CHAPTER3

Pseudorandom Generators

In this chapter we discuss pseudorandom generators. Loosely speaking, these are ef-
ficient deterministic programs that expand short, randomly selected seeds into much
longer “pseudorandom” bit sequences (see illustration in Figure 3.1). Pseudorandom se-
quences are defined as computationally indistinguishable from truly random sequences
by efficient algorithms. Hence the notion of computational indistinguishability (i.e.,
indistinguishability by efficient procedures) plays a pivotal role in our discussion. Fur-
thermore, the notion of computational indistinguishability plays a key role also in sub-
sequent chapters, in particular in the discussions of secure encryption, zero-knowledge
proofs, and cryptographic protocols.

The theory of pseudorandomness is also applied to functions, resulting in the notion
of pseudorandom functions, which is a useful tool for many cryptographic applications.

In addition to definitions of pseudorandom distributions, pseudorandom generators,
and pseudorandom functions, this chapter contains constructions of pseudorandom
generators (and pseudorandom functions) based on various types of one-way functions.
In particular, very simple and efficient pseudorandom generators are constructed based
on the existence of one-way permutations. We highlight the hybrid technique, which
plays a central role in many of the proofs. (For the first use and further discussion of
this technique, see Section 3.2.3.)

Organization. Basic discussions, definitions, and constructions of pseudorandom gen-
erators appear in Sections 3.1-3.4: We start with a motivating discussion (Section 3.1),
proceed with a general definition of computational indistinguishability (Section 3.2),
next present and discuss definitions of pseudorandom generators (Section 3.3), and fi-
nally present some simple constructions (Section 3.4). More general constructions are
discussed in Section 3.5. Pseudorandom functions are defined and constructed (based
on any pseudorandom generator) in Section 3.6. Pseudorandom permutations are dis-
cussed in Section 3.7.

Teaching Tip. The hybrid technique, first used to show that computational indistin-
guishability is preserved under multiple samples (Section 3.2.3), plays an important

101

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

seed output sequence

[= Gen —

a truly random sequence .
l l’

Figure 3.1: Pseudorandom generators: an illustration.

role in many of the proofs that refer to computational indistinguishability. Thus, in
case you choose to skip this specific proof, do incorporate a discussion of the hybrid
technique in the first place you use it.

3.1. Motivating Discussion

The nature of randomness has puzzled thinkers for centuries. We believe that the notion
of computation, and in particular that of efficient computation, provides a good basis
for understanding the nature of randomness.

3.1.1. Computational Approaches to Randomness

One computational approach to randomness was initiated by Solomonov and
Kolmogorov in the early 1960s (and rediscovered by Chaitin in the early 1970s). This
approach is “ontological” in nature. Loosely speaking, a string s is considered
Kolmogorov-random if its length (i.e., |s|) equals the length of the shortest program pro-
ducing s. This shortest program can be considered the “simplest” “explanation” for the
phenomenon described by the string s. Hence the string s is considered Kolmogorov-
random if it does not possess a “simple” explanation (i.e., an explanation that is sub-
stantially shorter than |s|). We stress that one cannot determine whether or not a given
string is Kolmogorov-random (and, more generally, Kolmogorov complexity is a func-
tion that cannot be computed). Furthermore, this approach seems to have no application
to the issue of “pseudorandom generators.”

An alternative computational approach to randomness is presented in the rest of this
chapter. This approach was initiated in the early 1980s. In contrast to the approach
of Kolmogorov, this new approach is behavioristic in nature. Instead of considering
the “explanation” for a phenomenon, we consider the phenomenon’s effect on the
environment. Loosely speaking, a string is considered pseudorandom if no efficient
observer can distinguish it from a uniformly chosen string of the same length. The
underlying postulate is that objects that cannot be differentiated by efficient proce-
dures are considered equivalent, although they may be very different in nature (e.g.,
can have fundamentally different (Kolmogorov) complexities). Furthermore, the new
approach naturally leads to the concept of a pseudorandom generator, which is a

102

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.2. COMPUTATIONAL INDISTINGUISHABILITY

fundamental concept with lots of practical applications (particularly in the field of
cryptography).

3.1.2. A Rigorous Approach to Pseudorandom Generators

The approach to pseudorandom generators presented in this book stands in contrast to
the heuristic approach that is still common in discussions concerning “pseudorandom
generators” that are being used in real computers. The heuristic approach considers
“pseudorandom generators” as programs that produce bit sequences that can “pass”
some specific statistical tests. The choices of statistical tests to which these programs
are subjected are quite arbitrary and lack any systematic foundation. Furthermore, it is
possible to construct efficient statistical tests that will foil the “pseudorandom genera-
tors” commonly used in practice (and in particular will distinguish their output from a
uniformly chosen string of equal length). Consequently, before using a “pseudorandom
generator” in a new application that requires “random” sequences, extensive tests have
to be conducted in order to determine whether or not the behavior of the application
when using the “pseudorandom generator” will be the same as its behavior when using
a “true source of randomness.” Any modification of the application will require a new
comparison of the “pseudorandom generator” against the “random source,” because
the non-randomness of the “pseudorandom generator” may adversely affect the modi-
fied application (even if it did not affect the original application). Things become even
worse with respect to cryptographic applications, because in such cases an application
is fully determined only after the adversary is fixed. That is, one cannot test the effect of
the “pseudorandom generator” on the performance of a yet-unspecified adversary, and
it is unreasonable to assume that the adversary is going to employ a specific strategy
known to the designer. Thus, using such a “pseudorandom generator” for cryptographic
purposes is highly risky.

In contrast, the concept of pseudorandom generators presented herein is a robust one:
By definition, these pseudorandom generators produce sequences that look random to
any efficient observer. It follows that the output of a pseudorandom generator can
be used instead of “random sequences” in any efficient application requiring such
(i.e., “random”) sequences. In particular, no efficient adversary can capitalize on the
replacement of “truly random sequences” by pseudorandom ones.

3.2. Computational Indistinguishability

As stated earlier, the concept of computational indistinguishability is the basis for our
definition of pseudorandomness. Thus, we start with a general definition and discussion
of this fundamental concept.

The concept of efficient computation leads naturally to a new kind of equivalence be-
tween objects: Objects are considered to be computationally equivalent if they cannot
be differentiated by any efficient procedure. We note that considering indistinguish-
able objects as equivalent is one of the basic paradigms of both science and real-life

103

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

situations. Hence, we believe that the notion of computational indistinguishability is a
very natural one.

3.2.1. Definition

The notion of computational indistinguishability is formulated in a way that is standard
in the field of computational complexity: by considering objects as infinite sequences
of strings. Hence, the sequences {x,},cy and {y,},cy are said to be computationally
indistinguishable if no efficient procedure can tell them apart. In other words, no efficient
algorithm D can accept infinitely many x,,’s while rejecting their y counterparts (i.e.,
for every efficient algorithm D and all sufficiently large »’s, it holds that D accepts x,
iff D accepts y,). Objects that are computationally indistinguishable in this sense can
be considered equivalent as far as any practical purpose is concerned (because practical
purposes are captured by efficient algorithms, and they cannot distinguish these objects).

The foregoing discussion extends naturally to the probabilistic setting. Furthermore,
as we shall see, this extension yields very useful consequences. Loosely speaking, two
distributions are called computationally indistinguishable if no efficient algorithm can
tell them apart. Given an efficient algorithm D, we consider the probability that D
accepts (e.g., outputs 1 on input) a string taken from the first distribution. Likewise, we
consider the probability that D accepts a string taken from the second distribution. If
these two probabilities are close, we say that D does not distinguish the two distribu-
tions. Again, the formulation of this discussion is with respect to two infinite sequences
of distributions (rather than with respect to two fixed distributions). Such sequences are
called probability ensembles.

Definition 3.2.1 (Probability Ensemble): Let [be a countable index set. An
ensemble indexed by / is a sequence of random variables indexed by 1. Namely,
any X = {X;}ic;, where each X; is a random variable, is an ensemble indexed
by I.

We shall use either N or a subset of {0, 1}* as the index set. Typically in our applica-
tions, an ensemble of the form X = {X, },cx has each X, ranging over strings of length
poly(n), whereas an ensemble of the form X = {X,,},e(0,1}+ Will have each X, ranging
over strings of length poly(|w|). In the rest of this chapter we shall deal with ensembles
indexed by N, whereas in other chapters (e.g., in the definition of secure encryption and
zero-knowledge) we shall deal with ensembles indexed by strings. To avoid confusion,
we shall present variants of the definition of computational indistinguishability for each
of these two cases. The two formulations can be unified if one associates the natural
numbers with their unary representations (i.e., associate N and {1" :n e N}).

Definition 3.2.2 (Polynomial-Time Indistinguishability):

1. Variant for ensembles indexed by N: Two ensembles, X & {X,}hen and
y & {Y,}nen, are indistinguishable in polynomial time if for every probabi-

listic polynomial-time algorithm D, every positive polynomial p(-), and all
104

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.2. COMPUTATIONAL INDISTINGUISHABILITY

sufficiently large n’s,

IPrID(X,, 1")=1] = Pr[D(Y,, 1")=1]| < %

2. Varlant for ensembles indexed by a set of strings S: Two ensembles, X {X bwes
and Y & {Yw}we s, are indistinguishable in polynomial time if for every prob-

abilistic polynomial-time algorithm D, every positive polynomial p(-), and all
sufficiently long w € S,

r(lwl)
We often say computational indistinguishability instead of indistinguishability in
polynomial time.

The probabilities in the foregoing definition are taken over the corresponding random
variables X; (or Y;) and the internal coin tosses of algorithm D (which is allowed
to be a probabilistic algorithm). The second variant of this definition will play a key
role in subsequent chapters, and further discussion of it is postponed to those places. In
the rest of this chapter, we refer to only the first variant of the foregoing definition. The
string 1" is given as auxiliary input to algorithm D in order to make the first variant
consistent with the second one. We comment that in typical cases, the length of X,
(resp., Y,,) and n are polynomially related (i.e., | X,,| < poly(n) andn < poly(]X,|)) and
furthermore can be computed one from the other in poly(n) time. In such cases, giving
1" as auxiliary input is redundant. Indeed, throughout this chapter we typically omit
this auxiliary input and assume that n can be efficiently determined from X,,.

The following mental experiment may be instructive. For each o € {0, 1}*, consider
the probability, hereafter denoted d(«), that algorithm D outputs 1 on input . Consider
the expectation of d taken over each of the two ensembles: That is, let dx(n) = E[d(X,,)]
and dy(n) = E[d(Y,,)]. Then X and Y are said to be indistinguishable by D if the
difference (function) 6(n) = det |dx(n) — dy(n)| is negligible in n. Recall that a function
u : N — [0, 1]is called negligible if for every positive polynomial p and all sufficiently
large n’s, u(n) < 1/p(n).

A couple of examples may help to clarify the definition. Consider an algorithm D,
that, obliviously of the input, flips a (O—1-valued) coin and outputs its outcome. Clearly,
on every input, algorithm D, outputs 1 with probability exactly 5> and hence does not
distinguish any pair of ensembles. Next, consider an algorithm Dz that outputs 1 if and
only if the input string contains more zeros than ones. Because D, can be implemented
in polynomial time, it follows that if X and Y are polynomial-time-indistinguishable,
then the difference |Pr[wt(X,) < 5] — Pr{wt(Y,) < 71| is negligible (in n), where wt(r)
denotes the number of ones in the string . Similarly, polynomial-time-indistinguishable
ensembles must exhibit the same “profile” (up to negligible error) with respect to any
“string statistics” that can be computed in polynomial time. However, it is not required
that polynomial-time-indistinguishable ensembles have similar “profiles” with respect
to quantities that cannot be computed in polynomial time (e.g., Kolmogorov complexity,
or the function presented immediately after Proposition 3.2.3).

105

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

3.2.2. Relation to Statistical Closeness

Computational indistinguishability is a coarsening of a traditional notion from proba-
bility theory. We call two ensembles x o {X }neny and y {Yn}neN statistically close
if their statistical difference is negligible, where the statistical difference (also known
as variation distance) between X and Y is defined as the function

An)d_ef Y IPr[X, = o] — PrlY, =]| (3.1)

Clearly, if the ensembles X and Y are statistically close, then they are also polynomial-
time-indistinguishable (see Exercise 6). The converse, however, is not true. In particular:

Proposition 3.2.3: There exists an ensemble X {X,}ren such that X is not
statistically close to the uniform ensemble v {U tien, and yet X and U are
polynomial-time-indistinguishable. Furthermore, X, assigns all its probability
mass to at most 2" strings (of length n).

Recall that U, is uniformly distributed over strings of length n. Although X and U are
polynomial-time-indistinguishable, one can define a function f:{0, 1}* — {0, 1} such
that f has average 1 over X while having average almost 0 over U (e.g., f(x) = 1 if
and only if Pr[X =x] > 0). Hence, X and U have different “profiles” with respect to
the function f, yet it is (necessarily) impossible to compute f in polynomial time.

Proof: We claim that for all sufficiently large n, there exists a random variable
X, distributed over some set of at most 2"/? strings (each of length n), such that
for every circuit C, of size (i.e., number of gates) 2"/%, it holds that

IPr(C,(U)=1] = PriC,(X,)=1]| < 27" (3.2)

The proposition follows from this claim, because polynomial-time-distinguishers
(even probabilistic ones; see Exercise 10 (Part 1)) yield polynomial-size circuits
with at least as large a distinguishing gap.

The foregoing claim is proved using a probabilistic argument. That is, we
actually show that most distributions of a certain class can “fool” all circuits of
size 2"/8. Specifically, we show that if we select uniformly a multi-set of 2"/2
strings in {0, 1}" and let X, be uniform over this multi-set, then Eq. (3.2) holds
with overwhelmingly high probability (over the choices of the multi-set).

Let C, be some fixed circuit with n inputs, and let p, o Pr[C,(U,)=1]. We
select, independently and uniformly, 2"/? strings, denoted sy, . . . , o2, in {0, 1}".
We define random variables ¢;’s such that ¢; = C,(s;); that is, these random
variables depend on the random choices of the corresponding s;’s. Using the
Chernoff bound, we get that

|

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

2n/2
1

P g 26

> Z—n/8‘| < 28_2,211/2,(2—n/8)2 < 2_2n/4 (33)

106

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.2. COMPUTATIONAL INDISTINGUISHABILITY

Because there are at most 22" different circuits of size (number of gates) 2"/8,
it follows that there exists a sequence sy, ..., sz € {0, 1}" such that for every
circuit C, of size 2"/8 it holds that

2n/2

Zz 1 C (S, < 2—n/8

PriC,(U) =11~ ==L7

Fixing such a sequence of s;’s, and letting X, be distributed uniformly over the
elements in the sequence, the claim follows. B

High-Level Comment. Proposition 3.2.3 presents a pair of ensembles that are com-
putationally indistinguishable, although they are statistically far apart. One of the two
ensembles is not constructible in polynomial time (see Definition 3.2.5). Interestingly,
a pair of polynomial-time-constructible ensembles that are both computationally indis-
tinguishable and have a noticeable statistical difference can exist only if pseudorandom
generators exist. Jumping ahead, we note that this necessary condition is also sufficient.
(The latter observation follows from the fact that pseudorandom generators give rise
to a polynomial-time-constructible ensemble that is computationally indistinguishable
from the uniform ensemble and yet statistically far from: it.)

Low-Level Comment. A closer examination of the foregoing proof reveals that all but
a negligible fraction of the sequences of length 2"/ can be used to define the random
variable X,,. Specifically, the second inequality in Eq. (3.3) is a gross overestimate, and
an upper bound of PRCE actually holds. Observing that most sequences contain
no repetitions, we can fix such a sequence. Consequently, X,, will be uniform over the
2"/2 distinct elements of the sequence.

3.2.3. Indistinguishability by Repeated Experiments

By Definition 3.2.2, two ensembles are considered computationally indistinguishable
if no efficient procedure can tell them apart based on a single sample. We now show that
for “efficiently constructible” ensembles, computational indistinguishability (based on
a single sample) implies computational indistinguishability based on multiple samples.
We start by presenting definitions of “indistinguishability by multiple samples” and
“efficiently constructible ensembles.”

Definition 3.2.4 (Indistinguishability by Repeated Sampling): Tivo ensem-
bles, X = &ef {X,}heny and y & {Y }nen, are indistinguishable by polynomial-time
sampling if for every probabilistic polynomial-time algorithm D, every two posi-
tive polynomials m(-) and p(-), and all sufficiently large n’s,

R
p(n)

where X' through X™™ and YV through Y™™ are independent random
variables, with each ij) identical to X, and each eri) identical to Y,,.

107

|Pr[D(XP, ..., X" =1] — Pr[D(Y", ..., Y"") =1]

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

Definition 3.2.5 (Efficiently Constructible Ensembles): An ensemble X &

{X,}nen is said to be polynomial-time-constructible if there exists a proba-
bilistic polynomial-time algorithm S such that for every n, the random variables
S(1") and X, are identically distributed.

Theorem 3.2.6: Let X = {X, }hen and y & {Y bieny be two polynomial-time-
constructible ensembles, and suppose that X and Y are indistinguishable in
polynomial time (as in Definition 3.2.2). Then X and Y are indistinguishable
by polynomial-time sampling (as in Definition 3.2.4).

An alternatlve formulation of Theorem 3.2.6 proceeds as follows. For every ensemble

{Z }nen and every polynomial m(-), define the m(-)-product of Z as the ensemble
{(Zf,'), oy ZMNY , where the Z@s are independent copies of Z,,. Theorem 3.2.6
asserts that if the ensembles X and Y are polynomial-time-indistinguishable and each
is polynomial-time-constructible, then for every polynomial m(-) the m(-)-product of X
and the m(-)-product of Y are polynomial-time-indistinguishable.

The information-theoretic analogue of the foregoing theorem is quite obvious: If
two ensembles are statistically close, then their polynomial-products are statistically
close (see Exercise 7). Adapting the proof to the computational setting requires, as
usual, a reducibility argument. This argument uses, for the first time in this book,
the hybrid technique. The hybrid technique plays a central role in demonstrating the
computational indistinguishability of complex ensembles, constructed on the basis of
simpler (computationally indistinguishable) ensembles. Subsequent applications of the
hybrid technique will involve more technicalities. Hence the reader is urged not to skip
the following proof.

Proof: The proof is by a reducibility argument. We show that the existence of an
efficient algorithm that distinguishes the ensembles X and Y using several samples
implies the existence of an efficient algorithm that distinguishes the ensembles
X and Y using a single sample. The implication is proved using the following
argument, which will later be called a “hybrid argument.”

Suppose, to the contrary, that there is a probabilistic polynomial-time algorithm
D, as well as polynomials m(-) and p(-), such that for infinitely many »’s it holds
that

Am) € |Pr[D(xD, ...
1

pn)

LX) =1] =Pr[D(r") =1]| G4

where m & m(n), and the X©’s and Y’s are as in Definition 3.2.4. In the se-
quel, we shall derive a contradiction by presenting a probabilistic polynomial-
time algorithm D’ that distinguishes the ensembles X and Y (in the sense of
Definition 3.2.2).

For every k, with 0 < k < m, we define the hybrid random variable H,f as a
(m-long) sequence consisting of k independent copies of X, followed by m — k

108

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.2. COMPUTATIONAL INDISTINGUISHABILITY

independent copies of Y,,. Namely,
H= &f (X“) oL X0y Y(m))

where XD through X% and Y**1 through Y™ are independent random vari-
ables, with each X identical to X, and each Y identical to Y,. Clearly,
H" = (X, ..., X"™), whereas H’ = (Y\V, ..., Y™).

By our hypothesis, algorithm D can distinguish the extreme hybrids (i.e., H’
and H,"). Because the total number of hybrids is polynomial in n, a non-negligible
gap between (the “accepting” probability of D on) the extreme hybrids translates
into a non-negligible gap between (the “accepting” probability of D on) a pair
of neighboring hybrids. It follows that D, although not “designed to work on
general hybrids,” can distinguish a pair of neighboring hybrids. The punch line is
that algorithm D can be easily modified into an algorithm D’ that distinguishes
X and Y. Details follow.

We construct an algorithm D’ that uses algorithm D as a subroutine. On input
a (supposedly in the range of either X, or Y,), algorithm D’ proceeds as fol-

lows. Algorithm D’ first selects k uniformly in the set {0, 1, ..., m — 1}. Using
the efficient sampling algorithm for the ensemble X, algorithm D’ generates k
independent samples of X,,. These samples are denoted x', . .., x*. Likewise, us-

ing the efficient sampling algorithm for the ensemble Y, algorithm D’ generates
m — k — 1 independent samples of Y,, denoted yk+2 ..., y™. Finally, algorithm
D’ invokes algorithm D and halts with output D(x', xk a, 2 9™,

Clearly, D’ can be implemented in probabilistic polynomlal time. It is also
easy to verify the following claims.

Claim 3.2.6.1:
PrD'(X,)=1]= — ZPr D(H) =1]

and

m—1

Pr[D'(Y,)=1] = — ZPr D(H!=1]

Proof: By construction of algorithm D', we have

D'@)=D(X", ..., X0, a, Y& .. ¥™)

n

where k is uniformly distributed in {0, 1, ..., m — 1}. Using the definition of the
hybrids H, the claim follows. [J

Claim 3.2.6.2: For A(n) as in Eq. (3.4),

A(n)
m(n)

IPrD'(X,)=1] - Pr[D'(Y,)=1]| =

109

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

Proof: Using Claim 3.2.6.1 for the first equality, we get

m—1

IPAD'(X,) = 1]—Pr(D'(Y,)=1]| = —. > Pr[D(H*")=1]-Pr[D(H})=1]
m k=0
= L Pe[D(Hr) =1]—Pe[D(HO) =1]|
m
_ A(n)
- m

where the last equality follows by recalling that H™ = (XD, ..., X!)and H? =
(YD, ..., Y™) and using the definition of A(n). O

Since by our hypothesis A(n)> ﬁ for infinitely many n’s, it follows that the
probabilistic polynomial-time algorithm D’ distinguishes X and Y in contradic-

tion to the hypothesis of the theorem. Hence, the theorem follows. l

The Hybrid Technique: A Digest

It is worthwhile to give some thought to the hybrid technique (used for the first time in
the preceding proof). The hybrid technique constitutes a special type of a “reducibility
argument” in which the computational indistinguishability of complex ensembles is
proved using the computational indistinguishability of basic ensembles. The actual
reduction is in the other direction: Efficiently distinguishing the basic ensembles is
reduced to efficiently distinguishing the complex ensembles, and hybrid distributions
are used in the reduction in an essential way. The following properties of the construction
of the hybrids play an important role in the argument:

1. Extreme hybrids collide with the complex ensembles: This property is essential because
what we want to prove (i.e., indistinguishability of the complex ensembles) relates to
the complex ensembles.

2. Neighboring hybrids are easily related to the basic ensembles: This property is essential
because what we know (i.e., indistinguishability of the basic ensembles) relates to the
basic ensembles. We need to be able to translate our knowledge (i.e., computational
indistinguishability) of the basic ensembles to knowledge (i.e., computational indistin-
guishability) of any pair of neighboring hybrids. Typically it is required to efficiently
transform strings in the range of a basic distribution into strings in the range of a hy-
brid, so that the transformation maps the first basic distribution to one hybrid and the
second basic distribution to the neighboring hybrid. (In the proof of Theorem 3.2.6, the
hypothesis that both X and Y are polynomial-time-constructible is instrumental for such
an efficient transformation.)

3. The number of hybrids is small (i.e., polynomial): This property is essential in order
to deduce the computational indistinguishability of extreme hybrids from the computa-
tional indistinguishability of each pair of neighboring hybrids. Typically, the provable
“distinguishability gap” is inversely proportional to the number of hybrids.

We remark that during the course of a hybrid argument a distinguishing algorithm
referring to the complex ensembles is being analyzed and even executed on arbitrary

110

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.2. COMPUTATIONAL INDISTINGUISHABILITY

hybrids. The reader may be annoyed by the fact that the algorithm “was not designed to
work on such hybrids” (but rather only on the extreme hybrids). However, an algorithm
is an algorithm: Once it exists, we can apply it to any input of our choice and analyze
its performance on arbitrary input distributions.

Advanced Comment on the Non-triviality of Theorem 3.2.6: Additional indication
of the non-triviality of Theorem 3.2.6 is provided by the fact that the conclusion may
fail in case the individual ensembles are not both efficiently constructible. Indeed, the
hypothesis that both ensembles are efficiently constructible plays a central role in the
proof of Theorem 3.2.6. Contrast this fact with the fact that an information-theoretic
analogue of Theorem 3.2.6 asserts that for any two ensembles, statistical closeness
implies statistical closeness of multiple samples.

3.2.4) Indistinguishability by Circuits

A stronger notion of computational indistinguishability is the notion of computational
indistinguishability by non-uniform families of polynomial-size circuits. This notion
will be used in subsequent chapters.

Definition 3.2.7 (Indistinguishability by Polynomial-Size Circuits):

1. Variant for ensembles indexed by N: Two ensembles, dEf {X,}hen and
y & {Y.}nen, are indistinguishable by polynomial-size c1rcu1ts if for every
family {C,},en of polynomial-size circuits, every positive polynomial p(-),

and all sufficiently large n’s,

IPrlCa(Xn)=1] — Pr[Cu(Y,)=1]| < %

2. Var1ant for ensembles indexed by a set of strings S: Two ensembles, x & {X hwes
andy & {Yw}wES: are indistinguishable by polynomial-size circuits if for every
family {C,},en of polynomial-size circuits, every positive polynomial p(-), and all
sufficiently long w’s,

’Pr[clw\(Xw)=1} - Pr[C|w\(Yw)=1” = p(lw))

We comment that the variant for ensembles indexed by S is equivalent to the following
(seemingly stronger) condition:

For every polynomial s(-), every collection {Cy}yes of circuits such that C, has size at
most s(|w|), every positive polynomial p(-), and all sufficiently long w’s,

|Pr[Cw(Xw): 1] - Pr[Cw(Yw): l]| <

35
p(lwf) G-

‘We show that the second requirement is not stronger than the requirement in the defini-
tion: That is, we show that if the second requirement is not satisfied, then neither is the

111

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

first. Suppose that for some polynomials s and p there exist infinitely many w’s violat-
ing Eq. (3.5). Then there exists an infinite set N such that for every n € N, there exists
a string w,, € {0, 1}" violating Eq. (3.5). Letting C’ = Cw , we obtain a contradiction
to the requirement of the definition.

