
CHAPTER 2

Computational Difficulty

In this chapter we define and study one-way functions. One-way functions capture
our notion of “useful” computational difficulty and serve as a basis for most of the
results presented in this book. Loosely speaking, a one-way function is a function that
is easy to evaluate but hard to invert (in an average-case sense). (See the illustration
in Figure 2.1.) In particular, we define strong and weak one-way functions and prove
that the existence of weak one-way functions implies the existence of strong ones. The
proof provides a good example of a reducibility argument, which is a strong type of
“reduction” used to establish most of the results in the area. Furthermore, the proof
provides a simple example of a case where a computational statement is much harder
to prove than its “information-theoretic analogue.”

In addition, we define hard-core predicates and prove that every one-way function
has a hard-core predicate. Hard-core predicates will play an important role in almost
all subsequent chapters (the chapter on signature scheme being the exception).

Organization. In Section 2.1 we motivate the definition of one-way functions by argu-
ing informally that it is implicit in various natural cryptographic primitives. The basic
definitions are given in Section 2.2, and in Section 2.3 we show that weak one-way
functions can be used to construct strong ones. A more efficient construction (for certain
restricted cases) is postponed to Section 2.6. In Section 2.4 we view one-way functions
as uniform collections of finite functions and consider various additional properties
that such collections may have. In Section 2.5 we define hard-core predicates and show
how to construct them from one-way functions.

Teaching Tip. As stated earlier, the proof that the existence of weak one-way functions
implies the existence of strong ones (see Section 2.3) is instructive for the rest of the
material. Thus, if you choose to skip this proof, do incorporate a discussion of the
reducibility argument in the first place you use it (e.g., when showing how to construct
hard-core predicates from one-way functions).
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2.1. ONE-WAY FUNCTIONS: MOTIVATION
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Figure 2.1: One-way functions: an illustration.

2.1. One-Way Functions: Motivation

As stated in the introductory chapter, modern cryptography is based on a gap between
efficient algorithms provided for the legitimate users and the computational infeasibility
of abusing or breaking these algorithms (via illegitimate adversarial actions). To illus-
trate this gap, we concentrate on the cryptographic task of secure data communication,
namely, encryption schemes.

In secure encryption schemes, the legitimate users should be able to easily decipher
the messages using some private information available to them, yet an adversary (not
having this private information) should not be able to decrypt the ciphertext efficiently
(i.e., in probabilistic polynomial time).1 On the other hand, a non-deterministic machine
can quickly decrypt the ciphertext (e.g., by guessing the private information). Hence,
the existence of secure encryption schemes implies that there are tasks (e.g., “break-
ing” encryption schemes) that can be performed by non-deterministic polynomial-time
machines, yet cannot be performed by deterministic (or even randomized) polynomial-
time machines. In other words, a necessary condition for the existence of secure
encryption schemes is thatNP not be contained in BPP (and thus P �= NP).

Although P �= NP is a necessary condition for modern cryptography, it is not a
sufficient one. Suppose that the breaking of some encryption scheme isNP-complete.
Then, P �= NP implies that this encryption scheme is hard to break in the worst case,
but it does not rule out the possibility that the encryption scheme is easy to break almost
always. In fact, one can construct “encryption schemes” for which the breaking problem
isNP-complete and yet there exists an efficient breaking algorithm that succeeds 99%
of the time. Hence, worst-case hardness is a poor measure of security. Security requires
hardness in most cases, or at least “average-case hardness.” A necessary condition for
the existence of secure encryption schemes is thus the existence of languages in NP

1This “private information” is called a key; see Chapter 5.
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COMPUTATIONAL DIFFICULTY

that are hard on the average. We mention that it is not known whether or not P �= NP
implies the existence of languages inNP that are hard on the average.

Furthermore, the mere existence of problems (in NP) that are hard on the average
does not suffice either. In order to be able to use such hard-on-the-average problems,
we must be able to generate hard instances together with auxiliary information that
will enable us to solve these instances fast. Otherwise, these hard instances will be
hard also for the legitimate users, and consequently the legitimate users will gain no
computational advantage over the adversary. Hence, the existence of secure encryption
schemes implies the existence of an efficient way (i.e., probabilistic polynomial-time
algorithm) to generate instances with corresponding auxiliary input such that

1. it is easy to solve these instances given the auxiliary input, but

2. it is hard, on the average, to solve these instances when not given the auxiliary input.

The foregoing requirement is reflected in the definition of one-way functions (as pre-
sented in the next section). Loosely speaking, a one-way function is a function that is
easy to compute but hard (on the average) to invert. Thus, one-way functions capture the
hardness of reversing the process of generating instances (and obtaining the auxiliary
input from the instance alone), which is responsible for the discrepancy between the
preceding two items. (For further discussion of this relationship, see Exercise 1.)

In assuming that one-way functions exist, we are postulating the existence of efficient
processes (i.e., the computation of the function in the forward direction) that are hard
to reverse. Note that such processes of daily life are known to us in abundance (e.g., the
lighting of a match). The assumption that one-way functions exist is thus a complexity-
theoretic analogue of daily experience.

2.2. One-Way Functions: Definitions

In this section, we present several definitions of one-way functions. The first version,
hereafter referred to as a strong one-way function (or just one-way function), is the
most popular one. We also present weak one-way functions, non-uniformly one-way
functions, and plausible candidates for such functions.

2.2.1. Strong One-Way Functions

Loosely speaking, a one-way function is a function that is easy to compute but hard to
invert. The first condition is quite clear: Saying that a function f is easy to compute
means that there exists a polynomial-time algorithm that on input x outputs f (x). The
second condition requires more elaboration. What we mean by saying that a function
f is hard to invert is that every probabilistic polynomial-time algorithm trying, on
input y, to find an inverse of y under f may succeed only with negligible (in |y|)
probability, where the probability is taken over the choices of y (as discussed later).
A sequence {sn}n∈N (resp., a function µ : N → R) is called negligible in n if for every
positive polynomial p(·) and all sufficiently large n’s, it holds that sn <

1
p(n) (resp.,

µ(n) < 1
p(n) ). Further discussion follows the definition.
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2.2. ONE-WAY FUNCTIONS: DEFINITIONS

Definition 2.2.1 (Strong One-Way Functions): A function f : {0, 1}∗ → {0, 1}∗
is called (strongly) one-way if the following two conditions hold:

1. Easy to compute: There exists a (deterministic) polynomial-time algorithm A such
that on input x algorithm A outputs f (x) (i.e., A(x) = f (x)).

2. Hard to invert: For every probabilistic polynomial-time algorithm A′, every positive
polynomial p(·), and all sufficiently large n’s,

Pr[A′( f (Un), 1n) ∈ f −1( f (Un))] <
1

p(n)

Recall that Un denotes a random variable uniformly distributed over {0, 1}n . Hence,
the probability in the second condition is taken over all the possible values assigned
to Un and all possible internal coin tosses of A′, with uniform probability distribution.
Note that A′ is not required to output a specific pre-image of f (x); any pre-image (i.e.,
element in the set f −1( f (x))) will do. (Indeed, in case f is 1-1, the string x is the only
pre-image of f (x) under f ; but in general there may be other pre-images.)

The Auxiliary Input 1n. In addition to an input in the range of f , the inverting algorithm
A′ is also given the length of the desired output (in unary notation). The main reason
for this convention is to rule out the possibility that a function will be considered
one-way merely because it drastically shrinks its input, and so the inverting algorithm
just does not have enough time to print the desired output (i.e., the corresponding pre-
image). Consider, for example, the function flen defined by flen(x) = y such that y is the
binary representation of the length of x (i.e., flen(x) = |x |). Since | flen(x)| = log2 |x |,
no algorithm can invert flen on y in time polynomial in |y|; yet there exists an obvious
algorithm that inverts flen on y = flen(x) in time polynomial in |x | (e.g., by |x | �→ 0|x |).
In general, the auxiliary input 1|x |, provided in conjunction with the input f (x), allows
the inverting algorithm to run in time polynomial in the total length of the main input
and the desired output. Note that in the special case of length-preserving functions
f (i.e.| f (x)| = |(x)| for all x’s ), this auxiliary input is redundant. More generally, the
auxiliary input is redundant if, given only f (x), one can generate 1|x | in time polynomial
in |x |. (See Exercise 4 and Section 2.2.3.2.)

Further Discussion

Hardness to invert is interpreted (by the foregoing definition) as an upper bound on the
success probability of efficient inverting algorithms. The probability is measured with
respect to both the random choices of the inverting algorithm and the distribution of
the (main) input to this algorithm (i.e., f (x)). The input distribution to the inverting
algorithm is obtained by applying f to a uniformly selected x ∈ {0, 1}n . If f induces a
permutation on {0, 1}n , then the input to the inverting algorithm is uniformly distributed
over {0, 1}n . However, in the general case where f is not necessarily a one-to-one
function, the input distribution to the inverting algorithm may differ substantially from
the uniform one. In any case, it is required that the success probability, defined over the
aforementioned probability space, be negligible (as a function of the length of x). To
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COMPUTATIONAL DIFFICULTY

further clarify the condition placed on the success probability, we consider two trivial
algorithms.

Random-Guess Algorithm A1. On input (y, 1n), algorithm A1 uniformly selects and
outputs a string of length n. We note that the success probability of A1 equals the
collision probability of the random variable f (Un) (i.e.,

∑
y Pr[ f (Un) = y]2). That is,

letting U ′
n denote a random variable uniformly distributed over {0, 1}n independently

of Un , we have

Pr[A1( f (Un), 1n) ∈ f −1( f (Un))] = Pr[ f (U ′
n) = f (Un)]

=
∑

y

Pr[ f (Un) = y]2 ≥ 2−n

where the inequality is due to the fact that, for non-negative xi ’s summing to 1, the
sum

∑
i x2

i is minimized when all xi ’s are equal. Thus, the last inequality becomes an
equality if and only if f is a 1-1 function. Consequently:

1. For any function f , the success probability of the trivial algorithm A1 is strictly positive.
Thus, one cannot require that any efficient algorithm will always fail to invert f .

