during the emulation of the S'-signer by 4,
since by our hypo‘lthesis the document o’ did not appear as a query of 4’. (Re-
call that by the construction of A, instances of the one-time signature scheme
associated with leaves are only applied to the queries of 4’.)

(b) In case [ < n, the output of 4’ contains the (one time) signature B; that satisfies

Vot (V] gV} 1> B)) = 1. Furthermore, v; v}, is different from v,;..5/0 Vo;-0/0,
whlch is the (possibly) only string to which S;_ (L Was applied during the emu-

lation of the S’-signer by 4, where the last assert10n is due to the maximality of
i (and the construction of A4).

Thus, in both cases, 4 obtains from A" a valid (one-time) signature relative to the
(one-time) instance associated with the node labeled o - - - /. Furthermore, in both
cases, this (one-time) signature is to a string that did not appear in the record of 4.
The question is whether the instance associated with the node labeled o - - - o/ is
the j-th instance, for which 4 set v = v,;..,/. In case the answer is yes, 4 obtains
forgery with respect to the (one-time) verification-key v (which it attacks).

In view of'this discussion, 4 acts as follows. It determines i as in the beginning of the
current step (i.e., Step 4), and checks whether v = v,...,; (or, almost equivalently,
whether the j-th instance is the one associated with the node labeled o7 - - - ¢/). In
case i = n, machine 4 outputs the string-signature pair (o', B, ); otherwise (i.e.,
i < n) it outputs the string-signature pair (v; 4v; ;, B;).

This completes the (admittingly long) description of adversary A. We repeat again
some obvious observations regarding this construction. Firstly, 4 makes at most one
query to its (one-time) signing oracle Sy. Secondly, assuming that A" is probabilistic
polynomial-time, so is 4. Thus, all that remains is to relate the success probability of 4
(when attacking a random instance of (G, S, 7)) to the success probability of A’ (when
attacking a random instance of (G’, §’, V'')). As usual, the main observation is that the
view of A’, during the emulation of the memory-dependent signing process (by A4), is
identically distributed to its view in an actual attack on (G’, §’, V’). Furthermore, this
holds conditioned on any possible fixed value of j (selected in the first step of A). It
follows that if 4" succeeds in forging signatures in an actual attack on (G, §’, V') with
probability &'(n), then A succeeds in forging signatures with respect to (G, S, V') with
probability at least (2 +1) —, where the (2n + 1) - ¢ factor is due to the probability that
the choice of j is a good one (i.e., so that the j-th instance is the one associated with the
node labeled o - - - o/, where 0| - - - 0, and i are as defined in Step 4 of 4’s construction).
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We conclude that if (G', S’, V') can be broken by a probabilistic polynomial-time
chosen message attack with non-negligible probability, then (G, S, V') can be broken by
a probabilistic polynomial-time single-message attack with non-negligible probability,
in contradiction to the proposition’s hypothesis. The proposition follows. W

6.4.2.3. The Actual Construction

In this section, we remove the memory dependency of Construction 6.4.14 and obtain
an ordinary (rather than memory-dependent) signature scheme. Toward this end, we
use pseudorandom functions (as defined in Definition 3.6.4). The basic idea is that
the record maintained in Construction 6.4.14 can be determined (on the fly) by an
application of a pseudorandom function to certain strings. For example, instead of
generating and storing an instance of a (one-time) signature scheme for each node that
we encounter, we can determine the randomness for the (corresponding invocation of
the) key-generation algorithm as a function of the label of that node. Thus, there is no
need to store the key-pair generated, because if we ever need it again, then regenerating
it (in the very same way) will yield exactly the same result. The same idea applies
also to the generation of (one-time) signatures. In fact, the construction is simplified,
because we need not check whether or not we are generating an object for the first time.

For simplicity, let us assume that on security parameter z, both the key-generation
and signing algorithms (of the one-time signature scheme (G, S, V)) use exactly n
internal coin tosses. (This assumption can be justified by using pseudorandom gen-
erators, which exist anyhow under the assumptions used here.) For r € {0, 1}, we
denote by G(1”, r) the output of G on input 1” and internal coin-tosses . Likewise,
for r € {0, 1}", we denote by S(«, ) the output of S, on input a signing-key s and
a document o, when using internal coin-tosses 7. For simplicity, we shall actually be
using generalized pseudorandom functions as in Definition 3.6.12 (rather than pseu-
dorandom functions as defined in Definition 3.6.4).2° Furthermore, for simplicity, we
shall consider applications of such pseudorandom functions to sequences of characters
containing {0, 1}, as well as a few additional special characters.

Construction 6.4.16 (Removing the memory requirement from Construction 6.4.14):
Let (G, S, V) be a one-time signature scheme, and { f, : {0, 1}* — {0, 1}"1},c(0.1)- be
a generalized pseudorandom function ensemble as in Definition 3.6.12. Consider the
Jollowing signature scheme, (G', S', V'), which refers to a full binary tree of depth n as
in Construction 6.4.14:

Key-generation algorithm G’: On input 1", algorithm G’ obtains (s, v) < G(1") and
selects uniformly r € {0, 1}". Algorithm G’ outputs the pair ((r, s), v), where (r, s)
is the signing-key and v is the verification-key.>’

26 We shall make comments regarding the minor changes required in order to use ordinary pseudorandom functions.
The first comment is that we shall consider an encoding of strings of length up to n + 2 by strings of length
n+3 (e.g., fori < n+2, the string x € {0, 1}’ is encoded by x 107271,

27 In case we use ordinary pseudorandom functions, rather than generalized ones, we select  uniformly in {0, 1
such that f; : {0, 1}"+3 — {0, 1}"+3. Actually, we shall be using the function f; : {0, 1}*+3 — {0, 1}" derived
from the original f, by dropping the last 3 bits of the function value.

}n+3
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Signing algorithm S": On input a signing-key (r, s) (in the range of G|(1")) and a
document o, the algorithm proceeds as follows:

1. It selects uniformly o, - - - o, € {0, 1}".
(Algorithm S’ will use the leaf labeled oy - - - 0, € {0, 1}" to sign the current doc-
ument. Indeed, with exponentially vanishing probability, the same leaf may be
used to sign two different documents, and this will lead to forgery [but only with
negligible probability].)

(Alternatively, to obtain a deterministic signing algorithm, one may set oy - - -
0, < f.(select-leaf, o), where select-leaf is a special character.)?®
2. Next, foreveryi = 1, ...,n and every t € {0, 1}, the algorithm invokes G and sets

(Soy0i_175 Vopeoy_y) < G(1", fr(key-gen, o;---0;_1T))

where key-gen is a special character.*®
3. Foreveryi = 1, ..., n, the algorithm invokes Ssal___a__1 and sets

def (

authy ... | = (Vo 0,105 Voyoi (15

SSO’]---UI-_] (vo'l"'ai—lo Ugp-oiog 15 fr(Sign: Oy Uifl)))

where sign is a special character.>

4. Finally, the algorithm invokes S, , and outputs®!

(o1- - - 0y, authy, authy,, ..., authg, ., |, Ss, ., (@, fr(sign, o1---0,)))

Verification algorithm V': On input a verification-key v, a document a, and an alleged
signature B, algorithm V' behaves exactly as in Construction 6.4.14. Specifically,
assuming that B has the form

(o1 0, (0,0, V0,1, Bo)s (V1,05 V1,15 B1)s +ves (Vn=1,0, Vn—1,1> Bu—1), Bn)

algorithm V' accepts if and only if the following three conditions hold:

® Vy(vo,0v0,1, Bo) = 1.
e Fori =1, ...,n—1, it holds that Vo1, (vi,ovi,1, Bi) = L.

® Vv,,,l,g,, (aa ,Bn) =1L

Proposition 6.4.17: If (G, S, V) is a secure one-time signature scheme and {f, :
{0, 1}* — {0, 1} }refo,1)+ is a generalized pseudorandom function ensemble, then Con-
struction 6.4.16 constitutes a secure (general) signature scheme.

28 In case we use ordinary pseudorandom functions, rather than generalized ones, this alternative can be (directly)
implemented only if it is guaranteed that || < n. In such a case, we apply the f, to the (n + 3)-bit encoding of
00c.

29 In case we use ordinary pseudorandom functions, rather than generalized ones, the argument to f,. is the
(n + 3)-bit encoding of 1007 - - - 07— T.

30 In case we use ordinary pseudorandom functions, rather than generalized ones, the argument to f; is the
(n + 3)-bit encoding of 1107 - g;_1.

31In case we use ordinary pseudorandom functions, rather than generalized ones, the argument to f; is the
(n + 3)-bit encoding of 1107 - - - 0y,.
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Proof: Following the general methodology suggested in Section 3.6.3, we consider an
ideal version of Construction 6.4.16 in which a truly random function is used (rather than
apseudorandom one). The ideal version is almost identical to Construction 6.4.14, with
the only difference being the way in which o - - - 0, is selected. Specifically, applying
a truly random function to determine (one-time) key-pairs and (one-time) signatures is
equivalent to generating these keys and signatures at random (on the fly) and reusing
the stored values whenever necessary. Regarding the way in which oy - - - g, is selected,
observe that the proof of Proposition 6.4.15 is oblivious of this way, except for the
assumption that the same leaf is never used to sign two different documents. However,
the probability that the same leaf is used twice by the (memoryless) signing algorithm,
when serving polynomially many signing requests, is exponentially vanishing and thus
can be ignored in our analysis. We conclude that the ideal scheme (in which a truly
random function is used instead of f,.) is secure. It follows that also the actual signature
scheme (as in Construction 6.4.16) is secure, or else one can efficiently distinguish a
pseudorandom function from a truly random one (which is impossible). Details follow.

Assume toward the contradiction that there exists a probabilistic polynomial-time
adversary A’ that succeeds in forging signatures with respect to (G’, S’, V') with non-
negligible probability, but succeeds only with negligible probability when attacking
the ideal scheme. We construct a distinguisher D that on input 1” and oracle access to
f {0, 1}* — {0, 1}" behaves as follows. Machine D generates ((+/, s), v) < G'(1")
and invokes 4’ on input v. Machine D answers the queries of 4’ by running the signing
process, using the signing-key (v, s), with the exception that it replaces the values
fr(x) by f(x). That is, whenever the signing process calls for the computation of the
value of the function f,- on some string x, machine D queries its oracle (i.e., f) on
the string x, and uses the response f(x) instead of f,..(x). When A’ outputs an alleged
signature to a new document, machine M evaluates whether or not the signature is
valid (with respect to V) and outputs 1 if and only if 4’ has indeed succeeded (i.e., the
signature is valid). Observe that if D is given oracle access to a truly random function,
then the emulated A’ attacks the ideal scheme, whereas if D is given oracle access to
a pseudorandom function f;, then the emulated 4’ attacks the real scheme. It follows
that D distinguishes the two cases, in contradiction to the pseudorandomness of the
ensemble { f,}. MW

6.4.2.4. Conclusions and Comments

Theorem 6.4.9 follows by combining Proposition 6.4.17 with the fact that the exis-
tence of secure one-time signature schemes implies the existence of one-way functions
(see Exercise 13), which in turn implies the existence of (generalized) pseudorandom
functions. Recall that by combining Theorem 6.4.9 and Corollary 6.4.8, we obtain
Corollary 6.4.10, which states that the existence of collision-free hashing collections
implies the existence of secure signature schemes. Furthermore, the length of the re-
sulting signatures depends only on the length of the signing-key.

We comment that Constructions 6.4.14 and 6.4.16 can be generalized as follows.
Rather than using a (depth »n) full binary tree, one can use any tree that has a super-
polynomial (in #) number of leaves, provided that one can enumerate the leaves (resp.,
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uniformly select a leaf) and generate the path from the root to a given leaf. We consider
a few possibilities:

e Foranyd : N— N bounded by a polynomial inz (e.g.,d = 2 or d(n) = n are indeed

“extreme” cases), we may consider a full d(n)-ary tree of depth e(n) so that d(n)°™ is
greater than any polynomial in . The choice of parameters in Constructions 6.4.14
and 6.4.16 (i.e., d = 2 and e(n) = n) is probably the simplest one.
Natural complexity measures for a signature scheme include the length of signatures
and the signing and verification times. In a generalized construction, the length of the
signatures is linear in d(n) - e(n), and the number of applications of the underlying
one-time signature scheme (per each general signature) is linear in e(n), where in
internal nodes the one-time signature scheme is applied to a string of length linear in
d(n). Assuming that the complexity of one-time signatures is linear in the document
length, all complexity measures are linear in d(n) - e(n), and so d = 2 is the best
generic choice. However, this assumption may not hold when some specific one-time
signatures are used. For example, the complexity of producing a signature to an £-bit
long string in a one-time signature scheme may be of the form p(n) + p’(n) - £, where
p'(n) < p(n). In such (special) cases, one may prefer to use a larger d : N— N (see
Section 6.6.5).

¢ For the memory-dependent construction, it may be preferable to use unbalanced

trees (i.e., having leaves at various levels). The advantage is that if one utilizes first
the leaves closer to the root, then one can obtain a saving on the cost of signing the
first documents.
For example, consider using a ternary tree of super-logarithmic depth (i.e., d = 3
and e(n) = w(logn)), in which each internal node of level i € {0, 1, ..., e(n) — 2}
has two children that are internal nodes and a single child that is a leaf (and the
internal nodes of level e(n) — 1 have only leaves as children). Thus, fori > 1, there
are 3'~! leaves at level i. If we use all leaves of level i before using any leaf of level
i 4+ 1, then the length of the j-th signature in this scheme is linear in log; j (and so
is the number of applications of the underlying one-time signature scheme).

When actually applying these constructions, one should observe that in variants
of Construction 6.4.14, the size of the tree determines the number of documents that
can be signed, whereas in variants of Construction 6.4.16, the tree size has an even
more drastic effect on the number of documents that can be signed.?” In some cases, a
hybrid of Constructions 6.4.14 and 6.4.16 may be preferable: We refer to a memory-
dependent scheme in which leaves are assigned as in Construction 6.4.14 (i.e., according
to a counter), but the rest of the operation is done as in Construction 6.4.16 (i.e., the
one-time instances are regenerated on the fly, rather than being recorded and retrieved

32 In particular, the number of documents that can be signed should definitely be smaller than the square root of
the size of the tree (or else two documents are likely to be assigned the same leaf). Furthermore, we cannot use
a small tree (e.g., of size 1,000) even if we know that the total number of documents that will ever be signed is
small (e.g., 10), because in this case, the probability that two documents are assigned the same leaf is too big
(e.g., 1/20).
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from memory). In some applications, the introduction of a document-counter may be
tolerated, and the gain is the ability to use a smaller tree (i.e., of size merely greater
than the number of documents that should be ever signed).

More generally, we wish to stress that each of the following ingredients of the
previous constructions is useful in a variety of related and unrelated settings. We refer
specifically to the refreshing paradigm, the authentication-tree construction, and the
notion (and constructions) of one-time signatures. For example:

e [t is common practice to authenticate messages sent during a “communication ses-
sion” via a (fresh) session-key that is typically authenticated by a master-key. One
of the reasons for this practice is the prevention of a chosen message attack on the
(more valuable) master-key. (Other reasons include allowing the use of a faster (alas,
less secure) authentication scheme for the actual communication and introducing in-
dependence between sessions.)

e Observe the analogy between the tree-hashing (of Construction 6.2.13) and the
authentication-tree (of Construction 6.4.14). Despite the many differences, in both
cases the value of each internal node authenticates the values of its children. Thus,
the value of the root may be used to authenticate a very large number of values
(associated with the leaves). Furthermore, the value associated with each leaf can
be verified within complexity that is linear in the depth of the tree.

e Recall the application of one-time signatures to the construction of CCA-secure
public-key encryption schemes (see the proof of Theorem 5.4.30).