We note that allowing probabilistic circuits in the preceding definition does not
increase its power (see Exercise 8). Consequently, in accordance with our meta-
theorem (see Section 1.3.3), indistinguishability by polynomial-size circuits (as per
Definition 3.2.7) implies indistinguishability by probabilistic polynomial-time ma-
chines (as per Definition 3.2.2); see Exercise 10. The converse is false (see Exercise 10).
Finally, we note that indistinguishability by polynomial-size circuits is preserved
under repeated experiments, even if both ensembles are not efficiently constructible
(see Exercise 9).

3.2.5. Pseudorandom Ensembles

One special, yetimportant, case of computationally indistinguishable pairs of ensembles
is the case in which one of the ensembles is uniform. Ensembles that are computationally
indistinguishable from a uniform ensemble are called pseudorandom. Recall that U,
denotes a random variable uniformly distributed over the set of strings of length m.
The ensemble {U,},cn is called the standard uniform ensemble. Yet, it will also be
convenient to call uniform those ensembles of the form {Uj(,)},en, where [: N — N.

Definition 3.2.8 (Pseudorandom Ensembles): The ensemble X = {X, },cn is
called pseudorandom if there exists a uniform ensemble U = {Uj)}en such
that X and U are indistinguishable in polynomial time.

We stress that | X,| is not necessarily n (whereas |U,,| = m). In fact, for polynomial-
time-computable [: N — N and X = {X,},cy as in Definition 3.2.8, with very high
probability, | X, | equals [(n).

In the foregoing definition, as well as in the rest of this book, pseudorandomness is
shorthand for pseudorandomness with respect to polynomial time.

3.3. Definitions of Pseudorandom Generators

A pseudorandom ensemble, as defined here, can be used instead of a uniform ensem-
ble in any efficient application, with, at most, negligible degradation in performance
(otherwise the efficient application can be transformed into an efficient distinguisher
of the supposedly pseudorandom ensemble from the uniform one). Such a replace-
ment is useful only if we can generate pseudorandom ensembles at a lower cost than
that required to generate the corresponding uniform ensemble. The cost of generating
an ensemble has several aspects. Standard cost considerations include the time and
space complexities. However, in the context of randomized algorithms, and in particu-
lar in the context of generating probability ensembles, a major cost consideration is the
quantity and quality of the random source used by the algorithm. In particular, in many

112

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS

applications (and especially in cryptography) it is desirable to generate pseudorandom
ensembles using as little true randomness as possible. This leads to the definition of a
pseudorandom generator.

3.3.1. Standard Definition of Pseudorandom Generators

Definition 3.3.1 (Pseudorandom Generator, Standard Definition): A pseudo-
random generator is a deterministic polynomial-time algorithm G satisfying the
following two conditions:

1. Expansion: There exists a function | : N — N such that [(n) > n for all n € N,
and |G(s)| = I(|s]) for all s € {0, 1}*.

2. Pseudorandomness: The ensemble {G(U,)},cn is pseudorandom.

The function [is called the expansion factor of G.

The input s to the generator is called its seed. The expansion condition requires that
the algorithm G map n-bit-long seeds into [(n)-bit-long strings, with /(n) > n. The
pseudorandomness condition requires that the output distribution induced by applying
algorithm G to a uniformly chosen seed be polynomial-time-indistinguishable from a
uniform distribution, although it is nof statistically close to uniform. Specifically, using
Exercise 5 (for the first equality), we can bound the statistical difference between G (U,,)
and Uy, as follows:

1
5 > |Pr[Uiy = x] = PrIG(U,) = x]| = max {Pr[Um €S| —PriG(U,) e S1}

X

> Pr[UI(,,)Q’{G(s) NS {O, 1}”}]

> (21(11) _ 2n) . 2—l(n)

=1 -2 Um-n - 1
where the last inequality uses /(n) > n + 1. Note that for /(n) > 2n, the statistical
difference is at least 1 — 27",

The foregoing definition is quite permissive regarding the expansion factor / : N — N.
Itassertsonly that/(n) > n + 1andl(n) < poly(n). (Italso follows that/(n) is computed
in time polynomial in#; e.g., by computing | G(1")|.) Clearly, a pseudorandom generator
with expansion factor I(n) = n + 1 is of little value in practice, since it offers no
significant saving in coin tosses. Fortunately, as shown in the next subsection, even
pseudorandom generators with such a small expansion factor can be used to construct
pseudorandom generators with any polynomial expansion factor. Hence, for every two
expansion factors [: N— N and /; : N— N that can be computed in poly(n) time, there
exists a pseudorandom generator with expansion factor /; if and only if there exists a
pseudorandom generator with expansion factor /,. This statement is proved by using any
pseudorandom generator with expansion factor /() Y +1t0 construct, for every
polynomial p(-), a pseudorandom generator with expansion factor p(n). Note that a

113

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

pseudorandom generator with expansion factor /,(n) &' + 1 can be derived from any
pseudorandom generator.

Each pseudorandom generator, as defined earlier, will have a predetermined ex-
pansion function. In Section 3.3.3 we shall consider “variable-output pseudorandom
generators” that, given a random seed, will produce an infinite sequence of bits such
that every polynomially long prefix of it will be pseudorandom.

3.3.2. Increasing the Expansion Factor

Given a pseudorandom generator G; with expansion factor /;(n) =n + 1, we con-
struct a pseudorandom generator G with arbitrary polynomial expansion factor as
follows.

Construction 3.3.2: Let G| be a deterministic polynomial-time algorithm map-
ping strings of length n into strings of length n + 1, and let p(-) be a polynomial.
Define G(s) = oy - - - 05, Where sy &ef s, the bit o; is the first bit of G(s;_1), and
s; is the |s|-bit-long suffix of G(s;_) for every 1 <i < p(|s|). That is, on input s,
algorithm G proceeds as follows:

Let so = s andn = |s|.
Fori =11to p(n), do

0;8; < G(s;_1), where o; € {0, 1} and |s;| = |si_1].

Output 6103 - - - Op(s))-

The construction is depicted in Figure 3.2: On input s, algorithm G applies G for p(]s|)
times, each time on a new seed. Applying G, to the current seed yields a new seed (for
the next iteration) as well as one extra bit (which is being output immediately). The seed
in the first iteration is s itself. The seed in the ith iteration is the |s|-bit-long suffix of the
string obtained from G in the previous iteration. Algorithm G outputs the concatenation
of the “extra bits” obtained in the p(|s|) iterations. Clearly, G is polynomial-time-
computable and expands inputs of length n into output strings of length p(n).

G

Figure 3.2: Construction 3.3.2, as operating on seed s, € {0, 1}".

114

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS

Theorem 3.3.3: Let G|, p(-), and G be as in Construction 3.3.2 such that
p(n) > n. If G, is a pseudorandom generator, then so is G.

Intuitively, the pseudorandomness of G follows from that of G, by replacing each
application of G| by a random process that on input a uniformly distributed n-bit-long
string will output a uniformly distributed (n + 1)-bit-long string. Loosely speaking,
the indistinguishability of a single application of the random process from a single
application of G implies that polynomially many applications of the random process
are indistinguishable from polynomially many applications of G;. The actual proof
uses the hybrid technique.

Proof: Suppose, to the contrary, that G is not a pseudorandom generator. It
follows that the ensembles {G(U,)},eny and {U) }nen are not polynomial-time-
indistinguishable. We shall show that it follows that the ensembles {G (U,)} en
and {U, 11 }.en are not polynomial-time-indistinguishable, in contradiction to the
hypothesis that G is a pseudorandom generator with expansion factor /;(n) =
n + 1. The implication is proved using the hybrid technique.

For every k, with0 < k < p(n), we define a hybrid H,’f to be the concatenation
of a uniformly chosen k-bit-long string and the (p(n) — k)-bit-long prefix of
G(U,). Denoting by pref ;(«) the j-bit-long prefix of the strings o, where j <
||, and by x - y the concatenation of the strings x and y, we have

H <y -pref ., (G(UY)) (3.6)

where U{" and U® are independent random variables (the first uniformly dis-
tributed over {0, 1}, and the second uniformly distributed over {0, 1}").

A different way of viewing the hybrid H* is depicted in Figure 3.3: Start-
ing with Construction 3.3.2, we pick s; uniformly in {0, 1}" and o, - - - 0% uni-
formly in {0, 1}, and fori = k + 1, ..., p(n) we obtain o;s; = G (s;_;) as in the
construction.

At this point it is clear that H? equals G(U,), whereas HP™ equals U). It
follows that if an algorithm D can distinguish the extreme hybrids, then D can
also distinguish two neighboring hybrids (since the total number of hybrids is
polynomial in 7, and a non-negligible gap between the extreme hybrids translates
into a non-negligible gap between some neighboring hybrids). The punch line

e e G1 — S

[Ble =« =
Figure 3.3: Hybrid H* as a modification of Construction 3.3.2

115

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

is that, using the structure of neighboring hybrids, algorithm D can be easily
modified to distinguish the ensembles {G(U,)},en and {U, 41 }nen-

The core of the argument is the way in which the distinguishability of neigh-
boring hybrids relates to the distinguishability of G,(U,) from U, ;. As stated,
this relation stems from the structure of neighboring hybrids. Let us take a closer
look at the hybrids H* and H**! for some 0 <k < p(n) — 1. Another piece of
notation is useful: We let suff ;(«) denote the j-bit-long suffix of the string o,
where j < |«|. First observe (see justification later) that for every x € {0, 1}",

pref; (G(x)) = pref (G(x)) - pref ;(G(suff,(G(x)))) (3.7)
Thus (further justification follows),

(1)
= U, -pref) 14 (G(Un(z)))
= U pret, (G/ (UP) - pret (G (sut, (G1(U)))
(1)
Hrfﬂ = Upyr -pref) (k+1)(G(Un(2)))

(l) -pref, (Un+1) -pref) s (G(SUff (Urgi)l)))
Thus, the ability to distinguish H* and H**! translates to the ability to distinguish
G1(U®) from U),: On input « € {0, 1}"*', we uniformly select € {0, 1}* and
apply the “hybrid distinguisher” to r - pref,(«) - prefp(n)_k_l(G(suff”(oz))).
Details follow.

First let us restate and further justify the equalities stated previously. We start

with notation capturing the operator mentioned a few lines earlier. For every
ke{0,1,..., p(n)— 1} and @ € {0, 1}"*!, let

Foon-r(a) E pref, (@) - pret , _,_(G(suff,(@)) € {0, 1}7™* (3.8)
Claim 3.3.3.1 (G1(U,) and U, versus HXand H'*"):

1. HY is distributed identically to US" - £, _(G1(U2)).

2. H!*!is distributed identically to Uy - fyu 1 (US)).

Proof: Consider any x € {0,1}", and let o =pref,(Gi(x)) and y =
suff,(G(x)) (i.e., oy = G(x)). Then, by construction of G, we have
Gx)=o0 -prefp(n)_l(G(y)). This justifies Eq. (3.7); that is, pref‘Hl(G(x)) =
pref (G(x)) - prefj(G(suff,,(G](x)))) for every j > 0. We now establish the
two parts of the claim:

1. Combining the definition of H¥ and Eq. (3.7), we have
HY = U -pref 11 (G(UY))
=U" -pret (G (UP)) - pref 4 (G(sutt,(G1(UP))))
= U oot (G (U))
which establishes the first part.

116

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS

2. For the second part, combining the definition of H*! and Eq. (3.7), we have

HY = Upy - pres 041 (G(U,7))
=U" - U{" - pret i (G(sutf, (UZ))))
= (1) -pref, (Un+1) pret 1 (G (suff, (Urgi)l)))
= Uzil o+ (U3h)
Thus, both parts are established. [J

Hence, distinguishing G(U,) from U, is reduced to distinguishing the neigh-
boring hybrids (i.e., H* and H**") by applying f,u)_ to the input, padding the
outcome (in the front) by a uniformly chosen string of length &, and applying the
hybrid-distinguisher to the resulting string. Further details follow.

We assume, contrary to the theorem, that G is not a pseudorandom generator.
Suppose that D is a probabilistic polynomial-time algorithm such that for some
polynomial ¢(-) and for infinitely many »’s, it holds that

Am) € |PrDGU,)=1] = Pr[D(Uym)=1]| > L
q(n)
We derive a contradiction by constructing a probabilistic polynomial-time algo-
rithm D’ that distinguishes G,(U,,) from U, .

Algorithm D’ uses algorithm D as a subroutine. On input « € {0, 1}"*!,
algorithm D’ operates as follows. First, D’ selects an integer k uniformly in
the set {0, 1, ..., p(n) — 1}, next it selects B uniformly in {0, 1}, and finally it
halts with output D(8 - fu)—-«(@)), where f,u)—k 1s as defined in Eq. (3.8).

Clearly, D' can be implemented in probabilistic polynomial time (in particular,
Sfpm—k is implemented by combining the algorithm for computing G with trivial
string operations). It is left to analyze the performance of D’ on each of the
distributions G (U,) and U, ;.

Claim 3.3.3.2:

pn)—1

Pr[D'(G1(U,)=1] =

= Pr[D(H" =1
oo 2 Prip(E) =1

and

) 1 p(n)—1 .
Pr[D U =11= ; Pr[D(H,™")=1]

Proof: By construction of D', we get, for every o € {0, 1}"*1,

pn)
Pr[D'(a)=1] = (— Z Us + fom—i(@)=1]
=0

Using Claim 3.3.3.1, our claim follows. O
117

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

Let d*(n) denote the probability that D outputs 1 on input taken from the hybrid
HF (ie., d*(n) & Pr[D(H")_ 11). Recall that H? equals G(U,), whereas HP™
equals U . Hence,d’(n) = Pr[D(G(U,))= 1],dp<")(n) Pr[D(U) =1],and
A(n) = |d°(n) — d”™(n)|. Combining these facts with Claim 3.3.3.2, we get

IPrID'(G1(Up)=1] = Pr[D'(Up11)=1]|

1 pn)—1 pn)—1
| (% 7o) - (5 o)
B !d°<n) — dP™(n)|
B p(n)
A
~ p)

Recall that by our (contradiction) hypothesis, A(n) > 7 (n)
Contradiction to the pseudorandomness of G follows. H

for infinitely many n’s.

3.3.3* Variable-Output Pseudorandom Generators

Pseudorandom generators, as defined earlier (i.e., in Definition 3.3.1), provide a pre-
determined amount of expansion. That is, once the generator is fixed and the seed is
fixed, the length of the pseudorandom sequence that the generator provides is also
determined. A more flexible definition, provided next, allows one to produce a pseudo-
random sequence “on the fly.” That is, for any fixed seed, an infinite sequence is being
defined such that the following two conditions hold:

1. One can produce any prefix of this sequence in time polynomial in the seed and the
length of the prefix.
2. For a uniformly chosen n-bit-long seed, any poly(n)-bit prefix of corresponding output

sequence is pseudorandom.

In other words:

Definition 3.3.4 (Variable-Output Pseudorandom Generator): A variable-
output pseudorandom generator is a deterministic polynomial-time algorithm
G satisfying the following two conditions:

1. Variable output: For all s € {0, 1}* and t € N, it holds that |G(s, 1")| =t and
G(s, 1%) is a prefix of G(s, 1'T1).

2. Pseudorandomness: For every polynomial p, the ensemble {G(U,, 1P™)}, oy is
pseudorandom.

By a minor modification of Construction 3.3.2, we have the following:

Theorem 3.3.5: If pseudorandom generators exist, then there exists a variable-
output pseudorandom generator.

118

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS

In a similar manner, one can modify all constructions presented in Section 3.4 to obtain
variable-output pseudorandom generators. In fact, in all constructions one can maintain
a hidden state that allows production of the next bit in the sequence in time polynomial
in the length of the seed, regardless of the number of bits generated thus far. This leads
to the notion of an on-line generator, as defined and studied in Exercise 21.

3.3.4. The Applicability of Pseudorandom Generators

Pseudorandom generators have the remarkable property of being efficient “ampli-
fiers/expanders of randomness.” Using very little randomness (in the form of a randomly
chosen seed) they produce very long sequences that look random with respect to any
efficient observer. Hence, the output of a pseudorandom generator can be used instead
of a “truly random sequence” in any efficient application requiring such (i.e., “random”)
sequences, the reason being that such an application can be viewed as a distinguisher.
In other words, if some efficient algorithm suffers non-negligible degradation in per-
formance when replacing the random sequences it uses by a pseudorandom sequence,
then this algorithm can be easily modified into a distinguisher that will contradict the
pseudorandomness of the latter sequences.

The generality of the notion of a pseudorandom generator is of great importance in
practice. Once we are guaranteed that an algorithm is a pseudorandom generator, we
can use it in every efficient application requiring “random sequences,” without testing
the performance of the generator in the specific new application.

The benefits of pseudorandom generators in cryptography are innumerable (and only
the most important ones will be presented in the subsequent chapters). The reason that
pseudorandom generators are so useful in cryptography is that the implementation of
all cryptographic tasks requires a lot of “high-quality randomness.” Thus the process
of producing, exchanging, and sharing large amounts of “high-quality random bits”
at low cost is of primary importance. Pseudorandom generators allow us to produce
(resp., exchange and/or share) poly(n) pseudorandom bits at the cost of producing
(resp., exchanging and/or sharing) only » random bits!

3.3.5. Pseudorandomness and Unpredictability

A key property of pseudorandom sequences that is used to justify the use of such
sequences in some cryptographic applications is the unpredictability of a sequence.
Loosely speaking, a sequence is unpredictable if no efficient algorithm, given a prefix
of the sequence, can guess its next bit with a non-negligible advantage over % Namely:

Definition 3.3.6 (Unpredictability): An ensemble {X,},cn is called unpredict-
able in polynomial time if for every probabilistic polynomial-time algorithm A,
every positive polynomial p(-), and all sufficiently large n’s,

1 1
PrlA(1™) X,) = nexta(X,)] < = + —
rlA() = nexts(X,)] < >t o

where nexty(x) returns the i + 1 bit of x if on input (1*!, x) algorithm A reads

119

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

onlyi < |x| of the bits of x, and returns a uniformly chosen bit otherwise (i.e., in
case A reads the entire string x).

The role of the input 1*! given with x is to allow the algorithm to determine the
length of x (and operate in time polynomial in that length) before reading x. In case A
reads all of x, it must guess a perfectly random bit and certainly cannot succeed with
probability higher than % (Alternatively, one may disallow A to read all its input; see
Exercise 20.) The interesting case is, of course, when A chooses not to read the entire
input, but rather tries to guess the i 4+ 1 bit of x based on the first i bits of x. An
ensemble is called unpredictable in polynomial time if no probabilistic polynomial-
time algorithm can succeed in the latter task with probability non-negligibly higher
than %

Intuitively, pseudorandom ensembles are unpredictable in polynomial time (since so
are all uniform ensembles). It turns out that the converse holds as well. Namely, only
pseudorandom ensembles are unpredictable in polynomial time.

Theorem 3.3.7 (Pseudorandomness versus Unpredictability): An ensemble
{X, }ren is pseudorandom if and only if it is unpredictable in polynomial time.

Proof for the “Only-if” Direction: The proof that pseudorandomness implies
unpredictability indeed follows the intuition mentioned earlier. Because the en-
semble X & {X, }nen 1s pseudorandom, it is polynomial-time-indistinguishable
from some uniform ensemble. Clearly, the uniform ensemble is unpredictable in
polynomial time; in fact, it is unpredictable regardless of the time bounds imposed
on the predicting algorithm. Thus, the ensemble X must also be polynomial-
time-unpredictable, or else we could distinguish the ensemble X from the uni-
form ensemble in polynomial time (in contradiction to the hypothesis). Details
follow.

For simplicity (and without loss of generality), suppose that the ensemble
X = {X,},en satisfies |X,,| = n and thus is polynomial-time-indistinguishable
from the standard uniform ensemble {U,, },cn. Suppose, toward the contradiction,
that { X, },,cn is predictable in polynomial time by an algorithm A; that is, for some
polynomial p and infinitely many n’s,

PrlA(1", X,) = nexta(X,)] > ! + L

2 pm)
Then A can be easily transformed into a distinguisher, denoted D, operating as
follows. On input y, the distinguisher invokes A on input (1", y) and records the
number of bits that A has actually read, as well as A’s prediction for the next bit.
In case the prediction is correct, D outputs 1, and otherwise it outputs 0. Clearly,

PHD(X,) = 1] = PrIA(I", X,) = next(X,)]
1 1
— + -
=27 o
120

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS

whereas
Pr[D(U,)=1] = Pr[A(1", U,) = next,(U,)]

=

N =

Thus, Pr[D(X,)=1] — Pr[D(U,)=1] > 1/p(n), and we reach a contradiction to
the hypothesis that {X,},cy is pseudorandom. The “only-if” direction
follows. W

Proof forthe “Opposite” Direction: The proof for the opposite direction (i.e., un-
predictability implies pseudorandomness) is more complex. In fact, the intuition
in this case is less clear. One motivation is provided by the information-theoretic
analogue: The only sequence of 0-1 random variables that cannot be predicted
(when discarding computational issues) is the one in which the random variables
are independent and uniformly distributed over {0, 1}. In the current case, the
computational analogue again holds, but proving it is (again) more complex. The
proof combines the use of the hybrid technique and a special case of the very
statement being proved. Loosely speaking, the special case refers to two ensem-
bles ¥ & {Y }nen and y & {Y }nen, Where Y, is derived from Y, by omitting the
last bit of Y,,. The claim is that if Y’ is pseudorandom and Y is unpredictable in
polynomial time, then Y is pseudorandom. By this claim, if the i-bit-long prefix
of X,, is pseudorandom and the (i + 1)-bit-long prefix of X,, is polynomial-time-
unpredictable, then the latter is also pseudorandom. We next work this intuition
into a rigorous proof.

Suppose, toward the contradiction, that X = {X,,},ey is not pseudorandom.
Again, for simplicity (and without loss of generality), we assume that | X, | = n.
Thus there exists a probabilistic polynomial-time algorithm D that distinguishes
X from the standard uniform ensemble {U, },cn; that is, for some polynomial p
and infinitely many n’s,

1
IPrID(X,)=1]—Pr[DU,)=1]| = 0 (3.9

Assume, without loss of generality, that for infinitely many n’s,

PHD(X,) =11 — P DU =1]> —— (3.10)
p(n)

Justification for the dropping of absolute value: Let S be the infinite set of
n’s for which Eq. (3.9) holds. Then S must contain either an infinite subset of n’s for
which Pr[D(X,)=1] — Pr[D(U,)=1] is positive or an infinite subset for which it is
negative. Without loss of generality, we assume that the former holds. Otherwise, we
modify D by flipping its output.

For each n satisfying Eq. (3.10), we define n 4 1 hybrids. The ith hybrid (i =
0,1,...,n), denoted H,’l', consists of the i-bit-long prefix of X, followed by the
(n — i)-bit-long suffix of U,. The foregoing hypothesis implies that there exists

121

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

a pair of neighboring hybrids that are polynomial-time-distinguishable. Actually,
this holds, on the average, for a “random” pair of neighboring hybrids:

Claim 3.3.7.1: For each n satisfying Eq. (3.10),
n—1 1

t+1 ry —
120 D(H,*")=1] —Pr[D(H,)=1]) > O

:I»—

Proof: The proof is immediate by Eq. (3.10) and the definition of the hybrids. In
particular, we use the fact that H" = X, and H® = U,,. O

Claim 3.3.7.1 suggests a natural algorithm for predicting the next bit of {X,,},cn.
The algorithm, denoted A, selects i uniformly in {0, 1, ..., n — 1}, reads i bits
from X,,, and invokes D on the n-bit string that results by concatenating these i
bits with n — i uniformly chosen bits. If D responds with 1, then A’s prediction
is set to the value of the first among these n — i random bits; otherwise it is set
to the complementary value. The reasoning is as follows. If the first among the
n — i random bits happens to equal the i 4+ 1 bit of X, then A is invoked on
input distributed identically to H!*'. On the other hand, if the first among the
n — i random bits happens to equal the complementary value (of the i 4 1 bit of
X,), then A is invoked on input distributed identically to a distribution Z that is
even more clearly distinguishable from H!*! than is H; (i.e., H/ equals Z with
probablhty 1, and H!™! otherwise). Details follow.

We start w1th a more precise description of algorithm A. On input 1" and
X = Xy -+ X,, algorithm A proceeds as follows:

1. Select i uniformly in {0, 1,...,n — 1}.

2. Select r;4y, . . ., Iy independently and uniformly in {0, 1}.

3. If D(xy---x;riyq---1,) = 1, then output r; 11, and otherwise output 1 — r; ;.

Claim 3.3.7.2: For each n satisfying Eq. (3.10),

1
pn)-n
Proof: Let us denote by X/ the jth bit of X,,, and by R'*!, ..., R" a sequence

of n — i independent random variables each uniformly distributed over {0, 1}.
Using the definition of A and the fact that Pr[X'*! = R™"'] = 1, we have

1
PrlA(1", X,)) = nexts(X,)] > = —|—

sA(n) L PrIA(1", X,) = next,(X,)]

n—1
Z(Pr[l)(x1 SX'RTNRNY =1& R = X
i=0
+ Pr[D(Xl L XIRTLLLURM =0 & 1 — R = X))
1 ¢ o
=5 Z;(Pr[D(X' L XIXTIRIZLURM) =1

+1 — PrDX' - XX RIF2ORY) = 1))
122

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS

where X' 7 %' | — X7+1. Using the fact that H! is distributed identically to the

distribution obtamed by taking H/™' = X'... X' X"*IRi*2... R" with probabi-

il . .
11ty Land Z & x!...xix' "'Ri+2... Rn otherwise, we obtain

Pr[D(H/*")=1] + Pr[D(Z)=1]
2

which implies Pr[D(Z)=1] = 2Pr[D(H!)=1] — Pr[D(H!*')=1]. Thus, using
Claim 3.3.7.1 in the last step, we get

n—1

sa(n) = % + i : Z (Pr[D(H*")=1] — Pr[D(Z)=1])
1 1 - i+1
=5+ %-iz:;(Pr[D(Hn)=1]
— (2Pr[D(H,)=1] — Pr[D(H,"") =1]))
=5 S (PrD(H) =1] — Pr(D(H;)=1))
- 1 17
27 p)en

and the claim follows. [J

Because A is a probabilistic polynomial-time algorithm, Claim 3.3.7.2 contradicts
the hypothesis that { X, },,c is polynomial-time-unpredictable, and so the opposite
direction of the theorem also follows. H

Comment. Unfolding the argument for the “opposite direction,” we note that all the
hybrids considered in it are in fact polynomial-time-indistinguishable, and hence they
are all pseudorandom. The argument actually shows that if the i-bit prefix of H!*! is
pseudorandom and the (i + 1)-bit prefix of H/*! is unpredictable (which is the same as
saying that H/™! is unpredictable), then the (i + 1)-bit prefix of H'*! is pseudorandom.
This coincides with the motivating discussion presented at the beginning of the proof
for the “opposite direction.”