2. For any 1-1 function f , the success probability of A1 in inverting f is negligible.
Of course, this does not indicate that f is one-way (but rather that A1 is trivial).

3. If f is one-way, then the collision probability of the random variable f (Un) is negligible.
This follows from the fact that A1 falls within the scope of the definition, and its

success probability equals the collision probability.

Fixed-Output Algorithm A2. Another trivial algorithm, denoted A2, is one that com-
putes a function that is constant on all inputs of the same length (e.g., A2(y, 1n) = 0n).
For every function f , we have

Pr[A2( f (Un), 1n) ∈ f −1( f (Un))] = Pr[ f (0n) = f (Un)]

= | f −1( f (0n))|
2n

≥ 2−n

with equality holding in case f (0n) has a single pre-image (i.e., 0n itself) under f .
Again we observe analogous facts:

1. For any function f , the success probability of the trivial algorithm A2 is strictly positive.

2. For any 1-1 function f , the success probability of A2 in inverting f is negligible.

3. If f is one-way, then the fraction of x’s in {0, 1}n that are mapped by f to f (0n) is
negligible.

Obviously, Definition 2.2.1 considers all probabilistic polynomial-time algorithms,
not merely the trivial ones discussed earlier. In some sense this definition asserts that
for one-way functions, no probabilistic polynomial-time algorithm can “significantly”
outperform these trivial algorithms.
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2.2. ONE-WAY FUNCTIONS: DEFINITIONS

Negligible Probability

A few words concerning the notion of negligible probability are in order. The foregoing
definition and discussion consider the success probability of an algorithm to be neg-
ligible if, as a function of the input length, the success probability is bounded above
by every polynomial fraction. It follows that repeating the algorithm polynomially (in
the input length) many times yields a new algorithm that also has negligible success
probability. In other words, events that occur with negligible (in n) probability remain
negligible even if the experiment is repeated for polynomially (in n) many times. Hence,
defining a negligible success rate as “occurring with probability smaller than any poly-
nomial fraction” is naturally coupled with defining feasible computation as “computed
within polynomial time.”

A “strong negation” of the notion of a negligible fraction/probability is the notion
of a noticeable fraction/probability. We say that a function ν : N → R is noticeable
if there exists a polynomial p(·) such that for all sufficiently large n’s, it holds that
µ(n) > 1

p(n) . We stress that functions may be neither negligible nor noticeable.

2.2.2. Weak One-Way Functions

One-way functions, as defined earlier, are one-way in a very strong sense. Namely, any
efficient inverting algorithm has negligible success in inverting them. A much weaker
definition, presented next, requires only that all efficient inverting algorithms fail with
some noticeable probability.

Definition 2.2.2 (Weak One-Way Functions): A function f : {0, 1}∗ → {0, 1}∗
is called weakly one-way if the following two conditions hold:

1. Easy to compute: As in the definition of a strong one-way function.

2. Slightly hard to invert: There exists a polynomial p(·) such that for every proba-
bilistic polynomial-time algorithm A′ and all sufficiently large n’s,

Pr[A′( f (Un), 1n) �∈ f −1( f (Un))] >
1

p(n)

We call the reader’s attention to the order of quantifiers: There exists a single poly-
nomial p(·) such that 1/p(n) lower-bounds the failure probability of all probabilistic
polynomial-time algorithms trying to invert f on f (Un).

Weak one-way functions fail to provide the kind of hardness alluded to in the earlier
motivational discussions. Still, as we shall see later, they can be converted into strong
one-way functions, which in turn do provide such hardness.

2.2.3. Two Useful Length Conventions

In the sequel it will be convenient to use the following two conventions regarding the
lengths of the pre-images and images of one-way functions. In the current section we
justify the use of these conventions.
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COMPUTATIONAL DIFFICULTY

2.2.3.1. Functions Defined Only for Some Lengths

In many cases it is more convenient to consider one-way functions with domains partial
to the set of all strings. In particular, this facilitates the introduction of some structure in
the domain of the function. A particularly important case, used throughout the rest of this
section, is that of functions with domain ∪n∈N{0, 1}l(n), where l(·) is some polynomial.
We provide a more general treatment of this case.

Let I ⊆ N, and denote by sI (n) the successor of n with respect to I ; namely, sI (n) is
the smallest integer that is both greater than n and in the set I (i.e., sI (n) def= min{i ∈ I :
i > n}). A set I ⊆ N is called polynomial-time-enumerable if there exists an algorithm
that on input n halts within poly(n) steps and outputs 1sI (n). (The unary output forces
sI to be polynomially bounded; i.e., sI (n) ≤ poly(n).) Let I be a polynomial-time-
enumerable set and f be a function with domain ∪n∈I {0, 1}n . We call f strongly (resp.,
weakly) one-way on lengths in I if f is polynomial-time-computable and is hard to
invert over n’s in I . For example, the hardness condition for functions that are strongly
one-way on lengths in I is stated as follows:

For every probabilistic polynomial-time algorithm A′, every positive polynomial p(·), and
all sufficiently large n’s in I ,

Pr[A′( f (Un), 1n) ∈ f −1( f (Un))] <
1

p(n)

Ordinary one-way functions, as defined in previous subsections, can be viewed as being
one-way on lengths in N.

One-way functions on lengths in any polynomial-time-enumerable set can be eas-
ily transformed into ordinary one-way functions (i.e., defined over all of {0, 1}∗). In
particular, for any function f with domain ∪n∈I {0, 1}n , we can construct a function
g : {0, 1}∗ → {0, 1}∗ by letting

g(x) def= f (x ′) (2.1)

where x ′ is the longest prefix of x with length in I . In case the function f is length-
preserving (i.e., | f (x)| = |x | for all x), we can preserve this property by modifying the
construction to obtain a length-preserving function g′ : {0, 1}∗ → {0, 1}∗ such that

g′(x) def= f (x ′)x ′′ (2.2)

where x = x ′x ′′, and x ′ is the longest prefix of x with length in I .

Proposition 2.2.3: Let I be a polynomial-time-enumerable set, and let f be
strongly (resp., weakly) one-way on lengths in I . Then g and g′ (as defined in
Eq. (2.1) and Eq. (2.2), respectively) are strongly (resp., weakly) one-way (in the
ordinary sense).

Although the validity of the foregoing proposition is very appealing, we urge the reader
not to skip the following proof. The proof, which is indeed quite simple, uses (for the
first time in this book) an argument that is used extensively in the sequel. The argument
used to prove the hardness-to-invert property of the function g (resp., g′) proceeds by
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2.2. ONE-WAY FUNCTIONS: DEFINITIONS

assuming, toward the contradiction, that g (resp., g′) can be efficiently inverted with
unallowable success probability. Contradiction is derived by deducing that f can be
efficiently inverted with unallowable success probability. In other words, inverting f
is “reduced” to inverting g (resp., g′). The term “reduction” is used here in a stronger-
than-standard sense. Here a reduction needs to preserve the success probability of the
algorithms. This kind of argument is called a reducibility argument.

Proof: We first prove that g and g′ can be computed in polynomial time. To this
end we use the fact that I is a polynomial-time-enumerable set, which implies that
we can decide membership in I in polynomial time (e.g., by observing that m ∈ I
if and only if sI (m − 1) = m). It follows that on input x one can find in poly-
nomial time the largest m ≤ |x | that satisfies m ∈ I . Computing g(x) amounts
to finding this m and applying the function f to the m-bit prefix of x . Similarly
for g′.

We next prove that g maintains the hardness-to-invert property of f . A similar
proof establishes the hardness-to-invert property of g′. For the sake of brevity, we
present here only the proof for the case that f is strongly one-way. The proof for
the case that f is weakly one-way is analogous.

The proof proceeds by contradiction. We assume, contrary to the claim (of
the proposition), that there exists an efficient algorithm that inverts g with suc-
cess probability that is not negligible. We use this inverting algorithm (for g) to
construct an efficient algorithm that inverts f with success probability that is not
negligible, hence deriving a contradiction (to the hypothesis of the proposition).
In other words, we show that inverting f (with unallowable success probability)
is efficiently reducible to inverting g (with unallowable success probability) and
hence conclude that the latter is not feasible. The reduction is based on the obser-
vation that inverting g on images of arbitrary lengths yields inverting g also on
images of lengths in I , and that on such lengths g collides with f .

Intuitively, any algorithm inverting g can be used to invert f as follows. On
input (y, 1n), where y is supposedly in the image of f (Un) = g(Um) for any
m ∈ {n, . . . , sI (n)− 1}, we can invoke the g-inverter on input (y, 1m) and output
the longest prefix with length in I of the string that the g-inverter returns (e.g., if the
g-inverter returns an m-bit-long string, then we output its n-bit-long prefix). Thus,
our success probability in inverting f on f (Un) equals the success probability of
the g-inverter on g(Um). The question is which m ∈ {n, . . . , sI (n)− 1}we should
use, and the answer is to try them all (capitalizing on the fact that sI (n) = poly(n)).
Note that the integers are partitioned to intervals of the form [n, . . . , sI (n)− 1],
each associated with a single n ∈ I . Thus, the success probability of any
g-inverter on infinitely many lengths m ∈ N translates to the success probability
of our f -inverter on infinitely many lengths n ∈ I . Details follow.