6.4.3.% Universal One-Way Hash Functions and Using Them

So far, we have established that the existence of collision-free hashing collections
implies the existence of secure signature schemes (cf. Corollary 6.4.10). We seek to
weaken the assumption under which secure signature schemes can be constructed,
and bear in mind that the existence of one-way functions is certainly a necessary
condition (cf., for example, Exercise 13). In view of Theorem 6.4.9, we may focus
on constructing secure one-time signature schemes. Furthermore, recall that secure
length-restricted one-time signature schemes can be constructed based on any one-way
function (cf. Corollary 6.4.6). Thus, the only bottleneck we face (with respect to the
assumption used) is the transformation of length-restricted one-time signature schemes
into (general) one-time signature schemes. For the latter transformation, we have used
a specific incarnation of the “hash-and-sign paradigm” (i.e., Proposition 6.4.7, which
refers to Construction 6.2.6). This incarnation utilizes collision-free hashing, and our
goal is to replace it by a variant (of Construction 6.2.6) that uses a seemingly weaker
notion called Universal One-Way Hash Functions.

6.4.3.1. Definition

A collection of universal one-way hash functions is defined analogously to a collection of
collision-free hash functions. The only difference is that the hardness (to form collisions)
requirement is relaxed. Recall that in the case of (a collection of) collision-free hash

560

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:11, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.003


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.003
https:/www.cambridge.org/core

6.4 CONSTRUCTIONS OF SIGNATURE SCHEMES

functions, it was required that, given the function’s description, it is hard to form an
arbitrary collision under the function. In the case of (a collection of ) universal one-way
hash functions, we only require that, given the function’s description / and a pre-image
X0, it is hard to find an x # x¢ so that #(x) = h(x¢). We refer to this requirement as to
hardness to form designated collisions.

Our formulation of the hardness to form designated collisions is actually seem-
ingly stronger. Rather than being supplied with a (random) pre-image x,, the collision-
forming algorithm is allowed to select x( by itself, but must do so before being presented
with the function's description. That is, the attack of the collision-forming algorithm
proceeds in three stages: First the algorithm selects a pre-image x, next it is given a
description of a randomly selected function /4, and finally it is required to output x # x
such that s(x) = h(xo). We stress that the third stage in the attack is also given the
random coins used for producing the initial pre-image (at the first stage). This yields
the following definition, where the first stage is captured by a deterministic polynomial-
time algorithm A, (which maps a sequence of coin tosses, denoted Uy ,), to a pre-image
of the function), and the third stage is captured by algorithm A (which is given the very
same coins Uy, as well as the function’s description).

Definition 6.4.18 (universal one-way hash functions — UOWHF): Let £ : N — N. 4
collection of functions {h : {0, 1}* — {0, 1}*0SD} 0 1)+ is called universal one-way
hashing (UOWHEF) if there exists a probabilistic polynomial-time algorithm I so that
the following holds:

1. (admissible indexing — technical):3* For some polynomial p, all sufficiently large
n’s, and every s in the range of 1(1"), it holds that n < p(|s|). Furthermore, n can
be computed in polynomial-time from s.

2. (efficient evaluation): There exists a polynomial-time algorithm that, given s and x,
returns hgy(x).

3. (hard-to-form designated collisions): For every polynomial q, every deterministic
polynomial-time algorithm Ay, every probabilistic polynomial-time algorithm A,
every positive polynomial p, and all sufficiently large n's

br [hmn)(A(I(l”), Uyon)) = hl(ln)(Ao(qu)))} L
and  A(I(1"), Uym) # Ao(Uyn)) p(n)

where the probability is taken over Uy, and the internal coin tosses of algorithms
I and A.

(6.7)

The function £ is called the range specifier of the collection.

We stress that the hardness to form designated collisions condition refers to the
following three-stage process: First, using a uniformly distributed » € {0, 1}9"), the
(initial) adversary generates a pre-image xo = Ao(r); next, a function % is selected (by
invoking /(1")); and, finally, the (residual) adversary 4 is given 4 (as well as r used

33 This condition is made merely to avoid annoying technicalities. Note that |s| = poly(n) holds by definition of 1.
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at the first stage) and tries to find a pre-image x # x¢ such that 4(x) = A(xo). Indeed,
Eq. (6.7) refers to the probability that x & A(h,r) # x¢ and yet h(x) = h(xo).

Note that the range specifier (i.e., £) must be super-logarithmic (or else, given s and
xo < U,, one is too likely to find an x # x( such that A;(x) = A,(x(), by uniformly
selecting x in {0, 1}"). Also note that any UOWHEF collection yields a collection of
one-way functions (see Exercise 19). Finally, note that any collision-free hashing is
universally one-way hashing, but the converse is false (see Exercise 20). Furthermore,
it is not known whether collision-free hashing can be constructed based on any one-way
functions (in contrast to Theorem 6.4.29, to follow).

6.4.3.2. Constructions

We construct UOWHEF collections in several steps, starting with a related but restricted
notion, and relaxing the restriction gradually (until we reach the unrestricted notion
of UOWHEF collections). The aforementioned restriction refers to the length of the
arguments to the function. Most importantly, the hardness (to form designated colli-
sions) requirement will refer only to an argument of this length. That is, we refer to the
following technical definition:

Definition 6.4.19 ((d, r)-UOWHEFs): Let d, r : N — N. 4 collection of functions {h; :
{0, 1}40sh — {0, 1}r(|“")}s€{0,1}* is called (d, r)-UOWHF if there exists a probabilistic
polynomial-time algorithm I so that the following holds:

1. For all sufficiently large n's and every s in the range of I(1"), it holds that |s| = n.3*

2. There exists a polynomial-time algorithm that, given s and x € {0, 1}%05D returns
hg(x).

3. For every polynomial q, every deterministic polynomial-time algorithm Ay mapping
q(n)-bit long strings to d(|s|)-bit long strings, every probabilistic polynomial-time
algorithm A, every positive polynomial p, and all sufficiently large n's, Eq. (6.7)
holds.

Of course, we care only about (d, »)-UOWHEF for functions d, » : N — N satisfying
d(n) > r(n). (The case d(n) < r(n) is trivial since collisions can be avoided altogether,
say, by the identity map.) The “minimal” non-trivial case is when d(n) = r(n) + 1.
Indeed, this is our starting point. Furthermore, the construction of such a minimal
(d, d — 1)-UOWHF (undertaken in the following first step) is the most interesting step
to be taken on our entire way toward the construction of full-fledged UOWHEF. We start
with an overview of the steps taken along the way.

Step I: Constructing (d, d — 1)-UOWHFs: This construction utilizes a one-way per-
mutation f and a family of hashing functions mapping n-bit long strings to (n — 1)-
bit long strings. A generic function in the constructed collection is obtained by

34 Here we chose to make a more stringent condition, requiring that |s| = n, rather than n < poly(|s|). In fact, one
can easily enforce this more stringent condition by modifying 7 into I’ so that I’(1/(") = I(1") for a suitable
function / : N— N satisfying /(n) < poly(n) and n < poly(/(n)).
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composing a hashing function with f; that is, the resulting function is Ao f :
{0, 1} — {0, 1}*~!, where & : {0, 1}* — {0, 1}"~! is a hashing function. Hence, the
constructed functions shrink their input by a single bit.

Intuitively, a random hashing function # maps the f-images in a random manner,
whereas the pre-images under 4 o f are the f-inverses of the pre-images under /.
Thus, seeking to invert f on y, we may select x¢ € {0, 1}" and / at random such that
h(f(x0)) = h(y), and seek a collision with the designated pre-image x¢ under 4 o f.
It follows that the ability to form designated collisions can be translated to inverting
f on a random image. Transforming this intuition into an actual proof is the most
technically challenging part of the current section.

Step II: Constructing (d’, d'/2)-UOWHFs: Here we merely compose random func-
tions taken from collections as constructed in Step I. Successively applying d’/2
such functions, we map the d’-bit long pre-image to a d’/2-bit long image.

Intuitively, the ability to form designated collisions with respect to the constructed
collection yields such an ability with respect to (one of)) the original collections. (In
the actual argument, we rely on the fact that the definition of (d, d — 1)-UOWHF
refers also to adversaries that get the random coins used for producing the designated
pre-image, and not merely the designated preimage itself.)

Step lll: In this step, we construct (length-unrestricted) quasi-UOWHFs that shrink
their input by a factor of two. These functions are constructed by applying a (single)
random function taken from a collection as constructed in Step II to each block of
d’ consequtive bits of the pre-image. (Clearly, a collision of the entire sequence of
blocks yields collisions at some block.)

Step IV: Obtaining full-fledged UOWHFs: This construction is analogous to the one
used in Step II. We merely compose random functions taken from a collection as
constructed in Step III. Successively applying ¢ such functions, we essentially map
2'n-bit long pre-images to n-bit long images.

Detailed descriptions of these four steps follow:

Step I: Constructing (d,d — 1)-UOWHFs. We show how to construct length-
restricted UOWHFs that shrink their input by a single bit. Our construction can be
carried out using any one-way permutation. In addition, we use a family of hashing
functions, S;’*I, as defined in Section 3.5.1.1. Recall that a function selected uni-
formly in SZ”I maps {0, 1}" to {0, 1}*~! in a pairwise independent manner, that the
functions in S"~! are easy to evaluate, and that for some polynomial p it holds that
log, |S2~!| = p(n).

Construction 6.4.20 (a (d,d — 1)-UOWHEF): Let f : {0, 1}* — {0, 1}* be a 1-1 and
length-preserving function, and let S*~' be a family of hashing functions such that
log, |S"~!| = p(n), for some polynomial p. (Specifically, suppose that log, |S"~!| €
{3n — 2, 2n}, as in Exercises 22.2 and 23 of Chapter 3.) Then, for every s € S"~! =

{0, 1}P™ and every x € {0, 1}, we define h,(x) = hy(f(x)).
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Tedious details: In case |s| & {p(n) : n € N}, we define h’, &t h, where s’ is the
longest prefix of s satisfying |s'| € {p(n) : n € N}. We refer to an index selection
algorithm that, on input 1™, uniformly selects s € {0, 1}".

That is, A, : {0, 1}90sD — {0, 1}90sD=1 where d(m) is the largest integer n satisfying
p(n) < m. Note that d is monotonically non-decreasing, and that for 1-1 p’s, the cor-
responding d is onto (i.e., d(p(n)) = n for every n).

The following analysis uses, in an essential way, an additional property of the afore-
mentioned families of hashing functions; specifically, we assume that given two pre-
image—image pairs, it is easy to uniformly generate a hashing function (in the family)
that is consistent with these two mapping conditions. Furthermore, to facilitate the
analysis, we use a specific family of hashing functions, presented in Exercise 23 of
Chapter 3: Functions in S"~! are described by a pair of elements of the finite field
GF(2") so that the pair (a, b) describes the function 4, ; that maps x € GF(2") to the
(n — 1)-bit prefix of the n-bit representation of ax + b, where the arithmetic is of
the field GF(2"). This specific family satisfies all the additional properties required in
the next proposition (see Exercise 24).

Proposition 6.4.21: Suppose that [ is a one-way permutation, and that S'~" is a
Sfamily of hashing functions (as defined in Section 3.5.1.1) such that log, ISZ’II = 2n.
Furthermore, suppose that S"~! satisfies the following two conditions:

C1 All but a negligible fraction of the functions in S'~ are 2-to-1.

C2 There exists a probabilistic polynomial-time algorithm that, given yi, y, € {0, 1}"
and zy,z; € {0, 1", outputs a uniformly distributed element of {s € S"~!:
hs(yi) = z; Vie{l, 2}}.

Then {h'}sc(0.1y- as in Construction 6.4.20is a (d, d — 1)-UOWHE for d(m) = |m/2].

Proof Sketch: Intuitively, forming designated collisions under 4/, = A, o f yields the
ability to invert f on a random y, because the collisions are due to /;, which may be
selected such that 4,(y) = hy(f(x0)) for any given y and xo. We stress that typically
there are only two pre-images of //(xo) under A, one being x itself (which is given to
the collision-finder) and the other being f~'(y). Thus, the ability to form a designated
collision with x yields an ability to invert f on a random y, by selecting a random s
such that 44(y) = h/(x¢), and forming a designated collision under /.. More precisely,
suppose we wish to invert f on a random image y. Then we may invoke a collision-
finder, which first outputs some x¢, supply it with a random s satisfying s,(y) = & (xo),
and hope that it forms a collision (i.e., finds a different pre-image x satisfying A/ (x) =
h'(x0)). Indeed, typically, the different pre-image must be f~!(y), which means that
whenever the collision-finder succeeds, we also succeed (i.e., invert f on y). Details
follow.

Evidently, the proof is by a reducibility argument. Suppose that we are given a
probabilistic polynomial-time algorithm 4’ that forms designated collisions under {#},
with respect to pre-images produced by a deterministic polynomial-time algorithm 4,
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which maps p(n)-bit strings to n-bit strings. Then, we construct an algorithm A that
inverts f. On input y = f(x), where n = |y| = |x|, algorithm A proceeds as follows:

(1) Select 7 uniformly in {0, 1}*™, and compute xo = Ay(ro) and yo = f(xo).
(2) Select s uniformly in {s € S"~! : hy(yo) = hs(y)}.

(Recall that y is the input to 4, and yy is generated by 4 at Step (1).)
(3) Invoke A’ on input (s, ry), and output whatever 4" does.

By Condition C2, Step (2) can be implemented in probabilistic polynomial-time.

Turning to the analysis of algorithm A, we consider the behavior of 4 on input
y = f(x) for a uniformly distributed x € {0, 1}, which implies that y is uniformly
distributed over {0, 1}". We first observe that for every fixed r( selected in Step (1), if y
is uniformly distributed in {0, 1}”, then s as determined in Step (2) is almost uniformly
distributed in S~

On the distribution of s as selected in Step (2): Fixing r¢ € {0, 1}9") means that
yo = f(A4y(ro)) € {0, 1}" is fixed. Using the pairwise independence property of
Sr=1, it follows that for each y € {0, 1}" \ {yo}, the cardinality of S, &f {ses!:
hs(yo) = hy(y)} equals |S"~!|/2"~!. Furthermore, in case k; is 2-to-1, the string
s resides in exactly two S,’s (one being S,,). Recalling that all but a negligible
fraction of the /s are 2-to-1 (i.e., Condition C1), it follows that each such function
is selected with probability 2 - 27" - (|S?~!|/2"~1)~! = |§"~1|~!. Other functions
(i.e., non-2-to-1 functions) are selected with negligible probability.

By the construction of A4 (which ignores y in Step (1)), the probability that f(x¢) = y is
negligible (but we could have taken advantage of this case, too, by augmenting Step (1)
such that if yo = y, then A4 halts with output x(). Note that in case f(x¢) # y and
hy is 2-to-1, if A’ returns x’ such that x” # xo and % (x") = h}(x), then it holds that
J&)=y.

Justifying the last claim: Let v & 4,(y) and suppose that 4, is 2-to-1. Then, by
Step (2) and f(xo) # v, it holds that x = f~!(y) and x are the two pre-images of
v = hj(x) = h}(xo) under i}, where h, = hy o f is 2-to-1 because f is 1-to-1 and
hs is 2-to-1. Since x” # xy is also a pre-image of v under 4, it follows that x" = x.