3.3.6. Pseudorandom Generators Imply One-Way Functions

Up to this point we have avoided the question of whether or not pseudorandom genera-
tors exist at all. Before saying anything positive, we remark that a necessary condition
to the existence of pseudorandom generators is the existence of one-way function.
Jumping ahead, we mention that this necessary condition is also sufficient: Hence,
pseudorandom generators exist if and only if one-way functions exist. At this point we
shall prove only that the existence of pseudorandom generators implies the existence
of one-way function. Namely:

123

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

Proposition 3.3.8: Let G be a pseudorandom generator with expansion
factor l(n) =2n. Then the function f:{0,1}*— {0, 1}* defined by letting
fx,y) &f G(x), for every |x|=|y| is a strongly one-way function.

Proof: Clearly, f is polynomial-time-computable. It is left to show that each
probabilistic polynomial-time algorithm can invert f with only negligible success
probability. We use a reducibility argument. Suppose, on the contrary, that A is a
probabilistic polynomial-time algorithm that for infinitely many »’s inverts f on
f(U,,) with success probability at least —— = 1 NOR We shall construct a probabilistic
polynomial-time algorithm D that distinguishes U,, and G(U,) on these n’s,
reaching a contradiction.

The distinguisher D uses the inverting algorithm A as a subroutine. On input
a € {0, 1}*, algorithm D uses A in order to try to get a pre-image of « under f.
Algorithm D then checks whether or not the string it obtained from A is indeed
a pre-image and halts outputting 1 in case it is (otherwise it outputs 0). Namely,
algorithm D computes 8 <— A(«) and outputs 1 if f(8) = «, and 0 otherwise
(i.e., D(a) = 1iff f(A(®)) =).

By our hypothesis, for some polynomial p(-) and infinitely many n’s,

PALFACUa) = FWUan)] =
By f’s construction, the random variable f(U,,) equals G(U,), and therefore
Pr[D(GU,))=1] = Pr[f(A(G(U,)))=G(U,)] > ——. On the other hand, by
f’s construction, at most 2" different 2n-bit-long strlngs (i.e., those in the support
of G(U,)) have pre-images under f. Hence, Pr[D(U,,)=1] = Pr[f(A(Uy,))=
U,,] < 27". It follows that for infinitely many n’s,
1 1 1

PriD(G(U,)=1] = Pr[D(U,) = 1] > P 2 2p)

which contradicts the pseudorandomness of G. B

3.4. Constructions Based on One-Way Permutations

In this section we present constructions of pseudorandom generators based on one-way
permutations. The first construction has a more abstract flavor, as it uses a single length-
preserving 1-1 one-way function (i.e., a single one-way permutation). The second
construction utilizes the same underlying ideas to present pseudorandom generators
based on collections of one-way permutations.

3.4.1. Construction Based on a Single Permutation

We provide two alternative presentations of the same pseudorandom generator. In
the first presentation, we provide a pseudorandom generator expanding n-bit-long
seeds into (n + 1)-bit-long strings, which combined with Construction 3.3.2 yields a

124

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.4. CONSTRUCTIONS BASED ON ONE-WAY PERMUTATIONS

pseudorandom generator expanding n-bit-long seeds into p(n)-bit-long strings for every
polynomial p. The alternative construction is obtained by unfolding this combination.
The resulting construction is appealing per se, and more importantly it serves as a
good warm-up for the construction of pseudorandom generators based on collections
of one-way permutations (presented in Section 3.4.2).

3.4.1.1. The Preferred Presentation

By Theorem 3.3.3 (in Section 3.3.2), it suffices to present a pseudorandom generator
expanding n-bit-long seeds into (n 4 1)-bit-long strings. Assuming that one-way per-
mutations (i.e., 1-1 length-preserving functions) exist, such pseudorandom generators
can be constructed easily. We remind the reader that the existence of a one-way permu-
tation implies the existence of a one-way permutation with a corresponding hard-core
predicate (see Theorem 2.5.2). Thus, it suffices to prove the following, where x - y
denotes the concatenation of the strings x and y.

Theorem 3.4.1: Let f be a length-preserving 1-1 (strongly one-way) function,
and let b be a hard-core predicate for f. Then the algorithm G, defined by

G(s) &t f(s) - b(s), is a pseudorandom generator.

Clearly, G is polynomial-time-computable, and |G (s)| = | f(s)| + |b(s)| = |s| + 1. In-
tuitively, the ensemble { f(U,) - b(U,)},cn is pseudorandom, because otherwise b(U,,)
could be efficiently predicted from f(U,) (in contradiction to the hypothesis). The
proof merely formalizes this intuition.

Actually, we present two alternative proofs. The first proof invokes Theorem 3.3.7
(which asserts that polynomial-time unpredictability implies pseudorandomness) and
thus is confined to show that the ensemble {G(U,)},cn is unpredictable in poly-
nomial time. The second proof directly establishes the pseudorandomness of the
ensemble {G(U,)},en, but does so by using one of the ideas that appeared in the
proof of Theorem 3.3.7.

First Proof of Theorem 3.4.1: By Theorem 3.3.7 (specifically, the fact that
polynomial-time unpredictability implies pseudorandomness), it suffices to show
that the ensemble {G(U,) = f(U,) - b(U,)},en is unpredictable in polynomial
time.

Because f is 1-1 and length-preserving, the random variable f(U,) is uni-
formly distributed in {0, 1}". Thus, none of the first n bits in f(U,) - b(U,)
can be predicted better than with probability % regardless of computation time
(since these bits are independently and uniformly distributed in {0, 1}). What
can be predicted (and actually determined) in exponential time is the n 4 1 bit of
fWU,) - b(U,) (i.e., the bitb(U,)). However, by the hypothesis that b is a hard-core
of f, this bit (i.e., b(U,)) cannot be predicted from the n-bit prefix (i.e., f(U,))
in polynomial time. A more rigorous argument follows.

We use areducibility argument. Suppose, contrary to our claim, that there exists
an efficient algorithm A that on input (1"*', G(U,)) reads a prefix of G(U,) and

125

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

predicts the next bit, denoted next, (G (U,,)), with probability that is non-negligibly
higher than % That is, for some positive polynomial p and infinitely many n’s,

Pr{A(1"*!, G(U,)) = next,(G(U,))] > ! + L (3.11)

2 pn)
We first claim that, without loss of generality, algorithm A always tries to guess
the last (i.e., n + 1) bit of G(U,). This is justified by observing that the success
probability for any algorithm in guessing any other bit of G(U,,) is bounded above
by % On the other hand, a success probability of % in guessing any bit (and in
particular the last bit of G(U,)) can be easily achieved by a random unbiased
coin toss.

Rigorous justification of the preceding claim: Given an algorithm A as before,
we consider a modified algorithm A’ that operates as follows. On input (1", &), where
o € {0, 1}”*1, algorithm A’ emulates the execution of A, while always reading the first
n bits of o and never reading the last bit of «. In the course of the emulation, exactly
one of the following three cases will arise:

1. Incase A tries to predict one of the first n bits of «, algorithm A’ outputs a uniformly
selected bit.

2. In case A tries to predict the last bit of «, algorithm A’ outputs the prediction
obtained from A.

3. In case A tries to read all bits of «, algorithm A’ outputs a uniformly selected bit.
(We stress that A" never reads the last bit of «.)

Note that the success probability for A in Cases 1 and 3 is at most % (and is exactly % if
A outputs a bit). The actions taken by A’ in these cases guarantee success probability
of % (in guessing the last bit of). Thus, the success probability for A’ is no less than
that for A. (In the rest of the argument, we identify A" with A.)

Next, we use algorithm A to predict b(U,) from f(U,). Recall that G(x) =
f(x)-b(x), where x € {0, 1}". Thus, by the foregoing claim, on input
(1", f(x) - b(x)), algorithm A always tries to guess b(x) after reading f(x)
(and without ever reading b(x)). Thus, A is actually predicting b(U,) from f(U,).
Again, a minor modification is required in order to make the last statement rig-
orous: We consider an algorithm A” that on input y = f(x), where x € {0, 1}",
invokes A on input (1!, y 0) and outputs whatever A does. Because A never
reads the last bit of its input, its actions are independent of the value of that bit
(i.e., A(1""', y0) = A(1"*!, y1)). Combining this fact with the fact that A always
tries to predict the last bit of its input (and thus next4(y - 0) = o), we get

Pr[A"(f(U,) = b(U)] = PrLA(I"™, £(U,) - 0) = b(U,)]
= PrlA(I""", f(U,) - b(U,)) = b(U,)]
= PrlA(1"™, f(U,) - b(U,)) = next,(f(U,) - b(U,))]
Combining this with Eq. (3.11), we obtain Pr[A"(f(U,)) = b(U,)] = 1 + -~

p(n)
for infinitely many #’s, in contradiction to the hypothesis that b is a hard-core of

f. The theorem follows. B
126

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.4. CONSTRUCTIONS BASED ON ONE-WAY PERMUTATIONS

Second Proof of Theorem 3.4.1: Recallthat G(U,) = f(U,) - b(U,) and that our
goal is to prove that the ensembles {G(U,)}, ey and {U, 41},en are polynomial-
time-indistinguishable. We first note that the n-bit-long prefix of f(U,) - b(U,) is
uniformly distributed in {0, 1}". Thus, letting b(x) &y b(x), all that we need
to prove is that the ensembles E! LA, - DU ey and E? E{£(U,) -
b(Uy,)}nen are polynomial-time-indistinguishable (since {U, 1 },en is distributed
identically to the ensemble obtained by taking E") with probability 1, and E®
otherwise).

Further justification of the foregoing claim: First, note that E(V) is identical
to {G(Uy)}nen. Next note that {U,41},en is distributed identically to the ensemble
{f(Uy) - Ur}nen, where U, and U; are independently random variables. Thinking
of U; as being uniformly distributed in {b(U,), b(U,)}, we observe that f(U,) - U,

is distributed identically to the distribution obtained by taking E, (1 def fW,) -bU,)
with probablhty 3> and Ej @) gef fU,) - b(U,) otherwise. Thus, for every algorithm D,
PrID(Uy+1) = 11 = Pr[D(f(Uy) - Uy) = 1]
1 1

= M) — 2)) —

=5 Pr[D(E) =1] + 5 Pr[D(EP) = 1]
It follows that

PrID(G(Uy)) = 1] — Pr[D(Up+1) = 1]
1 1
1 1 2
=Prlp(E®) =1] ~ (5-PrID(ED) = 1] + 5 -PD(E?) 1))

= % - (Pr[D(EY) =1] = Pr[D(EP) =1])

Thus, in order to show that an algorithm D does not distinguish the ensembles
{G(U)}nen and {U,+1}sen, it suffices to show that D does not distinguish the en-
sembles E!) and E®

We now prove that the ensembles EV = {f(U,) - b(U,)}en and E? =
{f(U,) - b(U,)},en are polynomial-time-indistinguishable. We do so by sim-
plifying the argument presented in the proof of Theorem 3.3.7. That is, us-
ing any algorithm (denoted D) that distinguishes E) and E®, we construct
a predictor (denoted A) of bh(U,) based on f(U,). We assume, to the contradic-
tion and without loss of generality, that for some polynomial p and infinitely
many n’s,

- 1
PrID(f(Uy) - b(Uy) = 11 = Pr[D(f(Uy,) - b(Uy)) = 1] > o) (3.12)

Using D as a subroutine, we construct an algorithm A as follows. On input of
y = f(x), algorithm A proceeds as follows:

1. Select o uniformly in {0, 1}.

2. If D(y - o) = 1, then output o, and otherwise output 1 — o.
127

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
009

, available at https:/www.cambridgmbdgidge/Books @rline @ Cambridge binbeersitysPress, 2

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

Then, letting U; be independent of U, (where U; represents the choice of o in
Step 1 of algorithm A), we have

PrIA(f (U,)) =b(U,)]
= Pr[D(f(U,) - U1) =1 & Uy = b(U,)]
+ Pr[D(f(U,)-U)=0& 1 — U, =b(U,)]
= PrID(f(U,) - b(U,)) = 1 & Uy = b(U,)]
+ Pr[D(f(U,)-bU,) =0& Ul = b(U,)]

PrD(f(Uy) - b(Uy) = 1] + 5 - (1= Pr[D(f(U,) - b(U,) = 11)

E
11
=5 + 5 (PrAD(fW,) - b(U) = 11 = PrAD(fU,) - b(U) = 11)
b
>
2" 2pw)

where the inequality is due to Eq. (3.12.) But this contradicts the theorem’s
hypothesis by which b is a hard-core of f. B

3.4.1.2. An Alternative Presentation

Combining Theorems 3.3.3 and 3.4.1, we obtain, for any polynomial stretch function p,
apseudorandom generator stretching n-bit-long seeds into p(n)-bit-long pseudorandom
sequences. Unfolding this combination we get the following construction:

Construction 3.4.2: Let f : {0, 1}*— {0, 1}* be a 1-1 length-preserving and
polynomial-time-computable function. Let b : {0, 1}* — {0, 1} be a polynomial-
time-computable predicate, and let p(-) be an arbitrary polynomial satisfying
p(n) > n. Define G(s) = 01 - - - 0p(s)), Where sy défs, andforeveryl < j < p(|s|)
it holds that o; = b(s;_1) and s; = f(s;_1). That is,

Let s = s andn = |s|.
For j = 1to p(n),do

0j < b(sj_1) and s; < f(s;j_1).

Output 0103 + - - O ().

The construction is depicted in Figure 3.4. Note that o is easily computed from s;_;, but
if b is a hard-core of f, then o; = b(s;_;) is “hard to approximate” from s; = f(s;_;).
The pseudorandomness property of algorithm G depends on the fact that G does not
output the intermediate s;’s. (By examining the following proof, the reader can easily
verify that outputting the last element, namely, s, does not hurt the pseudorandom-
ness property; cf. Proposition 3.4.6.)

128

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.4. CONSTRUCTIONS BASED ON ONE-WAY PERMUTATIONS

Figure 3.4: Construction 3.4.2, as operating on seed s, € {0, 1}".

Proposition 3.4.3: Let f, b, and G be as in Construction 3.4.2. If b is a hard-core
of f, then G is a pseudorandom generator.

Proof: Consider the generator G’ obtained by reversing the order of the bits in
the output of G. That is, if G(s) = 0103 - - - 05|, then G'(s) = o,y - - - 0207.
We first observe that the ensemble {G(U,)},cn is pseudorandom if and only if
the ensemble {G'(U,)},en is pseudorandom. Using Theorem 3.3.7, it suffices to
show that the ensemble {G’(U,)},cy is unpredictable in polynomial time. This
is shown by generalizing the argument used in the first proof of Theorem 3.4.1.
Toward this goal, it is instructive to notice that

G'()=b(f""71®) - b(f7V72) - bls)

where f%(s) =s and fi*'(s) = fi(f(s)). That is, the jth bit in G'(s), which
equals the p(|s|) — j + 1 bit in G(s), equals b(fPID=i(s)).

Intuitively, the proof of unpredictability proceeds as follows. Suppose, to-
ward the contradiction, that for some j < ¢ o p(n), given the j-bit-long prefix
of G'(U,), an algorithm A’ can predict the j + 1 bit of G'(U,). That is, given
b(f'=(s))---b(f'7/(s)), algorithm A’ predicts b(f'=U*V(s)), where s is uni-
formly distributed in {0, 1}". Then for x uniformly distributed in {0, 1}", given
y = f(x), one can predict b(x) by invoking A’ on input b(f/~1(y))---b(y) =
b(f7(x))---b(f(x)), which in turn is polynomial-time-computable from y =
f(x). In the analysis, we use the hypothesis that f induces a permutation over
{0, 1}*, and we associate x with f'=UTD(s). Details follow.

Suppose, toward the contradiction, that there exists a probabilistic polynomial-
time algorithm A" and a polynomial p’ such that for infinitely many »’s,

Pr[A' (17", G'(U,)) = nexta(G'(U,))] > 1 (3.13)

p'(n)

Then we derive a contradiction by constructing an algorithm A” that, given fU,),
predicts b(U,) with probability that is non- neghglbly hlgher than 5. Algorithm
A" operates as follows, on input y € {0, 1}", where t & p(n)

1. Uniformly select j € {0, ...,¢t — 1}.

2. Compute o <« b(fI='(y))---b(y). (Note that |a| = j.)

129

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

3. Uniformly select 8 € {0, 1}/,
4. Invoke A’ on input (17, @) and record the following values:

(a) in variable ¢, the length of the prefix of o8 read by A’,
(b) in variable t, the output of A’.

5. If £ = j, then halt with output 7.
6. Otherwise (i.e., £ # j), output a uniformly selected bit.

Clearly, A” is implementable in probabilistic polynomial time. We now ana-
lyze the success probability of A” in predicting b(U,) when given f(U,). A
key observation is that on input f(U,), for each possible value assigned to j in
Step 1 the value of o (as determined in Step 2 of A’) is distributed identically
to the j-bit-long prefix of the distribution G’(U,,). This is due to the fact that f
induces a permutation over {0, 1}", and so b(f/~'(U,))- - - b(U,) is distributed
identically to b(f'~'(U,))---b(f'~/(U,)). We use the following notations and
observations:

® Let R; be a randomized process that, given y, outputs b(fI') b)) -r,
where r is uniformly distributed in {0, 1}'~/.

Note that on input y, after selecting j in Step 1, algorithm A” invokes A’ on
input (17, R;(y)). By the foregoing (“key”) observation, the j-bit-long prefix of
R;(f(Uy,)) is distributed identically to the j-bit-long prefix of G'(U,). Also note
that b(f/=1(f(U,))) - - - b(f(U,)) - b(U,) is distributed identically to the (j + 1)-
bit-long prefix of G'(U,) and that the former is obtained by concatenating the
Jj-bit-long prefix of R;(f(U,)) with b(U,).

e Let L4 (y)be arandom variable representing the length of the prefix of y € {0, 1}
read by A" on input (17, p).

Note that the behavior of A’ on input (17, y) depends only on the L 4/(y) first
bits of y (and is independent of the + — L 4/(y) last bits of). On the other hand,
nexty (y) equals the L4 (y) + 1 bit of y.

® Let J be a random variable representing the random choice made in Step 1, and
let U; represent the random choice made in Step 6. Recall that U; is uniformly
distributed in {0, 1}, independently of anything else.

Note that if L 4(y) = J, then A” outputs the value A’(1", y), and otherwise A”
outputs Uj.

Using all the foregoing, we get
PrlA"(f(U,) = b(U,)]
= PrlA'(M, Ry (f(U)) = b(U,) & La(R;(f(U,) = J]
+ Pr{Uy = b(U,) & La(R;(f(Un) # J]
= PrlA'(1", G'(U)) = nexty (G'(U,) & J = La(G'(U,))]
1
+PrlJ # La(G'(U)] - 3

where we use the fact that when L, (R;(f(U,))) = J, the behavior of A’
depends only on the J-bit-long prefix of R,;(f(U,)), which in turn is distributed

130

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.4. CONSTRUCTIONS BASED ON ONE-WAY PERMUTATIONS

identically to the J-bit-long prefix of G’(U,). Next, we use the following ad-
ditional observations:

e Theevent A'(1", G'(U,)) = next4(G'(U,)) is independent of J. Thus,

PriA'(1', G'(U,)) = nexta(G'(U,)) & J = La(G'(U,))]
= PrlJ = La(G'(U))] - PrlA'(1", G'(Uy)) = nexta(G'(Uy))]
e We can assume, without loss of generality, that A’ never reads its entire input
(because the success probability of an arbitrary A’ can be easily met by a modified

A’ that does not read its last input bit; see Exercise 20). It follows that L . (G'(U,,)) €
{0,...,1—1},and so Pr[J = L, (G'(U,))] = 1.

Combining all the preceding with Eq. (3.13) (and t = p(n)), we get

” 1 11t ’ ’ r—1 1
PrlA"(f(U,)) = b(U,)] = T PrlA'(1", G'(U,)) = nexty(G'(U,))] + 3

2
- 1 (1 n 1 > . <1 1) 1
—pm) \2 p'(n) p(n)/) 2
1 n 1
2 pm)-p'n)
for infinitely many rn’s, in contradiction to the hypothesis that b is a hard-core
of f. N

3.4.2. Construction Based on Collections of Permutations

We now apply the ideas underlying Construction 3.4.2 in order to present constructions
of pseudorandom generators based on collections of one-way permutations. The fol-
lowing generic construction is readily instantiated using popular candidate collections
of one-way permutations; see details following the abstract presentation.

3.4.2.1. An Abstract Presentation

Let (1, D, F) be a triplet of algorithms defining a collection of one-way permutations
(see Section 2.4.2) such that D(i) is uniformly distributed over the domain of f; for
every i in the range of /. Let g be a polynomial bounding the number of coins used by
algorithms I and D (as a function of the input length).! For r € {0, 1}, let us denote
by I(1", r) € {0, 1}" the output of algorithm / on input 1" and coin tosses r. Likewise,
D(i, s) denotes the output of algorithm D on input i and coin tosses s € {0, 1}9™. We
remind the reader that Theorem 2.5.2 (existence of hard-core predicates) applies also
to collections of one-way permutations.

Construction 3.4.4: Let (I, D, F) be a triplet of algorithms defining a collection
of one-way permutations, and let B be a hard-core predicate for this collection. Let
p() be an arbitrary polynomial. Forn € Nandr, s € {0, 1}4", define G(r, s) =

In many cases, the polynomial ¢ is actually linear. In fact, one can modify any collection of one-way
permutations so that g(n) = n; see Exercise 19 in Chapter 2.

131

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

o1 Opmy wherei & I(l" r), so D(z s), andforeveryl < j < p(|s|)itholds
thato; = B(i,s;_1)ands; = fi(sj_1). Thatis, on input a seed (r, s) € {0, 1}4™ x
{0, 1}9™) algorithm G operates as follows, where F(i, x) = fi(x):

Seti < I(1",r)and sy < D(i, s).
For j = 1to p(n), do

0j < B(i,sj_1)ands; < F(i,s;_1).

Output 0103+ - - ().

On input seed (r,), algorithm G first uses r to determine a permutation f; over D; (i.e.,
i < I1(1",r)). Second, algorithm G uses s to determine a “starting point” s uniformly
distributed in D;. The essential part of algorithm G is the repeated application of the
function f; to the starting point s, and the outputting of a hard-core predicate for
each resulting element. This part mimics Construction 3.4.2, while replacing the single
permutation f with the permutation f; determined earlier. The expansion property of
algorithm G depends on the choice of the polynomial p(-). Namely, the polynomial
p(-) should be larger than twice the polynomial g(-).

Theorem 3.4.5: Let (I, D, F), B, q(-), p(-), and G be as in Construction 3.4.4,
and suppose that p(n) > 2q(n) for all n’s. Further suppose that for every i in the
range of algorithm I, the random variable D(i) is uniformly distributed over the
set D;. Then G is a pseudorandom generator.

Theorem 3.4.5 is an immediate corollary of the following proposition.

Proposition 3.4.6: Let n and t be integers. For every i in the range of 1(1") and
every x in D;, define

Gi(x) = B, x)- BG, fi(x))--- B(i, f{~'(x))

where fl.o(x) = x and fijﬂ(x) = ﬁj(ﬁ(x))for any j > 0. Let (I, D, F) and B
be as in Theorem 3.4.5, with 1,, a random variable representing 1(1") and X, =
D(1,) a random variable uniformly distributed in D,,. Then for every polynomial
p(-), the ensembles

{(L. G7X), fE7X)) Yo and { (Lo Upiys 27X},

are polynomial-time-indistinguishable.

Hence the distinguishing algorithm gets, in addition to the p(n)-bit-long sequence to
be examined, the index i chosen by G (in the first step of G’s computation) and the last
domain element (i.e., £ (X,)) computed by G. Even with this extra information it is
infeasible to distinguish G f")(Xn) = G(Uypyny) from U). We note that providing the
distinguishing algorithm with f;” (")(Xn) only makes the proposition stronger and that
this stronger form is not required for proving Theorem 3.4.5. However, the stronger
form will be used in Chapter 5.

132

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.4. CONSTRUCTIONS BASED ON ONE-WAY PERMUTATIONS

Proof Outline: The proof is analogous to the proof of Proposition 3.4.3. Specifi-
cally, we let G’(x) = B(i, f’_l(x)) - B(i, x) (the reverse of G{(x)) and prove
that even when given I, and f; PM(x,) as auxiliary inputs, the sequence
G” " (X,) is unpredictable in polynomial time. This is done by a reducibility
argument: An algorithm predicting the next bit of G7"(X,,), given also I, and
f ,” @) (X»), is used to construct an algorithm for predicting B(I,, X,) from I, and
f1,(X,,), which contradicts the hypothesis by which B is a hard-core predicate
for the collection (I, D, F). The extra hypothesis by which D(i) is uniformly
distributed over D; is used in order to establish that the distributions D(i) and
fl-j (D(i)) are identical? for every j < t. The reader should be able to complete
the argument. Wl

Generalization. Proposition 3.4.6 and Theorem 3.4.5 remain valid even if one relaxes
the condition concerning the distribution of D(i) and requires only that D(i) be sta-
tistically close (as a function in |i|) to the uniform distribution over D;. Similarly, one
can relax the condition regarding I so that the foregoing holds for all but a negligible
measure of the i’s generated by 7(1") (rather than for all such i’s).

