
APPENDIX C

Corrections and Additions
to Volume 1

There is no 100% guarantee in the world;
whoever wants 100% guarantee should not build anything.

Eng. Isidor Goldreich (1906–1995)

In this appendix, we list a few corrections and additions to the previous chapters of this
work (which appeared in [108]).

C.1. Enhanced Trapdoor Permutations

Recall that a collection of trapdoor permutations, as defined in Definition 2.4.5, is a
collection of permutations, { fα}α , accompanied by four probabilistic polynomial-time
algorithms, denoted I , S, F , and B (for index, sample, forward, and backward), such
that the following (syntactic) conditions hold:

1. On input 1n , algorithm I selects a random n-bit long index α of a permutation fα ,
along with a corresponding trapdoor τ ;

2. On input α, algorithm S samples the domain of fα , returning an almost uniformly
distributed element in it;

3. For x in the domain of fα , given α and x , algorithm F returns fα(x) (i.e., F(α, x) =
fα(x));

4. For y in the range of fα if (α, τ) is a possible output of I (1n), then, given τ and y,
algorithm B returns f −1

α (y) (i.e., B(τ, y) = f −1
α (y)).

The hardness condition in Definition 2.4.5 refers to the difficulty of inverting fα on a
uniformly distributed element of its range, when given only the range element and α.
That is, let I1(1n) denote the first element in the output of I (1n) (i.e., the index); then for
every probabilistic polynomial-time algorithm A (resp., every non-uniform family of

765

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

CORRECTIONS AND ADDITIONS TO VOLUME 1

polynomial-size circuit A = {An}n), every positive polynomial p, and all sufficiently
large n’s,

Pr[A(I1(1n), f I1(1n)(S(I1(1n))) = S(I1(1n))] <
1

p(n)
(C.1)

Namely, A (resp., An) fails to invert fα on fα(x), where α and x are selected by I and
S as here. An equivalent way of writing Eq. (C.1) is

Pr[A(I1(1n), S′(I1(1n), Rn)) = f −1
I1(1n)(S′(I1(1n), Rn))] <

1

p(n)
(C.2)

where S′ is the residual two-input (deterministic) algorithm obtained from S when
treating the coins of the latter as an auxiliary input, and Rn denotes the distribution of
the coins of S on n-bit long inputs. That is, A fails to invert fα on x , where α and x are
selected as earlier.

Although this definition suffices for many applications, in some cases we will need
an enhanced hardness condition. Specifically, we will require it to be hard to invert fα
on a random input x (in the domain of fα), even when given the coins used by S in the
generation of x . (Note that given these coins (and the index α), the resulting domain
element x is easily determined.)

Definition C.1.1 (enhanced trapdoor permutations): Let { fα : Dα → Dα} be a col-
lection of trapdoor permutations as in Definition 2.4.5. We say that this collection is
enhanced (and call it an enhanced collection of trapdoor permutations) if for ev-
ery probabilistic polynomial-time algorithm A, every positive polynomial p, and all
sufficiently large n’s,

Pr[A(I1(1n), Rn) = f −1
I1(1n)(S′(I1(1n), Rn))] <

1

p(n)
(C.3)

where S′ is as in the foregoing discussion. The non-uniform version is defined
analogously.

We comment that the RSA collection (presented in Section 2.4.3.1 and further discussed
in Section 2.4.4.2) is, in fact, an enhanced collection of trapdoor permutations,1 pro-
vided that RSA is hard to invert in the same sense as assumed in Section 2.4.3.1.
In contrast, the Rabin Collection (as defined in Section 2.4.3) does not satisfy
Definition C.1.1 (because the coins of the sampling algorithm give away a modular
square root of the domain element). Still, the Rabin Collection can be easily mod-
ify to yield an enhanced collection of trapdoor permutations, provided that factor-
ing is hard (in the same sense as assumed in Section 2.4.3). Actually, we present

1 Here and in the following, we assume that sampling Z∗
N , for a composite N , is trivial. However, sampling

Z∗
N (or even Z N) by using a sequence of unbiased coins is not that trivial. The straightforward sampler may

take �
def= 2�log2 N� random bits, view them as an integer in i ∈ {0, 1, ..., 2� − 1}, and output i mod N . This

yields an almost uniform sample in Z N . Also note that given an element e ∈ Z N , one can uniformly sample an
i ∈ {0, 1, ..., 2� − 1} such that i ≡ e (mod N). Thus, the actual sampler does not cause trouble with respect
to the enhanced hardness requirement.

766

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

C.1 ENHANCED TRAPDOOR PERMUTATIONS

two such possible modifications:

1. Modifying the functions. Rather than squaring modulo the composite N , we consider
the function of raising to the power of 4 modulo N . It can be shown that the resulting
permutations over the quadratic residues modulo N satisfy Definition C.1.1, provided
that factoring is hard. Specifically, given N and a random r ∈ Z N , the ability to
extract the 4th root of r2 mod N (modulo N) yields the ability to factor N , where
the algorithm is similar to the one used in order to establish the intractability of
extracting square roots.

2. Changing the domains. Rather than considering the permutation induced (by the
modular squaring function) on the set QN of the quadratic residues modulo N , we
consider the permutations induced on the set MN , where MN contains all integers in
{1, ..., N/2} that have Jacobi symbol modulo N that equals 1. Note that as in the case
of QN , each quadratic residue has a unique square root in MN (because exactly two
square roots have a Jacobi symbol that equals 1 and their sum equals N).2 However,
unlike QN , membership in MN can be determined in polynomial-time (when given
N without its factorization). Thus, sampling MN can be done in a straightforward
way, which satisfies Definition C.1.1.

Actually, squaring modulo N is a 1-1 mapping of MN to QN . In order to obtain
a permutation over MN , we modify the function a little, such that if the result of
modular squaring is bigger than N/2, then we use its additive inverse (i.e., rather
than outputting y > N/2, we output N − y).

We comment that the special case of Definition 2.4.5 in which the domain of fα equals
{0, 1}|α| is a special case of Definition C.1.1 (because, without loss of generality, the
sampling algorithm may satisfy S′(α, r) = r). Clearly, the RSA and the Rabin collec-
tions can be slightly modified to fit the former special case.

Correction to Volume 1. Theorems 4.10.10, 4.10.14, and 4.10.16 (which in turn
are based on Remark 4.10.6) refer to the existence of certain non-interactive zero-
knowledge proofs. The claimed non-interactive zero-knowledge proof systems can be
constructed by assuming the existence of an enhanced collection of trapdoor permuta-
tions. However, in contrast to the original text, it is not known how to derive these proof
systems based on the existence of a (regular) collection of trapdoor permutations. See
further discussion in Section C.4.1.