We conclude that if 4’ forms designated collisions with probability &'(n), then 4 inverts
f with probability &'(n) — u(n), where p is a negligible function (accounting for the
negligible probability that /4 is not 2-to-1). (Indeed, we rely on the fact that s as selected
in Step (2) is distributed almost uniformly, and furthermore that each 2-to-1 function
appears with exectly the right probability.) The proposition follows. W

Step II: Constructing (d’,d’/2)-UOWHFs. We now take the second step on our
way, and use any (d, d — 1)-UOWHEF in order to construct a (d’, d’/2)-UOWHE. That
is, we construct length-restricted UOWHFs that shrink their input by a factor of 2.
The construction is obtained by composing a sequence of different functions taken
from different (d, d — 1)-UOWHFs. That is, each function in the sequence shrinks the
input by one bit, and the composition of d’/2 functions shrinks the initial d’-bit long
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input by a factor of 2. For simplicity, we assume that the function d : N— N is onto
and monotonically non-decreasing. In such a case we denote by d~'(m) the smallest
natural number 7 satisfying d(n) = m (and so d~!(d(n)) < n).

Construction 6.4.22 (a (d’,d’/2)-UOWHF): Let {(hy : {0, 1}90sD — {0, 1}90sD=1}
se(o,1y~» where d :N—N s onto and non-decreasing. Then, for every s =
(S1s -oes S[d(m)/21), Where each s; € {0, l}dfl(d(”)“_"), and every x € {0, 1} we define

def

h/ (x) = hS[d(,,)/ﬂ ( o hSz(hsl(x))' : )

STyeeesd S[d(n)/2]
That is, letting x def x, and x; < hg(x;—y) for i =1, ..., [d(n)/2], we set hi(xo) =
X{d(ny/21- (Note that d(|s;[) = d(n) + 1 — i and |x;| = d(n) + 1 — i indeed hold.)

Tedious details: We refer to an index selection algorithm that, on input 1", deter-
mines the largest integer n such that m > m’ &ef Z[i(ln)m d=N(d(n) + 1 = i), uni-
SJormly selects s1, ..., Stam)21 such that s; € {0, l}dfl(d(”)“’i), and s € {0, 1},

def
’ det ,
and lets hso,s‘l,-u,smu)/zw S eaStamy”

Thatis, form = [5|, wehave AL : {0, 1390 — {0, 1}190)/2] \where n is the largest integer
such that m > Y I?/?V 4=1(d(n) 4+ 1 — i). Thus, d'(m) = d(n), where n is the length
ofthe index inthe (d,d — 1) - UOWHF; that is, we have /. : {0, 1} D — {0, 1}[¢'(sD/21,
with d’(|s|) = d(n). Note that for d(n) = ©(n) (as in Construction 6.4.20), it holds that
d'(0(n?)) > d(n)and d'(m) = Q(/m) follows. More generally, if for some polynomial
p it holds that p(d(n)) > n > d(n) (for all n’s), then for some polynomial p’ it holds
that p'(d'(m)) > m > d’'(m) (for all m’s), because d'(d(n) - n) > d(n). We call such a
function sufficiently growing; that is, d : N— N is sufficiently growing if there exists
a polynomial p so that for every » it holds that p(d(n)) > n. (E.g., for every fixed
g, & > 0, the function d(n) = &'n® is sufficiently growing.)

Proposition 6.4.23: Suppose that {hs}sc(o,1+isa(d, d — 1)-UOWHE whered : N— N
is onto, non-decreasing, and sufficiently growing. Then, for some sufficiently growing
function d’ : N— N, Construction 6.4.22 is a (d’, [d'/271)-UOWHE

Proof Sketch: Intuitively, a designated collision undedr Ry, vields a desig-
nated collision under one of the A’s. That is, let xg = xand x; < hg(x;—1) for
i =1,..,[d(n)/2]. Thenif given x and 5 = (s, ..., S4/2), one can find an x" # x such
that hi(x) = hi(x’); then there exists an i so that x;_; # x/_; and x; = h,,(x;—1) =
hs,(x;_y) = x;, where the x’’s are defined analogously to the x;’s. Thus, we obtain
a designated collision under 4,,. We stress that because /. does not shrink its in-
put too much, the length of s; is polynomially related to the length of 5 (and thus,
forming collisions with respect to 4, by using the collision-finder for A% yields a
contradiction).

The actual proof uses the hypothesis that it is hard to form designated collisions
when one is also given the coins used in the generation of the pre-image (and not
merely the pre-image itself). In particular, we construct an algorithm that forms des-
ignated collisions under one of the 4,’s, when given not only x;_; but also x¢ (which
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actually yields x;_;). The following details are quite tedious and merely provide an
implementation of this idea.

As stated, the proof is by a reducibility argument. We are given a probabilistic
polynomial-time algorithm A’ that forms designated collisions under {/}, with respect
to pre-images produced by a deterministic polynomial-time algorithm A{ that maps
p’(n)-bit strings to n-bit strings. We construct algorithms 4y and 4 such that 4 forms
designated collisions under {4} with respect to pre-images produced by algorithm Ay,
which maps p(n)-bit strings to n-bit strings, for a suitable polynomial p. (Specifically,
p:N—Nis I-1 and p(n) > p'(d~'(2d(n))) +n + n - d~'(2d(n)), where the factor
of 2 appearing in the expression is due to the shrinking factor of /~.)

We start with the description of Ay, that is, the algorithm that generates pre-images
of {h}. Intuitively, 4o selects a random j, uses A, to obtain a pre-image xo of {hL},
generates random sy, ..., s;—1, and outputs a pre-image x;_; of {4}, computed by
x; = hg(x;—1)fori =1, ..., j — 1. (Algorithm 4 will be given x,;_; (or rather the coins
used to generate x ;) and a random /4, and will try to form a collision with x;_; under
hs,.)

Detailed description of 4,: Recall that p’ is a polynomial, d(n) < n andd~!(n) =
poly(n). Let p(n) & n +n - q(n) + p'(q(n)), where g(n) = d='(2d(n)). On input

r € {0, 1}?™  algorithm A4, proceeds as follows:

(1) Write » = ryrpr3 such that |ry| = n, |r| = n - g(n), and |r3] = p'(¢(n)).
Using 7}, determine m in {n + 1, ..., n - g(n)} and j € {1, ..., g¢(n)} such that
both m and j are almost uniformly distributed in the corresponding sets.

(2) Compute the largest integer n” such that m < Zl[i(ln e d=Ndny+1-10).

3)Ifd~'(d(n") + 1 — j) # n, then output the d(n)-bit long suffix of 3.
(Comment: the output in this case is immaterial to our proof.)

(4) Otherwise (i.e., n = d~'(d(n’) + 1 — j), which is the case we care about), do:
(4.1) Let sos; - - - 5,1 be a prefix of r, such that

jsol = m — XN atdy + 1 - ),
and |s;| =d ' dw)+1—i),fori=1,..,j—1.
(4.2) Let xg < Ap(r'), where r' is the p/(d~'(d(n’)))-bit long suffix of 3.
(Comment: xq € {0, 1}4¢))
(4.3)Fori =1, ..., j — 1, compute x; < Ay (x;_1).
Output x;_; € {0, 1}9™.
(Note that d(n) = d(n') — (j — 1).)

As stated previously, we only care about the case in which Step (4) is applied.
This case occurs with noticeable probability, and the description of the following
algorithm A refers to it.

Algorithm 4 will be given x;_; as produced by 4, (along with, or actually only, the
coins used in its generation), as well as arandom /4, and will try to form a collision with
xj-1 under /;,. Oninput s € {0, 1}" (viewed as s;) and the coins given to 4y, algorithm
A operates as follows. First, 4 selects j and 5o, s1, ..., s, exactly as 4y does (which is
the reason that 4 needs the coins used by A4g). Next, A4 tries to obtain a collision under
hy by invoking A'(r’, s"), where 7’ is the sequence of coins that 4, handed to 4; and
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§" = (50, S15 «or Sj—15 8, Sj415 -oor Sd(n)/2), WhETe S;41, ..., Sq(n)/2 are uniformly selected
by A. Finally, 4 outputs A, (- - - (hs,(A'(r", s"))- - ).

Detailed description of 4: On input s € {0, 1} and » € {0, 1}?®), algorithm A
proceeds as follows.

(1-2) Using r, determine m, j, and n" exactly as done by Ay.
(3) Ifd~'(d(n')+1— j) # n, then abort.
(4) Otherwise (i.e.,n =d~'(d(n') + 1 — j)), do:
(4.1) Determine sg, s1, ..., §;—1 and »’ exactly as 4, does (at its Step (4)).
(4.2) Uniformly select 541, ..., Sfaq)2] such that s; € {0, 1}4'@e)+1-0)
and set 8" = (S0, S1, -y Sj—1, 8, Sj 415 oo S[d(n)/2])-
(4.3) Invoke A’ on input (s', r’), and obtain x; <— A'(s’, 7).
(Comment: x, € {0, 1}90).)
(44)Fori =1, ..., j — 1, compute x; < hy,(x]_)).
Output x;_, € {0, 1}/,

Clearly, if algorithms 4’ and A, run in polynomial-time, then so do 4 and 4, (and if p’
is a polynomial then so is p). We now lower-bound the probability that 4 succeeds in
forming designated collisions under {4}, with respect to pre-images produced by A.
We start from the contradiction hypothesis by which the corresponding probability for
A’ (with respect to 4;)) is non-negligible.

Let use denote by &'(m) the success probability of 4’ on uniformly distributed
input (s',7’) € {0, 1}’ x {0, 1}7 . Let n' be the largest integer so that m <
Z[i(l"’)/z] d='(d(n") + 1 —i). Then, there exists a j € {1, ..., d(n)} such that, with
probability at least ¢'(m)/d’(n"), on input (s', 7’), where s" = 5o, 51, ..., S[a(n)/27 18 as in
Construction 6.4.22, A" outputs an x” # x & Ay(r') such that Ay, (- - (b (x"))--+) #
hs, (- (hg (x))--+) and Ay, (- - - (hs (x))- - -) = hy, (- - (b, (x))- - -). Fixing these m,
j, and n', let n =d~'(d(n’)+ 1 — j), and consider what happens when A4 is in-
voked on uniformly distributed (s, ) € {0, 1} x {0, 1}, With probability at least
3(n) & /(nq(n))? over the possible 7’s, the values of m and j are determined to equal
the aforementioned desired values. Conditioned on this case, A’ is invoked on uni-
formly distributed input (s’, 7’) € {0, 1}"* x {0, 1}?'™, and so a collision at the j-th
hashing function occurs with probability at least &'(m)/d’(n"). Note that m = poly(n),
8(n) > 1/poly(n)and d’'(n") = poly(n). This implies that 4 succeeds with probability at

least &(n) def () - ;E;”)) = %, with respect to pre-images produced by 4. Thus,

if ¢’ is non-negligible, then so is ¢, and the proposition follows. W

Step I1I: Constructing (Length-Unrestricted) Quasi-UOWHFs That Shrink Their
Input by a Factor of Two. The third step on our way consists of using any (d, d/2)-
UOWHEF in order to construct “quasi UOWHFs” that are applicable to any input length
but shrink each input to half its length (rather than to a fixed length that only depends on
the function description). The resulting construct does not fit Definition 6.4.19, because
the function’s output length depends on the function’s input length, yet the function can
be applied to any input length (rather than only to a single length determined by the
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function’s description). Thus, the resulting construct yields a (d’, d'/2)-UOWHEF for any
polynomially bounded function d’ (e.g., d’(n) = n?*), whereas in Construction 6.4.22,
the function d’ is fixed and satisfies d’(n) < n. The construction itself amounts to
parsing the input into blocks and applying the same function (taken from a (d, d/2)-
UOWHF) to each block.

Construction 6.4.24 (a (d’,d'/2)-UOWHF for any d'): Let {h:{0, 1}90sD —
{0, 1}14UsD/2Iy (o 1y, where d : N— N is onto and non-decreasing. Then, for every
s € {0, 1}" and every x € {0, 1}*, we define

h(x) &f hs(x1)- - - hg(x, 109kl =1y

where x = x1---x;, 0 < |x;| <d(n) and |x;| =d@n) fori =1, ...,t — 1. The index-
selection algorithm of {h} is identical to the one of {h}.

Clearly, |A,(x)| = [(|x] + 1)/d(n)] - ld(n)/2], which is approximately |x|/2 (pro-
vided |x| > d(n)). Furthermore, Construction 6.4.24 satisfies Conditions 1 and 2 of
Definition 6.4.18, provided that {/,} satisfies the corresponding conditions of Def-
inition 6.4.19. We thus focus on the hardness to form designated collisions (i.e.,
Condition 3).

Proposition 6.4.25: Suppose that {hg}sc0,1y- is a (d, d /2)-UOWHE where d : N— N
is onto, non-decreasing, and sufficiently growing. Then Construction 6.4.22 satisfies
Condition 3 of Definition 6.4.18.

Proof Sketch: Intuitively, a designated collision under // yields a designated collision
under /4. That is, consider the parsing of each string into blocks of length d(n), as in
Construction 6.4.24. Now if, given x = x-- - x; and s, one can findanx’ = x{- - - x,,

x such that A}(x) = h}(x’), then #' =t and there exists an i such that x; # x; and
hs(x;) = hy(x}). Details follow.

The actual proof'is by a reducibility argument. Given a probabilistic polynomial-time
algorithm A’ that forms designated collisions under {%/}, with respect to pre-images
produced by a polynomial-time algorithm 4, we construct algorithms 4, and 4 such
that 4 forms designated collisions under {4} with respect to pre-images produced
by algorithm A,. Specifically, algorithm 4, invokes A and uses extra randomness
(supplied in its input) to uniformly select one of the d(n)-bit long blocks in the standard
parsing of the output of 4;,. That is, the random-tape used by algorithm 4 has the form
(r', i), and Ao outputs the i-th block in the parsing of the string Ay(r’). Algorithm 4
is derived analogously. That is, given s € {0, 1} and the coins » = (/, i) used by 4y,
algorithm A invokes A’ on input s and »’, obtains the output x’, and outputs the i-th
block in the standard parsing of x’.

Note that whenever we have a collision under %/ (i.e., a pairx # x’suchthat 4 (x) =
h'(x")), we obtain at least one collision under the corresponding 4, (i.e., for some i, the
i-th blocks of x and x’ differ, and yet both blocks are mapped by 4 to the same image).
Thus, if algorithm A’ succeeds (in forming designated collisions with respect to {A})
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with probability &'(n), then algorithm A4 succeeds (in forming designated collisions
with respect to {A,}) with probability at least &'(n)/t(n), where ¢(n) is a bound on the
running time of 4’ (which also upper-bounds the length of the output of 4’, and so
1/t(n) is a lower bound on the probability that the colliding strings differ at a certain
uniformly selected block). The proposition follows. W

Step IV: Obtaining Full-Fledged UOWHFs. The last step on our way consists of
using any quasi-UOWHEFs as constructed (in Step I1I) to obtain full-fledged UOWHFs.
That is, we use quasi-UOWHFs that are applicable to any input length but shrink each
input to half its length (rather than to a fixed length that only depends on the function
description). The resulting construct is a UOWHF (as defined in Definition 6.4.18).
The construction is obtained by composing a sequence of different functions (each
taken from the same quasi-UOWHEF); that is, the following construction is analogous
to Construction 6.4.22.

Construction 6.4.26 (a UOWHF): Let {h:{0,1}* — {0, 1}*}sc0,1}+, such that
|hs(x)] = |x|/2, foreveryx € {0, 1}¥" sl wherei € N. Then, foreverysy, ..., s, € {0, 1}"
and every t € N and x € {0, 1}*"", we define

def

h;1 s,,(x) = (ta hSr(' o hsz(hS1(x))' : ))

. def .
That is, we let xo = x, and x; < hg,(xi—1), fori =1, ..., t.