3.4.2.2. Concrete Instantiations

As an immediate application of Construction 3.4.4, we derive pseudorandom generators
based on either of the following assumptions:

® The intractability of the discrete-logarithm problem: Specifically, we assume that the
DLP collection, as presented in Section 2.4.3, is one-way. The generator is based on the
fact that, under the foregoing assumption, the following problem is intractable: Given a
prime P, a primitive element G in the multiplicative group mod P, and an element Y
in this group, guess whether or not there exists 0 < x < P/2 such that Y = G* mod P.
In other words, the latter predicate, denoted Bp, constitutes a hard-core for the DLP
collection.
The generator uses the seed in order to select a prime P, a primitive element G
in the multiplicative group mod P, and an element Y of the group. It outputs the
sequence

Bp(Y), Bp(GY mod P), Bp (G ™" mod P), ...

That is, the function being iterated is Z +— GZ% mod P.

o The difficulty of inverting RSA: Specifically, we assume that the RSA collection, as pre-
sented in Section 2.4.3, is one-way. The generator is based on the fact that under this
assumption, the least significant bit (denoted Isb) constitutes a hard-core for the RSA
collection.

The generator uses the seed in order to select a pair of primes (P, Q), an integer
e relatively prime to ¢(N) = (P — 1)-(Q — 1), and an element X in the multiplicative

2We comment that weaker hypotheses can in fact suffice for that purpose. Alternatively, one can postulate that
the function f; is hard to invert on the distribution fl:’ (D(i)) forevery j < t.

133

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

group mod N Lp. Q. It outputs the sequence
Isb(X), Isb(X* mod N), Isb(X< ™M mod N), Isb(X¢ ™™ mod N), ...

That is, the function being iterated is Z +— Z¢ mod N.

® The intractability of factoring Blum integers: Specifically, we assume that given a prod-
uct of two large primes, each congruent to 3 (mod 4), it is infeasible to retrieve these
primes. The generator is based on the fact that (under this assumption) the least signif-
icant bit constitutes a hard-core predicate for the modular squaring function. We also
use the fact that for such moduli (called Blum integers), modular squaring induces a
permutation over the quadratic residues.
The generator uses the seed in order to select a pair of primes (P, Q), each congruent
to3 (mod 4), and an element X in the multiplicative group mod N Lp. Q. It outputs
the sequence

Isb(X), Isb(X? mod N), Isb(X ™M mod N), Isb (X2 ™M mod N), ...
That is, the function being iterated is Z — Z2 mod N.

All these suggestions rely on a randomized algorithm for selecting random primes.
Thus, regarding the random bits such an algorithm uses, the fewer the better. Obvious
algorithms for generating n-bit-long random primes utilize O(n*) random bits (see
Appendix A). We comment that there are procedures that are more randomness-efficient
for generating an n-bit-long prime, utilizing only O(n) random bits.

3.4.3. Using Hard-Core Functions Rather than Predicates

Construction 3.4.2 (resp., Construction 3.4.4) can be easily generalized to one-way
permutations (resp., collections of one-way permutations) having hard-core functions,
rather than hard-core predicates. The advantage in such constructions is that the number
of bits output by the generator per each application of the one-way permutation is
larger (i.e., greater than 1). We assume familiarity with Section 2.5.3, where hard-core
functions are defined. Next, we present only the generalization of Construction 3.4.4.

Construction 3.4.7: Let (I, D, F) be as in Construction 3.4.4, and suppose that

H is a corresponding hard-core function. Let p(-) be an arbitrary polynomial

Forn € Nandr,s € {0, 1}4", define G(r, s) = a; - O p(n) where i < I(l" r),
D(l s), and for every 1 < j < p(|s|) it holds that o; = H(i, sj_1) and
ft(sj—l)-

For a hard-core function H, we denote by £4(n) the logarithm to base 2 of the size of
the range of H(i, -) for i produced by I(1"). Any hard-core predicate can be viewed
as a hard-core function H with £4(n) = 1. Recall that any one-way function can be
modified to have a hard-core function H with £5(n) = O(logn) (see Theorem 2.5.6).
Also, assuming that the RSA collection is one-way, the O(log) least significant bits
constitute a hard-core function (with £ (n) = O(logn)). The same holds for the Rabin
collection.

134

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.5.* CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

Theorem 3.4.8: Let (I, D, F), H, q(-), p(-), and G be as in Construction 3.4.7,
and suppose that p(n) - £y (n) > 2q(n) for all n’s. Further suppose that for every
i in the range of algorithm I, the random variable D(i) is uniformly distributed
over the set D;. Then G is a pseudorandom generator.

The proof, which is via a natural generalization of the proof of Theorem 3.4.5, is
omitted. Again, the theorem holds even if the distinguishing algorithm gets, in addition
to the p(n) - £5(n)-bit-long sequence to be examined, the index i chosen by G (in the
first step of G’s computation) and the last domain element (i.e., f;’ (")(so)) computed
by G. Even with this extra information it is infeasible to distinguish between G(Uayn))
and Upy.4(n)-

The generator of Construction 3.4.7 outputs £4(n) bits per each application of the
one-way collection, where H is the corresponding hard-core function. Thus, if one
could prove the existence of a hard-core function H with £4(n) = Q(n) for the Rabin
collection, then a very efficient pseudorandom generator would follow (producing €2(rn)
bits per each modular squaring with respect to an n-bit modulus).

3.5.* Constructions Based on One-Way Functions

It is known that one-way functions exist if and only if pseudorandom generators exist.
However, the currently known construction, which transforms arbitrary one-way func-
tions into pseudorandom generators, is impractical. Furthermore, the proof that this
construction indeed yields pseudorandom generators is very complex and unsuitable
for a book of this nature. Instead, we confine ourselves to a presentation of some of
the ideas underlying this construction, as well as some partial results. (We believe that
these ideas may be useful elsewhere.)

3.5.1. Using 1-1 One-Way Functions

Recall that if f is a 1-1 length-preserving one-way function and b is a corresponding
hard-core predicate, then G(s) & f(s) - b(s) constitutes a pseudorandom generator,
where x - y denotes the concatenation of the strings x and y. Let us relax the condition
imposed on f and assume that f is a 1-1 one-way function (but is not necessarily length-
preserving). Without loss of generality, we can assume that there exists a polynomial
p(-) such that | f(x)| = p(|x|) for all x’s. In case f is not length-preserving, it follows
that p(n) > n. At first glance, one might think that we could only benefit in such
a case, because f by itself has an expanding property. But on second thought, one
should realize that the benefit is not clear, because the expanded strings may not “look
random.” In particular, it may be the case that the first bit of f(x) is zero for all x’s.
Furthermore, it may be the case that the first | f (x)| — |x| bits of f(x) are all zero for all
x’s. In general, f(U,) may be easy to distinguish from U () (otherwise f itself would
constitute a pseudorandom generator). Hence, in the general case, we need to get rid
of the expansion property of f because it is not accompanied by a “pseudorandom”
property. In general, we need to shrink f(U,) back to a length of approximately 7 so that

135

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

the shrunk result will induce a uniform distribution. The question is how to efficiently
carry out this shrinking process.)

Suppose that there exists an efficiently computable function 4 such that f;,(x) o
h(f(x)) is length-preserving and 1-1. In such a case we can let G(s) &ef h(f(s)) - b(s),
where b is a hard-core predicate for f, and get a pseudorandom generator. The pseu-
dorandomness of G follows from the observation that if b is a hard-core for f, it is
also a hard-core for f, (since an algorithm guessing b(x) from A(f(x)) can be easily
modified so that it guesses b(x) from f(x), by applying £ first). The problem is that
we “know nothing about the structure” of f and hence are not guaranteed that such an
h exists. An important observation is that a uniformly selected “hashing” function will
have approximately the desired properties. Hence, hashing functions play a central role
in the construction, and consequently we need to discuss these functions first.

3.5.1.1. Hashing Functions

Let S/ be a set of strings representing functions mapping n-bit strings to m-bit strings.
For simplicity we assume that S" = {0, 1}'™ for some function /. In the sequel, we
freely associate the strings in S with the functions that they represent. Let H," be a
random variable uniformly distributed over the set S)". We call S} a hashing family (or
a family of hashing functions) if it satisfies the following three conditions:

1. S} is a pairwise-independent family of mappings: Forevery x # y € {0, 1}", the random
variables H,"(x) and H,"(y) are independent and uniformly distributed in {0, 1}".

2. S™ has succinct representation: S™ = {0, 1}pem),

3. S can be efficiently evaluated: There exists a polynomial-time algorithm that on input
a representation of a function / (in S)') and a string x € {0, 1}" returns A(x).

We stress that hashing families as defined here carry no hardness requirement and exist
independently of any intractability assumption.? One widely used hashing family is the
set of affine transformations mapping n-dimensional binary vectors to m-dimensional
ones (i.e., transformations effected by multiplying the n-dimensional vector by an n-by-
m binary matrix and adding an m-dimensional vector to the result). A hashing family
with more succinct representation is obtained by considering only the transformations
effected by Toeplitz matrices (i.e., matrices that are invariant along the diagonals). For
further details, see Exercise 22.

The following lemma concerning hashing functions is central to our analysis (as
well as to many applications of hashing functions in complexity theory). Loosely
speaking, the lemma asserts that if a random variable X, does not assign too much
probability mass to any single string, then most /’s in a hashing family will have k(X))
distributed almost uniformly. Specifically, when using a hashing family S, as earlier,
we shall consider only random variables X, satisfying Pr[X,=x] « 27, for every
x € {0, 1}

31n contrast, notions such as collision-free hashing and universal one-way hashing have a hardness requirement
and exist only if one-way functions exist. (Collision-free hashing and universal one-way hashing will be defined
and discussed in Chapter 6, which will appear in Volume 2.)

136

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.5.* CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

Lemma 3.5.1: Let m < n be integers, S’” be a hashing family, and b and § be two
reals such thatm < b <nand§ > - *. Suppose that X, is a random variable
distributed over {0, 1}" such that for every x, it holds that Pr[X, =x] < 27". Then
for every a € {0, 1} and for all but at most a 2~*="™872 fraction of the h’s in
S™ it holds that

n’

Prirn(X,) =ale(1£45)-27"

The average value of Pr[h(X,) =«], when averaging over all &’s, equals 27" . Hence the
lemma upper-bounds the fraction of /’s that deviate from the average value. Specifi-
cally, a function A not satisfying Pr[h(X,)=a] € (1 £68)-27™ is called bad (for «
and the random variable X,). The lemma asserts that the fraction of bad functions
is at most 2-¢~™§=2. Typically we shall use § & 2" « 1 (making the deviation
from average equal the fraction of bad /’s). Another useful choice is § > 1 (which
yields an even smaller fraction of bad &’s, yet here non-badness implies only that
Prla(X,) =] < (1 46)-27", since Pr[h(X,) = a] > 0 always holds).

Proof: Fix anarbitrary random variable X, satisfying the conditions of the lemma
and an arbitrary o € {0, 1}". Denote w, & Pr[X, =x]. For every h, we have

Prin(X,) = ol =) w.iu(h)

where ¢, (h) equals 1if 2(x) = «, and 0 otherwise. Hence, we are interested in the
probability, taken over all possible choices of /2, that 27" — >~ w, ¢, (h)| > 82""
Looking at the ¢,’s as random variables defined over the random variable H", i

is left to show that
[Z NS

This is proved by applying Chebyshev’s inequality, using the following facts:

52

2(bm)
>48.27"

1. The ¢&,’s are pairwise independent, and Var(¢,) < 27" (since ¢, = 1 with proba-
bility 27, and ¢, = 0 otherwise).

2. w, < 27? (by the hypothesis), and >~ w, = 1.

Namely,
Var [, wily]
Pr||27™ — Wele| >6-27"| < —=> "=
[2w] G2y
>, w? - Var(Z,)
= 52 . 0—2m
2-mp—b
82 2 —2m
The lemma follows. W
137

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

3.5.1.2. The Basic Construction

Using any 1-1 one-way function and any hashing family, we can take a major step
toward constructing a pseudorandom generator.

Construction 3.5.2: Let f:{0, 1}*— {0, 1}* be a function satisfying | f(x)|=
p(|x|) for some polynomial p(-) and all x’s. For any integer function | :N — N,
let g : {0, 1}* — {0, 1}* be a function satisfying |g(x)| = I(|x|) + 1, and let Sy,\"

be a hashing family. For every x € {0, 1}" and h € SZ(_,Z])("), define

def

G(x, h) = (h(f(x)), h, g(x))

Clearly, |G(x, h)| = (|x| = I(|x|)) + |k + {(|x]) + 1) = |x| 4+ || + 1. Thus, G satis-
fies the expanding requirement. The next proposition provides an upper bound on the
distinguishability between the output of G and a uniform ensemble (alas, this upper
bound is negligible only if [: N — N is super-logarithmic).

Proposition 3.5.3: Let f, I, g, and G be as before. Suppose that f is 1-1 and
that g is a hard-core function of f. Then for every probabilistic polynomial-time
algorithm A, every positive polynomial p(-), and all sufficiently large n’s,

1) 1

IPrA(G(U,, Uy)) = 1] = PrlA(Uyq511) = 11| <2-27 7 4+ —
p(n)

n—I(n)
pn)

where k is the length of the representation of the hashing functions in S
Recall that by Exercises 22 and 23 we can use kK = O(n). In particular, the forego-
ing proposition holds for functions /() of the form /(n) e log, n, where ¢ > 0 is a
constant. For such functions [, every one-way function (can be easily modified into
a function that) has a hard-core g as required in the proposition’s hypothesis (see
Section 2.5.3). Hence, we get very close to constructing a pseudorandom generator
(see later).

Proof Sketch: Let H ;(,1§(") denote a random variable uniformly distributed over

S;’,(_n])(") . We first note that

G(Upni) = (Hyo (£ (UD), Hoih™ . g(U,))
Uit = (Un—igs H,’,Q;i(”, Usny+1)

We consider the hybrid distribution (H"(,,l)(")(F(U), H;@g(”), Uiny+1)- The

proposition is a direct consequence of the following two claims.
Claim 3.5.3.1: The ensembles

{(Hyo " (F WD) Hyi™ s gU) Y, en
138

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.5.* CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

and

{(Hyo " (f WD) Hyo™ s Uninst) }eny

are polynomial-time-indistinguishable.

Proof Idea: Use a reducibility argument. If the claim does not hold, then con-
tradiction of the hypothesis that g is a hard-core of f is derived. Specifically,
given an algorithm D that violates the claim, we construct an algorithm D’ that,
on input (y, z), uniformly selects & € S"-'™ and outputs D(h(y), h, z). Then D’

pn)
distinguishes between {(f(U,), g(U,)}nen and {(f(U,), Uigy+1)}nen. O

Claim 3.5.3.2: The statistical difference between the random variables

(H ™ F WU, Hyoh™, Usgaysn)

and

(Un—itny» Hy (n) Ul(n)+1)

is bounded by 2 - 2773,

Proof Idea: Use the hypothesis that S"(nl)(") is a hashing family, and apply
Lemma 3.5.1. Specifically, use § = 27/®/3_ note that Pr[f(U,)=y] < 27" for
every y, and count separately the contributions of bad and non-bad %’s to the
statistical difference between (H "(né(")(UL, ”(né(")) and (U,—yn), Z(ni(")) O
Because the statistical difference is a bound on the ability of algorithms to dis-
tinguish, the proposition follows. l

Extension. Proposition 3.5.3 can be extended to the case in which the function f is
polynomial-to-1 (instead of 1-to-1). Specifically, let f satisfy | f~'(f(x))| < g(|x]|) for
some polynomial g(-) and all sufficiently long x’s. The modified proposition asserts
that for every probabilistic polynomial-time algorithm A, every polynomial p(-), and
all sufficiently large n’s,

n)—lo n 1
IPHA(G(U,. Up) = 1] = PrAWUpsis) = 1] <2-27 7 07 ¢ p(n)
pwn

where k is as in Proposition 3.5.3.

3.5.1.3. Obtaining Pseudorandom Generators

With Proposition 3.5.3 proved, we consider the possibility of applying it in order to con-
struct pseudorandom generators. We stress that applying Proposition 3.5.3 with length
function [(-) requires having a hard-core function g for f, with |g(x)| = {(|x])+ 1.
By Theorem 2.5.6 (in Section 2.5.3), such hard-core functions exist essentially for all
one-way functions, provided that /(-) is logarithmic. (Actually, Theorem 2.5.6 asserts
that such hard-cores exist for a modification of any one-way function, where the mod-
ified function preserves the 1-1 property of the original function.) Hence, combining

139

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

Theorem 2.5.6 and Proposition 3.5.3 and using a logarithmic length function, we get
very close to constructing a pseudorandom generator. In particular, for every polyno-
mial p(-), using [(n) &3 log, p(n), we can construct a deterministic polynomial-time
algorithm expanding O (n)-bit-long seeds into (O (n) + 1)-bit-long strings such that no
polynomial-time algorithm can distinguish the output strings from uniformly chosen
ones with probability greater than ﬁ (except for finitely many n’s). Yet this does not
imply that the output is pseudorandom (i.e., that the distinguishing gap is smaller than
any polynomial fraction). An additional idea is needed (because we cannot use [(-)
larger than any logarithmic function). In the sequel, we shall present two alternative
ways of obtaining a pseudorandom generator from Construction 3.5.2.

The First Alternative. As a prelude to the actual construction, we use Construc-
tion 3.3.2 (in Section 3.3.2) in order to increase the expansion factors for the algo-
rithms arising from Construction 3.5.2. In particular, for every i € N, we construct a
deterministic polynomial-time algorithm, denoted G;, expanding n-bit-long seeds into
n3-bit-long strings such that no polynomial-time algorithm can distinguish the output
strings from uniformly chosen ones with probability greater than an (except for finitely
many n’s). Denote these algorithms by G, G5, We now construct a pseudorandom
generator G by letting

GE)EGis)DGas) D+ @ Gonis)y (Smais))

where 69 denotes bit-by-bit XOR of strings, 152« Su(spy =S, |8i| = ml(sll‘) + 1, and
m(n) & f 4 Clearly, |G(s)| ~ (m'(ﬂ‘))% |s|. The pseudorandomness of G follows
by a reducibility argument. Specifically, if for some i and infinitely many n’s, some
polynomial-time algorithm can distinguish G(U,) from U,. with probability greater
than n?+/3’ then we can distinguish G; (U, ;n(n)) from U,/ (ny3 (in polynomial time) with

probability greater than # in contradiction to the hypothesis regarding G;.

_ 1
— (n/m@m)°

The Second Alternative. Here we apply Construction 3.5.2 to the function f defined by
— def
FQn) = fG) - flx)
where [x1| = = |x,| = n. The benefit in applying Construction 3.5.2 to the function
f is that we can use [(nz) = n — 1, and hence Proposition 3.5.3 indicates that G is a
pseudorandom generator. All that is left is to show that f has a hard-core function that
maps n?-bit strings into n-bit strings. Assuming that b is a hard-core predicate of the
function f, we can construct such a hard-core function for f. Specifically:

Construction 3.5.4: Ler f:{0, 1}*— {0, 1}* and b:{0, 1}* — {0, 1}. Define

Foor,) € f) -)
def

g(xh .. xn) = b(xl) b(xn)

where |x{| = --- = |x,| = n.

4The choice of the function m : N — N is rather arbitrary; any unbounded function m : N — N satisfying

m(n) < n?3 will do.

140

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.5.* CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

Proposition 3.5.5: Let f and b be as in Construction 3.5.4. If b is a hard-core
predicate of f, then g is a hard-core function of f.

Proof Idea: Use the hybrid technique. The ith hybrid is
(FUD), ..., FU™), b(UD),....b(UD), U, ..., U")

Indeed, the nth hybrid equals (f(U,2), g(U,2)), whereas the Oth hybrid equals
(f(U,2), U,). Next, show how to transform an algorithm that distinguishes neigh-
boring hybrids into one predicting b(U,) from f(U,). Specifically, this transfor-
mation is analogous to a construction used in the proof of the “opposite direction”
for Theorem 3.3.7 and in the second proof of Theorem 3.4.1. B

Conclusion. Using either of the preceding two alternatives, we get the following:

Theorem 3.5.6: If there exist 1-1 one-way functions, then pseudorandom gener-
ators exist as well.

The entire argument can be extended to the case in which the function f is polynomial-
to-1 (instead of 1-to-1). Specifically, let f satisfy | f~' f(x)| < g(|x|) for some poly-
nomial ¢g(-) and all sufficiently long x’s. We claim that if f is one-way, then (either
of the preceding alternatives yields that) pseudorandom generators exist. Proving the
latter statement using the first alternative is quite straightforward, given the exten-
sion of Proposition 3.5.3 (stated at the end of Section 3.5.1.2). For proving the state-

ment using the second alternative, apply Construction 3.5.2 to the function f, with

I(n*) Yn—1+n- log, g(n). This requires showing that f has a hard-core function

that maps n2-bit strings into (n - (1 + log, g(n)))-bit strings. Assuming that g is a hard-
core function of the function f, with |g(x)| = 1 4 log, ¢(|x|), we can construct such a
hard-core function for f. Specifically,

0t x) o) - g(xn)

where |x|| = --- = |x,| = n.

3.5.2. Using Regular One-Way Functions

The validity of Proposition 3.5.3 relies heavily on the fact that if f is 1-1, then f(U,)
maintains the “entropy” of U, in a strong sense (i.e., Pr[f(U,) = a] < 27" for every
«). In this case, it is possible to shrink f(U,) (to n — I(n) bits) and get almost uniform
distribution over {0, 1}"~/™_ As stressed earlier, the condition can be relaxed to requir-
ing that f be polynomial-to-1 (instead of 1-to-1). In such a case, only logarithmic loss
of “entropy” occurs, and such a loss can be compensated by an appropriate increase in
the range of the hard-core function. We stress that hard-core functions of logarithmic
length (i.e., satisfying |g(x)| = O(log|x|)) can be constructed for any one-way func-
tion. However, in general, the function f may not be polynomial-to-1, and in particular
it can map exponentially many pre-images to the same image. If that is the case, then

141

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

applying f to U, will yield a great loss in “entropy” that cannot be compensated by
using the foregoing methods. For example, if f(x, y) & /()0 for |x|=|y| then
Prif(U,) =a] > 2~ for some «’s. In this case, achieving uniform distribution from
f(U,) requires shrinking it to length approximately n/2. In general, we cannot com-
pensate for these lost bits (using the foregoing methods), because f may not have a
hard-core with such a huge range (i.e., a hard-core g satisfying |g(«)| > %). Hence,
in this case, a new idea is needed and indeed is presented next.

The idea is that in case f maps different pre-images into the same image y, we
can augment y by the index of the pre-image in the set f~!(y), without damaging
the hardness-to-invert of f. Namely, we define F'(x) & f(x) -idx ¢(x), where idx ¢(x)
denotes the index (say by lexicographic order) of x in the set {x" : f(x")= f(x)}. We
claim that inverting F' is not substantially easier than inverting f. This claim can be
proved by a reducibility argument. Given an algorithm for inverting F', we can invert f
as follows. On input y (supposedly in the range of f(U,)), we first select m uniformly
in{l, ..., n},nextselecti uniformlyin {1, ..., 2"}, and finally try to invert F on (y, i).
When analyzing this algorithm, consider the case i = [log, | f~!(y)|].

The suggested function F does preserve the hardness-to-invert of f. The problem is
that F' does not preserve the easy-to-compute property of f. In particular, for general
f, it is not clear how to compute idx ;(x); the best we can say is that this task can be
performed in exponential time (and polynomial space). Again, hashing functions come
to the rescue. Suppose, for example, that f is 2" -to-1 on strings of length n. Then we can
letidx s (x) = (H,", H)"(x)), obtaining “probabilistic indexing” of the set of pre-images.
We stress that applying this idea requires having a good estimate for the size of the set of
pre-images (of a givenimage). Thatis, given x, it should be easy to compute | £~ (£(x)).
A simple case where such an estimate is handy is the case of regular functions.

Definition 3.5.7 (Regular Functions): A function f:{0, 1}* — {0, 1}* is called
regular if there exists an integer function m :N— N such that for all sufficiently
long x € {0, 1}, it holds that

1y : f) = fO) Alx] = [yl}] = 270D

For simplicity, the reader can further assume that there exists an algorithm that on input
n computes m(n) in poly(n) time. As we shall see at the end of this subsection, one can
do without this assumption. For the sake of simplicity (of notation), we assume in the
sequel that if f(x) = f(y), then |x| = |y|.

Construction 3.5.8: Let f:{0, 1}* — {0, 1}* be a regular function, withm(|x|) =
log, | f~'(f(x))| for some integer function m(-). Let | :N— N be an integer func-
tion, and S™™='" q hashing family. For every x € {0, 1}" and h € S"™=I™,
define

def

F(x, h) = (f(x), h(x), h)

If f can be computed in polynomial time and m(n) can be computed from 7 in poly(n)
time, then F can be computed in polynomial time. We now show that if f is a regular

142

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.5.* CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

one-way function, then F' is “hard to invert.” Furthermore, if /(-) is logarithmic, then F
is “almost 1-1.”

Proposition 3.5.9: Let f, m, I, and F be as in Construction 3.5.8. Suppose that
there exists an algorithm that on input n computes m(n) in poly(n) time. Then:

1. F is “almost” 1-1:
Pr[|F~F (U, HM=0)| 5 210+1] < 0 (n - 27100/4)

(Recall that H* denotes a random variable uniformly distributed over S%.)

2. F “preserves” the one-wayness of f:
If f is strongly (resp., weakly) one-way, then so is F.

Proof Sketch: Part 1 is proved by applying Lemma 3.5.1, using the hypothe-
sis that S"™~'™ is a hashing family. Specifically, Lemma 3.5.1 implies that for
every o and all but a 27/™ fraction of & € $™™=!™ it holds that Pr[h(U,)=«a] <
2-mmH M+ Thus, for every a, it holds that Pr[|F~!(a, H™W=/M)| > 2/m+1] <
27!™_ Letting B L, h) : |[F~Ya, h)| > 2/}, we have PrI(Unmm—in)»
HM"mW=Imye Bl < 27! Using Claim 3.5.9.1 (given later), it follows that
Pri(H"™=(U,), H"™=W) e B] < O(m(n) - 27/™)!4 as required in Part 1.

Part 2 is proved using a reducibility argument. Assuming, to the contradiction,
that there exists an efficient algorithm A that inverts F* with unallowable success
probability, we construct an efficient algorithm A’ that inverts f with unallowable
success probability (reaching contradiction). For the sake of concreteness, we
consider the case in which f is strongly one-way and assume, to the contradiction,
that algorithm A inverts F on F(U,, H"™~™) with success probability £(n),such
that e(n) > pol o) for infinitely many n’s. Following is a description of A’.