Open Problem. Is it possible to convert any collection of trapdoor permutations into
an enhanced one? An affirmative answer will resolve open problems stated in Sec-
tions 7.7.6 and C.4.1, which refer to the assumptions required for General Secure
Multi-Party Computation and various types of Non-Interactive Zero-Knowledge proofs,
respectively.

2 As in the case of QN , we use the fact that −1 has Jacobi symbol 1.

767

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

CORRECTIONS AND ADDITIONS TO VOLUME 1

C.2. On Variants of Pseudorandom Functions

The focus of Section 3.6 was on a special case of pseudorandom functions, hereafter
referred to as the fixed-length variant. For some function � : N → N (e.g., �(n) = n),
these functions map �(n)-bit long strings to �(n)-bit long strings, where n denotes the
lengths of the function’s seed. More general definitions were presented in Section 3.6.4.
In particular, functions mapping strings of arbitrary length to �(n)-bit long strings were
considered. Here, we refer to the latter as the variable-length variant.

A natural question regarding these variants is how to directly (or efficiently) trans-
form functions of the fixed-length variant into functions of the variable-length variant.3

Exercises 30 and 31 in Chapter 3 implicitly suggest such a transformation, and so does
Proposition 6.3.7. Because of the interest in this natural question, we next state the
actual result explicitly.

Proposition C.2.1: Let { fs : {0, 1}�(|s|) → {0, 1}�(|s|)}s be a (fixed-length) pseudoran-
dom function ensemble, and {hr : {0, 1}∗ → {0, 1}�(|r |)}r be a generalized hashing
ensemble with a (t , 1/t)-collision property,4 for some super-polynomial function
t : N → N. Then {gs,r = fs ◦ hr }s,r :|s|=|r | is a (variable-length) pseudorandom func-
tion ensemble.

Proof Idea: The proofs of Propositions 6.3.6 and 6.3.7 actually establish
Proposition C.2.1.

Comment. Alternative constructions of variable-length pseudorandom functions
based on fixed-length pseudorandom functions are presented in [25, 22, 13]. In these
works, the fixed-length pseudorandom functions are applied to each block of the input,
and so the number of applications is linearly related to the input length (rather than
being a single one). On the other hand, these works do not use variable-length hashing.
Indeed, these works presuppose that a fixed-length pseudorandom function (rather than
a variable-length one) is non-expensive (and, in practice, is available as an off-the-shelf
product).

C.3. On Strong Witness Indistinguishability

Unfortunately, we have to withdraw two claims regarding strong witness indistinguish-
able proofs as defined in Definition 4.6.2.5 Specifically, in general, strong witness

3 An indirect construction may use the fixed-length variant in order to obtain a one-way function, and then
construct the variable-length variant using this one-way function. Needless to say, this indirect construction is
very wasteful.

4 Recall that the (t , 1/t)-collision property means that for every n ∈ N and every x 	= y such that |x |, |y| ≤ t(n),
the probability that hr (x) = hr (y) is at most 1/t(n), where the probability is taken over all possible choices of
r ∈ {0, 1}n with uniform probability distribution.

5 We comment that the notion of strong witness indistinguishability was introduced by the author at a late stage
of writing [108].

768

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

C.3 ON STRONG WITNESS INDISTINGUISHABILITY

indistinguishability is not closed under parallel composition (and so Lemma 4.6.7 is
wrong). Consequently, contrary to what is stated in Theorem 4.6.8, we do not know
whether there exist constant-round public-coin proofs with negligible error that are
strong witness indistinguishable for languages out of BPP .6 Before discussing the
reasons for withdrawing these claims and the consequences of doing so, we stress that
the flaws pointed out here only refer to strong witness indistinguishability and not
to (regular) witness indistinguishability. That is, as stated in Lemma 4.6.6, (regular)
witness indistinguishability is closed under parallel composition, and thus the part of
Theorem 4.6.8 that refers to regular witness indistinguishability is valid (i.e., providing
constant-round public-coin proofs with negligible error that are witness indistinguish-
able for NP).

Notation. To facilitate the rest of the discussion, we let WI stand for “(regular) witness
indistinguishability” and strong-WI stand for “strong witness indistinguishability.”

C.3.1. On Parallel Composition

A counter-example to Lemma 4.6.7 can be derived by using the protocol presented at the
end of Section 4.5.4.1 (and assuming the existence of one-way functions); that is, this
protocol is (zero-knowledge and hence) strong-WI, but executing it twice in parallel (on
the same common input) is not strong-WI. Tracing the error in the reasoning outlined in
Section 4.6.2, we stress a fundamental difference between WI and strong-WI. Under the
former (i.e., under the definition of WI), the indistinguishability of executions, in which
the prover uses one out of two possible NP-witnesses (for the same common input),
holds even when the (adversary) verifier is given these two NP-witnesses. The analogous
claim does not necessarily hold for strong-WI, because these two NP-witnesses (even
presented in random order) may allow for distinguishing one possible common input
from the other (provided that these two possibilities are not identical, unlike in the
case of WI). Now, observe that the single-session adversary constructed in the proof
of Lemma 4.6.6 needs to get the NP-witnesses that correspond to the other sessions
in order to emulate these sessions. However, these other NP-witnesses may determine
the two possible NP-witnesses for the current session, and so the indistinguishability
of the executions of the current session is no longer guaranteed. Furthermore, the other
NP-witnesses may even uniquely determine the NP-witness (or the input triple) used
in the current session. Indeed, the source of trouble is in the possible dependence
among the NP-witnesses used in the various sessions. Consequently, we can resurrect
parallel compositions (of strong-WI) for the special case in which the NP-witnesses
used in the various sessions are independently distributed. Actually, we need statistical
independence among the (entire) input triples used in the various sessions.

Lemma C.3.1 (Parallel Composition for Strong Witness Indistinguishability, Revis-
ited): Let L ∈ NP , RL , (P, V), Q, RQ

L , and PQ be as in Lemma 4.6.6, and suppose

6 Theorem 4.6.8 does not mention the public-coin condition, but the construction that is supposed to support it
is of the public-coin type. Note that constant-round zero-knowledge protocols are presented in Section 4.9, but
these are in relaxed models and are not of the public-coin type.

769

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

CORRECTIONS AND ADDITIONS TO VOLUME 1

that (P, V) is strong witness indistinguishable. Then for every two probability en-
sembles {(X

1
n , Y

1
n , Z

1
n)}n∈N and {(X

2
n , Y

2
n , Z

2
n)}n∈N such that X

j
n = (X j

n,1, ..., X j
n, Q(n)),

Y
j
n = (Y j

n,1, ..., Y j
n, Q(n)), and Z

j
n = (Z j

n,1, ..., Z j
n, Q(n)), where (X j

n,i , Y j
n,i , Z j

n,i) is inde-
pendent of (X �

n,k , Y �
n,k , Z �

n,k)k 	=i,�∈{1,2}, the following holds:

If {(X
1
n , Z

1
n)}n∈N and {(X

2
n , Z

2
n)}n∈N are computationally indistinguishable,

then so are {〈PQ(Y
1
n), V ∗

Q(Z
1
n)〉(X

1
n)}n∈N and {〈PQ(Y

2
n), V ∗

Q(Z
2
n)〉(X

2
n)}n∈N,

for every probabilistic polynomial-time machine V ∗
Q.