Tedious details: Strings of lengths that are not of the form 2' - n are padded into
strings of such form in a standard manner. We refer to an index-selection algorithm
that, on input 1", determines n = |/m], uniformly selects sy, ..., s, € {0, 1}" and

so € {0, 1}’"‘"2, and lets h' &f

— h’
505815058 S

Observe that iy (x) =h o (x')implies that both equal the pair (¢, A, (- - - &,
(hy(x))---)), where ¢ = [log,(x|/n)] = [logy(Ix'l/m)]. Note that &,

850581558
{0, 1}* — {0, 1}*+1°%7 and that m = |sg, 51, ..., Sx| < (n + 1)%.

yeeesSn

Proposition 6.4.27: Suppose that {h}sei0,1)- Satisfies the conditions of Defini-
tion 6.4.18, except that it maps arbitrary input strings to outputs having half the length
(rather than a length determined by |s|). Then Construction 6.4.26 constitutes a col-
lection of UOWHEFs.

The proof of Proposition 6.4.27 is omitted because it is almost identical to the proof of
Proposition 6.4.23.

Conclusion. Combining the previous four steps, we obtain a construction of (full-
fledged) UOWHFs (based on any one-way permutation). That is, combining Proposi-
tions 6.4.21, 6.4.23, 6.4.25, and 6.4.27, we obtain:*>

35 Actually, there is a minor gap between Constructions 6.4.24 and 6.4.26. In the former we constructed functions
that hash every x into a value of length [(|x| + 1)/d(n)] - |d(n)/2], whereas in the latter we used functions that
hash every x € {0, 1}%" into a value of length i - n.
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6.4 CONSTRUCTIONS OF SIGNATURE SCHEMES

Theorem 6.4.28: [fone-way permutations exist, then universal one-way hash functions
exist.

Note that the only barrier toward constructing UOWHFs based on arbitrary one-way
functions is Proposition 6.4.21, which refers to one-way permutations. Thus, if we
wish to constructs UOWHF based on any one-way function, then we need to present
an alternative construction of a (d, d — 1)-UOWHF (i.e., an alternative to Construc-
tion 6.4.20, which fails in case f is 2-to-1).® Such a construction is actually known,
and so the following result is known to hold (but its proof it too complex to fit in this
work):

Theorem 6.4.29: Universal one-way hash functions exist if and only if one-way func-
tions exist.

We stress that the difficult direction is the one referred to earlier (i.e., from one-
way functions to UOWHEF collections). For the much easier (converse) direction, see
Exercise 19.

6.4.3.3. One-Time Signature Schemes Based on UOWHF

Using universal one-way hash functions, we present an alternative construction of
one-time signature schemes based on length-restricted one-time signature schemes.
Specifically, we replace the hash-and-sign paradigm (i.e., Construction 6.2.6) in which
collision-free hashing functions were used by the following variant (i.e., Construc-
tion 6.4.30) in which universal one-way hash functions are used instead. The difference
between the two constructions is that here, the (description of the) hashing function is
not a part of the signing and verification keys, but is rather selected on the fly by the
signing algorithm (and appears as part of the signature). Furthermore, the description
of the hash function is being authenticated (by the signer) together with the hash value.
It follows that the forging adversary, which is unable to break the length-restricted one-
time signature scheme, must form a designated collision (rather than an arbitrary one).
However, the latter is infeasible, too (by virtue of the UOWHF collection in use). We
comment that the same (new) construction is applicable to length-restricted signature
schemes (rather than to one-time ones): We stress that in the latter case, a new hashing
function is selected at random each time the signing algorithm is applied. In fact, we
present the more general construction.

Construction 6.4.30 (the Hash-and-Sign Paradigm, Revisited): Let €, ¢’ : N— N such
that £(n) = €'(n) + n. Let (G, S, V) be an L-restricted signature scheme as in Defini-
tion 6.2.1, and {h, : {0, 1}* — {0, l}m”)},e{o’l}* be a collection of functions with an
indexing algorithm I (as in Definition 6.4.18). We construct a general signature scheme,

36 For example, if f(o,x") = (0, f'(x")), for o € {0, 1}, then forming designated collisions under Construc-
tion 6.4.20 is easy: Given (0, x”), one outputs (1, x"), and indeed a collision is formed (already under f).
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(G', S, V"), with G’ identical to G, as follows:

Signing with S’: On input a signing-key s (in the range of G(1")) and a document
a € {0, 1}*, algorithm S’ proceeds in two steps:
1. Algorithm S’ invokes I to obtain By < I(1").
2. Algorithm S' invokes S to produce B, < Sy(B1, hp, ().
Algorithm S’ outputs the signature (B, B2).

Verification with V': On input a verifying-key v, a document a € {0, 1}*, and an al-
leged signature (B, B), algorithm V' invokes V, and outputs V,((Bi1, hp, (), B2).

Recall that secure £-restricted one-time signature schemes exist for any polynomial £,
provided that one-way functions exist. Thus, the fact that Construction 6.4.30 requires
£(n) > n is not a problem. In applying Construction 6.4.30, one should first choose a
family of UOWHFs {4, : {0, 1}* — {0, 1}¥"D}, (g 1)+, then determine £(n) = €'(n) +
n, and use a corresponding secure £-restricted one-time signature scheme.

Let us pause to compare Construction 6.2.6 with Construction 6.4.30. Recall that in
Construction 6.2.6, the function description 8; < I(1") is produced (and fixed as part
of both keys) by the key-generation algorithm. Thus, the function description g is triv-
ially authenticated (i.e., by merely being part of the verification-key). Consequently, in
Construction 6.2.6, the S'-signature (of «) equals S;(h g, (). In contrast, in Construc-
tion 6.4.30 a fresh new (function description) 8, is selected per each signature, and thus
B1 needs to be authenticated. Hence, the S’-signature equals the pair (81, Ss(B1, A g, ())).
Since we want to be able to use (length-restricted) one-time signatures, we let the sign-
ing algorithm authenticate both 8; and /g, () via a single signature. (Alternatively,
we could have used two instances of the one-time signature scheme (G, S, V), one for
signing the function description 8; and the other for signing the hash value /g («).)

Proposition 6.4.31: Suppose that (G, S, V) is a secure £-restricted signature scheme
and that {h, : {0, 1}* — {0, 1}UD=ly o 1\ is a collection of UOWHFs. Then
(G', S', V"), as defined in Construction 6.4.30, is a secure (full-fledged) signature
scheme. Furthermore, if (G, S, V) is only a secure {-restricted one-time signature
scheme, then (G', S', V') is a secure one-time signature scheme.

Proof Sketch: The proof follows the underlying principles of the proof of Proposi-
tion 6.2.7. That is, forgery with respect to (G’, §’, V) yields either forgery with respect
to (G, S, V) or a collision under the hash function, where in the latter case, a desig-
nated collision is formed (in contradiction to the hypothesis regarding the UOWHEF).
For the furthermore-part, the observation underlying the proof of Proposition 6.4.7
still holds (i.e., the number of queries made by the forger constructed for (G, S, V)
equals the number of queries made by the forger assumed (toward the contradiction)
for (G, §', V')). Details follow.

Given an adversary A4’ attacking the complex scheme (G, §’, V'), we construct an
adversary A that attacks the £-restricted scheme, (G, S, V). The adversary 4 uses [ (the
indexing algorithm of the UOWHEF collection) and its oracle Sy in order to emulate the
oracle S, for A". This is done in a straightforward manner; that is, algorithm 4 emulates
S by using the oracle S (exactly as S, actually does). Specifically, to answer a query
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6.4 CONSTRUCTIONS OF SIGNATURE SCHEMES

q, algorithm A generates a; < 1(1"), forwards (ay, h,,(q)) to its own oracle (i.e., Ss),
and answers with (a1, a»), where ay = Ss(ay, ha, (q)). (We stress that 4 issues a single
Ss-query per each S;-query made by 4’.) When 4’ outputs a document-signature pair
relative to the complex scheme (G, §’, V'), algorithm A tries to use this pair in order
to form a document-signature pair relative to the £-restricted scheme, (G, S, V). That
is, if A" outputs the document-signature pair («, 8), where B = (Bi1, B2), then 4 will

output the document-signature pair (c2, 8,), where (xz (,31, hg ().

Assume that with (non-negligible) probability &’(n), the (probabilistic polynomial-
time) algorithm A’ succeeds in existentially forging relative to the complex scheme
(G, S, V"). Let ('), B©) denote the i-th query and answer pair made by 4’, and let
(o, B) be the forged document-signature pair that 4" outputs (in case of success), where
BD = (B, By and B = (B1, Ba). We consider the following two cases regarding the
forging event:

Case 1: (B1, hp, () # (B, hﬁ<f>(oe(i))) for all i’s. (That is, the S;-signed value in the
forged signature (i.e., the value (Bi1, hp,(@))) is different from all queries made to
Ss.) In this case, the document-signature pair ((81, /,(«)), B2) constitutes a success
in existential forgery relative to the £-restricted scheme (G, S, V).

Case 2: (B1, hp (o)) = (,BY), hB<i>(a(’))) for some i. (That is, the S;-signed value used

in the forged signature equals the i-th query made to Sy, although o # «®.) Thus,
B =B and hg, () = h o)(oz(’)) although o # «®. In this case, the pair (o, a)
forms a designated colllslon under A P (and we do not obtain success in existential

forgery relative to the £-restricted scheme). We stress that 4’ selects o) before it
is given the description of the function 4 p0s and thus its ability to later produce

o # o' such that g, (o) = h ﬂ{i)(()l(i)) yields a violation of the UOWHF property.

Thus, if Case 1 occurs with probability at least &'(n)/2, then A4 succeeds in its attack
on (G, S, V) with probability at least &'(n)/2, which contradicts the security of the
£-restricted scheme (G, S, V). On the other hand, if Case 2 occurs with probability
at least &'(n)/2, then we derive a contradiction to the difficulty of forming designated
collisions with respect to {4, }. Details regarding Case 2 follow.

We start with a sketch of the construction of an algorithm that attempts to form
designated collisions under a randomly selected hash function. Loosely speaking, we
construct an algorithm B’ that tries to form designated collisions by emulating the
attack of A’ on a random instance of (G’, ', V') that B’ selects by itself. Thus, B’ can
easily answer any signing-query referred to it by 4’, but in one of these queries (the
index of which is selected at random by B’), algorithm B’ will use a hash function given
to it from the outside (rather than generating such a function at random by itself). In
case A’ forges a signature while using this specific function-value pair (as in Case 2),
algorithm B’ obtains and outputs a designated collision.

We now turn to the actual construction of algorithm B’ (which attempts to form
designated collisions under a randomly selected hash function). Recall that such an
algorithm operates in three stages (see discussion in Section 6.4.3.1): First the algorithm
selects a pre-image x¢, next it is given a description of a function /4, and finally it is
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required to output x # x such that 4(x) = A(x¢). We stress that the third stage in the
attack is also given the random coins used for producing the pre-image x, (at the first
stage). Now, on input 1", algorithm B’ proceeds in three stages:

Stage 1: Algorithm B’ selects uniformly i € {1, ..., #(n)}, where ¢(n) bounds the run-
ning time of A’(G(1")) (and thus the number of queries it makes). Next, B’ se-
lects (s, v) < G'(1") and emulates the attack of A’(v) on S, while answering
the queries of S as follows. All queries except the i-th one are emulated in the
straightforward manner (i.e., by executing the program of S; as stated). That is, for
Jj#i, the j-th query, denoted «/), is answered by producing ,BU )T (1"), com-
puting ,32 /) <— S (,31] ) h O (D)) (usmg the knowledge of s), and answering with
the pair (,3 /32 )) Thei -th query of A’, denoted ), will be used as the designated
pre-image. Once o") is issued (by 4'), algorithm B’ completes its first stage (without
answering this query), and the rest of the emulation of 4" will be conducted by the
third stage of B'.

Stage 2: At this point (i.e., after B’ has selected the designated pre-image "), B’
obtains a description of a random hashing function 4, (thus completing its second
operation stage). That is, this stage consists of B’ being given r < I(1").

Stage 3: Next, algorithm B’ answers the i-th query (i.e., «”)) by applying S, to the
pair (7, h,.(«")). Subsequent queries are emulated in the straightforward manner (as
in Stage 1). When A’ halts, B’ checks whether 4’ has output a valid document-
signature pair (o, B) as in Case 2 (i.e., 8] = Y) and /g () = hﬂm(a(f)) for some
J), and whether the collision formed is indeed on the i-th query (il.e., j =i, which
means that 4, (a) = /,.(«'”)). When this happens, B’ outputs o (which is different
than «®), and in doing so it has succeeded in forming a designated collision (with
o under £,.).

Now, if Case 2 occurs with probability at least @ (and A’ makes at most #(n) queries),
then B’ has succeeded in forming a designated collision with probability at least
ﬁ . 5/;"), because the actions of A’ are independent of the random value of i. This
contradicts the hypothesis that {#,.} is UOWHEF.

As mentioned earlier, the furthermore-part of the proposition follows by observing
that if the forging algorithm 4’ makes at most one query, then the same holds for the
algorithm A constructed in the beginning of the proof. Thus, if (G’, §’, V') can be
broken via a single-message attack, then either (G, S, V') can be broken via a single-
message attack or one can form designated collisions (with respect to {4,}). In both
cases, we reach a contradiction. H

Conclusion. Combining the furthermore-part of Proposition 6.4.31, Corollary 6.4.6,
and the fact that UOWHEF collections imply one-way functions (see Exercise 19), we
obtain:

Theorem 6.4.32: Ifthere exist universal one-way hash functions, then secure one-time
signature schemes exist, too.
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6.5 SOME ADDITIONAL PROPERTIES

6.4.3.4. Conclusions and Comments

Combining Theorems 6.4.28, 6.4.32, and 6.4.9, we obtain:

Corollary 6.4.33: If one-way permutations exists, then there exist secure signature
schemes.

Like Corollary 6.4.10, Corollary 6.4.33 asserts the existence of secure (public-key) sig-
nature schemes, based on an assumption that does nof mention trapdoors. Furthermore,
the assumption made in Corollary 6.4.33 seems weaker than the one made in Corol-
lary 6.4.10. We can further weaken the assumption by using Theorem 6.4.29 (which
was stated without a proof), rather than Theorem 6.4.28. Specifically, combining The-
orems 6.4.29, 6.4.32, and 6.4.9, we establish Theorem 6.4.1. That is, secure signature
schemes exist if and only if one-way functions exist. Furthermore, as in the case of MACs
(see Theorem 6.3.8), the resulting signature schemes have signatures of fixed length.

Comment: The Hash-and-Sign Paradigm, Revisited. We wish to highlight the re-
vised version of the hash-and-sign paradigm that underlies Construction 6.4.30. Similar
to the original instantiation of the hash-and-sign paradigm (i.e., Construction 6.2.6),
Construction 6.4.30 is useful in practice. We warn that using the latter construction
requires verifying that {4, } is a UOWHF (rather than collision-free). The advantage of
Construction 6.4.30 over Construction 6.2.6 is that the former relies on a seemingly
weaker construct; that is, hardness of forming designated collisions (as in UOWHF) is a
seemingly weaker condition than hardness of forming any collision (as in collision-free
hashing). On the other hand, Construction 6.2.6 is simpler and more efficient (e.g., one
need not generate a new hashing function per each signature).