Given an algorithm B ′ for inverting g, we construct an algorithm A′ for invert-
ing f such that A′ has complexity and success probability related to those for B ′.
(For simplicity, we shall assume that B ′(y, 1m) ∈ {0, 1}m holds for all y ∈ {0, 1}∗
and m ∈ N; this assumption is immaterial, and later we comment about this aspect
in two footnotes.) Algorithm A′ uses algorithm B ′ as a subroutine and proceeds
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COMPUTATIONAL DIFFICULTY

as follows. On input y and 1n (supposedly y is in the range of f (Un), and n ∈ I ),
algorithm A′ proceeds as follows:

1. It computes sI (n) and sets k
def= sI (n)− n − 1 ≥ 0. (Thus, for every i = 1, . . . , k,

we have n + i /∈ I .)

2. For i = 0, 1, . . . , k, algorithm A′ invokes algorithm B ′ on input (y, 1n+i ), obtain-
ing zi ← B ′(y, 1n+i ); if g(zi ) = y, then A′ outputs the n-bit-long prefix2 of zi .

Note that for all x ′ ∈ {0, 1}n and |x ′′| ≤ k, we have g(x ′x ′′) = f (x ′), and so if
g(x ′x ′′) = y, then f (x ′) = y, which establishes the correctness of the output of
A′. Using sI (n) = poly(n) and the fact that sI (n) is computable in polynomial
time, it follows that if B ′ is a probabilistic polynomial-time algorithm, then so is
A′. We next analyze the success probability of A′ (showing that if B ′ inverts g
with unallowable success probability, then A′ inverts f with unallowable success
probability).

Suppose that B ′ inverts g on (g(Um), 1m) with probability ε(m). Then there
exists an n such that m ∈ {n, . . . , poly(n)} and such that A′( f (Un), 1n) invokes B ′

on input ( f (Un), 1m) = (g(Um), 1m). It follows that A′( f (Un), 1n) inverts f with
probability at least ε(m) = ε(poly(n)). Thus, A′( f (Un), 1n) inherits the success
of B ′(g(Um), 1m). A tedious analysis (which can be skipped) follows.3

Suppose, contrary to our claim, that g is not strongly one-way, and let B ′ be an algorithm
demonstrating this contradiction hypothesis. Namely, there exists a polynomial p(·)
such that for infinitely many m’s the probability that B ′ inverts g on g(Um) is at least

1
p(m) . Let us denote the set of these m’s by M . Define a function �I : N → I such that
�I (m) is the largest lower bound of m in I is both (i.e., �I (m)

def= max{i ∈ I : i ≤ m}).
Clearly, m ≥ �I (m) and m ≤ sI (�I (m))− 1 for every m. The following two claims
relate the success probability of algorithm A′ with that of algorithm B ′.

Claim 2.2.3.1: Let m be an integer and n = �I (m). Then

Pr[A′( f (Un), 1n) ∈ f −1( f (Un))] ≥ Pr[B ′(g(Um), 1m) ∈ g−1(g(Um))]

(Namely, the success probability of algorithm A′ on f (U�I (m)) is bounded below by
the success probability of algorithm B ′ on g(Um).)

Proof: By construction of A′, on input ( f (x ′), 1n), where x ′ ∈ {0, 1}n , algorithm A′
obtains the value B ′( f (x ′), 1t ) for every t ∈ {n, . . . , sI (n)− 1}. In particular, since
m ≥ n and m ≤ sI (�I (m))− 1 = sI (n)− 1, it follows that algorithm A′ obtains the
value B ′( f (x ′), 1m). By definition of g, for all x ′′ ∈ {0, 1}m−n , it holds that f (x ′) =
g(x ′x ′′). The claim follows. �

Claim 2.2.3.2: There exists a polynomial q(·) such that m < q(�I (m)) for all m’s.

2Here we use the assumption zi ∈ {0, 1}n+i , which implies that n is the largest integer that both is in I and
is at most n + i . In general, A′ outputs the longest prefix x ′ of zi satisfying |x ′| ∈ I . Note that it holds that
f (x ′) = g(zi ) = y.

3The reader can verify that the following analysis does not refer to the length of the output of B ′ and so does
not depend on the simplifying assumption made earlier.
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2.2. ONE-WAY FUNCTIONS: DEFINITIONS

Proof: Let q be a polynomial (as guaranteed by the polynomial-time enumer-
ability of I ) such that sI (n) < q(n). Then, for every m, we have m < sI (�I (m)) <
q(�I (m)). �

By Claim 2.2.3.2, the set S
def= {�I (m) : m ∈ M} is infinite (as, otherwise, for u upper-

bounding the elements in S we get m < q(�I (m)) ≤ q(u) for every m ∈ M , which
contradicts the hypothesis that M is infinite). Using Claim 2.2.3.1, it follows that for
every n = �I (m) ∈ S, the probability that A′ inverts f on f (Un) is at least

1

p(m)
>

1

p(q(�I (m)))
= 1

p(q(n))
= 1

poly(n)

where the inequality is due to Claim 2.2.3.2. It follows that f is not strongly one-way,
in contradiction to the proposition’s hypothesis. �

2.2.3.2. Length-Regular and Length-Preserving Functions

A second useful convention regarding one-way functions is to assume that the function
f is length-regular in the sense that for every x, y ∈ {0, 1}∗, if |x | = |y|, then | f (x)| =
| f (y)|. We point out that the transformation presented earlier (i.e., both Eq. (2.1) and
Eq. (2.2)) preserves length regularity. A special case of length regularity, preserved by
Eq. (2.2), is that of length-preserving functions.

Definition 2.2.4 (Length-Preserving Functions): A function f is length-
preserving if for every x ∈ {0, 1}∗ it holds that | f (x)| = |x |.

Given a strongly (resp., weakly) one-way function f , we can construct a strongly (resp.,
weakly) one-way function f ′′ that is length-preserving, as follows. Let p be a polyno-
mial bounding the length expansion of f (i.e., | f (x)| ≤ p(|x |)). Such a polynomial must
exist because f is polynomial-time-computable. We first construct a length-regular
function f ′ by defining

f ′(x) def= f (x)10p(|x |)−| f (x)| (2.3)

(We use a padding of the form 10∗ in order to facilitate the parsing of f ′(x) into f (x)
and the “leftover” padding.) Next, we define f ′′ only on strings of length p(n)+ 1, for
n ∈ N, by letting

f ′′(x ′x ′′) def= f ′(x ′) , where |x ′x ′′| = p(|x ′|)+ 1 (2.4)

Clearly, f ′′ is length-preserving.

Proposition 2.2.5: If f is a strongly (resp., weakly) one-way function, then so
are f ′ and f ′′ (as defined in Eq. (2.3) and Eq. (2.4), respectively).

Proof Sketch: It is quite easy to see that both f ′ and f ′′ are polynomial-time-
computable. Using “reducibility arguments” analogous to the one used in the
preceding proof, we can establish the hardness-to-invert of both f ′ and f ′′. For
example, given an algorithm B ′ for inverting f ′, we construct an algorithm A′ for
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COMPUTATIONAL DIFFICULTY

inverting f as follows. On input y and 1n (supposedly y is in the range of f (Un)),
algorithm A′ halts with output B ′(y10p(n)−|y|, 1n). �

On Dropping the Auxiliary Input 1|x|. The reader can easily verify that if f is length-
preserving, then it is redundant to provide the inverting algorithm with the auxiliary
input 1|x | (in addition to f (x)). The same holds if f is length-regular and does not shrink
its input by more than a polynomial amount (i.e., there exists a polynomial p(·) such
that p(| f (x)|) ≥ |x | for all x). In the sequel, we shall deal only with one-way functions
that are length-regular and do not shrink their input by more than a polynomial amount.
Furthermore, we shall mostly deal with length-preserving functions. In all these cases,
we can assume, without loss of generality, that the inverting algorithm is given only
f (x) as input.

On 1-1 One-Way Functions. If f is 1-1, then so is f ′ (as defined in Eq. (2.3)), but
not f ′′ (as defined in Eq. (2.4)). Thus, when given a 1-1 one-way function, we can
assume without loss of generality that it is length-regular, but we cannot assume that
it is length-preserving. Furthermore, the assumption that 1-1 one-way functions exist
seems stronger than the assumption that arbitrary (and hence length-preserving) one-
way functions exist. For further discussion, see Section 2.4.

2.2.4. Candidates for One-Way Functions

Following are several candidates for one-way functions. Clearly, it is not known whether
or not these functions are indeed one-way. These are only conjectures supported by
extensive research that thus far has failed to produce an efficient inverting algorithm
(one having noticeable success probability).

2.2.4.1. Integer Factorization

In spite of the extensive research directed toward the construction of feasible integer-
factoring algorithms, the best algorithms known for factoring integers have sub-
exponential running times. Hence it is reasonable to believe that the function fmult

that partitions its input string into two parts and returns the (binary representation of
the) integer resulting by multiplying (the integers represented by) these parts is one-way.
Namely, let

fmult(x, y) = x · y

where |x | = |y|, and x · y denotes (the string representing) the integer resulting by
multiplying the integers (represented by the strings) x and y. Clearly, fmult can be com-
puted in polynomial time. Assuming the intractability of factoring (e.g., that given the
product of two uniformly chosen n-bit-long primes, it is infeasible to find the prime
factors), and using the density-of-primes theorem (which guarantees that at least N

log2 N
of the integers smaller than N are primes), it follows that fmult is at least weakly one-
way. (For further discussion, see Exercise 8.) Other popular functions related to integer
factorization (e.g., the RSA function) are discussed in Section 2.4.3.