We stress that the components of Y
j
n (resp., Z

j
n) may depend on the corresponding

components of X
j
n , but they are independent of the other components of Y

j
n (resp.,

Z
j
n), as well as of the other components of X

j
n . Note that statistical independence of

this form holds vacuously in Lemma 4.6.6, which refers to fixed sequences of strings.
Lemma C.3.1 is proved by extending the proof of Lemma 4.6.6. Specifically, we consider
hybrids as in the original proof, and construct a verifier V ∗ that interacts with P on the
i-th session (or copy), while emulating all the other sessions (resp., copies). Toward this

emulation, we provide V ∗ with the corresponding Q(n) − 1 components of both Y
j
n’s

(as well as of both X
j
n’s and Z

j
n’s). Fixing the best possible choice for these Q(n) − 1

components, we derive a verifier that interacts with P and contradicts the hypothesis
that (P, V) is strong witness indistinguishable. The key point is that revealing (or fixing)

the other Q(n) − 1 components of both Y
j
n’s does not allow for distinguishing the i-th

component of X
1
n and Z

1
n from the i-th component of X

2
n and Z

2
n .

C.3.2. On Theorem 4.6.8 and an Afterthought

Unfortunately, Theorem 4.6.8 is proved by a parallel composition that refers to the same
common input (and the same NP-witness). Thus, Lemma C.3.1 is not applicable, and
consequently we do not know whether the part of Theorem 4.6.8 that refers to strong
witness indistinguishable proofs is valid (when referring to public-coin proofs). This is
indeed an interesting open problem.

We comment that one can reduce the construction of constant-round (public-coin)
strong witness indistinguishable proofs with negligible error forNP to the construction
of such proofs for the special case in which the two X j

n ’s (and Y j
n ’s) are identically

distributed (and the Z j
n ’s are only computationally indistinguishable). Consider, for

example, the following protocol:

1. The prover sends a commitment to the value 0.

2. Using a (regular) witness indistinguishable proof (as provided by Theorem 4.6.8),
the prover proves that either the common input is in the language or the string sent
at Step 1 is a commitment to 1.
Let us denote by T j

n the transcript of the execution of this step, when the common
input is X j

n (and the parties use auxiliary inputs Y j
n and Z j

n , respectively). It can

770

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

C.3 ON STRONG WITNESS INDISTINGUISHABILITY

be proven that the T j
n ’s are computationally indistinguishable (by considering what

happens if at Step 1 the prover sends a commitment to 1).

3. Using a strong witness indistinguishable proof (which is indeed the missing compo-
nent or the sub-protocol to which the current protocol is reduced), the prover proves
that the string sent at Step 1 is a commitment to 0.
Note that it suffices to show that the verifier cannot distinguish the two possible
transcript distributions of the current step, where both possible distributions refer
to executions with the same common input (i.e., the commitment) and the same
prover’s auxiliary input (i.e., the decommitment information). In contrast, these
two distributions (of executions) refer to two different distributions of the verifier’s
auxiliary input (i.e., either T 1

n or T 2
n), which are indistinguishable.

The foregoing reduction demonstrates that the notion of strong witness indistinguisha-
bility actually refers to issues that are fundamentally different from witness indistin-
guishability. Specifically, the issue is whether or not the interaction with the prover helps
to distinguish between two possible distributions of some auxiliary information (which
are indistinguishable without such an interaction). Furthermore, this issue arises also
in case the prover’s auxiliary inputs (i.e., the “witnesses”) are identically distributed.

C.3.3. Consequences

In view of the fact that we do not have constant-round public-coin strong witness
indistinguishable proofs with negligible error for NP , we suggest replacing the use of
such proofs with some cumbersome patches. A typical example is the construction of
non-oblivious commitment schemes (i.e., Theorem 4.9.4).

Non-Oblivious Commitment Schemes. We begin the discussion by noting that the
specific formulation appearing in Definition 4.9.3 is wrong. One should partition the
commit phase into two sub-phases, such that the second sub-phase is a proof-of-
knowledge of the input and coins used by the sender at the first sub-phase, which
in turn should constitute (by itself) a commitment scheme. That is, the view in the rela-
tion displayed in Definition 4.9.3 should be the view of the first sub-phase (rather than
the view of the entire commit phase). In fact, for the current implementation, we need a
relaxed definition in which one only proves knowledge of the input (but not of the coins)
used by the sender at the first sub-phase. We stress that the input value proved to be
known must be such that it is impossible for the sender to later decommit to a different
value. Indeed, in the relaxed form, we do not require a later decommitment to be at all
possible; we only require that if decommitment takes place, then the outcome should
match the said input value. Note that this relaxed form suffices for the proof presented in
Section 4.9.2.2.

Next, we modify the construction used in the proof of Theorem 4.9.4 as follows.
First, rather than sending one ordinary commitment to the input, we send many such
(independent) commitments. Secondly, rather than using a (constant-round) proof-of-
knowledge with negligible error, we use one that has constant error. The point is that

771

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

CORRECTIONS AND ADDITIONS TO VOLUME 1

such a (constant-round) proof-of-knowledge that is zero-knowledge (and, hence, strong
witness indistinguishable) is known. We invoke this proof system many times, in par-
allel, where each invocation is applied to a different commitment. Thus, we can apply
Lemma C.3.1 and conclude that these executions are strong witness indistinguishable
(where the witnesses are the coins used in the ordinary commitments), and therefore,
the entire protocol constitutes a (complicated) commitment scheme. Finally, one can
establish the non-oblivious property by using the knowledge-extractor associated with
the proof system. Note that we can only extract the committed input and part of the
coins used at the first stage (i.e., the coins used in some of the ordinary commitments
but not necessarily the coins used in all of them). Furthermore, it may be that we also
accept in case the sequence of strings sent at the first stage does not correspond to any
legitimate sequence (i.e., of commitments to the same value). However, if we extract
one value, then it is impossible for the sender to later decommit to a different value,
because the extracted value always fits at least one of the individual commitments.