On input y (supposedly in the range of f(U,)), algorithm A’ selects uniformly
h € ™™= and @ € {0, 1}™W~1™ and initiates A on input (y, &, h). Algorithm
A’ sets x to be the n-bit-long prefix of A(y, «, i) and outputs x.

Clearly, algorithm A’ runs in polynomial time. We now evaluate the success
probability of A’. For every possible input y to algorithm A’, we consider a
random variable X, uniformly distributed in f~!(y) (i.e., Pr[X, = o] = 27"™
if « € f71(y), and Pr[X, = a] = 0 otherwise). Let 8(y) denote the success
probability of algorithm A on input (y, H*(X,), H"), where n¥ |y| and

k % m(n) — (n). That is,

8(y) & Pr[A(y, H(X,), HY) € F~'(y, H*(X,), H")] (3.14)

By the contradiction hypothesis (and the definition of &8(y)), it holds that
E[S(f(U))] = e(n), and Pr[8(f(U,)) > %] > % follows. We fix an arbitrary
y € {0, 1}" such that 6(y) > % We prove the following technical claim.

Claim 3.5.9.1: Let k < n be natural numbers, and let X,, € {0, 1}" be a random
variable satisfying Pr[X, =x] < 27* for all x € {0, 1}". Suppose that B is a set

143

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

of pairs, and

5 < Pr[(H (X,), H') € B]
Then
k 84

Using the definition of A’ and applying Claim 3.5.9.1 to Eq. (3.14), it follows
that the probability that A’ inverts f on y equals

s* S(y)“

Pr[A(y, Ux, H) € F~'(y, U, Hy)] > 0® ” 009 (3.15)
Thus,
PrlA'(fU)) € f1(fUN]
e(n) e(n)

> Pr|3(f(Uy) > —} : PF[A’(f(Un)) e fTUfWY) |8(f(U) >

=N (/2
2 O(n)
We reach a contradiction (to the hypothesis that f is strongly one-way), and the
proposition follows.> All that is left is to prove Claim 3.5.9.1. The proof, which
follows, is rather technical. Il

2

We stress that the fact that m(n) can be computed from n does not play an essential
role in the reducibility argument (as it is possible to try all possible values of m(n)).

Claim 3.5.9.1is of interest for its own sake. However, its proof provides no significant
insights and can be skipped without significant damage (especially by readers who are
more interested in cryptography than in “probabilistic analysis”™).

Proof of Claim 3.5.9.1: We first use Lemma 3.5.1 to show that only a “tiny” fraction
of the hashing functions in S,’f can map a “large” probability mass into “small” subsets.
Once this is done, the claim is proved by dismissing those few bad functions and relating
the two probabilities, appearing in the statement of the claim, conditioned on the function
not being bad. Details follow.

We begin by bounding the fraction of the hashing functions that map a “large” prob-
ability mass into “small” subsets. We say that a function & € S¥ is (T, W)-expanding if
there exists aset R {0, 1}¥ of cardinality W - 2% such that Pr[A(X,)eR] > (T + 1) - V.

51n case f is weakly one-way, the argument is slightly modified. Specifically, suppose that for some positive
polynomial, any probabilistic polynomial-time algorithm that tries to invert f on f(U,) fails with probability at
least 1/p(n). We claim that any probabilistic polynomial-time algorithm that tries to invert F on F(U,, H,’f) fails
with probability at least 1/4 p(n). Suppose, toward the contradiction, that there exists a probabilistic polynomial-
time algorithm that inverts F on F(U,, H, k) with probability at least 1 — &(n), where e(n) < 1/4p(n) Then, for
8(-), as before, it holds that E[§(f(U,))] = | — e(n), and Pr[(S(f(U,l)) >1-2pn)en)] >1-— p(follows.
Using e(n) < 1/4p(n), we infer that for at least a 1 — 2p(71) fraction of the n-bit-long strings x, it holds that
8(f(x)) = Applymg Claim 3.5.9.1, it follows that (for these x’s) the probability that A’ inverts f on f(x)
is Q(1/n). Conmdermg an algorithm that iterates A’ for O(n?) times, we obtain a probabilistic polynomial-
time algorithm that inverts f on f(U,) with success probability at least (1 — %) S(1=2"")>1-—
contradiction to our hypothesis concerning f.

1 .
Py 10

144

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.5.* CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

That is, 2 maps to some small set (of density W) a probability mass 7 + 1 times the den-
sity of the set (i.e., & maps a relatively large probability mass to this set). Our first goal
is to prove that for some constant ¢ > 0, at most § 3 of the h’s are (5'2 , %3]() expanding. In
other words, only g of the functions map to some set of density 2> 3.7 @ probability mass of
more than(+1)- 3 ~ 3

We start w1th a related questlon. We say that o € {0, 1}¥ is t-overweighted by the func-
tion & if Pr{a(X,) = @] > (t + 1)-27%. A function h € S¥ is called (¢, p)-overweighting
if there exists a set R C {0, 1}* of cardinality p2F such that each w € R is t-overweighted
by h. (Clearly, if & is (¢, p)-overweighting, then it is also (z, p) -expanding, but the con-
verse is not necessarily true.) We first show that at most a zz fraction of the h’s are
(t, p)-overweighting. The proof is in two steps:

1. Recall that Pr[X,,=x] < 27 * for every x. Using Lemma 3.5.1, it follows that each
a €{0, 1}* is t-overweighted by at most a ¢ 2 fraction of the /’s.

2. Consider a bipartite graph having (¢, p)-overweighting functions on one side and
k-bit-long strings on the other side such that (h, @) € S,’f x {0, 1}* is an edge in
this graph if and only if « is r-overweighted by A. In this graph, each of the
(t, p)-overweighting functions has degree at least p - 2%, whereas each image «
has degree at most 2 |S"| Thus, the number of (¢, p)-overweighting functions

2kt 2. |s*
is at most % - | 85.

We now relate the expansion and overweighting properties, showing that upper bounds
on the number of overweighting functions yield upper bounds on the number of expanding
functions (which is the non-trivial direction). Specifically, we prove the following:

Subclaim: For T > 4, if h is (T, V)-expanding, then there exists an integer i € {1, ...,
k + 2} such that & is (T - 273, k;’—,ﬂ)-overweighting.

The subclaim is proved as follows: Let R be a set of cardinality W -2* such that
Prih(X,)eR]1 > (T + 1) - W.Fori =1, ...,k + 3,let R; C R denote the subset of points
in R that are (2~ - T)-overweighted by /. (Indeed, Ry 43 = #.) Suppose, contrary to the
claim, that |R;| < kZL“ .ok foreveryi € {1,...,k+2}. ThenforT >4 andk > 1,
k+2

h(Xn) € | JRi \ Rij1)

i=I

k+2
T) R\ R;
(Z+1> N\ E (2(l+])_3~T—}—1)~ [Ri \ Ri+il

2k
i=1

Prlh(X,) € Rl = Pr[h(X,) € (R\ RD] + Pr

IA

A

T k+2 w
§ i—2 T

i=1

IA

(T+1)- v

which contradicts the hypothesis regarding R.
Using this subclaim (for any 7 > 4 and ¥ > 0), the fraction of the /4’s that are (T', V)-
expanding is bounded above by

Zk: 1 128k
<
— (T -2i=3)2. v T2 . @

](.2r+1
145

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

where the ith term in the sum is an upper bound on the fraction of the h’s that are

(T - 2173, T 2]+1) overwe1ght1ng For ¢ = 1536, setting T = and\ll = 3Ck,we conclude

m fractlon of the h’s are (<% 5 3Ck) expanding.

Having established an upper bound on suitably expanding functions, we now turn to
1536k

that at most a

’ 46§8k)-expanding. There

the actual claim. Specifically, we call h honest if it is not (=
are two important facts about honest functions:

Fact 1: All but at most a % fraction of the h’s are honest.

Fact 2: If h is honest and Pr[h(X)e R] > 2, then Pr[U; e R] > m (Suppose that h
is honest and Pr[UyeR] < 4608k holds. Then Pr[A(X,)€eR] < (15361‘ +1)- 4608k
S+ < %)

Concentrating on the honest #’s, we now evaluate the probability that (o, &) hits B when
« is uniformly chosen. We call h good if Pr[(h(X,), h)€ B] > % Using the Markov
inequality (and the definition of §), we get the following:

Fact 3: The probability that H,]f is good is at least %

Denote by P (for “perfect”) the set of A’s that are both good and honest. Combining
Facts 1 and 3, we have the following:

Fact4: Pr[HfeP]> 3 — % =2

INTS

Let B, dof {a : («, h) € B}. Clearly, for every h € P we have Pr[h(X,)€ B;] > % (since h

is good), and Pr[Uy € B,] > & (since A is honest and the hypothesis of Fact 2 applies
to By). Thus:

Fact 5: For every h € P, it holds that Pr[(Uy, h) € B] > m

Combining Facts 4 and 5, we have

Pr[(U. H)) € B]

A%

Pr[(Ur. Hy) € B| Hy € P] - Pr[H} € P]
8 8

> . —

~ 4608k 4

and the claim follows. (I

Applying Proposition 3.5.9

It is possible to apply Construction 3.5.2 to the function resulting from Construc-
tion 3.5.8 and have the statement of Proposition 3.5.3 still hold, with minor modifica-
tions Specifically, the modified bound (analogous to Proposition 3.5.3) is 270" 4

(1nstead of2.27% + ﬁ) for every positive polynomial p. The argument leading
to Theorem 3.5.6 remains valid as well. Furthermore, we can even waive the require-
ment that m(n) can be computed (since we can construct functions F;, for every possible
value of m(n)). Finally, we note that the entire argument holds even if the definition of

regular functions is relaxed as follows.

Definition 3.5.10 (Regular Functions, Revised Definition): A function f:
{0, 1}* — {0, 1}* is called regular if there exists an integer function m':

146

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.5.* CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

N — N and a polynomial q(-) such that for all sufficiently long x € {0, 1}*, it
holds that

2D <y f()=FON < q(lx]) - 2m D

When using these (relaxed) regular functions in Construction 3.5.8, set m(n) o m'(n).
The resulting function F will have a slightly weaker “almost” 1-1 property. Namely,

Pr[|F~ (F (U, H"™™™))| > g(n) - 2/®+1] < 2-200)

The application of Construction 3.5.2 will be modified accordingly. We get the
following:

Theorem 3.5.11: If there exist regular one-way functions, then pseudorandom
generators exist as well.

3.5.3. Going Beyond Regular One-Way Functions

The proof of Proposition 3.5.9 relies heavily on the fact that the one-way function f
is regular (at least in the weak sense). Alternatively, Construction 3.5.8 needs to be
modified so that different hashing families are associated with different x € {0, 1}".
Furthermore, the argument leading to Theorem 3.5.6 cannot be repeated unless it is
easy to compute the cardinality of set f~'(f(x)) given x. Note that this time we cannot
construct functions F,, for every possible value of [log, | f ~'(y)|], because none of the
functions may satisfy the statement of Proposition 3.5.9. Again, a new idea is needed.

A key observation is that although the value of log, | f ~!1(f(x))| may vary for dif-
ferent x € {0, 1}", the value m(n) = E(log, | f~'(£(U,))|) is unique. Furthermore, the
function f defined by

Fl o x) E FO), o fx)
where |x;|= -+ =|x,2| = n, has the property that all but a negligible fraction of the
domain resides in pre-image sets, with the logarithm of their cardinality not deviating
too much from the expected value. Specifically, let 7(n?) & Elog, |7_1(7(Un3))|).
Clearly, m(n®) = n? - m(n). Using the Chernoff bound, we get

Prlm(n®) —log, [f (F(U))I| > n*] < 27"

Suppose we apply Construction 3.5.8 to 7, setting [(n°) = n2. Denote the resulting
function by F. Suppose we apply Construction 3.5.2 to F, this time setting
I(n?) Lo — 1. Using the ideas presented in the proofs of Propositions 3.5.3 and 3.5.9,
we can show that if the function mapping n* bits to /(n*) + 1 bits used in Construc-
tion 3.5.2 is a hard-core of F, then the resulting algorithm constitutes a pseudorandom
generator. Yet, we are left with the problem of constructing a huge hard-core function
G for the function F. Specifically, |G (x)| has to equal 2|x|3 for all x’s. A natural idea
is to define G analogously to the way g is defined in Construction 3.5.4. Unfortunately,
we do not know how to prove the validity of this construction (when applied to F), and

a much more complicated construction is required. This construction does use all the

147

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

foregoing ideas in conjunction with additional ideas not presented here. The proof of
the validity of this construction is even more complex and is not suitable for a book of
this nature. Thus we merely state the result obtained.

Theorem 3.5.12: [fthere exist one-way functions, then pseudorandom generators
exist as well.

We conclude by mentioning that a non-uniform complexity analogue of Theorem 3.5.12
holds, and in fact is considerably easier to establish:

Theorem 3.5.13: Suppose there exist non-uniformly one-way functions (as per
Definition 2.2.6). Then there exist pseudorandom generators. Furthermore, the
output ensemble of these generators is indistinguishable from the uniform ensem-
ble by polynomial-size circuits (as per Definition 3.2.7).

3.6. Pseudorandom Functions

In this section we present definitions and constructions for pseudorandom functions
(using any pseudorandom generator as a building block). Pseudorandom functions will
be instrumental for some constructions to be presented in Chapters 5 and 6 of Volume 2.

Motivation. Recall that pseudorandom generators enable us to generate, exchange, and
share a large number of pseudorandom values at the cost of a much smaller number of
random bits. Specifically, poly(n) pseudorandom bits can be generated, exchanged, and
shared at the cost of n (uniformly chosen bits). Because any efficient application uses
only a polynomial number of random values, providing access to polynomially many
pseudorandom entries might seem sufficient for any such application. But that conclu-
sion is too hasty, because it assumes implicitly that these entries (i.e., the addresses
to be accessed) are fixed beforehand. In some natural applications, one may need to
access addresses that are determined “dynamically” by the application. For example,
we may want to assign random values to (poly(n)-many) rn-bit-long strings, produced
throughout the application, so that these values can be retrieved at a later time. Using
pseudorandom generators, that task can be achieved at the cost of generating n random
bits and storing poly(n)-many values. The challenge, met in this section, is to carry
out that task at the cost of generating only n random bits and storing only n bits. The
key to the solution is the notion of pseudorandom functions. Intuitively, a pseudoran-
dom function shared by a group of users gives them a function that appears random to
adversaries (outside of the group).

3.6.1. Definitions

Loosely speaking, pseudorandom functions are functions that cannot be distinguished
from truly random functions by any efficient procedure that can get the values of
the functions at arguments of its choice. Hence, the distinguishing procedure may

148

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.6. PSEUDORANDOM FUNCTIONS

query the function being examined at various points, depending possibly on previous
answers obtained, and yet cannot tell whether the answers were supplied by a function
taken from the pseudorandom ensemble (of functions) or by one from the uniform
ensemble (of functions). Indeed, to formalize the notion of pseudorandom functions,
we need to consider ensembles of functions. For the sake of simplicity, we shall consider
ensembles of length-preserving functions, and in the following the reader is encouraged
to further simplify the discussion by setting £(n) = n. Generalizations are discussed in
Section 3.6.4.

Definition 3.6.1 (Function Ensembles): Ler £ : N — N (e.g., £(n) =n). An
£-bit function ensemble is a sequence F = {F,},cn of random variables such
that the random variable F, assumes values in the set of functions mapping
€(n)-bit-long strings to £(n)-bit-long strings. The uniform ¢-bit function en-
semble, denoted H = {H, },cn, has H, uniformly distributed over the set of all
Sfunctions mapping £(n)-bit-long strings to £(n)-bit-long strings.

To formalize the notion of pseudorandom functions, we use (probabilistic
polynomial-time) oracle machines (see Section 1.3.5). We stress that our use of the
term “oracle machine” is almost identical to the standard usage. One minor deviation is
that the oracle machines we consider have a length-preserving function as oracle, rather
than a Boolean function (as is more standard in complexity theory). Furthermore, we
assume that on input 1", the oracle machine makes queries of only length £(n). These
conventions are not really essential (they merely simplify the exposition a little). We let
M denote the execution of the oracle machine M when given access to the oracle f.

Definition 3.6.2 (Pseudorandom Function Ensembles): An £-bit function
ensemble F = {F,},cn is called pseadorandom if for every probabilistic poly-
nomial-time oracle machine M, every polynomial p(-), and all sufficiently large
n’s,

1
PriMP (1" =1] — PriM™ (1" =1 -
Prim™an=1] = Priuan=1]| <

where H = {H,},cN is the uniform £-bit function ensemble.

Using techniques similar to those presented in the proof of Proposition 3.2.3 (in
Section 3.2.2), we can demonstrate the existence of pseudorandom function ensembles
that are not statistically close to the uniform one. However, to be of practical use, we
require that the pseudorandom functions can be efficiently computed. That is, functions
in the ensemble should have succinct representations that support both selecting them
and evaluating them. These aspects are captured by the following definition, in which
I is an algorithm selecting representations of functions (which are associated to the
functions themselves by the mapping ¢).

Definition 3.6.3 (Efficiently Computable Function Ensembles): An £-bit func-
tion ensemble F = {F, },cn is called efficiently computable if the following two
conditions hold:

149

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

1. Efficient indexing: There exists a probabilistic polynomial-time algorithm I and
a mapping from strings to functions, ¢, such that ¢(1(1")) and F,, are identically
distributed.

We denote by f; the function assigned to the string i (i.e., f, q)().

2. Efficient evaluation: There exists a polynomial-time algorithm V such that
V(i, x) = fi(x) for every i in the range of I(1") and x € {0, 1}*™,

In particular, functions in an efficiently computable function ensemble have relatively
succinct representations (i.e., of polynomial (in 7) rather than exponential (in) length).
It follows that efficiently computable function ensembles can have only exponentially
many functions (out of the double-exponentially many possible functions, assuming
£(n) = n).

Another point worth stressing is that efficiently computable pseudorandom functions
can be efficiently evaluated at given points provided that the function description is given
as well. However, if the function (or its description) is not known, then the value of the
function at a given point cannot be approximated, even in a very liberal sense and even
if the values of the function at other points are given.

Terminology. In the rest of this book we consider only efficiently computable pseudo-
random function ensembles. Hence, whenever we talk of pseudorandom functions, we
actually mean functions chosen at random from an efficiently computable pseudoran-
dom function ensemble.

Observe that, without loss of generality, the sequence of coin tosses used by the in-
dexing algorithm in Definition 3.6.3 can serve as the function’s description. Combining
this observation with Definition 3.6.2, we obtain the following alternative definition of
efficiently computable pseudorandom functions:

Definition 3.6.4 (Efficiently Computable Pseudorandom Function Ensem-
bles, Alternative Formulation): An efficiently computable pseudorandom
function ensemble (pseudorandom function) is a set of finite functions

{fs {0, 1}E(b|) — {0, 1 Z(IAI)}

where £ : N — N and the following two conditions hold:

se{0,1}*

1. Efficient evaluation: There exists a polynomial-time algorithm that on input s and
x € {0, 130D returns f,(x).

2. Pseudorandomness: The function ensemble F = {F,},cn, defined so that F, is
uniformly distributed over the multi-set { f;}se(0,1y, is pseudorandom.

We comment that more general notions of pseudorandom functions can be defined and
constructed analogously; see Section 3.6.4.

3.6.2. Construction

Using any pseudorandom generator, we can construct a pseudorandom function en-
semble (for £(n) = n) that is efficiently computable.

150

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.6. PSEUDORANDOM FUNCTIONS

Construction 3.6.5: Let G be a deterministic algorithm that expands inputs of
length n into strings of length 2n. We denote by G(s) the |s|-bit-long prefix of
G(s), and by G(s) the |s|-bit-long suffix of G(s) (i.e., G(s) = Go(s)G(s)). For
every s € {0, 1}, we define a function f;:{0, 1} — {0, 1}" such that for every
o1y ...,0,€{0, 1},

ﬂ@nw.”%)ﬂkhxu.«hAGm@D)nq

That is, on input s and x = 0,0, - - - 0y, the value f;(x) is computed as follows:

Lety =s.
Fori =1ton,do

y < Go,(y).
Output y.

Let F, be a random variable defined by uniformly selecting s € {0, 1}" and setting
F, = f;. Finally, let F = {F,},en be our function ensemble.

Pictorially (see Figure 3.5), the function f; is defined by n-step walks down a full binary
tree of depth n having labels at the vertices. The root of the tree, hereafter referred to as
the level-0 vertex of the tree, is labeled by the string s. If an internal vertex is labeled r,
then its left child is labeled G(r), whereas its right child is labeled G (7). The value of

We let s, =s and s,, = G,(s,). The value of f (0107 --0,) = So,050, 1S
obtained at the leaf reachable from the root (labeled s) by following the path

0102+ 0Oy.

(o) 5o (s
J5d6dbdb

For example, f,(001) = sg01 = G1(s00) = G1(Go(s50)) = G1(Go(Go(5))).

Figure 3.5: Construction 3.6.5, for n=3
151

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
i 9

, available at https:/www.cambridgmbdgidge/Books @rline @ Cambridge bisbeersitysPress, 200

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

fs(x) is the string residing in the leaf reachable from the root by a path corresponding
to the string x. The random variable F), is assigned labeled trees corresponding to all
possible 2" labelings of the root, with uniform probability distribution.

A function operating on n-bit strings in the ensemble just constructed can be specified
by n bits. Hence, selecting, exchanging, and storing such a function can be implemented
at the cost of selecting, exchanging, and storing a single n-bit string.

Theorem 3.6.6: Let G and F be as in Construction 3.6.5, and suppose that G
is a pseudorandom generator. Then F is an efficiently computable ensemble of
pseudorandom functions.

Combining Theorems 3.5.12 and 3.6.6, we immediately get the following:

Corollary 3.6.7: If there exist one-way functions, then pseudorandom functions
exist as well.

Also, combining Theorem 3.6.6 with the observation that for £(n) > log, n, any pseu-
dorandom function (as in Definition 3.6.4) gives rise to a pseudorandom generator (see
Exercise 28), we obtain the following:

Corollary 3.6.8: Pseudorandom functions (for super-logarithmic £) exist if and
only if pseudorandom generators exist.

Proof of Theorem 3.6.6: Clearly, the ensemble F is efficiently computable. To
prove that F' is pseudorandom, we use the hybrid technique. The kth hybrid will
be assigned a function that results from uniformly selecting labels for the vertices
of the kth (highest) level of the tree and computing the labels for lower levels
as in Construction 3.6.5. The 0 hybrid will correspond to the random variable
F,, (since a uniformly chosen label is assigned to the root), whereas the n hybrid
will correspond to the uniform random variable H, (since a uniformly chosen
label is assigned to each leaf). It will be shown that an efficient oracle machine
distinguishing neighboring hybrids can be transformed into an algorithm that
distinguishes polynomially many samples of G(U,) from polynomially many
samples of U,,. Using Theorem 3.2.6, we derive a contradiction to the hypothesis
(that G is a pseudorandom generator). Details follows.

For every k, with 0 < k < n, we define a hybrid distribution H,’,‘, assigned
as values functions f:{0, 1}" — {0, 1}", as follows. For every sy, 55, ..., 5x €
{0, 1}", we define a function f;, Syt {0, 1}" — {0, 1}" such that

.....

sy ©@102++-00) E G, (- (Gopps (G (Sixenon))))

where idx(«) is the index of « in the standard lexicographic order of binary
strings of length |«|. Namely, f;, . (x) is computed by first using the k-bit-
long prefix of x to determine one of the s;’s and then using the (n — k)-bit-long
suffix of x to determine which of the functions G, and G, to apply at each of the

152

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.6. PSEUDORANDOM FUNCTIONS

remaining stages (of Construction 3.6.5). The random variable HF is uniformly
distributed over the (2")zk possible functions (corresponding to all possible choices
of 51, 82, ..., 5% € {0, 1}"). Namely,

Hi € f,

where U{/)’s are independent random variables, each uniformly distributed over
{0, 1}".

At this point it is clear that H? is identical with F,, whereas H" is identical
to H,. Again, as is usual in the hybrid technique, the ability to distinguish the
extreme hybrids yields the ability to distinguish a pair of neighboring hybrids.
This ability is further transformed so that contradiction to the pseudorandomness
of G is reached. Further details follow.

We assume, in contradiction to the theorem, that the function ensemble F is
not pseudorandom. It follows that there exists a probabilistic polynomial-time
oracle machine M and a polynomial p(-) such that for infinitely many »’s,

An) ¥

Furiny Hyq1ny _ 1
|PrM™ (1" =1] — Pr[M™ (1" =1]| >)
Let #(-) be a polynomial bounding the running time of M (1") (such a polynomial
exists because M is a polynomial-time machine). It follows that on input 1", the
oracle machine M makes at most ¢(n) queries (since the number of queries is
clearly bounded by the running time). Using the machine M, we construct an
algorithm D that distinguishes the #(-)-product of the ensemble {G(U,)},cn from

the #(-)-product of the ensemble {U,, },cn as follows.

Algorithm D: Oninput o, ..., o, € {0, 1}*" (with t = #(n)), algorithm D pro-
ceeds as follows. First, D selects uniformly k € {0, 1, ..., n — 1}. This random
choice, hereafter called the checkpoint, is the only random choice made by D it-
self. Next, algorithm D invokes the oracle machine M (on input 1") and answers
M’s queries as follows. The first query of machine M, denoted ¢, is answered by

Go, (T (GUk+2(PUk+1 (al))) o)

where g = oy - - - 0,,, (¢ 1s the first input string) and Py(«) (resp., P;(«)) denotes
the n-bit prefix of « (resp., the n-bit suffix of). In addition, algorithm D records
this query (i.e., q;). Each subsequent query is answered by first checking to see
if its k-bit-long prefix equals the k-bit-long prefix of a previous query. In case the
k-bit-long prefix of the current query, denoted ¢;, is different from the k-bit-long
prefixes of all previous queries, we associate this prefix with a new input string
(i.e., ;). Namely, we answer query ¢; by

Goy (+++ (Gopr (P (@) -)

where g; = oy - - - 0,,. In addition, algorithm D records the current query (i.e.,
q:)- The other possibility is that the k-bit-long prefix of the ith query equals the
k-bit-long prefix of some previous query. Let j be the smallest integer such that
the k-bit-long prefix of the ith query equals the k-bit-long prefix of the jth query

153

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

(by hypothesis, j < i). Then we record the current query (i.e., g;), but answer it
using the string associated with query ¢g; (i.e., the input string «;). Namely, we
answer query g; by

Go, (T (G0k+2 (P(,H]((Xj))) o)

where g; = o - - - 0,,. Finally, when machine M halts, algorithm D halts as well
and outputs the same output as M.