40

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.003
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:23, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.003
https:/www.cambridge.org/core


2.2. ONE-WAY FUNCTIONS: DEFINITIONS

2.2.4.2. Decoding of Random Linear Codes

One of the most outstanding open problems in the area of error-correcting codes is
that of presenting efficient decoding algorithms for random linear codes. Of particu-
lar interest are random linear codes with constant information rates that can correct a
constant fraction of errors. An (n, k, d) linear code is a k-by-n binary matrix in which
the vector sum (mod 2) of any non-empty subset of rows results in a vector with at
least d entries of 1 (one-entries). (A k-bit-long message is encoded by multiplying
it by the k-by-n matrix, and the resulting n-bit-long vector has a unique pre-image
even when flipping up to d

2 of its entries.) The Gilbert-Varshamov bound for linear
codes guarantees the existence of such a code provided that k

n < 1− H2( d
n ), where

H2(p) def= −p log2 p − (1− p) log2(1− p) if p < 1
2 and H2(p) def= 1 otherwise (i.e.,

H2(·) is a modification of the binary entropy function). Similarly, if for some
ε > 0 it holds that k

n < 1− H2( (1+ε)d
n ), then almost all k-by-n binary matrices will con-

stitute (n, k, d) linear codes. Consider three constants κ, δ, ε > 0 satisfying
κ < 1− H2((1+ ε)δ). The function fcode seems a plausible candidate for a one-way
function:

fcode(C, x, i) def= (C, xC + e(i))

where C is a κn-by-n binary matrix, x is a κn-dimensional binary vector, i is the index
of an n-dimensional binary vector having at most δn2 one-entries within a corresponding
enumeration of such vectors (the vector itself is denoted e(i)), and the arithmetic is in
the n-dimensional binary vector space. Clearly, fcode is polynomial-time-computable,
provided we use an efficient enumeration of vectors. An efficient algorithm for inverting
fcode would yield an efficient algorithm for decoding a non-negligible fraction of the
constant-rate linear codes (which would constitute an earth-shaking result in coding
theory).

2.2.4.3. The Subset-Sum Problem

Consider the function fssum defined as follows:

fssum(x1, . . . , xn, I ) =
(

x1, . . . , xn,
∑
i∈I

xi

)
where |x1| = · · · = |xn| = n, and I ⊆ {1, 2, . . . , n}. Clearly, fssum is polynomial-time-
computable. The fact that the subset-sum problem is NP-complete cannot serve as
evidence to the one-wayness of fssum. On the other hand, the fact that the subset-
sum problem is easy for special cases (such as having “hidden structure” and/or “low
density”) does not rule out this proposal. The conjecture that fssum is one-way is based
on the failure of known algorithms to handle random “high-density” instances (i.e.,
instances in which the length of the elements approximately equals their number, as in
the definition of fssum).

2.2.5. Non-Uniformly One-Way Functions

In the foregoing two definitions of one-way functions the inverting algorithm is a
probabilistic polynomial-time algorithm. Stronger versions of both definitions require
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COMPUTATIONAL DIFFICULTY

that the functions cannot be inverted even by non-uniform families of polynomial-size
circuits. We stress that the easy-to-compute condition is still stated in terms of uniform
algorithms. For example, the following is a non-uniform version of the definition of
strong (length-preserving) one-way functions.

Definition 2.2.6 (Non-Uniformly Strong One-Way Functions): A function f :
{0, 1}∗ → {0, 1}∗ is called non-uniformly one-way if the following two condi-
tions hold:

1. Easy to compute: There exists a polynomial-time algorithm A such that on input
x algorithm A outputs f (x).

2. Hard to invert: For every (even non-uniform) family of polynomial-size circuits
{Cn}n∈N, every positive polynomial p(·), and all sufficiently large n’s,

Pr[Cn( f (Un)) ∈ f −1( f (Un))] <
1

p(n)

The probability in the second condition is taken only over all the possible values of
Un . We note that any non-uniformly one-way function is one-way (i.e., in the uniform
sense).

Proposition 2.2.7: If f is non-uniformly one-way, then it is one-way. That is, if
f satisfies Definition 2.2.6, then it also satisfies Definition 2.2.1.

Proof: We convert any (uniform) probabilistic polynomial-time inverting algo-
rithm into a non-uniform family of polynomial-size circuits, without decreas-
ing the success probability. This is in accordance with our meta-theorem (see
Section 1.3.3). Details follow.

Let A′ be a probabilistic polynomial-time (inverting) algorithm. Let rn denote a
sequence of coin tosses for A′ maximizing the success probability of A′ (averaged
over input f (Un)). Namely, rn satisfies

Pr[A′
rn

( f (Un)) ∈ f −1( f (Un))] ≥ Pr[A′( f (Un)) ∈ f −1( f (Un))]

where the first probability is taken only over all possible values of Un , and the
second probability is also over all possible coin tosses for A′. (Recall that A′

r (y)
denotes the output of algorithm A′ on input y and internal coin tosses r .) The
desired circuit Cn incorporates the code of algorithm A′ and the sequence rn

(which is of length polynomial in n). �

We note that, typically, averaging arguments (of the form applied earlier) allow us
to convert probabilistic polynomial-time algorithms into non-uniform polynomial-size
circuits. Thus, in general, non-uniform notions of security (i.e., robustness against non-
uniform polynomial-size circuits) imply uniform notions of security (i.e., robustness
against probabilistic polynomial-time algorithms). The converse is not necessarily true.
In particular, it is possible that one-way functions exist (in the uniform sense) and yet
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2.3. WEAK ONE-WAY FUNCTIONS IMPLY STRONG ONES

there are no non-uniformly one-way functions. However, this situation (i.e., that one-
way functions exist only in the uniform sense) seems unlikely, and it is widely believed
that non-uniformly one-way functions exist. In fact, all candidates mentioned in the
preceding subsection are believed to be non-uniformly one-way functions.

2.3. Weak One-Way Functions Imply Strong Ones

We first remark that not every weak one-way function is necessarily a strong one.
Consider, for example, a one-way function f (which, without loss of generality, is
length-preserving). Modify f into a function g so that g(p, x) = (p, f (x)) if p starts
with log2 |x | zeros, and g(p, x) = (p, x) otherwise, where (in both cases) |p| = |x |.4
We claim that g is a weak one-way function but not a strong one. Clearly, g cannot be
a strong one-way function (because for all but a 1

n fraction of the strings of length 2n
the function g coincides with the identity function). To prove that g is weakly one-way,
we use a “reducibility argument.”

Proposition 2.3.1: Let f be a one-way function (even in the weak sense). Then
g, constructed earlier, is a weakly one-way function.

Proof: Intuitively, inverting g on inputs on which it does not coincide with the
identity transformation is related to inverting f . Thus, if g is inverted, on inputs
of length 2n, with probability that is noticeably greater than 1− 1

n , then g must be
inverted with noticeable probability on inputs to which g applies f . Therefore, if
g is not weakly one-way, then neither is f . The full, straightforward but tedious
proof follows.

Given a probabilistic polynomial-time algorithm B ′ for inverting g, we construct a
probabilistic polynomial-time algorithm A′ that inverts f with “related” success prob-
ability. Following is the description of algorithm A′. On input y, algorithm A′ sets
n

def= |y| and l
def= log2 n, selects p′ uniformly in {0, 1}n−l , computes z

def= B ′(0l p′, y),
and halts with output of the n-bit suffix of z. Let S2n denote the sets of all 2n-bit-long
strings that start with log2 n zeros (i.e., S2n

def= {0log2 nα : α ∈ {0, 1}2n−log2 n}). Then,
by construction of A′ and g, we have

Pr[A′( f (Un)) ∈ f −1( f (Un))]

≥ Pr[B ′(0lUn−l , f (Un)) ∈ (0lUn−l , f −1( f (Un)))]

= Pr[B ′(g(U2n)) ∈ g−1(g(U2n)) |U2n ∈ S2n]

≥ Pr[B ′(g(U2n)) ∈ g−1(g(U2n))]− Pr[U2n �∈ S2n]

Pr[U2n ∈ S2n]

= n ·
(

Pr[B ′(g(U2n)) ∈ g−1(g(U2n))]−
(

1− 1

n

))
= 1− n · (1− Pr[B ′(g(U2n)) ∈ g−1(g(U2n))])

4 Throughout the text, we treat log2 |x | as if it were an integer. A precise argument can be derived by replacing
log2 |x | with "log2 |x |# and some minor adjustments.
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(For the second inequality, we used Pr[A|B] = Pr[A∩B]
Pr[B] and Pr[A ∩ B] ≥ Pr[A]−

Pr[¬B].) It should not come as a surprise that the above expression is meaningful only
in case Pr[B ′(g(U2n)) ∈ g−1(g(U2n))] > 1− 1

n .
It follows that for every polynomial p(·) and every integer n, if B ′ inverts g on g(U2n)

with probability greater than 1− 1
p(2n) , then A′ inverts f on f (Un) with probability

greater than 1− n
p(2n) . Hence, if g is not weakly one-way (i.e., for every polynomial

p(·) there exist infinitely many m’s such that g can be inverted on g(Um) with probabil-
ity ≥ 1− 1/p(m)), then also f is not weakly one-way (i.e., for every polynomial q(·)
there exist infinitely many n’s such that f can be inverted on f (Un) with probability
≥ 1− 1/q(n), where q(n) = p(2n)/n). This contradicts our hypothesis (that f is
weakly one-way).

To summarize, given a probabilistic polynomial-time algorithm that inverts
g on g(U2n) with success probability 1− 1

n + α(n), we obtain a probabilistic
polynomial-time algorithm that inverts f on f (Un) with success probability
n · α(n). Thus, since f is (weakly) one-way, n · α(n) < 1− (1/q(n)) must hold
for some polynomial q, and so g must be weakly one-way (since each proba-
bilistic polynomial-time algorithm trying to invert g on g(U2n) must fail with
probability at least 1

n − α(n) > 1
n·q(n) ). �

We have just shown that unless no one-way functions exist, there exist weak one-
way functions that are not strong ones. This rules out the possibility that all one-way
functions are strong ones. Fortunately, we can also rule out the possibility that all
one-way functions are (only) weak ones. In particular, the existence of weak one-way
functions implies the existence of strong ones.