Other Applications. Fortunately, Theorem 4.9.4 is the only place where strong witness
indistinguishable proofs are used in this work. We believe that in many other applications
of strong witness indistinguishable proofs, an analogous modification can be carried
out (in order to salvage the application). A typical example appears in [7]. Indeed, the
current situation is very unfortunate, and we hope that it will be redeemed in the future.
Specifically, we propose the following open problem:

Open Problem. Construct constant-round public-coin strong witness indistinguish-
able proofs (and proofs-of-knowledge) with negligible error for NP , or prove that this
cannot be done. Recall that zero-knowledge arguments of this nature are known [5].
The challenge is in providing such proofs.

C.4. On Non-Interactive Zero-Knowledge

In retrospect, it appears that Section 4.10 is too laconic. As is usually the case, laconic
style gives rise to inaccuracies and gaps, which we wish to address here. (See also
Section C.6.)

C.4.1. On NIZKs with Efficient Prover Strategies

In continuation of Remark 4.10.6 and following [32], we briefly discuss the issues that
arise when we wish to implement Construction 4.10.4 by an efficient prover. Recall that
Remark 4.10.6 outlines such an implementation, while using a family of trapdoor per-
mutations of the form { fα : {0, 1}|α| → {0, 1}|α|}α∈I , where the index-set I is efficiently
recognizable. Unfortunately, no family of trapdoor permutations of this particular form
(and, in particular, with an efficiently recognizable I) is known. Thus, we first extend
the treatment to the case in which I is not necessarily efficiently recognizable. The
problem we encounter is that the prover may select (and send) a function that is not in

772

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

C.4 ON NON-INTERACTIVE ZERO-KNOWLEDGE

the family (i.e., an α not in I). In such a case, the function is not necessarily 1-1, and,
consequently, the soundness property may be violated. This concern can be addressed
by using a (simple) non-interactive (zero-knowledge) proof for establishing that the
function is “typically 1-1” (or, equivalently, is “almost onto the designated range”).
The proof proceeds by presenting pre-images (under the function) of random elements
specified in the reference string. Note that for any fixed polynomial p, we can only
prove that the function is 1-1 on at least a 1 − (1/p(n)) fraction of the designated range
(i.e., {0, 1}n), yet this suffices for moderate soundness of the entire proof system (which
in turn can be amplified by repetitions). For further details, consult [32].

Although the known candidate trapdoor permutations can be modified to fit this form,
we wish to further generalize the result such that any enhanced trapdoor permutation
(as in Definition C.1.1) can be used. This can be done by letting the reference string
consist of the coin sequences used by the domain-sampling algorithm (rather than of
elements of the function’s domain). By virtue of the enhanced hardness condition (i.e.,
Eq. (C.3)), the security of the hard-core is preserved, and so is the zero-knowledge
property.

As stated at the end of Section C.1, in contrast to what was claimed in Remark 4.10.6,
we do not known how to extend the construction to arbitrary (rather than enhanced)
trapdoor permutations. This leads to the following open problem.

Open Problem. Under what intractability assumptions is it possible to construct non-
interactive zero-knowledge proofs with efficient prover strategies for any set in NP? In
particular, does the existence of arbitrary collections of trapdoor permutations suffice?
We comment that the assumption used here affects the assumption used in (general)
constructions of public-key encryption schemes that are secure under chosen ciphertext
attacks (see, e.g., Theorem 5.4.31).

C.4.2. On Unbounded NIZKs

The preliminary discussion is Section 4.10.3.1 reduces the general treatment to a treat-
ment of assertions of a priori bounded length, but the former is not defined formally.
To close this gap, we note that a definition that covers assertions of a priori unbounded
length can be derived from Definition 4.10.11 by considering inputs in ∪poly(n)

i=1 Li , rather
than in Lnε . In view of the key role of efficient provers in this setting, it is also ade-
quate to present a definition that covers this aspect. This can be done analogously to
the formulations used in the following Proposition C.4.1.

The proof of Proposition 4.10.13 relies on the fact that witness indistinguishability
of non-interactive protocols is preserved under parallel composition even if the same
reference string is used in all copies. That is, we claim and use the following result
(where R is typically an NP-relation):

Proposition C.4.1: Let P be a probabilistic polynomial-time algorithm such that
for every infinite sequence of triples of the form t

def= (x , u, v), where (x , u), (x , v)∈
R, it holds that {(Upoly(|x |), P(x , u, Upoly(|x |)))}t and {(Upoly(|x |), P(x , v, Upoly(|x |)))}t

773

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

CORRECTIONS AND ADDITIONS TO VOLUME 1

are computationally indistinguishable.7 Then for every polynomial p and ev-
ery infinite sequence of sequences of the form s

def= (x1, ..., xt , u1, ..., ut , v1, ..., vt),
where n

def= |x1| = · · · = |xt |, t
def= p(n) and (x j , u j), (x j , v j)∈ R for j = 1, . . , t ,

it holds that the ensembles {(Upoly(n), P(x1, u1, Upoly(n)), ..., P(xt , ut , Upoly(n)))}s

and {(Upoly(n), P(x1, v1, Upoly(n)), ..., P(xt , vt , Upoly(n)))}s are computationally indistin-
guishable.

We stress that the same reference string (i.e., Upoly(n)) is used in all invocations of the
prover P . Thus, Proposition C.4.1 does not refer to multiple samples of computationally
indistinguishable ensembles (nor even to independent samples from a sequence of
computationally indistinguishable pairs of ensembles, as would have been the case if
the various invocations were to use independently distributed reference strings). Still,
Proposition C.4.1 can be established by using the hybrid technique. The key observation
is that, given a single proof with respect to some reference string along with the reference
string (as well as the relevant sequence s), one can efficiently generate all the other proofs
(with respect to the same reference string). Indeed, the internal coins used by P in each
of these proofs are independent.

C.4.3. On Adaptive NIZKs

In Definition 4.10.15, the adaptive zero-knowledge condition should be quantified only
over efficiently computable input-selection strategies. Furthermore, it seems that also
the witness-selection strategies should be restricted to ones implemented by polynomial-
size circuits. The revised form is presented in Definition 5.4.22.

A few words regarding the proof of Theorem 4.10.16 seem appropriate. The (two-
stage) simulation procedure itself is sketched in footnote 29 (of Chapter 4). Recall that
at the first stage, we generate matrices at random, and replace the useful matrices with
all-zero matrices (i.e., matrices of f -images that have pre-images with hard-core value
equal to zero). In the second stage, when given an adaptively chosen graph, we reveal
all elements of all non-useful matrices and the required elements of the useful matrices
(i.e., the non-edges), where revealing an element means revealing the corresponding
f -pre-image. In establishing the quality of this simulation procedure, we rely on the
hypothesis that the input graph, as well as a Hamiltonian cycle in it, are determined
by a polynomial-size circuit.8 Loosely speaking, assuming toward the contradiction
that the simulation can be distinguished from the real proof, we construct a circuit that
distinguishes a sequence of random f (x)’s with b(x) = 0 from a sequence of random
f (x)’s with b(x) = 1. This “b-value distinguisher” places the tested f -images in the
suitable entries (i.e., those corresponding to the predetermined Hamiltonian cycles) of
useful matrices, fills up the rest of the entries of the useful matrices with elements it
generates in { f (x) : b(x) = 0}, and fills the entries of non-useful matrices with random
f -images that it generates (conditioned on their yielding non-useful matrices). We stress

7 Recall that the distinguisher is also given the index of the distribution, which in this case is the triple t .
8 Indeed, here is where we use the fact that the corrected definition (see Definition 5.4.22) refers only to input-

selection and witness-selection strategies that can be implemented by polynomial-size circuits.