6.5.* Some Additional Properties

We briefly discuss several properties of interest that some signature schemes enjoy.
We first discuss properties that seem unrelated to the original purpose of signature
schemes but are useful toward utilizing a signature scheme as a building block toward
constructing other primitives (e.g., see Section 5.4.4.4). These (related) properties are
having unique valid signatures and being super-secure, where the latter term indi-
cates the infeasibility of finding a different signature even to a document for which a
signature was obtained during the attack. We next turn to properties that offer some
advantages in the originally intended applications of signature schemes. Specifically,
we consider properties that allow for speeding-up the response-time in some settings
(see Sections 6.5.3 and 6.5.4), and a property supporting legitimate revoking of forged
signatures (see Section 6.5.5).

6.5.1. Unique Signatures

Loosely speaking, we say that a signature scheme (G, S, V') (either a private-key or
a public-key one) has unique signatures if for every possible verification-key v and
every document « there is a unique § such that Vy(«, 8) = 1.
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

Note that this property is related, but not equivalent, to the question of whether or
not the signing algorithm is deterministic (which is considered in Exercise 1). Indeed,
if the signing algorithm is deterministic, then for every key pair (s, v) and document «,
the result of applying S; to « is unique (and indeed V,(«, Ss(e)) = 1). Still, this does
not mean that there is no other 8 (which is never produced by applying S; to ) such
that V,(c, B) = 1. On the other hand, the unique signature property may hold even in
case the signing algorithm is randomized, but (as mentioned earlier) this randomization
can be eliminated anyhow.

Can Secure Signature Schemes Have Unique Signatures? The answer is definitely
affirmative, and in fact we have seen several such schemes in the previous sections.
Specifically, all private-key signature schemes presented in Section 6.3 have unique sig-
natures. Furthermore, every secure private-key signature scheme can be transformed
into one having unique signatures (e.g., by combining deterministic signing as in
Exercise 1 with canonical verification as in Exercise 2). Turning to public-key signature
schemes, we observe that if the one-way function f used in Construction 6.4.4 is 1-1,
then the resulting secure length-restricted one-time (public-key) signature scheme has
unique signatures (because each f-image has a unique pre-image). In addition, Con-
struction 6.2.6 (i.e., the basic hash-and-sign paradigm) preserves the unique signature
property. Let use summarize all these observations:

Theorem 6.5.1 (Secure Schemes with Unique Signatures):

1. Assuming the existence of one-way functions, there exist secure message authenti-
cation schemes having the unique signature property.

2. Assuming the existence of 1-1 one-way functions, there exist secure length-restricted
one-time (public-key) signature schemes having the unique signature property.

3. Assuming the existence of 1-1 one-way functions and collision-free hashing collec-
tions, there exist secure one-time (public-key) signature schemes having the unique
signature property.

In addition, it is known that secure (full-fledged) signature schemes having the unique
signature property can be constructed based on a mild variant on the standard RSA
assumption (see reference in Section 6.6.5). Still, this leaves open the question of
whether or not secure signature schemes having the unique signature property exist if
and only if secure signature schemes exist.

6.5.2. Super-Secure Signature Schemes

In case the signature scheme does not possess the unique signature property, it makes
sense to ask whether, given a message-signature pair, it is feasible to produce a different
signature to the same message. More generally, we may ask whether it is feasible for
a chosen message attack to produce a different signature to any of the messages to
which it has obtained signatures. Such ability may be of concern in some applications
(but, indeed, not in the most natural applications). Combining the new concern with the
standard notion of security, we derive the following notion, which we call super-security.
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A signature scheme is called super-secure if it is infeasible for a chosen message attack
to produce a valid message-signature pair that is different from all query-answer pairs
obtained during the attack, regardless of whether or not the message used in the new
pair equals one of the previous queries. (Recall that ordinary security only requires the
infeasibility of producing a valid message-signature pair such that the message part is
different from all queries made during the attack.)

Do Super-Secure Signature Schemes Exist? Indeed, every secure signature scheme
that has unique signatures is super-secure, but the question is whether super-security
may hold for a signature scheme that does not possess the unique signature property.
We answer this question affirmatively.

Theorem 6.5.2 (super-secure signature schemes): Assuming the existence of one-way
functions, there exist super-secure (public-key) signature schemes.

In other words, super-secure signature schemes exist if and only if secure signature
schemes exist. We comment that the signature scheme constructed in the following
proof does not have the unique signature property.

Proof: Starting from (Part 2 of) Theorem 6.5.1, we can use any 1-1 one-way func-
tion to obtain super-secure length-restricted one-time signature schemes. However,
wishing to use arbitrary one-way functions, we will first show that universal one-way
hashing functions can be used (instead of 1-1 one-way functions) in order to obtain
super-secure length-restricted one-time signature schemes. Next, we will show that
super-security is preserved by two transformations presented in Section 6.4: specifi-
cally, the transformation of length-restricted one-time signature schemes into one-time
signature schemes (i.e., Construction 6.4.30), and the transformation of the latter to
(full-fledged) signature schemes (i.e., Construction 6.4.16). Applying these transfor-
mations (to the first scheme), we obtain the desired super-secure signature scheme.
Recall that Construction 6.4.30 also uses universal one-way hashing functions, but the
latter can be constructed using any one-way function (cf. Theorem 6.4.29).3

Claim 6.5.2.1: If there exist universal one-way hashing functions, then for every
polynomially-bounded ¢:N— N, there exist super-secure £-restricted one-time sig-
nature schemes.

Proof Sketch: We modify Construction 6.4.4 by using universal one-way hashing func-
tions (UOWHF35) instead of one-way functions. Specifically, for each pre-image placed
in the signing-key, we select at random and independently a UOWHE, and place its de-
scription both in the signing- and verification-keys. That is, on input 1”, we uniformly
select s, 51, ..., s?(n), szl(n) € {0, 1} and UOWHFs A%, hl, ..., hg(n), h}f(n), and compute

v/ = h/(s]), for i =1,... () and j =0, 1. We let § = ((s{,5]), ... (55> 54))s

37 We comment that a simpler proof suffices in case we are willing to use a one-way permutation (rather than
an arbitrary one-way function). In this case, we can start from (Part 2 of) Theorem 6.5.1 (rather than prove
Claim 6.5.2.1), and use Theorem 6.4.28 (rather than Theorem 6.4.29, which has a more complicated proof).
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

ho=((h), h))s <oy (B Hyi))s and T = (V) 0}), .., (U5 Vi) and output the key-
pair (s, v) = ((#, 5), (h, v)) (or, actually, we may set (s, v) = (5, (%, v))). Signing and
verification are modified accordingly; that is, the sequence (8, ..., B¢) is accepted as
a valid signature of the string o - - - oy (with respect to the verification-key v) if and
only if 27 (B;) = v{" for every i. In order to show that the resulting scheme is super-
secure under a chosen one-message attack, we adapt the proof of Proposition 6.4.5.
Specifically, fixing such an attacker 4, we consider the event in which A violated the
super-security of the scheme. There are two cases to consider:

1. The valid signature formed by 4 is to the same document for which A has obtained a
different signature (via its single query). In this case, for at least one of the UOWHFs
contained in the verification-key, we obtain a pre-image (of the image also contained
in the verification-key) that is different from the one contained in the signing-key.
Adapting the construction presented in the proof of Proposition 6.4.5, we derive (in
this case) an ability to form designated collisions (in contradiction to the UOWHF
property). We stress that the pre-images contained in the signing-key are selected
independently of the description of the UOWHEFs (because both are selected inde-
pendently by the key-generation process). In fact, we obtain a designated collision
for a uniformly selected pre-image.

2. The valid signature formed by A is to a document that is different from the one
for which A has obtained a signature (via its single query). In this case, the proof
of Proposition 6.4.5 yields the ability to invert a randomly selected UOWHF (on
a randomly selected image), which contradicts the UOWHF property (as shown in
Exercise 19).

Thus, in both cases we derive a contradiction, and the claim follows. [

Claim 6.5.2.2: When applying the revised hash-and-sign construction (i.e., Construc-
tion 6.4.30) to a super-secure length-restricted signature scheme, the result is a super-
secure signature scheme. In case the length-restricted scheme is only super-secure un-
der a chosen one-message attack, the same holds for the resulting (length-unrestricted)
scheme.

Proof Sketch: We follow the proof of Proposition 6.4.31, and use the same construc-
tion of a forger for the length-restricted scheme (based on the forger for the complex
scheme). Furthermore, we consider the two forgery cases analyzed in the proof of
Proposition 6.4.31:3%

Case 1: (B1, hg (a)) # (,BY), hﬂ?)((x("))) for all i’s. In this case, the analysis is exactly

as in the original proof. Note that it does not matter whether or not o # «®, since
in both subcases we obtain a valid signature for a new string with respect to the

38 Recall that (a, B) denotes the document-signature pair output by the original forger (i.e., for the complex scheme),
whereas (a”), B®) denotes the i-th query-answer pair (to that scheme). The document-signature pair that we

output (as a candidate forgery with respect to a length-restricted scheme) is (a2, 82), where def (B1, hp, (@)
and B = (B1, B2)- Recall that a generic valid document-signature for the complex scheme has the form (a’, 8'),
where 8 = (B, B;) satisfies Vy (8], hg; (@), B3) = 1.

578

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:11, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.003


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.003
https:/www.cambridge.org/core

6.5 SOME ADDITIONAL PROPERTIES

length-restricted signature scheme. Thus, in this case, we derive a violation of the
(ordinary) security of the length-restricted scheme.

Case 2: (B, hp, () = (B, hﬁ§f>(a(i))) for some i. The case o # o) was handled in
the original proof (by showing that it yields a designated collision [under / B> which

is supposedly a UOWHF]), so here we only handle the case @ = «”). Now, suppose
that super-security of the complex scheme was violated; that s, (8;, 82) # (ﬁii), ﬁy)).
Then, by the case hypothesis (which implies 8| = ,BY)), itmustbe that 8, # ,Bg). This
means that we derive a violation of the super-security of the length-restricted scheme,
because B, is a different valid S;-signature of (81, h g ()) = (81", h B{f>(a(i))).

Actually, we have to consider all i’s for which (8, g, (@) = (8", hﬂ;n(cx(")))
holds, and observe that violation of super-security for the complex scheme means
that B, must be different from each of the corresponding ﬂg) ’s. Alternatively,
we may first prove that with overwhelmingly high probability, all ﬂf)’s must be
distinct.

Thus, in both cases we reach a contradiction to the super-security of the length-restricted
signature scheme, which establishes our claim that the resulting (complex) signature
scheme must be super-secure. We stress that, as in Proposition 6.4.31, this proof estab-
lishes that super-security for one-time attacks is preserved, too (because the constructed
forger makes a single query per each query made by the original forger). O

Claim 6.5.2.3: Construction 6.4.16, when applied to super-secure one-time signature
schemes, yields super-secure signature schemes.

Proof Sketch: We follow the proof of Proposition 6.4.17, which actually means follow-
ing the proof of Proposition 6.4.15. Specifically, we use almost the same construction
of a forger for the one-time scheme (G, S, V') (based on the forger for the complex
scheme (G’, ', V')). The only difference is in the last step (i.e., the use of the output),
where we consider two forgery cases that are related (but not equal) to the forgery cases
analyzed in the proof of Proposition 6.4.15:%

1. The first case is when the forged signature for the complex scheme (G, S', V')
contains an authentication path (for a leaf) that equals some authentication path
provided by the signing-oracle (as part of the answer to some oracle-query of the
attacker). In this case, the (one-time) verification-key associated with this leaf must
be authentic (i.e., equal to the one used by the signing-oracle), and we derive violation
of the super-security of the instance of (G, S, V') associated with it. We consider two
subcases (regarding the actual document authenticated via this leaf):

(a) The first subcase is when no oracle-answer has used the instance associated
with this leaf for signing an actual document. (This may happen if the instance

39 Recall that forging a signature for the general scheme requires either using an authentication path supplied
by the (general) signing-oracle or producing an authentication path different from all paths supplied by the
(general) signing-oracle. These are the cases considered here. In contrast, in the proof of Proposition 6.4.15
we considered only the “text part” of these paths, ignoring the question of whether or not the authenticating
(one-time) signatures (provided as part of these paths) are equal.
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

associated with the sibling of this leaf was used for signing an actual document.)
In this subcase, as in the proof of Proposition 6.4.15, we obtain (ordinary) forgery
with respect to the instance of (G, S, V') associated with the leaf (without making
any query to that instance of the one-time scheme).

(b) Otherwise (i.e., the instance associated with this leaf was used for signing an
actual document), the forged document-signature pair differs from the query-
answer pair that used the same leaf. The difference is either in the actual doc-
ument or in the part of the complex-signature that corresponds to the one-time
signature produced at the leaf (because, by the case hypothesis, the authenti-
cation paths are identical). In both subcases this yields violation of the super-
security of the instance of (G, S, V') associated with that leaf. Specifically, in the
first sub-subcase, we obtain a one-time signature to a different document (i.e.,
violation of ordinary security), whereas in the second sub-subcase, we obtain
a different one-time signature to the same document (i.e., only a violation of
super-security). We stress that in both subcases, the violating signature is ob-
tained after making a single query to the instance of (G, S, V') associated with
that leaf.

2. We now turn to the second case (i.e., forgery with respect to (G', §’, V") is obtained
by producing an authentication path different from all paths supplied by the signing-
oracle). In this case, we obtain violation of the (one-time) super-security of the
scheme (G, S, V') associated with one of the internal nodes (specifically the firstnode
on which the relevant paths differ). The argument is similar (but not identical) to the
one given in the proof of Proposition 6.4.15. Specifically, we consider the maximal
prefix of the authentication path provided by the forger that equals a corresponding
prefix of an authentication path provided by the signing-oracle (as part of its answer).
The extension of this path in the complex-signature provided by the forger either
uses a different pair of (one-time) verification-keys or uses a different (one-time)
signature to the same pair. In the first subcase, we obtain a one-time signature to
a different document (i.e., violation of ordinary security), whereas in the second
subcase, we obtain a different one-time signature to the same document (i.e., only a
violation of super-security). We stress that in both subcases, the violating signature
is obtained after making a single query to the instance of (G, S, V') associated with
that internal node.

Thus, in both cases we reach a contradiction to the super-security of the one-time
signature scheme, which establishes our claim that the general signature scheme must
be super-secure. [

Combining the three claims (and recalling that universal one-way hashing functions
can be constructed using any one-way function [cf. Theorem 6.4.29]), the theorem
follows. W

6.5.3. Off-Line/On-Line Signing

Loosely speaking, we say that a signature scheme (G, S, V') (either a private-key or
a public-key one) has an off-line/on-line signing process if signatures are produced
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in two steps, where the first step is independent of the actual message to be signed.
That is, the computation of S;(«) can be decoupled into two steps, performed by ran-

Soff and SON

domized algorithms that are denoted , respectively, such that S;(«) <
SO (q, 5Off(5)). Thus, one may prepare (or precompute) S°f(s) before the document
is known (i.e., “off-line”), and produce the actual signature (on-line) once the document
« is presented (by invoking algorithm SO on input (e, S®T(5))). This yields improve-
ment in on-line response-time to signing requests, provided that SO is significantly
faster than S itself. This improvement is worthwhile in many natural settings in which
on-line response-time is more important than off-line processing time.

We stress that ST must be randomized (because, otherwise, SOff(s) can be incor-

porated in the signing-key). Indeed, one may view algorithm 5Off a5 an augmentation
of the key-generation algorithm that produces random extensions of the signing-key
on the fly (i.e., after the verification-key has already been determined). We stress that
algorithm 5Of i invoked once per each document to be signed, but this invocation can
take place at any time (and even before the document to be signed is even determined).
(In contrast, it may be insecure to reuse the result obtained from SOfF for two different

signatures.)