Pictorially, algorithm D answers the first query by first placing the two halves of
«; in the corresponding children of the tree’s vertex reached by following the path
from the root corresponding to o - - - 0. The labels of all vertices in the subtree
corresponding to o - - - 0} are determined by the labels of these two children
(as in the construction of F). Subsequent queries are answered by following
the corresponding paths from the root. In case the path does not pass through a
(k + 1)-level vertex that already has a label, we assign this vertex and its sibling
a new string (taken from the input). For the sake of simplicity, in case the path
of the ith query requires a new string, we use the ith input string (rather than the
first input string not used thus far). In case the path of a new query passes through
a (k + 1)-level vertex that has already been labeled, we use this label to compute
the labels of subsequent vertices along this path (and in particular the label of
the leaf). We stress that the algorithm does not compute the labels of all vertices
in a subtree corresponding to oy - - - o} (although these labels are determined by
the label of the vertex corresponding to oy - - - 6%), but rather computes only the
labels of vertices along the paths corresponding to the queries.

Clearly, algorithm D can be implemented in polynomial time. It is left to
evaluate its performance. The key observation is the correspondence between
D’s actions on checkpoint k and the hybrids k and k 4 1:

® When the inputs are taken from the ¢(n)-product of U,, (and algorithm D chooses
k as the checkpoint), the invoked machine M behaves exactly as on the k + 1
hybrid. This is so because D places halves of truly random 2n-bit-long strings at
level k + 1 (which is the same as placing truly random #n-bit-long strings at level
k4 1).

® On the other hand, when the inputs are taken from the #(n)-product of G(U,)
(and algorithm D chooses k as the checkpoint), then M behaves exactly as on
the kth hybrid. Indeed, D does not place the (unknown to it) corresponding seeds
(generating these pseudorandom strings) at level k; but putting the two halves of
the pseudorandom strings at level k + 1 has exactly the same effect.

Thus:

Claim 3.6.6.1: Let n be an integer, and ¢ &ef t(n). Let K be a random variable
describing the random choice of checkpoint by algorithm D (on input a 7-long
sequence of 2n-bit-long strings). Then for every k{0, 1,...,n — 1},

PrD(G(UD),....G(UM))=1|K =k] = Pr[M™ (1" =1]
Pr[D(UY, ..., UY)=1|K =k] = Pr[M™ " (1" =1]
154

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.6. PSEUDORANDOM FUNCTIONS

where the U%’s and Uy"s are independent random variables uniformly dis-
tributed over {0, 1}" and {0, 1}*", respectively.

Claim 3.6.6.1 is quite obvious; yet a rigorous proof is more complex than
one might realize at first glance, the reason being that M’s queries may depend
on previous answers it has received, and hence the correspondence between the
inputs of D and possible values assigned to the hybrids is less obvious than it
seems. To illustrate the difficulty, consider an N-bit string that is selected by a pair
of interactive processes that proceed in N iterations. At each iteration, the first
process chooses anew location (i.e.,anunusedi € {1, ..., N})based on the entire
history of the interaction, and the second process sets the value of this bit (i.e., the
ith bit) by flipping an unbiased coin. It is intuitively clear that the resulting string
is uniformly distributed; still, a proof is required (since randomized processes
are subtle entities that often lead to mistakes). In our setting, the situation is
slightly more involved. The process of determining the string is terminated after
T < N iterations, and statements are made regarding the resulting string that is
only partially determined. Consequently, the situation is slightly confusing, and
we feel that a detailed argument is required. However, the argument provides no
additional insights and can be skipped without significant damage (especially by
readers who are more interested in cryptography than in “probabilistic analysis”).

Proof of Claim 3.6.6.1: We start by sketching a proof of the claim for the extremely
simple case in which M’s queries are the first ¢ strings (of length n) in lexicographic order.
Let us further assume, for simplicity, that on input «y, ..., ¢, algorithm D happens to
choose checkpoint & such that £ =2%*!, In this case the oracle machine M is invoked on
input 1" and access to the function f;, . Sykt1 s where 57140 = Py (aj) forevery j < 2k
and o € {0, 1}. Thus, if the inputs to D are uniformly selected in {0, 1}?, then M is
invoked with access to the k + 1 hybrid random variable (since in this case the s;’s are
independent and uniformly distributed in {0, 1}"*). On the other hand, if the inputs to D
are distributed as G(U,,), then M is invoked with access to the kth hybrid random variable
(since in this case fs,. sy = fr...ry» Where the r;’s are seeds corresponding to the
a;’s).

For the general case, we consider an alternative way of defining the random variable
H)}' for every 0 < m < n. This alternative way is somewhat similar to the way in which D
answers the queries of the oracle machine M. (We use the symbol m instead of k, since m
does not necessarily equal the checkpoint (denoted k) chosen by algorithm D.) This way
of defining H)" consists of the interleaving of two random processes, which together first
select at random a function g: {0, 1} — {0, 1}" that is later used to determine a function
f:{0, 1}* — {0, 1}". The first random process, denoted p, is an arbitrary process (“‘given to
us from the outside”) that specifies points in the domain of g. (The process p corresponds
to the queries of M, whereas the second process corresponds to the way A answers these
queries.) The second process, denoted i, assigns uniformly selected n-bit-long strings to
every new point specified by p, thus defining the value of g at this point. We stress that in
case p specifies an old point (i.e., a point for which g is already defined), then the second
process does nothing (i.e., the value of g at this point is left unchanged). The process p
may depend on the history of the two processes and in particular on the values chosen for
the previous points. When p terminates, the second process (i.e.,) selects random values
for the remaining undefined points (in case such exist). We stress that the second process
(i.e., ¥) is fixed for all possible choices of a (“first”) process p. The rest of this paragraph

155

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

gives a detailed description of the interleaving of the two random processes (and can be
skipped). We consider a randomized process p mapping sequences of n-bit strings (repre-
senting the history) to single m-bit strings. We stress that p is not necessarily memoryless
(and hence may “remember” its previous random choices). Namely, for every fixed se-
quence vy, ..., v; €{0, 1}", the random variable p(vy, ..., v;) is (arbitrarily) distributed
over {0, 1} U {L}, where _L is a special symbol denoting termination. A “random” func-
tion g:{0, 1} — {0, 1}" is defined by iterating the process p with the random process
Y defined next. Process i starts with g that is undefined on every point in its domain.
At the ith iteration, i lets p; = p(v1, ..., vi—1) and, assuming p; # L, sets v; def v if
pi = p; for some j < i, and lets v; be umformly distributed in {0, 1}" otherw1se In the
latter case (i.e., p; is new, and hence g is not yet defined on p;), ¥ sets g(p,) = v, (in
fact, g(pi)=g(p;j)=v; =v; alsoin case p; = p; for some j <i). When p terminates (i.e.,
p(vy,...,vr) = L for some T), process { completes the function g (if necessary) by
choosing independently and uniformly in {0, 1}" values for the points at which g is still
undefined. (Alternatively, we can augment the process p so that it terminates only after
specifying all possible m-bit strings.)

Once a function g:{0, 1}* — {0, 1}" is totally defined, we define a function f&:
{0, 1}" — {0, 1}" by

F40102-+-02) € Go (- (Gopes (G (80w ---010))) -)

The reader can easily verify that f& equals fgm),... ¢1m) (as defined in the hybrid con-
struction earlier). Also, one can easily verify that the preceding random process (i.e.,
the interleaving of ¥ with any p) yields a function g that is uniformly distributed over
the set of all possible functions mapping m-bit strings to n-bit strings. It follows that
the previously described random process yields a result (i.e., a function) that is distributed
identically to the random variable H".

Suppose now that the checkpoint chosen by D equals k and that D’s inputs are inde-
pendently and uniformly selected in {0, 1}?". In this case the way in which D answers
M’s queries can be viewed as placing independently and uniformly selected n-bit strings
as the labels of the (k + 1)-level vertices. It follows that the way in which D answers M’s
queries corresponds to the previously described process with m = k + 1 (with M playing
the role of p and A playing the role of ¥r). Hence, in this case, M is invoked with access
to the k + 1 hybrid random variable.

Suppose, on the other hand, that (again the checkpoint chosen by D equals k and that)
D’s inputs are independently selected so that each is distributed identically to G(U,). In
this case the way in which D answers M’s queries can be viewed as placing independently
and uniformly selected n-bit strings as the labels of the k-level vertices. It follows that
the way in which D answers M’s queries corresponds to the previously described process
with m = k. Hence, in this case M is invoked with access to the kth hybrid random
variable. [

Combining Claim 3.6.6.1 and A(n) = PriM% (1")=1] — Pr[M " (1")=1], it
follows that

PriD(G(UY),...,G(UM))=1] —Pr[D(US, ..., Uy)=1]

n—l n—1
(1 ;PV[M”"I‘G"F”)) (iZPr[MH“)

k=0

A(n)
n

156

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.6. PSEUDORANDOM FUNCTIONS

which, by the contradiction hypothesis, is greater than % for infinitely many
n’s. So it follows that D (which is a probabilistic polynomial-time algorithm)
distinguishes polynomially many samples of G(U,) from polynomially many
samples of U,,. Using Theorem 3.2.6, we derive a contradiction to the hypothesis
(of the current theorem) that G is a pseudorandom generator, and the current
theorem follows. H

3.6.3. Applications: A General Methodology

Sharing a pseudorandom function allows parties to determine random-looking values
depending on their current views of the environment (which need not be known a priori).
To appreciate the potential of this tool, one should realize that sharing a pseudorandom
function is essentially as good as being able to agree, on the fly, on the association of
random values to (on-line) given values, where the latter are taken from a huge set of
possible values. We stress that this agreement is achieved without communication and
synchronization: Whenever some party needs to associate a random value to a given
value v € {0, 1}", it will associate to v the same random value r, € {0, 1}".

As an illustrative example, consider the problem of identifying friend or foe, in
which members of a club sharing some secret wish to be able to identify one another
as belonging to the club. A possible solution is for the club members to share a secret
function, defined over a huge domain, and prove their membership in the club by
answering a random challenge presented to them, with the value of the secret function
evaluated at the challenge. We claim that using a pseudorandom function in the role
of the secret function guarantees that it will be infeasible for an adversary to pass as a
member, even after conducting polynomially many interactions with members in which
the adversary may ask them to reply to challenges of its choice. To prove this claim,
consider what happens when the secret function is a truly random one. (We stress that
this is merely a mental experiment, since it is infeasible to share such a huge random
object.) In such a case, the random function’s values at new points (corresponding
to new challenges that the adversary should answer) are uncorrelated to its values at
any other points (corresponding to answers the adversary has obtained by challenging
legitimate members). Thus, the adversary will fail in such an imaginary situation. It
follows that the adversary must also fail in the actual situation (in which the secret
function is selected from a pseudorandom ensemble), or else we derive a distinguisher
of pseudorandom functions from truly random ones.

In general, the following two-step methodology is useful in many cases:

1. Design your scheme assuming that all legitimate users share a random function, f:
{0, 1}" — {0, 1}". (The adversaries may be able to obtain, from the legitimate users, the
values of f on arguments of their choice, but will not have direct access to f itself.6)
This step culminates in proving the security of the scheme, assuming that f is indeed
uniformly chosen among all possible such functions, while ignoring the question of how
such an f can be selected and handled.

6This is different from the Random Oracle Model, where the adversary has direct access to a random oracle
(that is later “implemented” by a function, the description of which is also given to the adversary).

157

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

2. Construct a real scheme by replacing the random function by a pseudorandom func-
tion. Namely, the legitimate users will share a random/secret seed specifying such a
pseudorandom function, whereas the adversaries will not know the seed. As before, the
adversaries can, at most, obtain (from the legitimate users) the values of the function
at arguments of their choice. Finally, conclude that the real scheme (as presented here)
is secure (since otherwise one could distinguish a pseudorandom function from a truly
random one).

We stress that this methodology can be applied only if the legitimate users can share
random/secret information not known to the adversary (e.g., as is the case in private-key
encryption schemes).’

3.6.4 Generalizations

We present generalizations of the notion of a pseudorandom function, first to the case
where the function is not length-preserving, and then to the case where the function
is defined over the set of all strings. These generalizations offer greater flexibility in
using pseudorandom functions in applications.

3.6.4.1. Functions That Are Not Length-Preserving

Departing from Definition 3.6.4, we present the following generalization of the notion
of a pseudorandom function ensemble.

Definition 3.6.9 (Pseudorandom Function Ensembles, Generalization): Let
d,r : N — N. We say that

{f {0, 1} ddsh _ — {0, l}r(M)}se{OI

is an efficiently computable generalized pseudorandom function ensemble
(generalized pseudorandom function) if the following two conditions hold:

1. Efficient evaluation: There exists a polynomial-time algorithm that on input s and
x € {0, 190D returns fy(x).

2. Pseudorandomness: For every probabilistic polynomial-time oracle machine M,
every polynomial p(-), and all sufficiently large n’s,

PriM™ (1" =1] = PriM™(1")=1]| < —
Pl |- i <~
where F, is a random variable uniformly distributed over the multi-set { f;}se(0,1y
and H,, is uniformly distributed among all functions mapping d(n)-bit-long strings
to r(n)-bit-long strings.

In contrast, the Random Oracle Methodology refers to a situation in which the adversary is also given the
description of the function, which replaces the random oracle to which it has direct access (as discussed in
footnote 6). We warn that, in contrast to the methodology presented here, the Random Oracle Methodology is a
heuristic. See further discussion in Section 3.8.2.

158

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.6. PSEUDORANDOM FUNCTIONS

Clearly, r : N — N must be upper-bounded by a polynomial. Definition 3.6.4 is ob-
tained as a special case (of Definition 3.6.9) by letting the functions d and r equal
the function £. Similarly to Construction 3.6.5, for any d, r : N — N, where r(n) is
computable in poly(n) time from n, we can construct general pseudorandom functions
using any pseudorandom generator. Specifically:

Construction 3.6.10: Let G, Gy, and G, be as in Construction 3.6.5. Let
d,r : N — N, and let G’ be a deterministic algorithm mapping n-bit-long in-
puts into r(n)-bit outputs. Then for every s € {0, 1}", we define a function f;:
{0, 139" — {0, 1}"™ such that for every oy, . . ., 04m € {0, 1},

def .,
fs (6102 e Gd(n)) =G (ng(n) (e (GUZ (GUI (S))) e))
Construction 3.6.5 is regained from Construction 3.6.10 by letting d(n) = r(n) =n
and using the identity function in the role of G’'. By extending the proof of
Theorem 3.6.6, we obtain the following:

Theorem 3.6.11: Let G, G/, and the f;’s be as in Construction 3.6.10, and sup-
pose that G is a pseudorandom generator. Further suppose that G' is polynomial-
time-computable and that the ensemble {G'(U,)} ey is pseudorandom,® as de-
fined in Definition 3.2.8. Then { f;};c0,1)+ is an efficiently computable ensemble
of generalized pseudorandom functions.

Proof: Incase G'istheidentity transformation (and r(n) = n), the proof is almost
identical to the proof of Theorem 3.6.6. To deal with the general case, we use a
hybrid argument. Specifically, we use a single intermediate hybrid (i.e., a single
hybrid of the function ensemble { f;} and a truly random function): For every n,
we consider the (random) function g : {0, 1}V — {0, 1}’™ defined by letting
g(x) = G'(h'(x)), where A’ is uniformly selected among all functions mapping
d(n)-bit-long strings to n-bit strings. The theorem follows by showing that this
hybrid ensemble is indistinguishable from both the uniform function ensemble
and the function ensemble of Construction 3.6.10.

In the following, we denote by H, (resp., H,) arandom variable uniformly dis-
tributed over the set of all functions mapping d(n)-bit-long strings to r(n)-bit-long
(resp., n-bit-long) strings. Recall that the hybrid distribution, denoted G’ o H,, is
obtained by functional composition of the fixed function G’ and the random func-
tion distribution H,. As usual, F, denotes a random variable uniformly distributed
over the multi-set { f;}sej0,1y2-

Claim 3.6.11.1: For every probabilistic polynomial-time oracle machine M,
every polynomial p(-), and all sufficiently large n’s,

G'oH}, rqny _ _ Hyqny __ L
|Primee1m=1] — PriM™(1")=1] <>

81n case r(n) > n (for all n’s), what we require is that G’ be a pseudorandom generator. But otherwise this
cannot be required, since G’ is not expanding. Still, the other features of a pseudorandom generator (i.e., efficient
computability and pseudorandomness of the output) are always required here.

159

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

Proof Sketch: Intuitively, oracle access to G’ o H, is equivalent to being given
multiple independent samples from the distribution G’(U,,), whereas oracle ac-
cess to H, is equivalent to being given multiple independent samples from
the distribution U,,. Using the pseudorandomness of {G'(U,)},cn, the claim
follows.

In the actual proof, we transform the oracle machine M into an ordinary ma-
chine M’ that gets a sequence of samples and emulates an execution of M while
using its input sequence in order to emulate some related oracle for M. Specif-
ically, on input «y, . .., ar, machine M’ invokes M, and answers its ith distinct
query with ;. (Without loss of generality, we can assume that M never issues the
same query twice.)

1. Indeed, on input a sequence of samples from distribution G’(U,), machine M’
emulates an execution of M S °H:(1™).
(The key observation is that the responses of oracle G’ o H, to a sequence
qi, - .., q of distinct queries are G'(s,), . . . , G'(s4,), where the s,,’s are uniformly
and independently distributed in {0, 1}".)

2. On the other hand, on input a sequence of samples from distribution U,,), machine
M’ emulates an execution of M (1m).
(The key observation is that the responses of oracle H, to a sequence gy, ..., g;
of distinct queries are uniformly and independently distributed in {0, 1}"™.)

Thus, if M violates the statement of the claim, then M’ violates the pseudo-
randomness of {G'(U,)},en, in contradiction to the theorem’s hypothesis. [

Claim 3.6.11.2: For every probabilistic polynomial-time oracle machine M,
every polynomial p(-), and all sufficiently large n’s,

! ! 1
PriMe(1m=1] — PriM™" (1" =1]| < —

Pr] |- Prl Il <o

Proof Sketch: Any function f; (as defined in Construction 3.6.10) can be written
as fy(x) = G'(f/(x)), where f]is defined by

def

f;(Ule T Ud(n)) = G(rd<,l)(' e (G(rz (Gm (S))) e) (3.16)

We have already established that {f]} is a generalized pseudorandom function
ensemble (i.e., f] corresponds to the case where G’ is the identity), and so by
incorporating G’ in the distinguisher, the claim follows.

In the actual proof, we transform the oracle machine M into an oracle machine
M’ that emulates M while using its own oracle in order to emulate some related
oracle for M. Specifically, when M issues a query ¢, machine M’ forwards g to
its own oracle, applies G’ to the answer that it receives, and forwards the result
to M.

1. Indeed, when given oracle access to &', machine M’ emulates an execution of
ME'°" (1" (the reason being that, in this case, M’ responds to query g (made by

160

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.6. PSEUDORANDOM FUNCTIONS

M) with G'(h'(q)) = (G’ o h’)(q)). Thus, when given oracle access to H,, machine
M’ emulates an execution of MY °H:(1m).

2. On the other hand, when given oracle access to f;, machine M’ emulates an
execution of M/s(1") (the reason being that, in this case, M’ responds to query ¢
(made by M) with G'(f/(q)) = fs(g)). Thus, for uniformly selected s € {0, 1}",
when given oracle access to f;, machine M’ emulates an execution of M Fu(1my.

Thus, if M violates the statement of the claim, then M’ violates the pseudoran-
domness of { f;}, which contradicts what we have already established. O

Combining Claims 3.6.11.1 and 3.6.11.2, the theorem follows. B

Comment. One major component of the proof of Theorem 3.6.11 is proving the fol-
lowing proposition:

Let {f] : {0, 1}40sh — 40, 1} |}Se 0,1} be a generalized pseudorandom function ensem-
ble, and let G’ be as in the theorem’s hypothesis. Then the generalized function ensemble
{fs 2 {0, 1}90D — 10, 1} 5D} 10,1y, defined by fix) €6 fl(x)), is pseudorandom.

The proof of Claim 3.6.11.2 actually establishes this proposition and then applies it to
{f/}seto.1+ as defined in Eq. (3.16).

3.6.4.2. Functions Defined on All Strings

Thus far we have considered only function ensembles in which each function is finite
(i.e., maps a finite domain to a finite range). Using such functions requires a priori
knowledge of an upper bound on the length of the inputs to which the function is
to be applied. (Shorter inputs can always be encoded as inputs of some longer and
predetermined length.) However, it is preferable not to require such a priori knowledge
of the upper bound (e.g., since such a requirement may rule out some applications).
It is thus useful to have a more flexible notion of a pseudorandom-function ensemble,
allowing application of individual functions to inputs of varying lengths not known a
priori. Such ensembles are defined and constructed next.

Definition 3.6.12 (Pseudorandom Function Ensembles with Unbounded
Inputs): Let r : N — N. We say that

{fs 110, 1}" — {0, 1}r(“vl)}se{o,l}*

is an efficiently computable unbounded-input pseudorandom function en-
semble (unbounded-input pseudorandom function) if the following two conditions
hold:

1. Efficient evaluation: There exists a polynomial-time algorithm that on input s and
x € {0, 1}* returns f;(x).

161

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

2. Pseudorandomness: For every probabilistic polynomial-time oracle machine M,
every polynomial p(-), and all sufficiently large n’s,

1
PriMi(1M)=1] — Pr[M™" (1" =1]| < —
Pl |- i)<~
where F,, is a random variable uniformly distributed over the multi-set { f}sc0,1y»
and H, is uniformly distributed® among all functions mapping arbitrary long
strings to r(n)-bit-long strings.

A few comments regarding Definition 3.6.12 are in order. First, note that the fact that
the length of the input to f; is not known a priori raises no problems in Item 1, since
the running time of the evaluating algorithm may depend (polynomially) on the length
of the input to f;. Regarding Item 2, because M has a-priori-bounded (polynomial)
running time, that upper-bounds the length of the queries made to the oracle. The latter
fact resolves a technical problem that arises in the earlier definition (see footnote 9).
In typical applications, one uses r(n) = n (or r(n) that is polynomially related to n).
Another special case of interest is the case where r = 1, that is, the case of pseudorandom
Boolean functions.

Similarly to Constructions 3.6.5 and 3.6.10, for any r : N — N such that r(n) is
computable in poly(n) time from n, we can construct unbounded-input pseudorandom
functions using any pseudorandom generator. Specifically:

Construction 3.6.13: Let G be a deterministic algorithm expanding inputs of
length n into strings of length 2n 4 r(n). We denote by G(s) the |s|-bit-long
prefix of G(s), by G(s) the next |s| bits in G(s), and by G,(s) the r(|s|)-bit-long
suffix of G(s) (i.e., G(s) = Go(s)G1(5)G2(s)). Then for every s € {0, 1}", we
define a function f,:{0, 1}*— {0, 1} such that for every non-negative integer
d and every oy, ...,0,€{0, 1},

fi(0102 - 0q) G2(Goy(+++ (G (Goy(9))) -++))

Pictorially, the function f; is defined by walks down an infinite ternary tree having labels
at the vertices. Internal vertices have |s|-bit-long labels, and leaves have r(|s|)-bit-long
labels. The root of the tree, hereafter referred to as the level-0 vertex of the tree, is labeled
by the string s. If an internal vertex is labeled s’, then its leftmost child is labeled G(s’),
its middle child is labeled G(s’), and its rightmost child is labeled G,(s"). The first
two children of each internal vertex are internal vertices, whereas the rightmost child
of an internal vertex is a leaf. The value of f;(o, - - - 0,) is the string residing in the leaf
reachable from the root by “following the path oy, . .., o4, 2,” when the root is labeled
by s. Again, by extending the proof of Theorem 3.6.6, we obtain the following:

9Since the running time of M is a priori bounded by some polynomial, it follows that for some polynomial
d and all n’s, it holds that, on input 1”, machine M makes only queries of length at most d(n). Thus, H, can be
defined as the uniform distribution over all functions mapping strings of length up to d(n) to r(n)-bit-long strings.
This resolves the technical problem of what is meant by a uniform distribution over an infinite set (i.e., the set of
all functions mapping arbitrary long bit strings to r(n)-bit-long strings).

162

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.6. PSEUDORANDOM FUNCTIONS

Theorem 3.6.14: Let G and the f’s be as in Construction 3.6.13, and suppose
that G is a pseudorandom generator. Then { f;}sej0,11+ is an efficiently computable
ensemble of unbounded-input pseudorandom functions.

Proof Sketch: We follow the proof method of Theorem 3.6.6. That is, we use the
hybrid technique, where the kth hybrid will be assigned a function that results from
uniformly selecting labels for the vertices of the highest k + 1 levels of the tree,
and computing the labels for lower levels as in Construction 3.6.13. Specifically,
the kth hybrid is defined as equal to the function f;, " {0, 1}*— {0, 1}7™,
defined next, where s, ..., sy € {0, 1}*"*"® are uniformly and independently
distributed.

Ssirsy (0102 - 04)

def { P (Sigx2k-doopopy) ifd <k
G2(GUd (T (G0k+2(Gak+1 (sidx(ak---o-])))) e)) otherwise

where idx(«) is the index of « in the standard lexicographic order of ternary
strings of length ||, and P,(B) is the r(n)-bit-long suffix of S.