774

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

C.5 SOME DEVELOPMENTS REGARDING ZERO-KNOWLEDGE

that the simulator generates f -images by selecting random pre-images and applying
f to each of them, and so it knows the pre-images and can reveal them later. Next,
the simulator determines the input graph and the corresponding Hamiltonian cycle (by
using the abovementioned polynomial-size circuit) and acts as the real prover. Finally,
it feeds the original distinguisher with the corresponding output. Observe that in case
the given sequence of f (x)’s satisfies b(x) = 0 (resp., b(x) = 1) for each f (x), the
“b-value distinguisher” produces outputs distributed exactly as in the simulation (resp.,
the real proof).

C.5. Some Developments Regarding Zero-Knowledge

A recent result by Barak [5] calls for reevaluation of the significance of all nega-
tive results regarding black-box zero-knowledge9 (as defined in Definition 4.5.10).
In particular, relying on standard intractability assumptions, Barak presents round-
efficient public-coin zero-knowledge arguments for NP (using non-black-box simu-
lators), whereas only BPP can have such black-box zero-knowledge arguments (see
comment following Theorem 4.5.11). It is interesting to note that Barak’s simulator
works in strict (rather than expected) probabilistic polynomial-time, addressing an open
problem mentioned in Section 4.12.3. Barak’s result is further described in Section C.5.2

In Section C.5.1, we review some recent progress in the study of the preservation of
zero-knowledge under concurrent composition. We seize the opportunity to provide a
wider perspective on the question of the preservation of zero-knowledge under various
forms of protocol composition operations.

We mention that the two problems discussed in this section (i.e., the “preservation of
security under various forms of protocol composition” and the “use of the adversary’s
program within the proof of security”) arise also with respect to the security of other
cryptographic primitives. Thus, the study of zero-knowledge protocols serves as a good
benchmark for the study of various problems regarding cryptographic protocols.

C.5.1. Composing Zero-Knowledge Protocols

A natural question regarding zero-knowledge proofs (and arguments) is whether or not
the zero-knowledge condition is preserved under a variety of composition operations.
Three types of composition operation were considered in the literature: sequential com-
position, parallel composition, and concurrent composition. We note that the preserva-
tion of zero-knowledge under these forms of composition not only is interesting for its
own sake but also sheds light on the preservation of the security of general protocols
under these forms of composition.

We stress that when we talk of the composition of protocols (or proof systems), we
mean that the honest users are supposed to follow the prescribed program (specified
in the protocol description) that refers to a single execution. That is, the actions of

9 Specifically, one should reject the interpretation, offered in Section 4.5 (see Sections 4.5.0, 4.5.4.0, and 4.5.4.2),
by which negative results regarding black-box zero-knowledge indicate the inherent limitations of zero-
knowledge.

775

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

CORRECTIONS AND ADDITIONS TO VOLUME 1

honest parties in each execution are independent of the messages they received in other
executions. The adversary, however, may coordinate the actions it takes in the various
executions, and in particular, its actions in one execution may also depend on messages
it received in other executions.

Let us motivate the asymmetry between the postulate that honest parties act inde-
pendently in different executions and the absence of such an assumption with respect
to the adversary’s actions. Typically, coordinating actions in different executions is dif-
ficult but not impossible. Thus, it is desirable to use stand-alone protocols that preserve
security under “composition” (as defined earlier), rather than to use protocols that in-
clude inter-execution coordination actions. Note that at the very least, inter-execution
coordination requires users to keep track of all executions that they perform. Actually,
trying to coordinate honest executions is even more problematic than it seems, because
one may need to coordinate executions of different honest parties (e.g., all employees of
a big corporation or an agency under attack), which in many cases is highly unrealistic.
On the other hand, the adversary attacking the system may be willing to go to the extra
trouble of coordinating its attack in the various executions of the protocol.

For T ∈ {sequential, parallel, concurrent}, we say that a protocol is T -zero-
knowledge if it is zero-knowledge under a composition of type T . The definitions of
T -zero-knowledge are derived from the standard definition by considering appropriate
adversaries (i.e., adversarial verifiers), that is, adversaries that can initiate a polynomial
number of interactions with the prover, where these interactions are scheduled according
to the type T .10 The corresponding simulator (which, as usual, interacts with nobody) is
required to produce an output that is computationally indistinguishable from the output
of such a type T adversary.

C.5.1.1. Sequential Composition

Sequential composition refers to a situation in which the protocol is invoked (polyno-
mially) many times, where each invocation follows the termination of the previous one.
At the very least, security (e.g., zero-knowledge) should be preserved under sequential
composition, or else the applicability of the protocol is highly limited (because one
cannot safely use it more than once).

We mention that whereas the “simplified” version of zero-knowledge (i.e., without
auxiliary inputs, as in Definition 4.3.2) is not closed under sequential composition
(see [113]), the actual version (i.e., with auxiliary inputs, as in Definition 4.3.10) is
closed under sequential composition (see Section 4.3.4). We comment that the same
phenomenon arises when trying to use a zero-knowledge proof as a sub-protocol inside
larger protocols. Indeed, it is for these reasons that the augmentation of the “basic”
definition by auxiliary inputs was adopted in all subsequent works.11

10 Without loss of generality, we may assume that the adversary never violates the scheduling condition; it may
instead send an illegal message at the latest possible adequate time. Furthermore, without loss of generality, we
may assume that all the adversary’s messages are delivered at the latest possible adequate time.

11 The preliminary version of Goldwasser, Micali, and Rackoff’s work [124] uses the “basic” definition (i.e.,
Definition 4.3.2), whereas the final version of that work as well as most subsequent works use the augmented

776

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

C.5 SOME DEVELOPMENTS REGARDING ZERO-KNOWLEDGE

C.5.1.2. Parallel Composition

Parallel composition refers to a situation in which (polynomially) many instances of
the protocol are invoked at the same time and proceed at the same pace. That is, we
assume a synchronous model of communication, and consider (polynomially) many
executions that are totally synchronized, such that the i-th message in all instances is
sent exactly (or approximately) at the same time. (Natural extensions of this model are
discussed here as well as at the end of Section C.5.1.3.)