Can Secure Signature Schemes Employ Meaningful Off-Line/On-Line Signing
Algorithms? Of course, any algorithm can be vacuously decoupled into two steps, but
we are only interested in meaningful decouplings in which the off-line step takes most
of the computational load. It is interesting to note that schemes based on the refreshing
paradigm (cf. Section 6.4.2.1) lend themselves to such a decoupling. Specifically, in
Construction 6.4.16, only the last step in the signing process depends on the actual
document (and needs to be performed on-line). Furthermore, this last step amounts to
applying the signing algorithm of a one-time signature scheme, which is typically much
faster than all the other steps (which can be performed off-line).*’

6.5.4. Incremental Signatures

Loosely speaking, we say that a signature scheme (G, S, V') (either a private-key or
a public-key one) has an incremental signing process if the signing process can be
sped-up when given a valid signature to a (textually) related document. The actual
definition refers to a set of text-editing operations such as delete word and insert word
(where more powerful operations like cutting a document into two parts and pasting two
documents may be supported, too). Specifically, we require that given a signing-key,
a document-signature pair (o, 8), and a sequence of edit operations (i.e., specifying
the operation type and its location), one may modify 8 into a valid signature g’ for the

40 For example, when using the one-time signature scheme suggested in Proposition 6.4.7, producing one-
time signatures amounts to applying a collision-free hashing function and outputting corresponding parts of
the signing-key. This is all that needs to be performed in the on-line step of Construction 6.4.16. In contrast, the
off-line step (of Construction 6.4.16) calls for n applications of a pseudorandom function, n applications of
the key-generation algorithm of the one-time signature scheme, and n applications of the signing algorithm of
the one-time signature scheme.
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

modified document ¢’ in time proportional to the number of edit operations (rather than
proportional to |«']). Indeed, here time is measured in a direct-access model of compu-
tation. Of course, the time saved on the “signing side” should not come at the expense of
a significant increase in verification time. In particular, verification time should depend
only on the length of the final document (and not on the number of edit operations).*!
An incremental signing process is beneficial in settings where one needs to sign
many textually related documents (e.g., in simple contracts, much of the text is almost
identical and the few edit changes refer to the party’s specific details, as well as to
specific clauses that may be modified from their standard form in order to meet the
party’s specific needs). In some cases, the privacy of the edit sequence may be of
concern; that is, one may require that the final signature be distributed in a way that
only depends on the final document (rather than depending also on documents that
“contributed” signatures to the process of generating the final signature).

Can Secure Signature Schemes Employ a Meaningful Incremental Signing Pro-
cess? Here, meaningful refers to the set of supported text-modification operations. The
answer is affirmative, and furthermore, these schemes may even protect the privacy of
the edit sequence. In the following, we refer to edit operations that delete/insert fix-
length bit-strings called blocks from/to a document (as well as to the cut-and-paste
operations mentioned previously).

Theorem 6.5.3 (secure schemes with incremental signing process):

1. Assuming the existence of one-way functions, there exist secure message-
authentication schemes having an incremental signing process that supports block
deletion and insertion. Furthermore, the scheme uses a fixed-length authentication
tag.

2. Assuming the existence of one-way functions, there exist secure (private-key and
public-key) signature schemes having an incremental signing process that supports
block deletion and insertion as well as cut and paste.

Furthermore, in both parts, the resulting schemes protect the privacy of the edit
sequence.

Part 1 is proved by using a variant of an efficient message-authentication scheme that is
related to the schemes presented in Section 6.3.1. Part 2 is proved by using an arbitrary
secure (private-key or public-key) signature scheme that produces z-bit long signatures
to O(n)-bit long strings, where 7 is the security parameter. (Indeed, the scheme need
only be secure in the O(n)-restricted sense.) The document is stored in the leaves of a 2—
3 tree, and the signature essentially consists of the tags of all internal nodes, where each
internal node is tagged by applying the basic signature scheme to the tags of'its children.

41 This rules out the naive (unsatisfactory) solution of providing a signature of the original document along with a
signature of the sequence of edit operations. More sophisticated variants of this naive solution (e.g., refreshing
the signature whenever enough edits have occurred) are not ruled out here, but typically they will not satisfy
the privacy requirement discussed in the sequel.
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6.5 SOME ADDITIONAL PROPERTIES

One important observation is that a 2—3 tree supports the said operations while incurring
only alogarithmic (in its size) cost; that is, by modifying only the links of logarithmically
many nodes in the tree. Thus, only the tags of these nodes and their ancestors in the tree
need to be modified in order to form the correspondingly modified signature. (Privacy
of'the edit sequence is obtained by randomizing the standard modification procedure for
2-3 trees.) By analogy to Construction 6.2.13 (and Proposition 6.2.14), the incremental
signature scheme is secure.

6.5.5. Fail-Stop Signatures

Loosely speaking, a fail-stop signature scheme is a signature scheme augmented
by a (non-interactive) proof system that allows the legitimate signer to prove to any-
body that a particular (document,signature)-pair was not generated by him/her. Actu-
ally, key-generation involves interaction with an administrating entity (which publi-
cizes the resulting verification-keys), rather than just having the user publicize his/her
verification-key. In addition, we allow memory-dependent signing procedures (as in
Definition 6.4.13).*> The system guarantees the following four properties, where the
first two properties are the standard ones:

1. Proper operation: In case the user is honest, the signatures produced by it will pass
the verification procedure (with respect to the corresponding verification-key).

2. Infeasibility of forgery: In case the user is honest, forgery is infeasible in the standard
sense. That is, every feasible chosen message attack may succeed (in generating a
valid signature to a new message) only with negligible probability.

3. Revocation of forged signatures: In case the user is honest and forgery is commit-
ted, the user can prove that indeed forgery has been committed. That is, for every
chosen message attack (even a computationally unbounded one)* that produces a
valid signature to a new message, except for with negligible probability, the user
can efficiently convince anyone (which knows the verification-key) that this valid
signature was forged (i.e., produced by somebody else).

4. Infeasibility of revoking unforged signatures: It is infeasible for a user to create
a valid signature and later convince someone that this signature was forged (i.e.,
produced by somebody else). Indeed, it is possible (but not feasible) for a user to
cheat here.

Furthermore, Property 3 (i.e., revocation of forged signatures) holds also in case the
administrating entity participates in the forgery and even if it behaves improperly at the
key-generation stage. (In contrast, the other items hold only if the administrating entity
behaves properly during the key-generation stage.)

To summarize, fail-stop signature schemes allow proving that forgery has occurred,
and so offer an information-theoretic security guarantee to the potential signers (yet the

42 Allowing memory-dependent signing is essential to the existence of secure fail-stop signature schemes; see
Exercise 25.

43 1t seems reasonable to restrict even computationally unbounded adversaries to polynomially many signing
requests.

583

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:11, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.003


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.003
https:/www.cambridge.org/core

DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

guarantee to potential signature recipients is only a computational one).** In contrast,
when following the standard semantics of signature schemes, the potential signers have
only a computational security guarantee, and the signature recipients have an absolute
guarantee: Whenever the verification algorithm accepts a signature, it is by definition
an unrevocable one.

Do Secure Fail-Stop Signature Schemes Exist? Assuming the intractability of either
the Discrete Logarithm Problem or of integer factorization, the answer is affirmative.
Indeed, in fail-stop signature schemes, each document must have super-polynomially
many possible valid signatures (with respect to the publicly known verification-key),
but only a negligible fraction of these will be (properly) produced by the legitimate
signer (who knows a corresponding signing-key, which is not uniquely determined by
the verification-key). Furthermore, any strategy (even an infeasible one) is unlikely to
generate signatures corresponding to the actual signing-key. On the other hand, it is
infeasible given one signing-key to produce valid signatures (i.e., with respect to the
verification-key) that do not correspond to the proper signing with this signing-key.

6.6. Miscellaneous

6.6.1. On Using Signature Schemes

Once defined and constructed, signature schemes may be (and are actually) used as
building blocks toward various goals that are different from the original motivation.
Still, the original motivation (i.e., reliable communication of information) is of great
importance, and in this subsection we discuss several issues regarding the use of signa-
ture schemes toward achieving it. The discussion is analogous to a similar discussion
conducted in Section 5.5.1, but the analogous issues discussed here are even more
severe.

Using Private-Key Schemes: The Key-Exchange Problem. As discussed in Sec-
tion 6.1, using a private-key signature scheme (i.e., a message-authentication scheme)
requires the communicating parties to share a secret key. This key can be generated
by one party and secretly communicated to the other party by an alternative (expen-
sive) secure and reliable channel. Often, a preferable solution consists of employing a
key-exchange (or rather key-generation) protocol, which is executed over the standard
(unreliable) communication channel. We stress that here (unlike in Section 5.5.1) we
must consider active adversaries. Consequently, the focus should be on key-exchange
protocols that are secure against active adversaries and are called unauthenticated key-
exchange protocols (because the messages received over the channel are not necessarily
authentic). Such protocols are too complex to be treated in this section, and the interested
reader is referred to [29, 30, 15].

44 We refer to the natural convention by which a proof of forgery frees the signer of any obligations implied by the
document. In this case, when accepting a valid signature, the recipient is only guaranteed that it is infeasible for
the signer to revoke the signature.
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Using State-Dependent Message-Authentication Schemes. In many communica-
tion settings, it is reasonable to assume that the authentication device may maintain
(and modify) a state (e.g., a counter or a clock). Furthermore, in many applications, a
changing state (e.g., a clock) must be employed anyhow in order to prevent replay of
old messages (i.e., each message is authenticated along with its transmission time). In
such cases, state-dependent schemes as discussed in Section 6.3.2 may be preferable.
(See further discussion in Section 6.3.2 and analogous discussion in Section 5.5.1.)

Using Signature Schemes: Public-Key Infrastructure. The standard use of (public-
key) signature schemes in real-life applications requires a mechanism for providing the
verifiers with the signer’s authentic verification-key. In small systems, one may assume
that each user holds a local record of the verification-keys of all other users. However,
this is not realistic in large-scale systems, and so the verifier must obtain the relevant
verification-key on the fly in a “reliable” way (i.e., typically, certified by some trusted
authority). In most theoretical work, one assumes that the verification-keys are posted
and can be retrieved from a public-file that is maintained by a trusted party (which
makes sure that each user can post only verification-keys bearing its own identity).
Alternatively, such a trusted party may provide each user with a (signed) certificate
stating the authenticity of the user’s verification-key. In practice, maintaining such a
public-file (and/or handling such certificates) is a major problem, and mechanisms that
implement these abstractions are typically referred to by the generic term “public-
key infrastructure” (PKI). For a discussion of the practical problems regarding PKI
deployment, see, e.g., [149, Chap. 13].

6.6.2. On Information-Theoretic Security

In contrast to the bulk of our treatment, which focuses on computationally bounded
adversaries, in this section we consider computationally unbounded adversaries. Specif-
ically, we consider computationally unbounded chosen message attacks, but do bound
(as usual, by an unknown polynomial) the total number of bits in the signing-queries
made by such attackers. We call a (private-key or public-key) signature scheme perfectly
secure (or information-theoretically secure) if even such computationally unbounded
attackers may succeed (in forgery) only with negligible probability.

It is easy to see that no (public-key) signature scheme may be perfectly secure,
not even in a length-restricted one-time sense. The reason is that a computationally
unbounded adversary that is given a verification-key can find (without making any
queries) a corresponding signing-key, which allows it to forge signatures to any message
of its choice.

In contrast, restricted types of message-authentication schemes (i.e., private-key sig-
nature schemes) may be perfectly secure. Specifically, given any polynomial bound on
the total number of messages to be authenticated, one may construct a correspond-
ing state-based perfectly secure message-authentication scheme. In fact, a variant of
Construction 6.3.11 will do, where a truly random one-time pad is used instead of the
pseudorandom sequence generated using the next-step function g. Indeed, this one-
time pad will be part of the key, which in turn must be longer than the total number
of messages to be authenticated. We comment that the use of a state is essential for
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

allowing several messages to be authenticated (in a perfectly secure manner). (Proofs
of both statements can be derived following the ideas underlying Exercise 7.)

6.6.3. On Some Popular Schemes

The reader may note that we have avoided the presentation of several popular sig-
nature schemes (i.e., public-key ones). Some of these schemes (e.g., RSA [176] and
DSS [160]) seem to satisfy some weak notions of security (i.e., a notion weaker than
Definition 6.1.2). Variants of these schemes can be proven to be secure in the random
oracle model, provided some standard intractability assumptions hold (cf., e.g., [31]).
For reasons to be outlined, we choose not to present these results here.

On Using Weaker Definitions. We distinguish between weak definitions that make
clear reference to the abilities of the adversary (e.g., one-message attacks, length-
restricted message attacks) and weak notions that make hidden and unspecified as-
sumptions regarding what may be beneficial to the adversary (e.g., “forgery of signa-
tures for meaningful documents”). In our opinion, the fact that the hidden assumptions
often “feel right” makes them even more dangerous, because it means that they are
never seriously considered (and not even formulated). For example, it is often claimed
that existential forgery (see Section 6.1.4) is “merely of theoretical concern,” but these
claims are never supported by any evidence or by a specification of the types of forgery
that are of “real practical concern.” Furthermore, it has been demonstrated that this
“merely theoretical” issue yields a real security breach in some important practical
applications. Still, weak definitions of security may be useful (i.e., suffice for some
applications), provided that they are clearly stated and that one realizes their limitations
(and, in particular, their “non-generality”’). However, since the current work focuses
on generally applicable definitions, we choose not to discuss such weaker notions of
security and not to present schemes that can be evaluated only with respect to these
weaker notions.*> The interested reader is referred to [125] for a comprehensive treat-
ment of various (weaker) notions of security (which refer to various types of attacks
and success events).

On the Random Oracle Methodology. The Random Oracle Methodology [92, 28]
consists of two steps: First, one designs an ideal system in which all parties (including
the adversary) have oracle access to a truly random function, and proves this ideal
system to be secure (in which case, one says that the system is secure in the ran-
dom oracle model). Next, one replaces the random oracle with a “good cryptographic
hashing function,” providing all parties (including the adversary) with the succinct de-
scription of this function, and hopes that the resulting (actual) scheme is secure.*® We
warn that this hope has no sound justification. Furthermore, there exist encryption and

45 Needless to say, we did not even consider presenting schemes that are not known to satisfy some robust notion
of security.

46 Recall that, in contrast, the methodology of Section 3.6.3 (which is applied often in the current chapter) refers
to a situation in which the adversary does not have direct oracle access to the random function, and does not
obtain the description of the pseudorandom function used in the latter implementation.
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signature schemes that are secure in the Random Oracle Model, but replacing the ran-
dom function (used in them) by any function ensemble yields a totally insecure scheme
(cf., [54]).

6.6.4. Historical Notes

As in the case of encryption schemes, the rigorous study of the security of private-
key signature schemes (i.e., message-authentication schemes) has lagged behind the
corresponding study of public-key signature schemes. The current section is organized
accordingly.

6.6.4.1. Signature Schemes

The notion of a (public-key) signature scheme was introduced by Diffie and Hell-
man [75], who also suggested implementing it using trapdoor permutations. Con-
crete implementations were suggested by Rivest, Shamir, and Adleman [176] and by
Rabin [171]. However, definitions of security for signature schemes were presented
only a few years afterward. Still, the abstract notion of a signature scheme as well as
the concrete candidate implementations have served as the basis for the development
of the theory presented in the current chapter.