Note that (unlike the proof of Theorem 3.6.6) for every n there are infinitely
many hybrids, because here k can be any non-negative integer (rather than
k € {0, 1, ..., n} asin the proof of Theorem 3.6.6). Still, because we consider an
(arbitrary) probabilistic polynomial-time distinguisher denoted M, there exists a
polynomial d such that on input 1" the oracle machine M makes only queries
of length at most d(n) — 1. Thus, giving M oracle access to the d(n) hybrid is
equivalent to giving M oracle access to the uniform random variable H, (where
H, is as in Definition 3.6.12), because a uniformly chosen label is assigned to
each i-level leaf for i < d(n). On the other hand, the 0 hybrid corresponds to the
random variable F, (where F), is as in Definition 3.6.12), because a uniformly
chosen label is assigned to the root. Thus, if M can distinguish {F},} from {H,},
then it can distinguish a (random) pair of neighboring hybrids (i.e., the k — 1
and & hybrids, where k is uniformly selected in {1, ..., d(n)}). As in the proof of
Theorem 3.6.6, the latter assertion can be shown to violate the pseudorandomness
of G. Specifically, we can distinguish multiple independent samples taken from
the distribution Uy,,(,) and multiple independent samples taken from the dis-
tribution G(U,): Given a sequence of (2n + r(n))-bit-long strings, we use these
strings in order to label vertices in the highest k + 1 levels of the tree (by breaking
each string into three parts and using those parts as labels for the three children
of some (i — 1)-level node, fori < k). In case the strings are taken from Uy, 1),
we emulate the k hybrid, whereas in case the strings are taken from G(U,), we
emulate the k£ — 1 hybrid. The theorem follows. [

Comment. Unbounded-input (and generalized) pseudorandom functions can be con-
structed directly from (ordinary) pseudorandom functions; see Section 3.8.2.

163

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

3.7.* Pseudorandom Permutations

In this section we present definitions and constructions for pseudorandom permuta-
tions. Clearly, pseudorandom permutations (over huge domains) can be used instead of
pseudorandom functions in any efficient application, yet pseudorandom permutations
offer the extra advantage of having unique pre-images. This extra advantage can some-
times be useful, but less than what one might expect (e.g., it is not used in the rest of
this book, not even in the chapter on encryption schemes, for reasons explained there).

We show how to construct pseudorandom permutations using pseudorandom
functions as building blocks, in a manner identical to the high-level structure of the
DES. Hence, the proof presented in this section can be viewed as supporting the
DES’s methodology of converting “random-looking” functions into “random-looking”
permutations. !0

3.7.1. Definitions

We start with the definition of pseudorandom permutations. Loosely speaking, a pseudo-
random ensemble of permutations is defined analogously to a pseudorandom ensemble
of functions. Namely:

Definition 3.7.1 (Permutation Ensembles): A permutation ensemble is a se-
quence P = {P,},en of random variables such that the random variable P, as-
sumes values in the set of permutations mapping n-bit-long strings to n-bit-long
strings. The uniform permutation ensemble, denoted K = {K,,},,cn, has K, uni-
formly distributed over the set of all permutations mapping n-bit-long strings to
n-bit-long strings.

Every permutation ensemble is a function ensemble. Hence the definition of an
efficiently computable permutation ensemble is obvious (i.e., it is derived from the
definition of an efficiently computable function ensemble). Pseudorandom permuta-
tions are defined as computationally indistinguishable from the uniform permutation
ensemble.

Definition 3.7.2 (Pseudorandom Permutation Ensembles): A permutation
ensemble P = {P,},cn is called pseadorandom if for every probabilistic poly-
nomial-time oracle machine M, every polynomial p(-), and all sufficiently large
n’s,

P,riny __ . Kyoqny__
IPr[MP(1"=1] — Pr[M%(1m)=1]| <)

where K = {K,},cn is the uniform permutation ensemble.

The fact that P is a pseudorandom permutation ensemble, rather than just a pseu-
dorandom function ensemble, cannot be detected in poly(n) time by an observer given

10The fact that in the DES this methodology is applied to functions that are NOT “random-looking” is not of
concern here.

164

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.7 PSEUDORANDOM PERMUTATIONS

oracle access to P,. This fact stems from the observation that the uniform permutation
ensemble is polynomial-time-indistinguishable from the uniform function ensemble.
Namely:

Proposition 3.7.3: The uniform permutation ensemble (i.e., K = {K,},en) con-
stitutes a pseudorandom function ensemble.

Proof Sketch: Recall that { H,},cy denotes the uniform function ensemble. The
probability that when given access to oracle H, a machine will detect a collision
in the oracle function is bounded by t2 .27 where t denotes the number of
queries made by the machine. Conditioned on not finding such a collision, the
answers of H, are indistinguishable from those of K,,. Finally, using the fact
that a polynomial-time machine can ask at most polynomially many queries, the
proposition follows. H

Hence, the use of pseudorandom permutations instead of pseudorandom functions has
reasons beyond the question of whether or not a computationally restricted observer
can detect the difference. Typically, the reason is that one wants to be guaranteed
of the uniqueness of pre-images. A natural strengthening of this requirement is that
given the description of the permutation, the (unique) pre-image can be efficiently
found.

Definition 3.7.4 (Efficiently Computable and Invertible Permutation Ensem-
bles): A permutation ensemble P = {P,},cn is called efficiently computable
and invertible if the following three conditions hold:

1. Efficient indexing: There exists a probabilistic polynomial-time algorithm I and a
mapping from strings to permutation, ¢, such that ¢(1(1")) and P, are identically
distributed.

2. Efficient evaluation: There exists a probabilistic polynomial-time algorithm V

such that V (i, x) = f;(x), where (as in Definition 3.6.3) f; &ef o).

3. Efficientinversion: There exists a probabilistic polynomial-time algorithm N such
that N(i, x) = 7 (x) (e, fi(N(i, x))=x).

Items 1 and 2 are guaranteed by the definition of an efficiently computable permutation
ensemble. The additional requirement is stated in Item 3. In some settings it makes sense
to augment the definition of a pseudorandom ensemble by requiring that the ensemble
cannot be distinguished from the uniform one even when the observer gets access to
two oracles: one for the permutation and the other for its inverse. Thus, we consider
augmented oracle machines that can make queries to two oracles; the two-oracle model
can be emulated by the standard (single) oracle model by combining the two oracles
f1and f, into one oracle f defined by f(i, g) = fi(q).

Definition 3.7.5 (Strong Pseudorandom Permutations): A permutation ensem-
ble P = {P,} ey is called strongly pseudorandom if for every probabilistic

165

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

polynomial-time oracle machine M, every polynomial p(-), and all sufficiently

large n’s,
_ - 1
Pr[M™ 5 (1M =1] = Pr[M55 (1M =1]] < —
Pl | —Pr] Il <o
where M8 denotes the execution of machine M when given access to the oracles
fandg.

3.7.2. Construction

The construction of pseudorandom permutations uses pseudorandom functions as build-
ing blocks, in a manner identical to the high-level structure of the DES (see Figure 3.6).
Namely:

Construction 3.7.6: Let f:{0, 1} — {0, 1}". Forevery x, y € {0, 1}, we define

DES /(x, NE G . x® f(y)

where x @ y denotes the bit-by-bit XOR of the binary strings x and y. Likewise,
for fi, ..., fi:{0, 1} — {0, 1}", we define

For every function ensemble F = {F,},cn and every function t :N— N, we de-
fine the function ensemble {DESI(")}%N by letting DESZF(":) & DES o 0, where

t = t(n) and the F"’s are independent copies of the random variable F,.

Theorem 3.7.7: Let F,, t(-), and DES}("I’) be as in Construction 3.7.6. Suppose
that {F,},cn is efficiently computable and that on input n one can compute t(n)
in poly(n) time. Then for every polynomial-time-computable function t(-), the
ensemble {DESt,é:) ten is an efficiently computable and invertible permutation

Q)

y x#f(y)
Figure 3.6: The high-level structure of the DES.

166

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.7 PSEUDORANDOM PERMUTATIONS

ensemble. Furthermore, if F = {F,},cn is a pseudorandom function ensemble,
then the ensemble {DES% tnen is pseudorandom and the ensemble {DES‘;H }en IS
strongly pseudorandom.

Clearly, the ensemble {DEStF(:)}neN is efficiently computable. The fact that it is a per-
mutation ensemble, and furthermore one with an efficient inverting algorithm, follows
from the observation that DES,¢ro, £ 7ero 15 the inverse of DES ¢, where zero(z) Lokl for
all ze{0, 1}". That is, for every x, y €{0, 1}", DES,¢;c(x, y) = (y, x), and

DES ero0, f.2er0(DES £ (x, ¥)) = DES er0, fzer0(y, x @ f(¥))
= DESyero, s (x @ f(¥), ¥)
= DES,ere(y, X @ f(Y) @ ()
= (x,y)

To prove the pseudorandomness of {DES}n }nen (resp., strong pseudorandomness of
{DES‘;” }nen) it suffices to prove the pseudorandomness of {DESi,n}neN (resp., strong
pseudorandomness of {DES‘;In }nen)- The reason is that if, say, {DEqu”},,eN is pseudo-
random, while {DES%H }nen 1S not, then one can derive a contradiction to the pseudo-
randomness of the function ensemble F (i.e., distinguish F from the uniform function
ensemble H; see Exercise 35). Hence, Theorem 3.7.7 follows from Proposition 3.7.8.

Proposition 3.7.8: {DES Jnen is pseudorandom, whereas {DES‘}in}neN is
strongly pseudorandom.

Proof Sketch: We start by proving that {DES3 Jnen 18 pseudorandom. Let
def {DES3 Inen, and let Ky, be the random Varlable uniformly distributed
over all poss1ble permutations acting on {0, 1}**. We prove that for every oracle

machine M that on input 1” asks at most m queries, it holds that

2

IPr[MP(1")=1] — Pr[M*>(1")=1]| < 2" 3.17)

211
Letg; = (LY, RY), with |L?|=|R?|=n, be a random variable representing the
ith query of M when given access to oracle P5,. Recall that P,, = DES HO 1O gD
where the H’s are three independent random variables, each uniformly dis-

tributed over the functions acting on {0, 1}". Let R = et LY@ H*D(RF) and
L & R for k = 0, 1, 2. That s,

(L R = (R, Li @ HD(R]))

We assume, without loss of generality, that M never asks the same query twice.
We define a random variable £, representing the event that there existi < j < m
and k €{1, 2} such that Rl’.‘ = R;‘. (namely, on input 1" and access to oracle P,,,
two of the m first queries of M satisfy the relation R¥ = Rj‘.). We use the following
two claims.

167

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

Claim 3.7.8.1: Foreverym > 1, conditioned on —¢,,, the Rf ’s are uniformly and
independently distributed over {0, 1}", and the Lf ’s are uniformly distributed over

the n-bit strings not assigned to previous L;’s. Namely, for every o, ..., q, €
{0, 1},
m 3 1 "
Prini (Rl =ai) | =] = (5 (3.18)
whereas for every distinct By, ..., B, €{0, 1},
Pr (L =B) | —tn] = 3.19

i=1

Proof Idea: Eq. (3.18) follows from the observation that the Rl.3 ’s are determined
by applying the random function H® to different arguments (i.e., the R?’s),
where the distinctness of the R?’s is implied by —¢,,. Similarly, the L} = R?’s
are determined by applying the random function H® to different arguments (i.c.,
the Rl.1 ’s), and —¢,, also conditions the results (i.e., the Riz’s) to be different. Thus,
Eq. (3.19) also holds. [J

Claim 3.7.8.2: Foreverym > 1,

2m
Pr[{m-&-l | =Cm] < on

ProofIdea: Fixinganyi < m, we consider the probability that R}, , | = R}. There
are two cases:

1. If R RSH_I, then certainly (since (L RO);A(LmH, 0+1)) we have

Ri =L} @ H"(RY) = L7 @ H," (Ry11) # Lyt @ H," (Rot) = R

2. On the other hand, if R?# R? ., then

m+1°
Pr[Rl —R;H»l] - PI’[H(I) (RO) ® H(l)(m+l) - LO ©® Lm+J =2

where the last equality holds because the random function H'" is applied to
different arguments (i.e., RY and RY_,).

Thus, in both cases, Pr[R/ =R}, ;] < 27". In similarity to the foregoing Case 2,

conditioned on R # R, |, we have

PriR? = R;,.\] = Pr[H?(R)) ® H;”(R,,,,) = R} ® R,] =27"
Thus, for every i < m,
Pr[Rl = Rl+1 V R} = Rl%H—l] = Pr[Rl = ern-H] + Pr[Rz_ R§1+1 | R} # Rm+l]
<2.27"

and the claim follows. [

Using Pr(¢,,] < Pr(¢,-11+ Pr[&, | —=&n—1]1and Claim 3.7.8.2, it follows, by induc-

tion on m, that Pr[¢,,] < m?, By Claim 3.7.8.1, conditioned on —¢,,, the answers

2n
168

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
009

, available at https:/www.cambridgmbdgidge/Books @rline @ Cambridge binbeersitysPress, 2

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.8. MISCELLANEOUS

of P,, have left halves that are uniformly chosen among all n-bit strings not ap-
pearing as left halves in previous answers, whereas the right halves are uniformly
distributed among all n-bit strings. On the other hand, the answers of K,, are
uniformly distributed among all 2r-bit strings not appearing as previous answers.
Hence, the statistical difference between the distributions of answers in the two
cases (i.e., answers by P,, or by K3,) is bounded above by ”21—: + (';’) 27 < 22’Z2,
and Eq. (3.17) follows.

The proof that {DES‘}IH}HGN is strongly pseudorandom is more complex, yet
uses essentially the same ideas.!! In particular, the event corresponding to £,
is the disjunction of four types of events. Events of the first type are of the
form Rf = RY for k € {2, 3}, where ¢; = (L}, R}) and ¢; = (L9, RY) are queries
of the forward direction. Similarly, events of the second type are of the form
Rf = RS fork {2, 1}, where ¢; = (L}, R}) and ¢; = (L}, R}) are queries of the
backward direction. Events of the third type are of the form R¥ = R’]? fork {2, 3},
where ¢; = (L?, R?) is of the forward direction, ¢; = (L%, R;?) is of the backward
direction, and j < i. Similarly, events of the fourth type are of the form R = R*
for k€{2, 1}, where g; = (L}, R}) is of the backward direction, g; = (LY, R;’)
is of the forward direction, and j < i. As before, one bounds the probability of
event ¢,, and bounds the statistical distance between answers by K», and answers
by {DES‘}JH},[EN given that ¢, is false. H

3.8. Miscellaneous

3.8.1. Historical Notes

The notion of computationally indistinguishable ensembles was first presented by
Goldwasser and Micali (in the context of encryption schemes) [123]. In the gen-
eral setting, the notion first appeared in Yao’s work, which was also the origin of
the definition of pseudorandomness [210]. Yao also observed that pseudorandom en-
sembles could be very far from uniform, yet our proof of Proposition 3.2.3 is taken
from [107].

Pseudorandom generators were introduced by Blum and Micali [36], who defined
such generators as producing sequences that are unpredictable. Blum and Micali proved
that such pseudorandom generators do exist assuming the intractability of the discrete-
logarithm problem. Furthermore, they presented a general paradigm for construct-
ing pseudorandom generators that has been used explicitly or implicitly in all subse-
quent developments. Other suggestions for pseudorandom generators by Goldwasser
et al. [126] and Blum et al. [32] soon followed. Consequently, Yao proved that the ex-
istence of any one-way permutation implies the existence of pseudorandom generators
[210]. Yao was the first to define pseudorandom generators as producing sequences
that are computationally indistinguishable from uniform sequences. He also proved

T Here we assume that the machine avoids queries to which it knows the answers. That is, not only does it not
make the same query twice, but also if it makes the forward (resp., backward) query g and receives the answer a,
then it does not make a backward (resp., forward) query a.

169

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

that this definition of pseudorandom generators is equivalent to the definition of Blum
and Micali [36].

Generalizations of Yao’s result, by which one-way permutations imply pseudoran-
dom generators, were published by Levin [150] and by Goldreich, Krawczyk, and
Luby [108], culminating with the result of Hastad, Impagliazzo, Levin, and Luby [129]
asserting that pseudorandom generators exist if and only if one-way functions exist.
The constructions presented in Section 3.5 follow those ideas [108, 129]. These con-
structions make extensive use of universal, hashing functions, which were introduced
by Carter and Wegman [49] and were first used in complexity theory by Sipser [201].

Simple pseudorandom generators based on specific intractability assumptions are
presented in [36, 32, 5, 208, 141]. In particular, [5] presents pseudorandom gener-
ators based on the intractability of factoring, whereas [141] presents pseudorandom
generators based on the intractability of various discrete-logarithm problems (see
Section 2.4.3.4). In both cases, the main technical step is the construction of hard-
core predicates for the corresponding collections of one-way permutations.

Pseudorandom functions were introduced and investigated by Goldreich,
Goldwasser, and Micali [102]. In particular, the construction of pseudorandom func-
tions based on pseudorandom generators is taken from [102]. First applications of
pseudorandom functions were given in [103, 89, 90], and the list of applications has
been rapidly growing since.

Pseudorandom permutations were defined and constructed by Luby and Rackoff
[156], and our presentation follows their work.

The hybrid method originated from the work of Goldwasser and Micali [123]. The
terminology was suggested by Leonid Levin.

3.8.2. Suggestions for Further Reading

A wider perspective on pseudorandomness is offered by Goldreich [97]. It surveys
various notions of pseudorandom generators, viewing the one discussed in this chapter
as an archetypical instantiation of a general paradigm. The general paradigm amounts
to considering as pseudorandom those distributions that cannot be distinguished from
the uniform distribution by certain types of resource-bounded distinguishers. The com-
plexity of the generator itself, as well as its stretch function, can vary as well (rather than
being polynomial-time and polynomially bounded, respectively, as here). Starting with
the general paradigm, Chapter 3 of [97] surveys the archetypical case of pseudoran-
dom generators (considered here), as well as generators withstanding space-bounded
distinguishers, the de-randomization of complexity classes such as BPP, and various
special-purpose generators. (Readers interested in Kolmogorov complexity are referred
elsewhere [152].)

Proposition 3.2.3 presents a pair of ensembles that are computationally indistin-
guishable, although they are statistically far apart. This is shown without making
any intractability assumptions, but one of the two ensembles is not constructible in
polynomial time. This situation is unavoidable, because the existence of a pair of
polynomial-time-constructible ensembles having such properties (i.e., being computa-
tionally indistinguishable and yet statistically far apart) implies the existence of one-way

170

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.8. MISCELLANEOUS

functions [93]. Other abstract results regarding the notion of computational indistin-
guishability appear in [111, 119].

Combining Theorem 2.5.6 and Construction 3.4.7, we obtain a generic (black-box)
construction of a pseudorandom generator based on any one-way permutation that
outputs a logarithmic number of bits per each application of the one-way permutation.
Elsewhere [88] it is shown that as far as generic (black-box) constructions go, this is
the best performance (i.e., number of output bits per an application of the one-way
permutation) that one can expect.

Section 3.5 falls short of presenting the construction of Hastad et al. [129], not to
mention proving its validity. Unfortunately, the proof of this fundamental theorem,
asserting that pseudorandom generators exist if one-way functions exist, is too com-
plicated to fit into this book. The interested reader is thus referred to the original paper
[129].

Alternative constructions of pseudorandom functions were given in [172]. Con-
structions of unbounded-input (and generalized) pseudorandom functions based on
(ordinary) pseudorandom functions are discussed in [14].

An alternative presentation of the construction of pseudorandom permutations (based
on pseudorandom functions) can be found in [173]. That alternative distills the real
structure of the proof and provides related results.

Pseudorandom generators and functions have many applications to cryptography;
some of them will be presented in Volume 2 of this book (e.g., signatures and
encryption).

Using Sources of Imperfect Randomness. Pseudorandom generators and functions
enable us to expand randomness (or pseudorandomness), but they do not allow us to
“generate randomness (or pseudorandomness) deterministically.” In fact, we cannot
expect to have an efficient deterministic program that generates pseudorandom objects
(because the very same program may be employed by the distinguisher). In order to
employ a pseudorandom generator (or function), we need to start with a random seed,
and the question is where to obtain it. The answer is that this random seed (or something
that appears so) can be obtained by sampling some physical phenomena. Indeed, such
samples may not be uniformly distributed over the set of strings (of a specific length),
yet if they contain enough entropy, then almost perfect randomness can be (efficiently)
extracted from them. Methods for such randomness extraction will be discussed in the
third volume of this book.

The Random Oracle Methodology. In contrast to the methodology discussed in
Section 3.6.3, the Random Oracle Model refers to a setting in which the adversary
has direct access to a random oracle (that is later “implemented” by a function, the
description of which is given also to the adversary). The Random Oracle Methodol-
ogy [80, 21] consists of first designing an ideal system in which all parties (including
the adversary) have oracle access to a truly random function, and then replacing the
random oracle by a “good cryptographic hashing function,” providing all parties (in-
cluding the adversary) the succinct description of this function. Recall that, in contrast,
the methodology of Section 3.6.3 refers to a situation in which the adversary does not

171

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

have direct oracle access to the random function and does not obtain the description of
the pseudorandom function used in the latter implementation. We warn that, in contrast
to the methodology presented in Section 3.6.3, the Random Oracle Methodology is
heuristic. In particular, there exist encryption and signature schemes that are secure in
the Random Oracle Model, but do not have any secure implementation by a function
ensemble [46].

3.8.3. Open Problems

Although Hastad et al. [129] showed how to construct pseudorandom generators given
any one-way function, their construction is not practical, the reason being that the
“quality” of the generator on seeds of length 7 is related to the hardness of inverting the
given function on inputs of length less than /n. We believe that presenting an efficient
transformation of arbitrary one-way functions to pseudorandom generators is one of the
most important open problems in this area and that doing so may require the discovery
of new important paradigms.

An open problem of more acute practical importance is to present even more efficient
pseudorandom generators based on the intractability of specific computational problems
like integer factorization. For further details, see Sections 3.4.3 and 2.7.3.

3.8.4. Exercises

Exercise 1: Computational indistinguishability, trivial variations: Prove that the follow-
ing trivial variations on Definition 3.2.2 are equivalent to it. In all versions we consider
the ensembles x & {Xn} neny and y & {Ya} nen.

1. Ensembles X and Y are indistinguishable1 in polynomial time if for every probabilistic
polynomial-time algorithm D, every positive polynomial p(-), and all sufficiently
large n's,

1
ny __ ny _
|[Pr[D(Xn, 1")=1] — Pr[D(Y,, 1") =1]| < 50
That is, the strict inequality is replaced by <.

2. Ensembles X and Y are indistinguishable2 in polynomial time if for every probabilistic

polynomial-time algorithm D, every positive polynomial p(-), and all sufficiently large n’s,

1

PriD(X,, 1")=1] — Pr[D(Y,, 1" =1] < 5

That is, the absolute value is dropped.

3. Suppose that | X,| = | Ys| = n. Ensembles X and Y are indistinguishable3 in polynomial
time if for every probabilistic polynomial-time algorithm D, every positive polynomial p(-),
and all sufficiently large n’s,

|Pr{D(Xn) =1]— Pr[D(Y,) =1]| <)

That is, the auxiliary input 17 is omitted.

172

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.8. MISCELLANEOUS

Exercise 2: Computational indistinguishability is preserved by efficient algorithms: Let

{Xn} nen and {Yn} nen be two ensembles that are polynomial-time-indistinguishable.

1. For any probabilistic polynomial-time algorithm A, prove that the ensembles {A(X;)} new
and {A(Y)} nen are polynomial-time-indistinguishable.

2. Show that if Ais not polynomial-time, then {A(X;,)} ney and {A(Y,)} new @re not necessarily
polynomial-time-indistinguishable.

Exercise 3: Statistical closeness is preserved by any function: Let {Xn}nen and
{Yn}nen be two ensembles that are statistically close, and let f:{0,1}* — {0, 1}*
be a function. Prove that the ensembles {f(Xn)}nen and {f(Yn)}nen are statistically
close.

Exercise 4: Prove that for every L € BPP and every pair of polynomial-time-
indistinguishable ensembles {X,} ney and {Yn} nen, it holds that the function

AL(n) E P X,e L] — PriY,e L]

is negligible in n.

It is tempting to think that the converse holds as well, but we do not know whether
or not it does; note that {X,} and {Y;} can be distinguished by a probabilistic algo-
rithm, but not by a deterministic one. In such a case, which language should we de-
flne? For example, suppose that Ais a probabilistic polynomial-time algorithm, and let
L _{x PriA(x) =1] > 2}. Then L is not necessarily in BPP. (Exercise 5 shows that
in the non-computational setting both the foregoing and its converse are true.)

Exercise 5: An equivalent formulation of statistical closeness: Prove that two ensem-
bles, {Xn} nenw and { Y} nen, are statistically close if and only if for every set S C {0, 1},

As(n) € |PriX, e 8] Pr[Y, e S]|

is negligible in n.
Guideline: Show that the statistical difference between X, and Y;, as defined in Eq. (3.1),
equals maxs{As(n)}.

Exercise 6: Statistical closeness implies computational indistinguishability: Prove that

if two ensembles are statistically close, then they are polynomial-time-indistinguishable.
Guideline: Use the result of Exercise 5, and define for every function f:{0,1}* — {0, 1}
aset S & {x: f(x)=1}.

Exercise 7: An information-theoretic analogue of Theorem 3.2.6: Prove that if two
ensembles are statistically close, then their polynomial products must be statistically
close.
Guideline: Show that the statistical difference between the m-products of two distributions
is bounded by m times the distance between the individual distributions.

Exercise 8: Computational indistinguishability by circuits, probabilism versus deter-

minism: Let { X} nen @and { Y5} nen be two ensembles, and let C f {Ch} nen be a family
of probabilistic polynomial-size circuits. Prove that there exists a family of (deterministic)

173

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

polynomial-size circuits D gef { Dn} ne ~ such that for every n,
Ap(n) = Ac(n)
where
Ap(n) & [Pr[Da(Xy) = 1] Pr[Da(Ya) = 11|
Ac(n) E [PrICy(Xn) = 11— Pr[Cal(¥y) = 1]|

Exercise 9: Computational indistinguishability by circuits, single sample versus sev-
eral samples: Prove that X = {Xy}nen and Y = {Ys}nen are indistinguishable by
polynomial-size circuits (as per Definition 3.2.7) if and only if their m(-)-products are
indistinguishable by polynomial-size circuits, for every polynomial m(-). We stress that
X and Y need not be polynomial-time-constructible.
Guideline: A “good choice” of x', ..., x¥and y**2,..., y™ can be “hard-wired” into the
circuit.

Exercise 10: Computational indistinguishability, circuits versus algorithms:

1. (Easy) Suppose that the ensembles X = {X,} ey and Y = {Y,} ,cn are indistinguish-
able by polynomial-size circuits. Prove that they are computationally indistinguishable (by
probabilistic polynomial-time algorithms).