It turns out that, in general, zero-knowledge is not closed under parallel composition.
A simple counter-example (to the “parallel composition conjecture”) is outlined in
Section 4.5.4.1 (following [113]). This counter-example consists of a simple protocol
that is zero-knowledge (in a strong sense) but is not closed under parallel composition
(not even in a very weak sense).12

We comment that in the 1980s, parallel composition was studied mainly in the
context of round-efficient error reduction (cf. [91, 113]); that is, the aim was to construct
full-fledged zero-knowledge proofs (with negligible soundness error) by composing (in
parallel) a basic zero-knowledge protocol of high (but bounded away from 1) soundness
error. Since alternative ways of constructing constant-round zero-knowledge proofs
(and arguments) were found (cf. [112, 90, 47]), interest in parallel composition (of zero-
knowledge protocols) has died. In retrospect, this was a conceptual mistake, because
parallel composition (and mild extensions of this notion) capture the preservation of
security in a fully synchronous (or almost fully synchronous) communication network.
We note that the almost fully synchronous communication model is quite realistic in
many settings, although it is certainly preferable not to assume even weak synchronism.

Although, in general, zero-knowledge is not closed under parallel composition, under
standard intractability assumptions (e.g., the intractability of factoring), there exist zero-
knowledge protocols for NP that are closed under parallel composition. Furthermore,
these protocols have a constant number of rounds (cf. [109] for proofs and [82] for
arguments).13 Both results also extend to concurrent composition in a synchronous
communication model, where the extension is in allowing protocol invocations to start at
different times (and, in particular, executions may overlap but not run simultaneously).

We comment that parallel composition is also problematic in the context of reducing
the soundness error of arguments (cf. [24]), but our focus here is on the zero-knowledge
aspect of protocols, regardless of whether they are proofs, arguments, or neither.

C.5.1.3. Concurrent Composition (with and without Timing)

Concurrent composition generalizes both sequential and parallel composition. Here
(polynomially) many instances of the protocol are invoked at arbitrary times and proceed

definition (i.e., Definition 4.3.10). In some works, the “basic” definition is used for simplicity, but typically one
actually needs and means the augmented definition.

12 The presentation in Section 4.5.4.1 is in terms of two protocols, each being zero-knowledge, such that executing
them in parallel is not zero-knowledge. These two protocols can be easily combined into one protocol (e.g., by
letting the second party determine, in its first message, which of the two protocols to execute).

13 In the case of parallel zero-knowledge proofs, there is no need to specify the soundness error because it can
always be reduced via parallel composition. As mentioned later, this is not the case with respect to arguments.

777

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

CORRECTIONS AND ADDITIONS TO VOLUME 1

at an arbitrary pace. That is, we assume an asynchronous (rather than synchronous)
model of communication.

In the 1990s, when extensive two-party (and multi-party) computations became a
reality (rather than a vision), it became clear that it is (at least) desirable that crypto-
graphic protocols maintain their security under concurrent composition (cf. [77]). In
the context of zero-knowledge, concurrent composition was first considered by Dwork,
Naor, and Sahai [82]. Actually, two models of concurrent composition were considered
in the literature, depending on the underlying model of communication (i.e., a purely
asynchronous model and an asynchronous model with timing).

Concurrent Composition in the Pure Asynchronous Model. Here we refer to the
standard model of asynchronous communication. In comparison to the timing model,
the pure asynchronous model is a simpler model, and using it requires no assumptions
about the underlying communication channels. However, it seems harder to construct
concurrent zero-knowledge protocols for this model. In particular, for a while it was not
known whether concurrent zero-knowledge proofs for NP exist at all (in this model).
Under standard intractability assumptions (e.g., the intractability of factoring), this
question was affirmatively resolved by Richardson and Kilian [175]. Following their
work, research has focused on determining the round-complexity of concurrent zero-
knowledge proofs for NP . Currently, this question is still open, and the state of the art
regarding it is as follows:

� Under standard intractability assumptions, every language in NP has a concurrent
zero-knowledge proof with almost logarithmically many rounds (cf. [169], building
upon [138], which in turn builds over [175]). Furthermore, the zero-knowledge
property can be demonstrated by using a black-box simulator (see the definition in
Section 4.5.4.2 and the discussion in Section C.5.2).

� Black-box simulators cannot demonstrate the concurrent zero-knowledge property
of non-trivial proofs (or arguments) having significantly less than logarithmically
many rounds (cf. Canetti et al. [58]).14

� Recently, Barak [5] demonstrated that the “black-box simulation barrier” can be
bypassed. With respect to concurrent zero-knowledge, he obtained only the following
partial result: Under standard intractability assumptions, every language in NP
has a constant-round zero-knowledge argument (rather than proof) that maintains
security as long as an a priori bounded (polynomial) number of executions take place
concurrently. (The length of the messages in his protocol grows linearly with this a
priori bound.)

Thus, it is currently unknown whether or not constant-round arguments for NP may
be concurrent zero-knowledge (in the pure asynchronous model).

14 By non-trivial proof systems we mean ones for languages outside BPP , whereas by significantly less than loga-
rithmic we mean any function f :N→N satisfying f (n) = o(log n/ log log n). In contrast, by almost logarithmic
we mean any function f satisfying f (n) = ω(log n).

778

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

C.5 SOME DEVELOPMENTS REGARDING ZERO-KNOWLEDGE

Concurrent Composition under the Timing Model. A model of naturally limited
asynchronousness (which certainly covers the case of parallel composition) was intro-
duced by Dwork, Naor, and Sahai [82]. Essentially, they assume that each party holds a
local clock such that the relative clock rates are bounded by an a priori known constant,
and they consider protocols that employ time-driven operations (i.e., time-out incom-
ing messages and delay outgoing messages). The benefit of the timing model is that
it seems easier to construct concurrent zero-knowledge protocols for it. Specifically,
using standard intractability assumptions, constant-round arguments and proofs that
are concurrent zero-knowledge under the timing model do exist (cf. [82] and [109],
respectively). The disadvantages of the timing model are discussed next.

The timing model consists of the assumption that talking about the actual timing of
events is meaningful (at least in a weak sense) and of the introduction of time-driven
operations. The timing assumption amounts to postulating that each party holds a local
clock and knows a global bound, denoted ρ ≥ 1, on the relative rates of the local
clocks.15 Furthermore, it is postulated that the parties know a (pessimistic) bound,
denoted �, on the message-delivery time (which also includes the local computation
and handling times). In our opinion, these timing assumptions are most reasonable, and
are unlikely to restrict the scope of applications for which concurrent zero-knowledge
is relevant. We are more concerned about the effect of the time-driven operations
introduced in the timing model. Recall that these operations are the time-out of
incoming messages and the delay of outgoing messages. Furthermore, typically the
delay period is at least as long as the time-out period, which in turn is at least � (i.e.,
the time-out period must be at least as long as the pessimistic bound on message-
delivery time so as not to disrupt the proper operation of the protocol). This means
that the use of these time-driven operations yields a slowing down of the execution of
the protocol (i.e., running it at the rate of the pessimistic message-delivery time, rather
than at the rate of the actual message-delivery time, which is typically much faster).
Still, in the absence of more appealing alternatives (i.e., a constant-round concurrent
zero-knowledge protocol for the pure asynchronous model), the use of the timing model
may be considered reasonable. (We comment than other alternatives to the timing model
include various set-up assumptions; cf. [55, 72].)