A first rigorous treatment of security notions for signature schemes was suggested by
Goldwasser, Micali, and Yao [127], but their definition is weaker than the one followed
in our text. (Specifically, the adversary’s queries in the definition of [127] are deter-
mined non-adaptively and obliviously of the public-key.) Assuming the intractability of
factoring, they also presented a signature scheme that is secure under their definition.
We mention that the security definition of [127] considers existential forgery, and is
thus stronger than security notions considered before [127].

A comprehensive treatment of security notions for signature schemes, which cul-
minates in the notion used in our text, was presented by Goldwasser, Micali, and
Rivest [125]. Assuming the intractability of factoring, they also presented a signature
scheme that is secure (in the sense of Definition 6.1.2). This was the first time that
a signature scheme was proven secure under a simple intractability assumption such
as the intractability of factoring. Their proof has refuted a folklore (attributed to Ron
Rivest) by which no such “constructive proof” may exist (because the mere existence of
such a proof was believed to yield a forging procedure).*” Whereas the (two) schemes

47 The flaw in this folklore is rooted in implicit (unjustified) assumptions regarding the notion of a “constructive
proof of security” (based on factoring). In particular, it was implicitly assumed that the signature scheme uses
a verification-key that equals a composite number, and that the proof of security reduces the factoring of such a
composite N to forging with respect to the verification-key N. In such a case, the folklore suggested that the re-
duction yields an oracle machine for factoring the verification-key, where the oracle is the corresponding signing-
oracle (associated with N), and that the factorization of the verification-key allows for efficiently producing
signatures to any message. However, none of these assumptions is justified. In contrast, the verification-key in the
scheme of [125] consists of a pair (N, x), and its security is proven by reducing the factoring of N to forging with
respect to the verification-key (N, r), where r is randomly selected by the reduction. Furthermore, on input N, the
(factoring) reduction produces a verification-key (N, r) that typically does not equal the verification-key (N, x)
being attacked, and so being given access to a corresponding signing-oracle does not allow the factoring of N.
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of [127] were inherently memory-dependent, the scheme of [125] has a “memoryless”
variant (cf. [100] and [125]).

Following Goldwasser, Micali, and Rivest [125], research has focused on construct-
ing secure signature schemes under weaker assumptions. In fact, as noted in [125],
their construction of secure signature schemes can be carried out using any collec-
tion of claw-free, trapdoor permutation pairs. The claw-free requirement was removed
in [26], whereas the seemingly more fundamental trapdoor requirement was removed by
Naor and Yung [163]. Finally, Rompel showed that one may use arbitrary one-way func-
tions rather than one-way permutations [178], and thus established Theorem 6.4.1. The
progress briefly summarized here was enabled by the use of many important ideas and
paradigms; some of them were introduced in that body of work and some were “only”
revisited and properly formalized. Specifically, we refer to the introduction of the re-
freshing paradigm in [125], the use of authentication trees (cf., [151, 152], and [125]),
the use of the hash-and-sign paradigm (rigorously analyzed in [70]), the introduction of
Universal One-Way Hash Functions (and the adaptation of the hash-and-sign paradigm
to them) in [163], and the use of one-time signature schemes (cf., [170]).

We comment that our presentation of the construction of signature schemes is dif-
ferent from the one given in any of these cited papers. Specifically, the main part of
Section 6.4 (i.e., Sections 6.4.1 and 6.4.2) is based on a variant of the signature scheme
of [163], in which collision-free hashing (cf. [70]) is used instead of universal one-way
hashing (cf. [163]).

6.6.4.2. Message-Authentication Schemes

Message authentication schemes were first discussed in the information-theoretic set-
ting, where a one-time pad was used. Such schemes were first suggested in [99], and
further developed in [188]. The one-time pad can be implemented by a pseudoran-
dom function (or an on-line pseudorandom generator), yielding only computational
security, as we have done in Section 6.3.2. Specifically, Construction 6.3.11 is based
on [139, 140]. In contrast, in Section 6.3.1 we have followed a different paradigm that
amounts to applying a pseudorandom function to the message (or its hashed value),
rather than using a pseudorandom function (or an on-line pseudorandom generator) to
implement a one-time pad. This alternative paradigm is due to [111], and is followed
in works such as [25, 22, 13]. Indeed, following this paradigm, one may focus on
constructing generalized pseudorandom function ensembles (as in Definition 3.6.12),
based on ordinary pseudorandom functions (as in Definition 3.6.4). See comments
on alternative presentations at the end of Sections 6.3.1.2 and 6.3.1.3, as well as in
Section C.2 of Appendix C.

6.6.4.3. Additional Topics

Collision-free hashing was first defined in [70]. Construction 6.2.8 is also due to [70],
with underlying principles that can be traced to [125]. Construction 6.2.11 is due to [71].
Construction 6.2.13 is due to [153].

Unique signatures and super-security have been used in several works, but they
were not treated explicitly before. The notion of off-line/on-line signature schemes
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was introduced (and first instantiated) in [85]. The notion of incremental crypto-
graphic schemes (and, in particular, incremental signature schemes) was introduced
and instantiated in [18, 19]. In particular, the incremental MAC of [19] (i.e., Part 1 of
Theorem 6.5.3) builds on the message-authentication scheme of [22], and the incre-
mental signature scheme that protects the privacy of the edit sequence is due to [158]
(building upon [19]). Fail-stop signatures were defined and constructed in [167].

6.6.5. Suggestions for Further Reading

As mentioned, the work of Goldwasser, Micali, and Rivest contains a comprehensive
treatment of security notions for signature schemes [125]. Their treatment refers to
two parameters: (1) the type of attack, and (2) the type of forgery that is deemed
successful. The most severe type of attack allows the adversary to adaptively select
the documents to be signed (as in Definition 6.1.2). The most liberal notion of forgery
refers to producing a signature to any document for which a signature was not obtained
during the attack (again, as in Definition 6.1.2). Thus, the notion of security presented
in Definition 6.1.2 is the strongest among the notions discussed in [125]. Still, in some
applications, weaker notions of security may suffice. We stress that one may still benefit
from the definitional part of [125], but the constructive part of [125] should be ignored
because it is superseded by later work (on which our presentation is based).

Pfitzmann’s book [168] contains a comprehensive discussion of many aspects in-
volved in the integration of signature schemes in real-life systems. In addition, her
book surveys variants and augmentations of the notion of signature schemes, viewing
the one treated in the current book as “ordinary.” The focus is on fail-stop signature
schemes [168, Chap. 7—11], but much attention is given to the presentation of a gen-
eral framework [168, Chap. 5] and to a review of other “non-ordinary” schemes [168,
Secs. 2.7 and 6.1].

As hinted in Section 6.6.4.2, our treatment of the construction of message-
authentication schemes is merely the tip of the iceberg. The interested reader is
referred to [186, 139, 140, 35] for details on the “one-time pad” approach, and
to [25, 22, 13, 14, 20, 2] for alternative approaches. Constructions and discussion
of AXU hashing functions (which are stronger than generalized hashing functions) can
be found in [139, 140].

The constructions of universal one-way hash functions presented in Section 6.4.3
use any one-way permutation, and do so in a generic way. The number of applications
of the one-way permutation in these constructions is linearly related to the difference
between the number of input and output bits in the hash function. In [98], it is shown that
as far as generic (black-box) constructions go, this is essentially the best performance
that one can hope for.

In continuation of the discussion in Section 6.4.2.4 (regarding the construction of
signature schemes based on authentication trees), we refer the reader to [81, 67], in
which specific implementations (of a generalization) of Constructions 6.4.14 and 6.4.16
are presented. Specifically, these works utilize an authentication-tree of large degree
(rather than binary trees as in Section 6.4.2.2).
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In continuation of the discussion in Section 6.5.1, we mention that signature schemes
having unique signatures are related (but not equivalent) to verifiable pseudorandom
Sfunctions (as defined and constructed in [155]). In particular, the construction in [155]
does yield signature schemes having unique signatures, and thus the latter exist under
a quite standard assumption (regarding RSA). We comment that signature schemes
having unique signatures are stronger than invariant signature schemes (as defined
in [128] and studied in [21, 128]).

6.6.6. Open Problems

The known construction of signature schemes from arbitrary one-way functions [178]
is merely a feasibility result. It is indeed an important open problem to provide an
alternative construction that may be practical and still utilize an arbitrary one-way
function. We believe that providing such a construction may require the discovery of
important new paradigms.

6.6.7. Exercises

Exercise 1: Deterministic signing and verification algorithms:

1. Using a pseudorandom function ensemble, show how to transform any (private-
key or public-key) signature scheme into one employing a deterministic signing
algorithm.

2. Using a pseudorandom function ensemble, show how to transform any message-
authentication scheme into one employing deterministic signing and verification
algorithms.

3. Verify that all signature schemes presented in the current chapter employ a deter-
ministic verification algorithm.

4. (By Boaz Barak:) Show that any length-restricted signature scheme can be easily
transformed into one employing a deterministic verification algorithm.

Guideline (for Part 1): Augment the signing-key with a description of a pseudo-
random function, and apply this function to the string to be signed in order to extract
the randomness used by the original signing algorithm.

Guideline (for Part 2): Analogous to Part 1. (Highlight your use of the private-key
hypothesis.) Alternatively, see Exercise 2.

Guideline (for Part 4): First transform the signature scheme into one in which
all valid signatures are of a length that is bounded by a polynomial in the security
parameter (and the length of the messages). Let £(n) denote the length of the docu-
ments and m(n) denote the length of the corresponding signatures. Next, amplify the
verification algorithm such that its error probability is smaller than 2~ (¢tD+m@+m),
Finally, incorporate the coin tosses of the verification algorithm in the verification-
key, making the former deterministic.
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Exercise 2: Canonical verification in the private-key version: Show that, without loss
of generality, the verification algorithm of a private-key signature scheme may con-
sist of comparing the alleged signature to one produced by the verification algo-
rithm itself; that is, the verification algorithm uses a verification-key that equals the
signing-key and produces signatures exactly as the signing algorithm.

Why does this claim fail with respect to public-key schemes?

Guideline: Use Part 1 of Exercise 1, and conclude that on a fixed input, the signing
algorithm always produces the same output. Use the fact that (by Exercise 7.3) the
existence of message-authentication schemes implies the existence of pseudoran-
dom functions, which are used in Part 1 of Exercise 1.

Exercise 3: Augmented attacks in the private-key case: In continuation of the discus-
sion in Section 6.1.5.1, consider the definition of an augmented attack (on a private-
key signature scheme) in which the adversary is allowed verification-queries.

1. Show that in case the private-key signature scheme has unique valid signatures,
it is secure against augmented attacks if and only if it is secure against ordinary
attacks (as in Definition 6.1.2).

2. Assuming the existence of secure private-key signature schemes (as in
Definition 6.1.2), present such a secure scheme that is insecure under augmented
attacks.

Guideline (Part 1): Analyze the emulation outlined in the proof of Proposi-
tion 6.1.3. Specifically, ignoring the redundant verification-queries (for which the
answer is determined by previous answers), consider the probability that the em-
ulation has gambled correctly on all the verification-queries up to (and including)
the first such query that should be answered affirmatively.

Guideline (Part 2): Given any secure MAC, (G, S, V'), assume without loss of
generality that in the key-pairs output by G, the verification-key equals the signing-
key. Consider the scheme (G’, §', V') (with G’ = G), where S,(«) = (Ss(@), 0),
Vi(a, (B, 0)) = Vy(a, B),and V) («, (B, i, 0)) = 1 ifboth Vy(e, B) = | and the i-th
bit of v is 0. Prove that (G', §’, V) is secure under ordinary attacks, and present an
augmented attack that totally breaks it (i.e., obtains the signing-key s = v).

Exercise 4: The signature may reveal the document: Both for private-key and public-
key signature schemes, show that if such secure schemes exist, then there exist
secure signature schemes in which any valid signature to a message allows for
efficient recovery of the entire message.

Exercise 5: On the triviality of some length-restricted signature schemes:

1. Show that for logarithmically bounded ¢, secure £-restricted private-key signa-
ture schemes (i.e., message-authentication schemes) can be trivially constructed
(without relying on any assumption).

2. In contrast, show that the existence of a secure {-restricted public-key signature
scheme, even for ¢ = 1, implies the existence of one-way functions.
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2.
b

Guideline (Part1): Oninput 1", the key-generator uniformly selectss € {0, 1}
and outputs the key pair (s, s). View s = s1- - - $2an, Where each s; is an n-bit
long string, and consider any fixed ordering of the 2¢"" strings of length £(n).
The signature to o € {0, 1}¥®) is defined as s;, where i is the index of « in the latter
ordering.

Guideline (Part 2): Let (G, S, V) be a 1-restricted public-key signature scheme.
Define f(1”,r) = v if, on input 1" and coins r, algorithm G generates a key-pair
of the form (-, v). Assuming that algorithm A inverts f with probability e(n), we
construct a forger that attacks (G, S, V) as follows. On input a verification key v,
the forger invokes A on input v. With probability e(n), the forger obtains » such
that (17, ) = v. In such a case, the forger obtains a matching signing-key s (i.e.,
(s, v) is output by G(1") on coins r), and so can produce valid signatures to any
string of its choice.

Exercise 6: Failure of Construction 6.2.3 in case £(n) = O(logn): Show that if Con-
struction 6.2.3 is used with a logarithmically bounded ¢, then the resulting scheme
is insecure.

Guideline: Note that by asking for polynomially many signatures, the adversary
may obtain two S;-signatures that use the same (random) identifier. Specifically,
consider making the queries o, for all possible o € {0, 1}¥™, and note that if
aa and o'a’ are S;-signed using the same identifier, then we can derive a valid
S;-signature to aer’.

Exercise 7: Secure MACs imply one-way functions: Prove that the existence of se-
cure message-authentication schemes implies the existence of one-way functions.
Specifically, let (G, S, V') be as in the hypothesis.

1. To simplify the following two items, show that, without loss of generality, G(1")
uses n coins and outputs a signing-key of length ».
2. Assume first that S is a deferministic signing algorithm. Prove that

f(r o, .y ) &ef (Ss(ay), ..., Ss(otm), a1, ..., 0ty ) 18 @ one-way function, where
s = G(r) is the signing-key generated with coins 7, all ¢;’s are of length n = |r|,
and m = O(n).

3. Extend the proof to handle randomized signing algorithms, thus establishing the
main result.

Guideline (Parts 2 and 3): Note that with high probability (over the choice of the
a;’s), the m signatures (i.e., Sy(¢;)’s) determine a set R such that for every »' € R,
it holds that Sg, () = Sy(@) for most & € {0, 1}". (Note that G(r") does not
necessarily equal s.) Show that this implies that the ability to invert f yields the
ability to forge (under a chosen message attack). (Hint: Use m random signing-
queries to produce a random image of f, and use the obtained pre-image under
f, which contains an adequate signing-key, to forge a signature to a new random
message.) The extension to randomized signing is obtained by augmenting the pre-
image of the one-way function with the coins used by the m invocations of the
signing algorithm.
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Exercise 8: General pseudorandom functions yield general secure MACs: Using
a pseudorandom function ensemble of the form {f; : {0, 1}* — {0, 1}"}sci0.1)
construct a general secure message-authentication scheme (rather than a length-
restricted one).

Guideline: The construction is identical to Construction 6.3.1, except that here we
use a general pseudorandom function ensemble rather than the one used there. The
proof of security is analogous to the proof of Proposition 6.3.2.

Exercise 9: Consider a generalization of Construction 6.3.5 in which the pseudo-
random function is replaced by an arbitrary secure MAC such that on input a
signing-key (7, s), a document o € {0, 1} is signed by applying the MAC (with
signing-key §) to A4,(«). Show that, for some secure MAC and some collections
of hash functions with negligible collision probability, the suggested scheme is
insecure.