Guideline: Use Exercise 8.

2. (Hard) Show that there exist ensembles that are computationally indistinguishable (by
probabilistic polynomial-time algorithms), but are distinguishable by polynomial-size
circuits.

Guideline (Part 2): Given any function f:{0,1}* — [0, 1], prove the existence of
an ensemble X = {X,},cn such that each X, has support of size at most 2 and
yet Pr[f(X,) = 1] = Pr[f(U,) = 1], where U, is uniformly distributed over {0, 1}".

Generalize the argument so that given t such functions, fy, ..., f; : {0,1}* — [0, 1],
each X, has support of size at most t + 1 and yet Pr[f;(X,)=1] = Pr[f;(U,)=1] for
each i =1, ..., t. (Extra hint: Consider the t-dimensional vectors (f;(x), ..., fi(x)) for

each x € {0, 1}" and think of convex hulls.) A standard diagonalization argument will
finish the job. (In case you did not get it, consult [111].)

Exercise 11: Prove that the existence of a pair of polynomial-time-constructible en-

sembles that are computationally indistinguishable and are not statistically close implies

the existence of one-way functions.
Guideline: We seek a simpler proof than one presented earlier [93], where it was proved
that the hypothesis implies the existence of pseudorandom generators. Still, the main
idea of that proof should be applied: Taking sufficiently many independent copies of each
ensemble, construct two computationally indistinguishable ensembles that are “almost
disjoint” (i.e., have statistical difference at least 1 — 27"). Next, assuming for a moment
that the ensembles are disjoint (i.e., have statistical difference 1), prove the conclusion
of this exercise (by using a variant of the proof of Proposition 3.3.8). Finally, deal with
the general case by using an analogous argument in order to show that the hypoth-
esis implies the existence of a “distributionally one-way function” as in Exercise 17 of
Chapter 2.

174

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.8. MISCELLANEOUS

Exercise 12: Prove that pseudorandom generators do not assign noticeable probabil-
ity mass to any string. That is, if G is a pseudorandom generator, then for every positive
polynomial p and all sufficiently large nand «, Pr[G(U,) = «] < 1/ p(n).

Exercise 13: Do pseudorandom generators induce 1-1 mappings? That is, if G is

a pseudorandom generator, is it the case that the mapping G: {0,1}" — {0, 1}/

is 1-1?

1. Show that if pseudorandom generators exist, then there exist pseudorandom generators
G such that the mapping G: {0, 1}" — {0, 1} is not 1-1.

2. Show that if one-way permutations exist, then there exist pseudorandom generators G
such that the mapping G: {0,1}" — {0,1}/™ is 1-1.

Exercise 14: Let G be a pseudorandom generator, and let h be a polynomial-time-
computable permutation (over strings of the same length). Prove that G’ and G’ defined
by G'(9) gef h(G(s)) and G”(s) gef G(h(s)) are both pseudorandom generators.

Exercise 15: Suppose that G is a pseudorandom generator, and consider the follow-
ing modifications to it:

1. G'(s) £ 0169 if the number of 1’s in sis exactly |s|/2, and G'(s)
2. G"(s) & 0/66) if the number of 1’s in sis exactly |s|/3, and G"(s)
Which of these is a pseudorandom generator?

e G(s) otherwise.

& G(s) otherwise.

Exercise 16: Analogously to Exercise 9 in Chapter 2, refute the following conjecture:

For every pseudorandom generator G, the function G'(s) & G(s) @ s0/6)- sl jg

also a pseudorandom generator.

Guideline: Let g be a pseudorandom generator, and consider G defined on pairs of
strings of the same length such that G(r, s) = (r, g(s)).

Exercise 17: A more general definition of a pseudorandom generator: The following
definition deviates from the standard one by refraining from the length-regular require-
ment regarding the generator (i.e., itis not required that | G(x)| = | G(y)| forall | x| = | y|).
A general pseudorandom generator is a deterministic polynomial-time algorithm G satis-
fying the following two conditions:

Expansion: For every s {0, 1}*, it holds that | G(s)| > |s]|.

Pseudorandomness (as in Definition 3.3.1): The ensemble {G(Up)}nen is pseudo-
random.

Prove the following statements:

1. If there exists a general pseudorandom generator, then there exists a standard one.

2. Let G be a general pseudorandom generator, and let / : N — N be such that { G(U,)} nen
is polynomial-time-indistinguishable from { Uy} nen.
(a) Prove that /(n) > n holds for all but finitely many n's.
(b) Prove that the probability that G(U,) has length not equal to /(n) is negligible (in n).
Guideline (Part 2b): The difficult case is when /(n) is not computable in poly(n) time
from n (otherwise, one can simply compare the length of the tested string to /(n)). In the

175

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

general case, first prove that there exists a function /' : N — N such that the probability
that | G(U,)| # I'(n) is negligible (in n). (Hint: Otherwise, one could distinguish polynomial
products of G(U,) from polynomial products of Uj,).) Next prove that /'(n) = I(n) by con-
sidering a distinguisher that on input 1”7 and a string to be tested, «, first samples G(U,)
and compares its length to |«|.

Exercise 18: Consider a modification of Construction 3.3.2, where sjo; = Gi(si_1) is
used instead of o;s; = Gy(s;_1). Provide a simple proof that the resulting algorithm is
also pseudorandom.

Guideline: Do not modify the proof of Theorem 3.3.3, but rather modify G; itself.

Exercise 19: Alternative construction of pseudorandom generator with large expan-
sion factor: Let Gy be a pseudorandom generator with expansion factor /(n) = n+ 1,
and let p(-) be a polynomial. Define G(s) to be the result of applying G; iteratively p(|s|)
times on s (i.e., G(s) & GM*)(s), where G%(s) & sand G/T" & G4(Gi (9))).

Prove that G is a pseudorandom generator.

What are the advantages of using Construction 3.3.2?

Exercise 20: An alternative definition of unpredictable ensembles: Consider a modifi-
cation to Definition 3.3.6 in which the quantification is over only (probabilistic polynomial-
time) algorithms that never read the entire input. That is, in every execution of such an
algorithm A, on input (1%, x), algorithm A reads at most |x| — 1 bits of x. Prove that
the modified definition is equivalent to the original one.
Guideline: Since the scope of the modified definition is smaller that the scope of the
original one, we need only show how to convert an arbitrary probabilistic polynomial-time
algorithm A into one that never reads the entire input and still has at least the same
success probability in predicting the next bit. This can be done by emulating A without
ever reading the last input bit, so that whenever A tries to read the last input bit, we halt
with a uniformly selected output bit. (Otherwise, we faithfully emulate A.) Note that in
case Areads its last input bit, its output-prediction bit is correct with probability % (by the
fictitious definition of next, in this case; see Definition 3.3.6). This success probability is
met by our modified algorithm that outputs a uniformly selected bit as a guess of the last
input bit.

Exercise 21: On-line pseudorandom generator: Recall that variable-output pseu-
dorandom generators (see Section 3.3.3) are deterministic polynomial-time programs
that when given a random seed will produce an infinite sequence of bits such that every
polynomially long prefix of it will be pseudorandom. On-line pseudorandom genera-
tors are a special case of variable-output pseudorandom generators in which a hidden
state is maintained and updated so as to allow generation of the next output bit in time
polynomial in the length of the seed, regardless of the number of bits generated thus
far. On-line pseudorandom generators are defined through their next-step function that
maps the current state of the generator to a pair consisting of an output bit and a next
state. That is, a polynomial-time algorithm g mapping n-bit-long strings to (n+ 1)-bit-
long strings is called a next-step function of an on-line pseudorandom generator if for
every polynomial p the ensemble { G5} nen is pseudorandom, where G is defined by
the following random process:

176

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.8. MISCELLANEOUS

Uniformly select sg € {0, 1}".
Fori=1to p(n),doo;-s; — g(si—1), whereo; € {0,1} (and s; € {0, 1}").
Output 102 - - - o p(n)-

That is, s is the initial (random) state of the on-line pseudorandom generator, and s;
is its state after outputting i bits. (Indeed, the definition of this ensemble is similar to
Construction 3.3.2.)
1. Prove that if G is an ordinary pseudorandom generator with expansion function ¢(n) =
n+ 1, then it also constitutes a next-step function of an on-line pseudorandom generator.
Guideline: Use the similarity mentioned earlier.
2. Show that the converse does not necessarily hold; that is, if g is the next-step function of
an on-line pseudorandom generator, then it is not necessarily a pseudorandom generator.
Guideline: Given a next-step function g’, consider the next-step function g(s- r) =
g'(s)- 0"l for (say) |r| = |s].
3. Still, show that given any (next-step function g of an) on-line pseudorandom generator,
one can easily construct a pseudorandom generator.
Guideline: Just activate the on-line generator enough times.
This definition of (a next-step function of) an on-line pseudorandom generator guar-
antees that the current state of the generator does not grow in size/length with the
number of bits generated. We next consider a somewhat relaxed definition that al-
lows moderate growth in the size/length of the current state. For example, consider a
relaxed definition of an on-line pseudorandom generator that allows (polynomial-time-
computable) next-step functions g that map m-bit-long strings to (m+ O(1))-bit-long
strings. (The distribution considered is again defined by selecting sp uniformly in {0, 1} 7,
letting o; - 5; = g(s;j_1), where o; € {0, 1}, and outputting o402 - - - o 55); however, here
|Spin)| 7 |Sol, unless |g(s)| = |s| + 1 as before.)

e Show that using the relaxed definition of an on-line pseudorandom generator does
not guarantee that each next output bit will be generated in time polynomial in the
length of the seed (i.e., regardless of the number of bits generated thus far).

® Show that the foregoing ltem 3 still holds.

® Let gbe the next-step function of a relaxed on-line pseudorandom generator, and let
T4(m) denote the complexity of computing g on inputs of length m. Provide an upper
bound on the complexity of producing #(n) bits out of an n-bit seed in the relaxed on-
line pseudorandom generator based on g. Compare this bound to the one obtained
for a non-relaxed on-line pseudorandom generator.

e How much can we allow the current state to grow at each step so as to maintain
polynomial-time operation when outputting polynomially many bits?

Exercise 22: Constructions of hashing families: We associate ¢-dimensional binary

vectors with ¢-bit-long strings.

1. Consider the set S7 of functions mapping n-bit-long strings into m-bit strings. A function
hapin S is represented by a pair (A, b), where Ais an n-by-m binary matrix and b is
an m-dimensional binary vector. The n-dimensional binary vector x is mapped by the
function h,p to the m-dimensional binary vector resulting from multiplying x by A and
adding the vector b to the resulting vector (i.e., hap(X) = XA+ b). Prove that S so
defined constitutes a hashing family (as defined in Section 3.5.1.1).

177

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

2. Repeat ltem 1 when the n-by-m matrices are restricted to be Toeplitz matrices. An n-by-m
Toeplitz matrix T = { T; ;} satisfies T, ; = Ti4 ;41 forall i, j.

Note that binary n-by-m Toeplitz matrices can be represented by strings of length

n+ m— 1, whereas representing arbitrary n-by-m binary matrices requires strings of

length n- m.
Guideline: For every x #= x’ in {0,1}" and every v, v' € {0, 1}™, show that the number
of functions h € ST that satisfy h(x) = v and h(x’) =V’ is independent of v and v’. For
example, in Part 1, each such function is associated with a pair (A, b), and we consider
the pairs satisfying the system of equations xA+ b =vand x’ A+ b =V’ (or, equivalently,
xA+b=vand (x— x')A=v — V'), where x, x',v, and v’ are fixed and the entries of A
and b are the unknowns.

Exercise 23: Another construction of hashing families: Here we use an efficiently ma-
nipulated representation of the finite field GF(2"). This requires an irreducible polynomial
of degree nover the two-element field GF(2). For specific values of n, a good represen-
tation exists: Specifically, for n = 2 - 3¢ (with e integer), the polynomial x” + x"2 + 1 is
irreducible over GF(2) [153, Thm. 1.1.28].

For m < n, consider the set ST of functions mapping n-bit-long strings into m-bit
strings as follows. A function h,p in S is represented by two elements a, b e GF(2"),
and for every x € GF(2"), the value of h, p(x) equals the m-bit prefix in an n-bit repre-
sentation of ax + b, where the arithmetic is of the field GF(2").

1. Prove that S so defined constitutes a hashing family.
2. Prove that all but an exponentially vanishing fraction of the functions in ST are regular

(i.e., 2" M-to-1).

Guideline: For Part 1, use the fact that for every x #= x’ and every v, v’ € GF(2"), there

exists a single pair (a, b) such that ax + b=v and ax’ + b=V'. For Part 2, use the fact

that for every a # 0 and b, the mapping x — ax + bis 1-1.

Exercise 24: Another hashing lemma: Letm, n, ST, b, X,, and § be asin Lemma 3.5.1.
Prove that for every set S C {0, 1} and for all but at most a 2~ (b~m+0g:[S)) . 5-2
fraction of the A's in ST, it holds that

S
Prih(Xp) € Sle (1+6)- |2m‘
Guideline: Follow the proof of Lemma 3.5.1, defining ¢x(h) =1 if h(x) € S, and 0

otherwise.

Exercise 25: Yet another hashing lemma: Let m, n, and ST be as before and let
B C {0,1}"and SC {0,1}™ be sets. Prove that for all but at most a ‘B‘ ‘S‘ 872
fraction of the A’s in S, it holds that

ISI

{xe B:h(x)e 9} € (1 | B

Guideline: Define a random variable X, that is uniformly distributed over B.

Exercise 26: Failure of an alternative construction of pseudorandom functions: Con-
sider a construction of a function ensemble where the functions in F, are defined as

178

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
009

, available at https:/www.cambridgmbdgidge/Books @rline @ Cambridge binbeersitysPress, 2

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.8. MISCELLANEOUS

follows. For every s € {0, 1}, the function fs is defined such that

0 € G, (- (Gop (G (X)) -+)

where s= o1 ---0n and G, is as in Construction 3.6.5. Namely, the roles of x and s
in Construction 3.6.5 are switched (i.e., the root of the tree is labeled by x, and the
value of fson x is obtained by following the path corresponding to the index s). Prove
that the resulting function ensemble is not necessarily pseudorandom (even if G is a
pseudorandom generator).

Guideline: Show, first, that if pseudorandom generators exist, then there exists a pseu-

dorandom generator G satisfying G(0") = 02",

Exercise 27: Pseudorandom generators with direct access: A direct-access pseudo-

random generator is a deterministic polynomial-time algorithm G for which no proba-

bilistic polynomial-time oracle machine can distinguish the following two cases:

1. New queries of the oracle machine are answered by independent flips of an unbiased
coin. (Repeating the same query twice yields the same answer.)

2. First, a random “seed” s of length nis uniformly chosen. Next, each query g is answered
by G(s,).

The bit G(s, i) can be thought of as the ith bit in a bit sequence corresponding to the

seed s, where i is represented in binary.

* Prove that the existence of (ordinary) pseudorandom generators implies the exis-
tence of pseudorandom generators with direct access.

Guideline: A pseudorandom generator with direct access is essentially a pseudoran-
dom function ensemble.

* Show that modifying this definition, so that only unary queries are allowed, will yield
an alternative definition of a relaxed on-line pseudorandom generator (as defined in
Exercise 21).

Guideline: Given a next-step function g of a relaxed on-line pseudorandom generator,
we obtain a generator G supporting “direct access” to a polynomially long sequence
by letting G(s, 17) be the ith bit produced by the relaxed on-line generator on initial
state s. Conversely, given such a “unary direct-access” machine G, we obtain a next-
step function gby letting g(s, 1) = (G(s, 1't"), (s, 17*")). (Thatis, the ith state is (s, 1),
where s = (s, 1) is the initial state.)

e FEvaluate the advantage of direct-access pseudorandom generators over on-line
pseudorandom generators even in settings requiring direct access only to bits of
a polynomially long pseudorandom sequence.

Exercise 28: Consider pseudorandom function ensembles as defined in Definition

3.6.4, with respect to a length function £ : N — N.

1. Show that for £(n) > log, n, any such pseudorandom function gives rise to a pseudoran-
dom generator. In fact, it suffices to have £(n)“" > n.

2. For¢(n)“™ < n, present a construction of a pseudorandom function ensembles with length
£ : N — N, without relying on any assumptions.

Exercise 29: Let {f]: {0, 1}4Is) — {0, 1}IsI} ;¢ (0,1)- be a generalized pseudoran-
dom function ensemble, and suppose that G’ is polynomial-time-computable and that

179

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

the ensemble {G'(Up)} nen is pseudorandom, as defined in Definition 3.2.8. (If G’ is
a pseudorandom generator, then it satisfies both conditions, but the converse is not
true.)

Prove that the generalized function ensemble { fs : {0, 1} — {0, 1}7(s0} o (g 43,

defined by fs(x) & G'(f'(x)), is pseudorandom.

Guideline: See proof of Theorem 3.6.11.

Exercise 30: Speeding up pseudorandom function constructions (suggested by
Leonid Levin): For some d, r : N — N, consider a generalized pseudorandom function
ensemble

FE {f6:{0, 139050 — {0,130V} 5 (g1

as in Definition 3.6.9. Let Primes, denote the set of primes in the interval (2™ 1, 2m).
Forany d’' : N — N, consider a new function ensemble,

def /
F = { fs/,p : {O, 1}d (Ish — {O, 1}r(‘s‘)}se{O,1}*,pePrimesa(\S\>

such that f; ,(x) def fs(x mod p), where {0, 1}9'(sD) and {0, 1} 9] are associated with
{0,...,29Ush — 1} and {0, ..., 290D — 1}, respectively.

The point is that the functions in F’ are computable in time related to the time-
complexity of F. Whenever d’(n) > d(n) (e.g., d’(n) = n>and d(n) = Iogf7 n), this yields
a speedup in the time-complexity of F’ (when compared with Construction 3.6.10).

1. Prove that if d(n) = w(log n), then F’ is pseudorandom.

2. Show that, on the other hand, if d(n) = O(logn) (and d’(n) > d(n)), then F’ is not
pseudorandom.

Note that, in general, the “pseudorandomness” of F' (as quantified with respect to the

running time sufficient to see evidence that F’ is not random) depends on d: N — N.

Specifically, evidence that F’ is not random can be found in time exponential in d.

Guideline (Part 2): Going over all possible p's, try to gather evidence that the target func-

tion indeed uses reduction modulo p. (Hint: For fixed p, any two distinct x, y € {0, 1}9'(s)

such that x= y (mod p) yield such evidence.)

Guideline (Part 1): Consider applying the foregoing construction to the uniform function

ensemble H, rather than to the pseudorandom ensemble F. The main issue is to show

that the resulting ensemble H’ is pseudorandom. (F’ is indistinguishable from H’, or else

we can distinguish F from H.)

Guideline (Part 1, extra hints): We refer to the function ensemble H' = { H} ,cn, Where

H' is defined by uniformly selecting a function h: {0, 1}%" — {0, 1} and p € Primeg,

and letting H, = h, such that h,(x) = h(x mod p). If the distinct queries xi, ..., x; €

{0, 1}9'" have distinct residues mod p, then the answers obtained from hy, are indepen-

dently and uniformly distributed in {0, 1}"™. Thus, essentially, we need to lower-bound

the probability of the former event for a uniformly selected p € Primeg,. We upper-bound
the probability of the complementary event (i.e., 3/ # j s.t. X, = x; (mod p)). For dis-
tinct x, y € {0,1}9'™ it holds that x= y (mod p) iff p divides x — y. At this stage
the argument is simplified by the fact that p is prime:'> The probability that a uniformly

12What if the construction were to be modified so that p was uniformly selected among all integers in
2dm=1 2400 — 132

180

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.8. MISCELLANEOUS

d(n)

‘ane oo’ which is

chosen d(n)-bit-long prime divides a d’(n)-bit-long integer is at most &
e(d’(n) - 2~ 9y,

Exercise 31: An alternat/ve construction for Exercise 30: Let F and let d’ be as
in Exercise 30, and let S n be a hashing family (as defined in Section 3.5.1.1).
For every se {0,1}* and he S \‘ssl‘) define fg, such that f,(x) = fs(h(x)), and let

def /
FE (010 = g

(This construction requires longer seeds than the one in Exercise 30; however, one can

use much smaller families of functions that approximate the desired features.)

1. Prove that if d(n) = w(log n), then F’ is pseudorandom.

2. On the other hand, show that if d(n) = O(log n) and r(n) > d(n), then F’ is not pseudo-
random.
Guideline (Part 2): For any distinct x, y € {0,1}9'™ and a uniformly selected function
mapping d’(n)-bit-long strings to r(n)-bit-long string, the probability that x and y are
mapped to the same image is 2-"". However, the probability that x and y are mapped to

the same image under a uniformly selected f;, is lower-bounded by Pr[h(x) = h(y)] =
2-dn,

Exercise 32: Analternative definition of pseudorandom functions: For the sake of sim-
plicity, this exercise is stated in terms of ensembles of Boolean functions (analogously
to Definition 3.6.9, with d(n) = nand r(n) = 1). That is, we consider a Boolean-function
ensemble {fs: {0, 1}I5 — {0, 1} }sc {0,1}- and let F, be uniformly distributed over the
multi-set { fs} se {0,1;». We say that the function ensemble {Fp} e v is unpredictable if
for every probabilistic polynomial-time oracle machine M, for every polynomial p(-), and
for all sufficiently large n’s,
Pr[corrfr(MF(17)] < 1 + 1
2 p(n)
where MF(17) assumes values of the form (x, o) € {0,1}" x {0, 1} such that x is
not a query appearing in the computation M (17), and corr(x,) is defined as the
predicate “f(x) = o”. Intuitively, after getting the values of f on points of its choice, the
machine M outputs a new point (i.e., x) along with a guess (i.e., o) for the value of
f on this point. The value of corr’(x, o) represents whether or not M is correct in its
guess.
Assuming that F = {F,} hcn is efficiently computable, prove that F is pseudorandom
if and only if F is unpredictable.
Guideline: The proof is analogous to the proof of Theorem 3.3.7

Exercise 33: A mistaken “alternative” definition of pseudorandom functions: Again,
we consider ensembles of Boolean functions, as in Exercise 32. Consider the following
definition of weak unpredictability of function ensembles. The predicting oracle machine
M is given a uniformly chosen x € {0, 1}" as input and should output a guess for f(x),
after querying the oracle f on polynomially many other (than x) points of its choice. We
require that for every probabilistic polynomial-time oracle machine M that does notquery

181

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

PSEUDORANDOM GENERATORS

the oracle on its own input, for every polynomial p(-), and for all sufficiently large n's,
Pr[MF(Un)= Fo(Un)] < 5 + ——

That is, unlike the formulation of Exercise 32, the predicting machine cannot select the

point for which it has to predict the value of the function (but rather this point is random

and is given as input).

1. Show that any pseudorandom function ensemble is weakly unpredictable.

2. Assuming that pseudorandom function ensembles exist, show that there exists a function
ensemble that is weakly unpredictable, although it is not pseudorandom.

This exercise contradicts a flawed claim (which appeared in earlier versions of this

manuscript). The flaw was pointed out by Omer Reingold.
Guideline: For Part 1, show that unpredictability, as defined in Exercise 32, implies weak
unpredictability. Alternatively, provide a direct proof (as in Exercise 32). For Part 2, modify
a pseudorandom function ensemble so that each f in the range of F, satisfies f(0") = 0.

Exercise 34: An unsuccessful attempt to strengthen the notion of weak unpredictabil-
ity of function ensembles so that it is equivalent to pseudorandomness of functions: In
continuation of Exercise 33, suppose that we strengthen the requirement by allowing
the input x to be chosen from any polynomial-time-constructible ensemble. Namely,
here we say that a function ensemble F = { Fy} nen is weakly2 unpredictable if for
every probabilistic polynomial-time oracle machine M that does not query the oracle
on its own input, for every polynomial-time-constructible ensemble { X;} nen, where X,
ranges over {0, 1}, for every polynomial p(-), and for all sufficiently large n's,
1
Fn —
PI’[M (Xn) Fn(Xn)] < + o)

Again, show that this definition is a necessary but insufficient condition for pseudoran-
dom function ensembles.

Guideline: Modify the function ensemble so that each f in the range of F, satisfies

f(f(a") f(a?)--- f(a")) = 0,whered', ..., a" € {0, 1}"are some easy-to-compute strings

(e.g., @ =0~110"").

Exercise 35: Let t : N — N be such that on input n, one can compute #(n) in poly(n)
time. Let { Fn} nen and { Hp} nen be two function ensembles that are indistinguishable by
any probab|I|st|c polynomlal -time oracle machine. Prove that the permutation ensembles
{DES,_- }nen and {DESH }nen (defined as in Section 3.7.2) are indistinguishable by
any probablllstlc polynomlal -time oracle machine. Furthermore, this holds even when
the oracle machine is given access both to the permutation and to its inverse (as in
Definition 3.7.5).

Guideline: Use a hybrid argument to bridge between the (n) independent copies of F,

and the t(n) independent copies of H,. The ith hybrid is DESFU(H)) D . Note

that oracle access to the permutation DES) E42) o))

can be emulated by using oracle access to the function g.

Exercise 36: Let F, and DES’,_-n be as in Construction 3.7.6. Prove that regardless of
the choice of the ensemble F = { Fy} new, the ensemble DESZFn is not pseudorandom.

182

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

3.8. MISCELLANEOUS

Guideline: Start by showing that the ensemble DES}H is not pseudorandom (a single
query suffices here). Use two related queries in order to distinguish DES2Fn from a random
permutation.

Exercise 37 (Suggested by Luca Trevisan): Assuming the existence of pseu-
dorandom function ensembles, prove that there exists a pseudorandom permutation
ensemble that is not strongly pseudorandom.
Guideline: First construct a pseudorandom permutation ensemble with seed length
smaller than or equal to the logarithm of domain size. Next modify it so that the seed
is mapped to a fixed point (e.g., the all-zero string) and so that the modified ensemble
remains one of permutations.

Exercise 38: Insimilarity to Exercise 36, prove thatthe ensemble DES?:H is not strongly
pseudorandom.
Guideline: This requires more thought and probably more than a couple of queries. You
should definitely use queries to both oracles.

183

Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:28, subject to the Cambridge Core terms of use
, available at https:/www.cambrdgmbgidge/ Books @rline @ Cambridge binbeersitysPress, 2009

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.004
https:/www.cambridge.org/core