Back to Parallel Composition. Given our opinion about the timing model, it is not
surprising that we consider the problem of parallel composition almost as important as
the problem of concurrent composition in the timing model. Firstly, it is quite reasonable
to assume that the parties’ local clocks have approximately the same rate, and that
drifting is corrected by occasional clock synchronization. Thus, it is reasonable to
assume that the parties have an approximately good estimate of some global time.
Furthermore, the global time may be partitioned into phases, each consisting of a
constant number of rounds, so that each party wishing to execute the protocol just
delays its invocation to the beginning of the next phase. Thus, concurrent execution

15 The rate should be computed with respect to reasonable intervals of time; for example, for � as defined next,
one may assume that a time period of � units is measured as �′ units of time on the local clock, where
�/ρ ≤ �′ ≤ ρ�.

779

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

CORRECTIONS AND ADDITIONS TO VOLUME 1

of (constant-round) protocols in this setting amounts to a sequence of (time-disjoint)
almost parallel executions of the protocol. Consequently, proving that the protocol is
parallel zero-knowledge suffices for concurrent composition in this setting.

Relation to Resettable Zero-Knowledge. Going to the other extreme, we mention that
there exists a natural model of zero-knowledge that is even stronger than concurrent
zero-knowledge (even in the pure asynchronous model). Specifically, “resettable zero-
knowledge” as defined in [55] implies concurrent zero-knowledge.

C.5.2. Using the Adversary’s Program in the Proof of Security

Recall that the definition of zero-knowledge proofs states that whatever an efficient
adversary can compute after interacting with the prover can be efficiently computed
from scratch by a so-called simulator (which works without interacting with the prover).
Although the simulator may depend arbitrarily on the adversary, the need to present a
simulator for each feasible adversary seems to require the presentation of a universal
simulator that is given the adversary’s strategy (or program) as another auxiliary in-
put. The question addressed in this section is how the universal simulator can use the
adversary’s program.

The adversary’s program (or strategy) is actually a function that determines for each
possible view of the adversary (i.e., its input, random choices, and the message it has
received so far) which message will be sent next. Thus, we identify the adversary’s
program with this next-message function. As stated previously, until very recently,
all universal simulators (constructed toward demonstrating zero-knowledge properties)
have used the adversary’s program (or rather its next-message function) as a black-box
(i.e., the simulator invoked the next-message function on a sequence of arguments of
its choice). Furthermore, in view of the presumed difficulty of “reverse-engineering”
programs, it was commonly believed that nothing is lost by restricting attention to simu-
lators, called black-box simulators, that only make black-box usage of the adversary’s
program. Consequently, Goldreich and Krawczyk conjectured that impossibility results
regarding black-box simulation represent inherent limitations of zero-knowledge itself,
and studied the limitations of the former [113].

In particular, they showed that parallel composition of the protocol of
Construction 4.4.7 (as well as of any constant-round public-coin protocol) cannot
be proven to be zero-knowledge using a black-box simulator, unless the language
(i.e., 3-Colorability) is in BPP . In fact, their result refers to any constant-round
public-coin protocol with negligible soundness error, regardless of how such a pro-
tocol is obtained. This result was taken as strong evidence toward the conjecture
that a constant-round public-coin protocol with negligible soundness error cannot
be zero-knowledge (unless the language is in BPP).

Similarly, as mentioned in Section C.5.1.3, it was shown that protocols of a sub-
logarithmic number of rounds cannot be proven to be concurrent zero-knowledge via
a black-box simulator [58]. Again, this was taken as evidence toward the conjecture
that such protocols cannot be concurrent zero-knowledge.

780

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

C.5 SOME DEVELOPMENTS REGARDING ZERO-KNOWLEDGE

In contrast to these conjectures (and to the reasoning underlying them), Barak showed
how to construct non-black-box simulators and obtained several results that were known
to be unachievable via black-box simulators [5]. In particular, under standard intractabil-
ity assumptions (see also [7]), he presented constant-round public-coin zero-knowledge
arguments with negligible soundness error for any language in NP . (Moreover, the
simulator runs in strict polynomial-time, which is impossible for black-box simula-
tors of non-trivial constant-round protocols [9].) Furthermore, these protocols pre-
serve zero-knowledge under a fixed16 polynomial number of concurrent executions,
in contrast to the result of [58] (regarding black-box simulators) that also holds in
that restricted case. Thus, Barak’s result calls for the reevaluation of many common
beliefs. Most concretely, it says that results regarding black-box simulators do not
reflect inherent limitations of zero-knowledge (but rather an inherent limitation of a
natural way of demonstrating the zero-knowledge property). Most abstractly, it says
that there are meaningful ways of using a program other than merely invoking it as a
black-box.

Does this means that a method was found to “reverse-engineer” programs or to
“understand” them? We believe that the answer is negative. Barak [5] is using the
adversary’s program in a significant way (i.e., more significant than just invoking it),
without “understanding” it. So, how does he use the program?

The key idea underlying Barak’s protocol [5] is to have the prover prove that either the
original NP-assertion is valid or that he (i.e., the prover) “knows the verifier’s residual
strategy” (in the sense that it can predict the next verifier message). Indeed, in a real
interaction (with the honest verifier), it is infeasible for the prover to predict the next
verifier message, and so computational soundness of the protocol follows. However,
a simulator that is given the code of the verifier’s strategy (and not merely oracle
access to that code) can produce a valid proof of the disjunction by properly executing
the sub-protocol using its knowledge of an NP-witness for the second disjunctive. The
simulation is computational indistinguishable from the real execution, provided that one
cannot distinguish an execution of the sub-protocol in which one NP-witness (i.e., an
NP-witness for the original assertion) is used from an execution in which the second NP-
witness (i.e., an NP-witness for the auxiliary assertion) is used. That is, the sub-protocol
should be a witness indistinguishable argument system (see Sections 4.6 and 4.8). We
warn the reader that the actual implementation of this idea requires overcoming several
technical difficulties (cf. [5, 7]).