Guideline: Use the fact that the MAC may reveal the first part of its argument,
whereas the hashing function may yield an output value in which the second part
is fixed. Furthermore, it may be easy to infer the hashing function from sufficiently
many input-output pairs, and it may be easy to find a random pre-image of a
given hash function on a given image. Present constructions that satisfy all these
conditions, and show how combining them yields the desired result.

Exercise 10: Easily obtaining pseudorandom functions from certain MACs (advanced
exercise, based on [162]): Let (G, S, V') be a secure message-authentication scheme,

and suppose that S is deterministic. Furthermore, suppose that |G (1")| = » and that

forevery s, x € {0, 1}" itholds that | S;(x)| = £(n) ] |Ss(1™")]. Consider the Boolean

function ensemble { f;, ,, : {0, 1}'l — {0, 1}};,.5,» Where s is selected according to
G1(1") and s, € {0, 1}*™ is uniformly distributed, such that f;, ,,(«) is defined to
equal the inner product mod 2 of S;, («) and s,. Prove that this function ensemble
is pseudorandom (as defined in Definition 3.6.9 for the case d(n + €(n)) = n and

r(n) =1).

Guideline: Consider hybrid experiments such that in the i-th hybrid the first i
queries are answered by a truly random Boolean function and the rest of the queries
are answered by a uniformly distributed f;, ;,. (Note that it seems important to use
this non-standard order of random versus pseudorandom answers.) Show that distin-
guishability of the i-th and i 4 1st hybrids implies that a probabilistic polynomial-
time oracle machine can have a non-negligible advantage in the following game. In
the game, the machine is first asked to select o; next f;, ,, is uniformly selected,
and the machine is given s, as well as oracle access to S, (but is not allowed the
query «) and is asked to guess f;, ,(c¢) (or, equivalently, to distinguish f;, s, (o)
from a truly random bit).*® At this point, one may apply the proof of Theorem 2.5.2,

48 Note that the particular order (of random versus pseudorandom answers in the hybrids) allows this oracle
machine to generate the (corresponding) hybrid while playing this game properly. That is, the player answers
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and deduce that the said oracle machine can be modified to construct S, (o) with
non-negligible probability (when given oracle access to S5, but not being allowed
the query «), in contradiction to the security of the MAC.

Exercise 11: Prove that without loss of generality, one can always assume that a chosen
message attack makes at least one query. (This holds for general signature schemes
as well as for length-restricted and/or one-time ones.)

Guideline: Given an adversary A’ that outputs a message-signature pair («/, 8)
without making any query, modify it such that it makes an arbitrary query « €
{0, 1}1*I\ {&'} just before producing that output.

Exercise 12: On perfectly secure one-time message-authentication (MAC) schemes:
By perfect (or information-theoretic) security we mean that even computationally
unbounded chosen message attacks may succeed (in forgery) only with negligible
probability.

Define perfect (or information-theoretic) security for one-time MACs and length-
restricted one-time MACs. (Be sure to bound the length of documents (e.g., by some
super-polynomial function) also in the unrestricted case; see Part 3 of the current
exercise, as well as Exercise 21.)

Prove the following, without relying on any (intractability) assumptions (which are
useless anyhow in the information-theoretic context):

1. For any polynomially bounded and polynomial-time computable function ¢ :
N — N, perfectly secure ¢-restricted one-time MACs can be trivially constructed.

2. Using a suitable AXU family of hashing functions, present a construction of a
perfectly secure one-time MAC. Furthermore, present such a MAC in which the
authentication-tags have fixed length (i.e., depending on the length of the key but
not on the length of the message being authenticated).

3. Show that any perfectly secure one-time MAC that utilizes fixed-length
authentication-tags and a deterministic signing algorithm yields a generalized
hashing ensemble with negligible collision probability. Specifically, for any poly-
nomial p, this ensemble has a (p, 1/p)-collision property.

Guideline: For Part 1, combine the ideas underlying Exercise 5.1 and Construc-
tion 6.4.4. For Part 2, use the ideas underlying Construction 6.3.11 and the proof of

Proposition 6.3.12. For Part 3, given a MAC as in the claim, consider the functions

hs(x) &ef Ss(x), where s is selected as in the key-generation algorithm.

Exercise 13: Secure one-time (public-key) signatures imply one-way functions: In con-
trast to Exercise 12, prove that the existence of secure one-time signature schemes
implies the existence of one-way functions. Furthermore, prove that this holds even

the first i queries at random, sets « to equal the i + Ist query, uses the tested bit value as the corresponding
answer, and uses s, and the oracle Sy, to answer the subsequent queries. It is also important that the game be
defined such that s; is given only after the machine has selected «; see [162].
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6.6 MISCELLANEOUS

for 1-restricted signature schemes that are secure (only) under attacks that make no
signing-queries.

Guideline: See guideline for Item 2 in Exercise 5.

Exercise 14: Prove that the existence of collision-free hashing collections implies the
existence of one-way functions.

Guideline: Given a collision-free  hashing collection, {4, : {0, 1}* —
{0, 10"}, 0.1y, consider the function f(r,x) = (r, h,(x)), where (say) |x| =
£(|r|) + |r|. Prove that f is a one-way function, by assuming toward the contra-
diction that f can be efficiently inverted with non-negligible probability, and de-
riving an efficient algorithm that forms collisions on random #4,’s. Given r, form a
collision under the function /,., by uniformly selecting x € {0, 1}*\"D+"1 "and feed-
ing the inverting algorithm with input (7, 4, (x)). Observe that with non-negligible
probability, a pre-image is obtained, and that only with exponentially vanishing
probability this pre-image is (7, x) itself. Thus, with non-negligible probability, we
obtain a pre-image (r, x’) # (r, x) such that 4, (x") = A, (x).

Exercise 15: Modify Construction 6.2.8 so as to allow the computation of the hash-
value of an input string while processing the input in an on-line fashion; that is,
the implementation of the hashing process should process the input x in a bit-by-bit
manner, while storing only the current bit and a small amount of state information
(i.e., the number of bits encountered so far and an element of D).

Guideline: All that is needed is to redefine 4 ,(x) & e (), where

1+ ¥, 1s a suffix-free encoding of x; that is, for any x # x’, the coding of x is not
a suffix of the coding of x’.

Exercise 16: Secure MACs that hide the message: In contrast to Exercise 4, show that
if secure message-authentication schemes exist, then there exist such schemes in
which it is infeasible (for a party not knowing the key) to extract from the sig-
nature any partial information about the message (except for the message length).
(Indeed, privacy of the message is formulated as the definition of semantic security
of encryption schemes; see Chapter 5.)

Guideline: Combine a message-authentication scheme with an adequate private-
key encryption scheme. Refer to such issues as the type of security required of the
encryption scheme and why the hypothesis yields the existence of the ingredients
used in the construction.

Exercise 17: In continuation of Exercise 16, show that if there exist collision-free
hashing functions, then there exist message-authentication schemes in which it is
infeasible (for a party not knowing the key) to extract from the signature any partial
information about the message including the message length. How come we can
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

hide the message length in this context, whereas we cannot do this in the context of
encryption schemes?

Guideline: Combine a message-authentication scheme having fixed-length signa-
tures with an adequate private-key encryption scheme. Again, refer to issues as in
Exercise 16.

Exercise 18: Alterntaive formulation of state-based MACs (by Boaz Barak): For
S=(5,8)and V = (V’', V"), consider the following reformulation of Item 2 of
Definition 6.3.9: For every pair (s, v(?) in the range of G(1"), every sequence
of messages a’s, and every i, it holds that V'(vV=D, o@ §(s@=D, a®)) =1,
where s0) = §"(sU=, 1¢”1) and v0) = p7(uU=D, 11«1 118000y gor i
1, ..., i — 1. Prove the equivalence of the two formulations.

Exercise 19: Prove that the existence of collections of UOWHF implies the existence
of one-way functions. Furthermore, show that uniformly chosen functions in any
collection of UOWHFs are hard to invert (in the sense of Definition 2.4.3).

Guideline: Note that the guidelines provided in Exercise 14 can be modified to fit
the current context. Specifically, the suggested collision-forming algorithm is given
uniformly distributed » and x, and invokes the inverter on input (7, 4, (x)), hoping
to obtain a designated collision with x under #4,. Note that the furthermore-clause
is implicit in the proof.

Exercise 20: Assuming the existence of one-way functions, show that there exists a
collection of universal one-way hashing functions that is not collision-free.

Guideline: Given a collection of universal one-way hashing functions, {f; :
{0, 1}* — {0, 1}*!}, consider the collection F" = { f7 : {0, 1}* — {0, 1}*|} defined
so that f/(x) = (0, fi(x)) if the |s|-bit long prefix of x is different from s, and
fi(sx") = (1, s) otherwise. Clearly, F’ is not collision-free. Show that F” is a col-
lection of universal one-way hashing functions.

Exercise 21: Show that for every finite family of functions H, there exists x # y such
that 4(x) = h(y) for every h € H. Furthermore, show that for H = {h : {0, 1} —
{0, 1}"}, this holds even for |x|, |y| <m - |H]|.

Guideline: Consider the mapping x — (h;(x), ..., h;(x)), where H = {h;}I_,.
Since the number of possible images is at most (2), we get a collision as soon as
we consider more than 2™ pre-images.

Exercise 22: Constructions of Hashing Families with Bounded Collision Probability:
In continuation of Exercise 22.2 in Chapter 3, consider the set of functions S}’
associated with £-by-m Toeplitz matrix; that is, hr(x) = Tx, where T = (7} ;) isa
Toeplitz matrix (i.e., 7; ; = Tj11,j41 forall 7, j). Show that this family has collision
probability 27, (Note that each £-by-m Toeplitz matrix is specified using £ + m — 1
bits.)
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6.6 MISCELLANEOUS

Guideline: Note that we have eliminated the shifting vector b used in Exercise 22.2
of Chapter 3, but this does not affect the relevant analysis.

Exercise 23: Constructions of Generalized Hashing Families with Bounded Collision
Property: (See definition in Section 6.3.1.3.)

1. Using a variant of the tree-hashing scheme of Construction 6.2.13, construct a
generalized hashing ensemble with a (f, 1/f)-collision property, where f(n) =
2v"/2_(Hint: Use a different hashing function at each level of the tree.)

2. (By Hugo Krawczyk): Show that the tree-hashing scheme of Construction 6.2.13,
where the same hashing function is used in all levels of the tree, fails in the current
context. That is, there exists a hashing ensemble {/, : {0, 1}>"(") — {0, 1}"(Dy,
with negligible collision probability, such that applying Construction 6.2.13 to it
(even with depth two) yields an ensemble with high collision probability.

3. As in Part 2, show that the block-chaining method of Construction 6.2.11 fails in
the current context (even for three blocks).

Guideline (Part 1): Let {4, : {0, 1}7"("D — {0, 1}("D},. be a hashing ensemble
with collision probability cp. Recall that such ensembles with m(n) = n/3 and
cp(n) = 27" can be constructed (see Exercise 22). Then, consider the function
ensemble {A,,, ., : {0, 1}* = {0, 1}*"™}, y, where all r;’s are of length 7, such
that &, (x) is defined as follows:

wosVm(n)

1. As in Construction 6.2.13, break x into ¢ &

denoted x1, ..., x;, and let d = log, t.
2. Leti=1,..,¢ and let y, défx,». For j=d—1,..,1,0andi =1, ..., 2/, let
Yii =y (Vj41,2i-1Yj+1,2:). The hash value equals (yo,1, [x]).

2 Mogy(Ixl/mm) consecutive blocks,

The above functions have description length N dgm(n) -n and map strings of
length at most 2" to strings of length 2m(n). It is easy to bound the collision
probability (for strings of equal length) by the probability of collision occuring
in each of the levels of the tree. In fact, for x;--- x, # x{-- - x; such that x; # x/,
it suffices to bound the sum of the probabilities that y; r;2¢-i1 = y}’ [i/24-1 holds
(giventhat y;, ;jpe-+0y # y;‘+1,(i/2d*(/+”'|) forj =d —1, ..., 1, 0. Thus, this gen-
eralized hashing ensemble has a (¢, €)-collision property, where £(N) = 2" and
€(N) = m(n) - cp(n). We stress that the collision probability of the tree-hashing
scheme grows linearly with the depth of the tree (rather than linearly with its size).
Recalling that we may use m(n) = n/3 and cp(n) = 27", we obtain (using N =
n2/3 = 3m(n)?) L(N) = 20V = 20V and e(N) < (NJE(N)) < 2=V (as
desired).

Guideline (Part 2): Given a hashing family as in the hypothesis, modify it into
{h;’x {0, 1}¥" — {0, 1} }r.s, wheres € {0, 1}, suchthath;,S(Oz’”) = s,h;.,s(sv) =
0" for all v € {0, 1}", and £, (W) = h.(w) for each other w € {0, 1}?". Note that
the new family maintains the collision probability of the original one up to an
additive term of O(2™™). On the other hand, for every w € {0, 1}*", it holds
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DIGITAL SIGNATURES AND MESSAGE AUTHENTICATION

that TreeHash, (0" w) = h;qs(h;’s(Oz’”)h;‘S(w)) =h, (sv)=0", where v=
hy.s(w).

Guideline (Part 3): For 4/ as in Part 2 and every v € {0, 1}, it holds that

r,s

ChainHash, (0" v) = ! (k. ,(0*™)v) = h (sv) = 0"

Exercise 24: On the additional properties required in Proposition 6.4.21: In contin-
uation of Exercise 23 of Chapter 3, show that the function family S"~! presented
there satisfies the following two properties:

1. All but a negligible fraction of the functions in S"~! are 2-to-1.

2. There exists a probabilistic polynomial-time algorithm that, given y;, y, € {0, 1}"
and zy, z € {0, 1}"~1, outputs a uniformly distributed element of {s € S"~!:
hs(yi) = z; Vi € {1,2}}.

Guideline: Recall that each function in S”~! is described by a pair of elements of
the finite field GF(2"), where the pair (a, b) describes the function %, that maps
x € GF(2") to the (n — 1)-bit prefix of the n-bit representation of ax + b, where
the arithmetic is of the field GF(2"). The first condition follows by observing that
the function %, p is 2-to-1 if and only if a # 0. The second condition follows by
observing that 4, ,(y;) = z; if and only if ay; + b = v; for some v; that is a single-
bit extension of z;. Thus, generating a pair (a, b), such that h, ,(y;) = z; for both
i’s, amounts to selecting random single-bit extensions v;’s, and (assuming y; # )
solving the system {ay; + b = v;};=1 > (for the variables a and b).

Exercise 25: Fail-stop signatures require a memory-dependent signing process: In
continuation of Section 6.5.5, prove that a secure fail-stop signature scheme must
employ a memory-dependent signing process (as in Definition 6.4.13).

Guideline: Suppose toward the contradiction that there exists a secure memoryless
fail-stop signature scheme. For every signing-key s € {0, 1}", consider the ran-
domized process P in which one first selects uniformly x € {0, 1}”, produces a
(random) signature y < S;(x), and outputs the pair (x, ). Show that, given poly-
nomially many samples of Py, one can find (in exponential time) a string s” € {0, 1}"
such that with probability at least 0.99, the statistical distance between Py and Py is
at most 0.01. Thus, a computationally unbounded adversary making polynomially
many signing queries can find a signing-key that typically produces the same sig-
natures as the true signer. It follows that either these signatures cannot be revoked
or that the user may also revoke its own signatures.
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