Theorem 2.3.2: Weak one-way functions exist if and only if strong one-way
functions exist.

We strongly recommend that the reader not skip the proof (given in Section 2.3.1),
since we believe that the proof is very instructive to the rest of this book. Furthermore,
the proof demonstrates that amplification of computational difficulty is much more
involved than amplification of an analogous probabilistic event. Both aspects are further
discussed in Section 2.3.3. An illustration of the proof in the context of a “toy” example
is provided in Section 2.3.2. (It is possible to read Section 2.3.2 before Section 2.3.1;
in fact, most readers may prefer to do so.)

2.3.1. Proof of Theorem 2.3.2

Let f be a weak one-way function, and let p be the polynomial guaranteed by the
definition of a weak one-way function. Namely, every probabilistic polynomial-time
algorithm fails to invert f on f (Un) with probability at least 1

p(n) . We assume, for
simplicity, that f is length-preserving (i.e. | f (x)| = |x | for all x’s). This assumption,
which is not really essential, is justified by Proposition 2.2.5. We define a function g
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as follows:

g
(
x1, . . . , xt(n)

) def= f (x1), . . . , f
(
xt(n)

)
(2.5)

where |x1| = · · · = |xt(n)| = n and t(n) def= n · p(n). Namely, the n2 p(n)-bit-long in-
put of g is partitioned into t(n) blocks, each of length n, and f is applied to each
block.

Clearly, g can be computed in polynomial time (by an algorithm that breaks the
input into blocks and applies f to each block). Furthermore, it is easy to see that
inverting g on g(x1, . . . , xt(n)) requires finding a pre-image to each f (xi ). One may
be tempted to deduce that it is also clear that g is a strongly one-way function. A
naive argument might proceed by assuming implicitly (with no justification) that the
inverting algorithm worked separately on each f (xi ). If that were indeed the case,
then the probability that an inverting algorithm could successfully invert all f (xi )
would be at most (1− 1

p(n) )
n·p(n) < 2−n (which is negligible also as a function of

n2 p(n)). However, the assumption that an algorithm trying to invert g works inde-
pendently on each f (xi ) cannot be justified. Hence, a more complex argument is
required.

Following is an outline of our proof. The proof that g is strongly one-way proceeds
by a contradiction argument. We assume, on the contrary, that g is not strongly one-way;
namely, we assume that there exists a polynomial-time algorithm that inverts g with
probability that is not negligible. We derive a contradiction by presenting a polynomial-
time algorithm that, for infinitely many n’s, inverts f on f (Un) with probability greater
than 1− 1

p(n) (in contradiction to our hypothesis). The inverting algorithm for f uses
the inverting algorithm for g as a subroutine (without assuming anything about the
manner in which the latter algorithm operates). (We stress that we do not assume that
the g-inverter works in a particular way, but rather use any g-inverter to construct, in a
generic way, an f -inverter.) Details follow.

Suppose that g is not strongly one-way. By definition, it follows that there exists a
probabilistic polynomial-time algorithm B ′ and a polynomial q(·) such that for infinitely
many m’s,

Pr[B ′(g(Um)) ∈ g−1(g(Um))] >
1

q(m)
(2.6)

Let us denote by M ′ the infinite set of integers for which this holds. Let N ′ denote the
infinite set of n’s for which n2 · p(n) ∈ M ′ (note that all m’s considered are of the form
n2 · p(n), for some integer n).

Using B ′, we now present a probabilistic polynomial-time algorithm A′ for inverting
f . On input y (supposedly in the range of f ), algorithm A′ proceeds by applying
the following probabilistic procedure, denoted I , on input y for a(|y|) times, where
a(·) is a polynomial that depends on the polynomials p and q (specifically, we set

a(n) def= 2n2 · p(n) · q(n2 p(n))).

Procedure I

Input: y (denote n
def= |y|).
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For i = 1 to t(n) do begin

1. Select uniformly and independently a sequence of strings x1, . . . , xt(n) ∈ {0, 1}n .
2. Compute (z1, . . . , zt(n)) ← B ′( f (x1), . . . , f (xi−1), y, f (xi+1), . . . , f (xt(n))).

(Note that y is placed in the i th position instead of f (xi ).)
3. If f (zi ) = y, then halt and output zi .

(This is considered a success).
end

Using Eq. (2.6), we now present a lower bound on the success probability of algorithm
A′. To this end we define a set, denoted Sn , that contains all n-bit strings on which the
procedure I succeeds with non-negligible probability (specifically, greater than n

a(n) ).
(The probability is taken only over the coin tosses of procedure I.) Namely,

Sn
def=
{

x : Pr[I ( f (x)) ∈ f −1( f (x))] >
n

a(n)

}
In the next two claims we shall show that Sn contains all but at most a 1

2p(n) fraction
of the strings of length n ∈ N ′ and that for each string x ∈ Sn the algorithm A′ inverts
f on f (x) with probability exponentially close to 1. It will follow that A′ inverts f
on f (Un), for n ∈ N ′, with probability greater than 1− 1

p(n) , in contradiction to our
hypothesis.

Claim 2.3.2.1: For every x ∈ Sn ,

Pr[A′( f (x)) ∈ f −1( f (x))] > 1− 1

2n

Proof: By definition of the set Sn , the procedure I inverts f (x) with probability
at least n

a(n) . Algorithm A′ merely repeats I for a(n) times, and hence

Pr[A′( f (x)) �∈ f −1( f (x))] <
(

1− n

a(n)

)a(n)

<
1

2n

The claim follows. �

Claim 2.3.2.2: For every n ∈ N ′,

|Sn| >
(

1− 1

2p(n)

)
· 2n

Proof: We assume, to the contrary, that |Sn| ≤ (1− 1
2p(n) ) · 2n . We shall reach a

contradiction to Eq. (2.6) (i.e., our hypothesis concerning the success probability
of B ′). Recall that by this hypothesis (for n ∈ N0),

s(n) def= Pr
[
B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

))]
>

1

q(n2 p(n))
(2.7)

Let U (1)
n , . . . ,U (n·p(n))

n denote the n-bit-long blocks in the random variable Un2 p(n)

(i.e., these U (i)
n ’s are independent random variables each uniformly distributed in

{0, 1}n). We partition the event considered in Eq. (2.7) into two disjoint events
corresponding to whether or not one of the U (i)

n ’s resides out of Sn . Intuitively,
B ′ cannot perform well in such a case, since this case corresponds to the success
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2.3. WEAK ONE-WAY FUNCTIONS IMPLY STRONG ONES

probability of I on pre-images out of Sn . On the other hand, the probability that
all U (i)

n ’s reside in Sn is small. Specifically, we define

s1(n) def= Pr
[
B ′ (g(Un2 p(n)

)) ∈ g−1 (g (Un2 p(n)

)) ∧ (∃i s.t. U (i)
n �∈ Sn

)]
and

s2(n) def= Pr
[
B ′ (g (Un2 p(n)

)) ∈ g−1 (g (Un2 p(n)

)) ∧ (∀i : U (i)
n ∈ Sn

)]
Clearly, s(n) = s1(n)+ s2(n) (as the events considered in the si ’s are disjoint).
We derive a contradiction to the lower bound on s(n) (given in Eq. (2.7)) by
presenting upper bounds for both s1(n) and s2(n) (which sum up to less).

First, we present an upper bound on s1(n). The key observation is that algorithm
I inverts f on input f (x) with probability that is related to the success of B ′ to
invert g on a sequence of random f -images containing f (x). Specifically, for
every x ∈ {0, 1}n and every 1 ≤ i ≤ n · p(n), the probability that I inverts f on
f (x) is greater than or equal to the probability that B ′ inverts g on g(Un2 p(n))
conditioned on U (i)

n = x (since any success of B ′ to invert g means that f was
inverted on the i th block, and thus contributes to the success probability of I ). It
follows that, for every x ∈ {0, 1}n and every 1 ≤ i ≤ n · p(n),

Pr[I ( f (x)) ∈ f −1( f (x))]

≥ Pr
[
B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

)) ∣∣U (i)
n = x

]
(2.8)

Since for x �∈ Sn the left-hand side (l.h.s.) cannot be large, we shall show that (the
r.h.s. and so) s1(n) cannot be large. Specifically, using Eq. (2.8), it follows that

s1(n) = Pr
[∃i s.t. B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

)) ∧ U (i)
n �∈ Sn

]
≤

n·p(n)∑
i=1

Pr
[
B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

)) ∧ U (i)
n �∈ Sn

]

≤
n·p(n)∑

i=1

∑
x �∈Sn

Pr
[
B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

)) ∧ U (i)
n = x

]

=
n·p(n)∑

i=1

∑
x �∈Sn

Pr
[
U (i)

n = x
] · Pr

[
B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

)) ∣∣U (i)
n = x

]

≤
n·p(n)∑

i=1

max
x �∈Sn

{
Pr
[
B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

)) ∣∣U (i)
n = x

]}

≤
n·p(n)∑

i=1

max
x �∈Sn

{Pr[I ( f (x)) ∈ f −1( f (x))]}

≤ n · p(n) · n

a(n)
= n2 · p(n)

a(n)

(The last inequality uses the definition of Sn , and the one before it uses Eq. (2.8).)
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COMPUTATIONAL DIFFICULTY

We now present an upper bound on s2(n). Recall that by the contradiction
hypothesis, |Sn| ≤ (1− 1