Perspective. In retrospect, taking a wide perspective, it should not come as a surprise
that the program’s code yields extra power beyond black-box access to it. Feeding a
program with its own code (or part of it) is the essence of the diagonalization technique,
and this, too, is done without reverse engineering. Furthermore, various non-black-box
techniques have appeared before in the cryptographic setting, but they were used in the
more natural context of devising an attack on an (artificial) insecure scheme (e.g., toward

16 The protocol depends on the polynomial that bounds the number of executions, and thus is not known to be
concurrent zero-knowledge (because the latter requires fixing the protocol and then considering any polynomial
number of concurrent executions).

781

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

CORRECTIONS AND ADDITIONS TO VOLUME 1

proving the failure of the “Random Oracle Methodology” [54] and the impossibility of
software obfuscation [8]). In contrast, in [5] (and [6]), the code of the adversary is being
used within a sophisticated proof of security. What we wish to highlight here is that
non-black-box usage of programs is also relevant to proving (rather than to disproving)
the security of systems.

Digest: Witness Indistinguishability and the FLS-Technique

The foregoing description (of [5]), as well as several other sophisticated constructions of
zero-knowledge protocols (e.g., [89, 175]), make crucial use of a technique introduced
by Feige, Lapidot, and Shamir [89], which in turn is based on the notion of witness
indistinguishability (introduced by Feige and Shamir [91]). This technique, hereafter
referred to as the FLS-technique, was used in Construction 4.10.12, but we wish to
further discuss it next.

Following is a sketchy description of a special case of the FLS-technique, whereas
the abovementioned application uses a more general version (which refers to proofs-of-
knowledge, as defined in Section 4.7).17 In this special case, the technique consists of
the following construction schema, which uses witness indistinguishable protocols for
NP in order to obtain zero-knowledge protocols for NP . On common input x ∈ L ,
where L is the NP-set defined by the witness relation R, the following two steps are
performed:

1. The parties generate an instance x ′ for an auxiliary NP-set L ′, where L ′ is defined
by a witness relation R′. The generation protocol in use must satisfy the following
two conditions:

(a) If the verifier follows its prescribed strategy, then no matter which feasible
strategy is used by the prover, with high probability, the protocol’s outcome is a
no-instance of L ′.

(b) There exists an efficient (non-interactive) procedure for producing a (random)
transcript of the generation protocol along with an NP-witness for the corre-
sponding outcome (which is a yes-instance of L ′), such that the produced tran-
script is computationally indistinguishable from the transcript of a real execution
of the protocol.

2. The parties execute a witness indistinguishable protocol for the set L ′′ defined
by the witness relation R′′ = {((u, u′), (v, v′)) : (u, v)∈ R ∨ (u′, v′)∈ R′}. The sub-
protocol is such that the corresponding prover can be implemented in probabilistic
polynomial-time, given an NP-witness for (u, u′) ∈ L ′′. The sub-protocol is invoked
on common input (x , x ′), where x ′ is the outcome of Step 1, and the sub-prover

17 In the general case, the generation protocol may generate an instance x ′ in L ′, but it is infeasible for
the prover to obtain a corresponding witness (i.e., a w ′ such that (x ′, w ′) ∈ R′). In the second step,
the sub-protocol in use ought to be a proof-of-knowledge, and computational soundness of the main
protocol will follow (because otherwise, the prover, using a knowledge-extractor, can obtain a witness
for x ′ ∈ L ′).

782

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

C.6 ADDITIONAL CORRECTIONS AND COMMENTS

is invoked with the corresponding NP-witness as auxiliary input (i.e., with (w , λ),
where w is the NP-witness for x given to the main prover).

The computational soundness of this protocol follows by Property (a) of the gen-
eration protocol (i.e., with high probability x ′ 	∈ L ′, and so x ∈ L follows by the
soundness of the protocol used in Step 2). To demonstrate the zero-knowledge prop-
erty, we first generate a simulated transcript of Step 1 (with outcome x ′ ∈ L ′), along
with an adequate NP-witness (i.e., w ′ such that (x ′, w ′) ∈ R′), and then emulate
Step 2 by feeding the sub-prover strategy with the NP-witness (λ, w ′). Combining
Property (b) of the generation protocol and the witness indistinguishability prop-
erty of the protocol used in Step 2, the simulation is indistinguishable from the real
execution.

C.6. Additional Corrections and Comments

Regarding Constriction 4.10.7 and the Proof of Proposition 4.10.9. The current
description of the setting of the mapping of the input graph G to the Hamiltonian matrix
H (via the two mappings π1 and π2) is confusing and even inaccurate. Instead, one may
identify the rows (resp., columns) of H with [n] and use a single permutation π over
[n] (which supposedly maps the vertices of G to those of H).18 Alternatively, one may
compose this permutation π with the two (1-1) mappings φi ’s (where φi : [n] → [n3]
is as in the original text), and obtain related πi ’s (i.e., πi (v) = φi (π(v))), which should
be used as in the original text. We stress that the real prover determines π to be an
isomorphism between the Hamiltonian cycle of G and the Hamiltonian cycle of H ,
whereas the simulator selects π at random.

Arguments-of-Knowledge. In continuation of Sections 4.7 and 4.9.2, we mention that
the round-efficient argument system of [90] is actually an “argument-of-knowledge”
(with negligible error). The interested reader is referred to [9] for further improvements
regarding such proof systems. Essentially, using a relaxed (yet satisfactory) definition of
an argument-of-knowledge, the latter work presents a constant-round zero-knowledge
argument-of-knowledge with strict (rather than expected) probabilistic polynomial-
time simulator and knowledge-extractor.

Some Missing Credits. The sequential composition lemma for zero-knowledge pro-
tocols (i.e., Lemma 4.3.11) is due to [119]. The notions of strong witness indistin-
guishability (Definition 4.6.2) and strong proofs-of-knowledge (Section 4.7.6), and
the Hidden Bit Model (Section 4.10.2) have first appeared in early versions of this
work.

18 The identification is via the two mappings φ1 and φ2 mentioned in the original text. We stress that these mappings
only depend on the matrix M that contains H .

783

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

CORRECTIONS AND ADDITIONS TO VOLUME 1

C.7. Additional Mottoes

Motto for Section 3.2

Indistinguishable things are identical
(or should be considered as identical).

The Principle of Identity of Indiscernibles
G. W. Leibniz (1646–1714)

(Leibniz admits that counter-examples to this principle are conceivable but will not
occur in real life because God is much too benevolent.)

Motto for Chapter 4

A: Please.
B: Please.
A: I insist.
B: So do I.
A: OK then, thank you.
B: You are most welcome.

A protocol for two Italians to pass through a door.
Source: Silvio Micali, 1985.

(The protocol is zero-knowledge because it can be simulated without knowing any of
the secrets of these Italians; in fact, the execution is independent of their secrets as well
as of anything else.)

784

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511721656.005
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:38:21, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511721656.005
https:/www.cambridge.org/core