2p(n) ) · 2n . It follows that

s2(n) ≤ Pr
[∀i : U (i)

n ∈ Sn

]
≤
(

1− 1

2p(n)

)n·p(n)

<
1

2n/2
<

n2 · p(n)

a(n)

(The last inequality holds for sufficiently large n.)
Combining the upper bounds on the si ’s, we have s1(n)+ s2(n) < 2n2·p(n)

a(n) =
1

q(n2 p(n)) , where equality is by the definition of a(n). Yet, on the other hand, s1(n)+
s2(n) = s(n) > 1

q(n2 p(n)) , where the inequality is due to Eq. (2.7). Contradiction is
reached, and the claim follows. �

Combining Claims 2.3.2.1 and 2.3.2.2, we obtain

Pr[A′( f (Un)) ∈ f −1( f (Un))]

≥ Pr[A′( f (Un)) ∈ f −1( f (Un)) ∧ Un ∈ Sn]

= Pr[Un ∈ Sn] · Pr[A′( f (Un)) ∈ f −1( f (Un)) |Un ∈ Sn ]

≥
(

1− 1

2p(n)

)
· (1− 2−n

)
> 1− 1

p(n)

It follows that there exists a probabilistic polynomial-time algorithm (i.e., A′)
that inverts f on f (Un), for n ∈ N ′, with probability greater than 1− 1

p(n) . This
conclusion, which follows from the hypothesis that g is not strongly one-way
(i.e., Eq. (2.6)), stands in contradiction to the hypothesis that every probabilistic
polynomial-time algorithm fails to invert f with probability at least 1

p(n) , and the
theorem follows. �

2.3.2. Illustration by a Toy Example

Let us try to further clarify the algorithmic ideas underlying the proof of Theorem 2.3.2.
To do so, consider the following quantitative notion of weak one-way functions. We say
that (a polynomial-time-computable) f is ρ-one-way if for all probabilistic polynomial-
time algorithms A′, for all but finitely many n’s, the probability that on input f (Un)
algorithm A′ fails to find a pre-image under f is at least ρ(n). (Each weak one-way
function is 1/p()-one-way for some polynomial p, whereas strong one-way functions
are (1− µ())-one-way, where µ is a negligible function.)

Proposition 2.3.3 (Toy Example): Suppose that f is 1
3 -one-way, and let

g(x1, x2) def= ( f (x1), f (x2)). Then g is 0.55-one-way (where 0.55 < 1− ( 2
3 )2).

Proof Outline: Suppose, toward the contradiction, that there exists a polynomial-
time algorithm A′ that inverts g(U2n) with success probability greater than
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The Naive View The Actual Proof

R

C

Good

Rows

Good  Columns

S

Figure 2.2: The naive view versus the actual proof of Proposition 2.3.3.

1− 0.55 = 0.45, for infinitely many n’s. Consider any such n, and let N
def= 2n .

Assume for simplicity that A′ is deterministic. Consider an N -by-N matrix with
entries corresponding to pairs (x1, x2) ∈ {0, 1}n × {0, 1}n such that entry (x1, x2)
is marked 1 if A′ successfully inverts g on input g(x1, x2) = ( f (x1), f (x2)) and
is marked zero otherwise. Our contradiction hypothesis is that the fraction of
1-entries in the matrix is greater than 45%.

The naive (unjustified) assumption is that A′ operates separately on each el-
ement of the pair ( f (x1), f (x2)). If that were the case, then the success region
of A′ would have been a generalized rectangle R × C ⊆ {0, 1}n × {0, 1}n (i.e.,
corresponding to all pairs (x1, x2) such that x1 ∈ R and x2 ∈ C for some sets
R ⊆ {0, 1}n and C ⊆ {0, 1}n). Using the hypothesis that f is 1

3 -one-way, we have
|R|, |C | ≤ 2

3 · N , and so |R×C |
N 2 ≤ 4

9 < 0.45, in contradiction to our hypothesis
regarding A′.

However, as stated earlier, the naive assumption cannot be justified, and so a
more complex argument is required. In general, the success region of A′, denoted
S, may be an arbitrary subset of {0, 1}n × {0, 1}n satisfying |S| > 0.45 · N 2 (by
the contradiction hypothesis). Let us call a row x1 (resp., column x2) good if it
contains at least 0.1% of 1-entries; otherwise it is called bad. (See Figure 2.2.)
The main algorithmic part of the proof is establishing the following claim.

Claim 2.3.3.1: The fraction of good rows (resp., columns) is at most 66.8%.

Once this claim is proved, all that is left is straightforward combinatorics (i.e.,
counting). That is, we upper-bound the size of S by counting separately the number
of 1-entries in the intersection of good rows and good columns and the 1-entries
in bad rows and bad columns: By Claim 2.3.3.1, there are at most (0.668N )2

entries in the intersection of good rows and good columns, and by definition
the number of 1-entries in each bad row (resp., bad column) is at most 0.001N .
Thus, |S| ≤ (0.668N )2 + 2 · N · 0.001N < 0.449 · N 2, in contradiction to our
hypothesis (i.e., |S| > 0.45 · N 2).
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COMPUTATIONAL DIFFICULTY

Proof of Claim 2.3.3.1: Suppose, toward the contradiction, that the fraction of
good rows is greater than 66.8% (the argument for columns is analogous). Then,
to reach a contradiction, we construct an algorithm for inverting f as follows. On
input y, the algorithm repeats the following steps 10,000 times:

1. Select x2 uniformly in {0, 1}n .

2. Invoke A′ on input (y, f (x2)), and obtain its output (x ′, x ′′).

3. If f (x ′) = y, then halt with output x ′.

Clearly, this algorithm works in polynomial time, and it is left to analyze its
success in inverting f . For every good x1, the probability that the algorithm
fails to invert f on input y = f (x1) is at most (1− 0.001)10,000 < 0.001. Thus,
the probability that the algorithm succeeds in inverting f on input f (Un) is
at least 0.668 · 0.999 > 2

3 , in contradiction to the hypothesis that f is
1
3 -one-way. �

2.3.3. Discussion

2.3.3.1. Reducibility Arguments: A Digest

Let us recall the structure of the proof of Theorem 2.3.2. Given a weak one-way function
f , we first constructed a polynomial-time-computable function g. This was done with
the intention of later proving that g is strongly one-way. To prove that g is strongly one-
way, we used a reducibility argument. The argument transforms efficient algorithms
that supposedly contradict the strong one-wayness of g into efficient algorithms that
contradict the hypothesis that f is weakly one-way. Hence g must be strongly one-
way. We stress that our algorithmic transformation, which is in fact a randomized
Cook reduction,5 makes no implicit or explicit assumptions about the structure of the
prospective algorithms for inverting g. Assumptions such as the “natural” assumption
that the inverter of g works independently on each block cannot be justified (at least
not at our current state of understanding of the nature of efficient computations).

We use the term reducibility argument, rather than just saying a reduction, so as to
emphasize that we do not refer here to standard (worst-case-complexity) reductions.
Let us clarify the distinction: In both cases we refer to reducing the task of solving one
problem to the task of solving another problem; that is, we use a procedure solving
the second task in order to construct a procedure that solves the first task. However, in
standard reductions one assumes that the second task has a perfect procedure solving
it on all instances (i.e., on the worst case) and constructs such a procedure for the first
task. Thus, the reduction may invoke the given procedure (for the second task) on very
“non-typical” instances. This cannot be done in our reducibility arguments. Here, we
are given a procedure that solves the second task with certain probability with respect
to a certain distribution. Thus, in employing a reducibility argument, we cannot invoke
this procedure on any instance. Instead, we must consider the probability distribution,

5A (randomized) Cook reduction of one computational problem �1 to another problem, denoted �2, is a
(probabilistic) polynomial-time oracle machine that solves �1, while making queries to oracle �2.
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2.4. ONE-WAY FUNCTIONS: VARIATIONS

on instances of the second task, induced by our reduction. In many cases the latter
distribution equals the distribution to which the hypothesis (regarding solvability of the
second task) refers, but other cases can be handled too (e.g., these distributions may
be “sufficiently close” for the specific purpose). In any case, a careful analysis of the
distribution induced by the reducibility argument is due.

2.3.3.2. The Information-Theoretic Analogue

Theorem 2.3.2 has a natural information-theoretic (or “probabilistic”) analogue that as-
serts that repeating an experiment that has a noticeable failure probability sufficiently
many times will yield some failure with very high probability. The reader is probably
convinced at this stage that the proof of Theorem 2.3.2 is much more complex than the
proof of the information-theoretic analogue. In the information-theoretic context, the
repeated events are independent by definition, whereas in our computational context no
such independence (which corresponds to the naive argument given at the beginning
of the proof of Theorem 2.3.2) can be guaranteed. Another indication of the difference
between the two settings follows. In the information-theoretic setting, the probability
that none of the failure events will occur decreases exponentially with the number of
repetitions. In contrast, in the computational setting we can reach only an unspecified
negligible bound on the inverting probabilities of polynomial-time algorithms. Further-
more, it may be the case that g constructed in the proof of Theorem 2.3.2 can be ef-
ficiently inverted on g(Un2 p(n)) with success probability that is sub-exponentially de-
creasing (e.g., with probability 2−(log2 n)3

), whereas the analogous information-theoretic
bound is exponentially decreasing (i.e., e−n).

2.3.3.3. Weak One-Way Functions Versus Strong Ones: A Summary

By Theorem 2.3.2, whenever we assume the existence of one-way functions, there
is no need to specify whether we refer to weak or strong ones. That is, as far as the
mere existence of one-way function goes, the notions of weak and strong one-way
functions are equivalent. However, as far as efficiency considerations are concerned,
the two notions are not really equivalent, since the above transformation of weak one-
way functions into strong ones is not practical. An alternative transformation, which is
much more efficient, does exist for the case of one-way permutations and other specific
classes of one-way functions. The interested reader is referred to Section 2.6.

2.4. One-Way Functions: Variations

In this section we discuss several issues concerning one-way functions. In the first
subsection we present a function that is (strongly) one-way, provided that one-way
functions exist. The construction of this function is of strict abstract interest. In contrast,
the issues discussed in the other subsections are of practical importance. First, we
present an alternative formulation of one-way functions. This formulation is better
suited for describing many natural candidates for one-way functions, and indeed we use
it in order to describe some popular candidates for one-way functions. Next, we use this
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formulation to present one-way functions with additional properties; specifically, we
consider (one-way) trapdoor permutations and claw-free function pairs. We remark that
these additional properties are used in several constructions presented in other chapters
of this book (e.g., trapdoor permutations are used in the construction of public-key
encryption schemes, whereas claw-free permutations are used in the construction of
collision-free hashing). We conclude this section with remarks concerning the “art” of
proposing candidates for one-way functions.

2.4.1.∗Universal One-Way Function

Using the notion of a universal machine and the result of the preceding section, it is
possible to prove the existence of a universal one-way function; that is, we present a
(fixed) function that is one-way, provided that one-way functions exist.

Proposition 2.4.1: There exists a polynomial-time-computable function that is
(strongly) one-way if and only if one-way functions exist.

Proof Sketch: A key observation is that there exist one-way functions if and
only if there exist one-way functions that can be evaluated by a quadratic-time
algorithm. (The choice of the specific time bound is immaterial; what is important
is that such a specific time bound exists.) This statement is proved using a padding
argument. Details follow.

Let f be an arbitrary one-way function, and let p(·) be a polynomial bounding

the time complexity of an algorithm for computing f . Define g(x ′x ′′) def= f (x ′)x ′′,
where |x ′x ′′| = p(|x ′|). An algorithm computing g first parses the input into x ′

and x ′′ so that |x ′x ′′| = p(|x ′|) and then applies f to x ′. The parsing and the other
overhead operations can be implemented in quadratic time (in |x ′x ′′|), whereas
computing f (x ′) is done within time p(|x ′|) = |x ′x ′′| (which is linear in the input
length). Hence, g can be computed (by a Turing machine) in quadratic time. The
reader can verify that g is one-way using a “reducibility argument” (analogous
to the one used in the proof of Proposition 2.2.5).

We now present a (universal one-way) function, denoted funi:

funi(desc(M), x) def= (desc(M), M(x)) (2.9)

where desc(M) is a description of Turing machine M , and M(x) is defined as
the output of M on input x if M runs at most quadratic time on x , and M(x)
is defined as x otherwise. (Without loss of generality, we can view any string
as the description of some Turing machine.) Clearly, funi can be computed in
polynomial time by a universal machine that uses a step counter. To show that
funi is weakly one-way (provided that one-way functions exist at all), we use a
“reducibility argument.”

Assuming that one-way functions exist, and using the foregoing observation,
it follows that there exists a one-way function g that is computed in quadratic
time. Let Mg be the quadratic-time machine computing g. Clearly, an (efficient)
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algorithm inverting funi on inputs of the form funi(desc(Mg),Un) with probability
p(n) can be easily modified into an (efficient) algorithm inverting g on inputs
of the form g(Un) with probability p(n). As in the proof of Proposition 2.3.1,
it follows that an algorithm inverting funi with probability at least 1− ε(n) on
strings of length |desc(Mg)| + n yields an algorithm inverting g with probability
at least 1− 2|desc(Mg )| · ε(n) on strings of length n. (We stress that |desc(Mg)| is
a constant, depending only on g.) Hence, if funi is not weakly one-way (i.e., the
function ε is not noticeable), then also g cannot be (weakly) one-way (i.e., also
2|desc(Mg )| · ε is not noticeable).

Using Theorem 2.3.2 (to transform the weak one-way function funi into a
strong one), the proposition follows. �

Discussion. The observation by which it suffices to consider one-way functions that
can be evaluated within a specific time bound is crucial to the construction of funi,
the reason being that it is not possible to construct a polynomial-time machine that is
universal for the class of all polynomial-time machines (i.e., a polynomial-time machine
that can “simulate” all polynomial-time machines). It is, however, possible to construct,
for every polynomial p(·), a polynomial-time machine that is universal for the class of
machines with running time bounded by p(·).

The impracticality of the construction of funi stems from the fact that funi is likely to
be hard to invert only on huge input lengths (i.e., lengths allowing the encoding of non-
trivial algorithms as required for the evaluation of one-way functions). Furthermore, to
obtain a strongly one-way function from funi, we need to apply the latter on a sequence
of more than 2L inputs, each of length L + n, where L is a lower bound on the length
of the encoding of potential one-way functions, and n is our actual security parameter.

Still, Proposition 2.4.1 says that, in principle, the question of whether or not one-
way functions exist “reduces” to the question of whether or not a specific function is
one-way.

2.4.2. One-Way Functions as Collections

The formulation of one-way functions used thus far is suitable for an abstract dis-
cussion. However, for describing many natural candidates for one-way functions,
the following formulation (although being more cumbersome) is more serviceable.
Instead of viewing one-way functions as functions operating on an infinite domain
(i.e., {0, 1}∗), we consider infinite collections of functions each operating on a finite do-
main. The functions in the collection share a single evaluating algorithm that when given
as input a succinct representation of a function and an element in its domain returns
the value of the specified function at the given point. The formulation of a collection
of functions is also useful for the presentation of trapdoor permutations and claw-
free functions (see Sections 2.4.4 and 2.4.5, respectively). We start with the following
definition.

Definition 2.4.2 (Collection of Functions): A collection of functions consists
of an infinite set of indices, denoted Ī , and a corresponding set of finite functions,
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denoted { fi }i∈ Ī . That is, for each i ∈ Ī , the domain of the function fi , denoted
Di , is a finite set.

Typically, the set of indices Ī will be a “dense” subset of the set of all strings; that is, the
fraction of n-bit-long strings in Ī will be noticeable (i.e., | Ī ∩ {0, 1}n| ≥ 2n/poly(n)).

We shall be interested only in collections of functions that can be used in crypto-
graphic applications. As hinted earlier, a necessary condition for using a collection of
functions is the existence of an efficient function-evaluating algorithm (denoted F) that
on input i ∈ Ī and x ∈ Di returns fi (x). Yet this condition by itself does not suffice. We
need to be able to (randomly) select an index specifying a function over a sufficiently
large domain, as well as to be able to (randomly) select an element of the domain
(when given the domain’s index). The sampling property of the index set is captured by
an efficient algorithm (denoted I ) that on input an integer n (presented in unary) ran-
domly selects a poly(n)-bit-long index specifying a function and its associated domain.
(As usual, unary presentation is used so as to conform with the standard association
of efficient algorithms with those running in times polynomial in the lengths of their
inputs.) The sampling property of the domains is captured by an efficient algorithm
(denoted D) that on input an index i randomly selects an element in Di . The one-way
property of the collection is captured by requiring that every efficient algorithm, when
given an index of a function and an element in its range, fails to invert the function,
except with negligible probability. The probability is taken over the distribution induced
by the sampling algorithms I and D. All the preceding is captured by the following
definition.

Definition 2.4.3 (Collection of One-Way Functions): A collection of functions
{ fi : Di → {0, 1}∗}i∈ Ī is called strongly (resp., weakly) one-way if there exist
three probabilistic polynomial-time algorithms I , D, and F such that the follow-
ing two conditions hold:

1. Easy to sample and compute: The output distribution of algorithm I on input 1n is
a random variable assigned values in the set Ī ∩ {0, 1}n. The output distribution
of algorithm D on input i ∈ Ī is a random variable assigned values in Di . On
input i ∈ Ī and x ∈ Di , algorithm F always outputs fi (x).

(Thus, Di ⊆ ∪m≤poly(|i |){0, 1}m. Without loss of generality, we can assume that
Di ⊆ {0, 1}poly(|i |). Also without loss of generality, we can assume that algorithm
F is deterministic.)

2. Hard to invert (version for strongly one-way): For every probabilistic polynomial-
time algorithm A′, every positive polynomial p(·), and all sufficiently large n’s,

Pr[A′(In, f In (Xn)) ∈ f −1
In

( f In
(Xn))] <

1

p(n)

where In is a random variable describing the output distribution of algorithm I
on input 1n, and Xn is a random variable describing the output of algorithm D on
input (random variable) In.

(The version for weakly one-way collections is analogous.)
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2.4. ONE-WAY FUNCTIONS: VARIATIONS

We stress that the output of algorithm I on input 1n is not necessarily distributed
uniformly over Ī ∩ {0, 1}n . Furthermore, it is not even required that I (1n) not be entirely
concentrated on one single string. Likewise, the output of algorithm D on input i is not
necessarily distributed uniformly over Di . Yet the hardness-to-invert condition implies
that D(i) cannot be mainly concentrated on polynomially many (in |i |) strings. We
stress that the collection is hard to invert with respect to the distribution induced by the
algorithms I and D (in addition to depending, as usual, on the mapping induced by the
function itself).

We can describe a collection of one-way functions by indicating the corresponding
triplet of algorithms. Hence, we can say that a triplet of probabilistic polynomial-time
algorithms (I, D, F) constitutes a collection of one-way functions if there exists a
collection of functions for which these algorithms satisfy the foregoing two conditions.

Clearly, any collection of one-way functions can be represented as a one-way func-
tion, and vice versa (see Exercise 18), yet each formulation has its own advantages. In
the sequel, we shall use the formulation of a collection of one-way functions in order
to present popular candidates for one-way functions.

Relaxations. To allow a less cumbersome presentation of natural candidates for one-
way collections (of functions), we relax Definition 2.4.3 in two ways. First, we allow the
index-sampling algorithm to output, on input 1n , indices of length p(n) rather than n,
where p(·) is some polynomial. Second, we allow all algorithms to fail with negligible
probability. Most important, we allow the index sampler I to output strings not in Ī
so long as the probability that I (1n) �∈ Ī ∩ {0, 1}p(n) is a negligible function in n. (The
same relaxations can be used when discussing trapdoor permutations and claw-free
functions.)

Additional Properties: Efficiently Recognizable Indices and Domains. Several ad-
ditional properties that hold for some candidate collections for one-way functions will be
explicitly discussed in subsequent subsections. Here we mention two (useful) additional
properties that hold in some candidate collections for one-way functions. The proper-
ties are (1) having an efficiently recognizable set of indices and (2) having efficiently
recognizable collection of domains; that is, we refer to the existence of an efficient
algorithm for deciding membership in Ī and the existence of an efficient algorithm that
given i ∈ Ī and x can determine whether or not x ∈ Di . Note that for the non-relaxed
Definition 2.4.3, the coins used to generate i ∈ Ī (resp., x ∈ Di ) constitute a certificate
(i.e., anNP-witness) for the corresponding claim; yet this certificate that i ∈ Ī (resp.,
x ∈ Di ) may assist in inverting the function fi (resp., always yielding the pre-image x).

2.4.3. Examples of One-Way Collections

In this section we present several popular collections of one-way functions (e.g., RSA
and discrete exponentiation) based on computational number theory.6 In the exposition

6 Obviously these are merely candidate collections for one-way functions; their hardness-to-invert feature
either is a (widely believed) conjecture or follows from a (widely believed) conjecture.
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COMPUTATIONAL DIFFICULTY

that follows, we assume some knowledge of elementary number theory and some
familiarity with simple number-theoretic algorithms. Further discussion of the relevant
number theoretic material is presented in Appendix A.

2.4.3.1. The RSA Function

The RSA collection of functions has an index set consisting of pairs (N , e), where N is
a product of two ( 1

2 · log2 N )-bit primes, denoted P and Q, and e is an integer smaller
than N and relatively prime to (P − 1) · (Q − 1). The function of index (N , e) has
domain {1, . . . , N } and maps the domain element x to xe mod N . Using the fact that
e is relatively prime to (P − 1) · (Q − 1), it can be shown that the function is in fact a
permutation over its domain. Hence, the RSA collection is a collection of permutations.

We first substantiate the fact that the RSA collection satisfies the first condition for
the definition of a one-way collection (i.e., that it is easy to sample and compute). To
this end, we present the triplet of algorithms (IRSA, DRSA, FRSA).

On input 1n , algorithm IRSA selects uniformly two primes, P and Q, such that 2n−1 ≤
P < Q < 2n , and an integer e such that e is relatively prime to (P − 1) · (Q − 1).
(Specifically, e is uniformly selected among the admissible possibilities.7) Algorithm
IRSA terminates with output (N , e), where N = P · Q. For an efficient implementation
of IRSA, we need a probabilistic polynomial-time algorithm for generating uniformly
(or almost uniformly) distributed primes. For more details concerning the uniform
generation of primes, see Appendix A.

As for algorithm DRSA, on input (N , e) it selects (almost) uniformly an element in

the set DN ,e
def= {1, . . . , N }. (The exponentially vanishing deviation is due to the fact

that we implement an N -way selection via a sequence of unbiased coin tosses.) The
output of FRSA, on input ((N , e), x), is

RSAN ,e(x) def= xe mod N (2.10)

It is not known whether or not factoring N can be reduced to inverting RSAN ,e, and
in fact this is a well-known open problem. We remark that the best algorithms known
for inverting RSAN ,e proceed by (explicitly or implicitly) factoring N . In any case, it
is widely believed that the RSA collection is hard to invert.

In the foregoing description, DN ,e corresponds to the additive group mod N (and
hence will contain N elements). Alternatively, the domain DN ,e can be restricted to
the elements of the multiplicative group modulo N (and hence will contain (P − 1) ·
(Q − 1) ≈ N − 2

√
N ≈ N elements). A modified domain sampler may work by se-

lecting an element in {1, . . . , N } and discarding the unlikely cases in which the selected
element is not relatively prime to N . The function RSAN ,e defined earlier induces a
permutation on the multiplicative group modulo N . The resulting collection is as hard
to invert as the original one. (A proof of this statement is left as an exercise to the
reader.) The question of which formulation to prefer seems to be a matter of personal
taste.

7In some sources, e is set to equal 3. In such a case, the primes (P and Q) are selected so that they are congruent
to 2 mod 3. It is not known whether or not the assumption that one variant is one-way implies that the other
also is.
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2.4. ONE-WAY FUNCTIONS: VARIATIONS

2.4.3.2. The Rabin Function

The Rabin collection of functions is defined analogously to the RSA collection, except
that the function is squaring modulo N (instead of raising to the eth power mod N ).
Namely,

RabinN (x) def= x2 mod N (2.11)

This function, however, does not induce a permutation on the multiplicative group
modulo N , but is rather a 4-to-1 mapping on this group.

It can be shown that extracting square roots modulo N is computationally equiv-
alent to factoring N (i.e., the two tasks are reducible to one another via probabilistic
polynomial-time reductions). For details, see Exercise 21. Hence, squaring modulo a
composite is a collection of one-way functions if and only if factoring is intractable. We
remind the reader that it is generally believed that integer factorization is intractable,
and this holds also for the special case in which the integer is a product of two primes
of the same length.8

2.4.3.3. The Factoring Permutations

For a special subclass of the integers, known by the name of Blum integers, the function
RabinN (·) defined earlier induces a permutation on the quadratic residues modulo N .
We say that r is a quadratic residue mod N if there exists an integer x such that r ≡ x2

(mod N ). We denote by QN the set of quadratic residues in the multiplicative group mod
N . For purposes of this paragraph, we say that N is a Blum integer if it is the product of
two primes, each congruent to 3 mod 4. It can be shown that when N is a Blum integer,
each element in QN has a unique square root that is also in QN , and it follows that
in this case the function RabinN (·) induces a permutation over QN . This leads to the
introduction of the collection SQR def= (IBI, DQR, FSQR) of permutations. On input 1n ,
algorithm IBI selects uniformly two primes, P and Q, such that 2n−1 ≤ P < Q < 2n and
P ≡ Q ≡ 3 (mod 4), and outputs N = P · Q. On input N , algorithm DQR uniformly
selects an element of QN by uniformly selecting an element of the multiplicative
group modulo N and squaring it mod N . Algorithm FSQR is defined exactly as in
the Rabin collection. The resulting collection is one-way, provided that factoring is
intractable.

2.4.3.4. Discrete Logarithms

Another computational number-theoretic problem that is widely believed to be in-
tractable is that of extracting discrete logarithms in a finite field (and, in particular, of
prime cardinality). The DLP collection of functions, which borrows its name (and its
conjectured one-wayness) from the discrete-logarithm problem, is defined by the triplet
of algorithms (IDLP, DDLP, FDLP).

On input 1n , algorithm IDLP selects uniformly a prime P , such that 2n−1 ≤ P < 2n ,
and a primitive element G in the multiplicative group modulo P (i.e., a generator

8In fact, the latter case is believed to be the hardest.
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COMPUTATIONAL DIFFICULTY

of this cyclic group), and outputs (P,G). There exists a probabilistic polynomial-
time algorithm for uniformly generating primes, together with the prime factorization
of P − 1, where P is the prime generated (see Appendix A). Alternatively, one can
uniformly generate a prime P of the form 2Q + 1, where Q is also a prime. (In the
latter case, however, one has to assume the intractability of DLP with respect to such
primes. We remark that such primes are commonly believed to be the hardest for
DLP.) Using the factorization of P − 1, we can find a primitive element by selecting
an element of the group at random and checking whether or not it has order P − 1
(by raising the candidate to powers that non-trivially divide P − 1, and comparing the
result to 1).

Regarding algorithm DDLP, on input (P,G) it selects uniformly a residue modulo
P − 1. Algorithm FDLP, on input ((P,G), x), outputs

DLPP,G(x) def= Gx mod P (2.12)

Hence, inverting DLPP,G amounts to extracting the discrete logarithm (to base G)
modulo P . For every (P,G) of the foregoing form, the function DLPP,G induces a 1-1
and onto mapping from the additive group mod P − 1 to the multiplicative group mod
P . Hence, DLPP,G induces a permutation on the set {1, . . . , P − 1}.

Exponentiation in other groups is also a reasonable candidate for a one-way function,
provided that the discrete-logarithm problem for the group is believed to be hard. For
example, it is believed that the logarithm problem is hard in the group of points on an
elliptic curve.

2.4.4. Trapdoor One-Way Permutations

We shall define trapdoor (one-way) permutations and review a popular candidate (i.e.,
the RSA).

2.4.4.1. Definitions

The formulation of collections of one-way functions is convenient as a starting point
to the definition of trapdoor permutations. Loosely speaking, these are collections of
one-way permutations, { fi }, with the extra property that fi is efficiently inverted once
it is given as auxiliary input a “trapdoor” for the index i . The trapdoor for index i ,
denoted by t(i), cannot be efficiently computed from i , yet one can efficiently generate
corresponding pairs (i, t(i)).

Definition 2.4.4 (Collection of Trapdoor Permutations): Let I : 1∗ → {0, 1}∗ ×
{0, 1}∗ be a probabilistic algorithm, and let I1(1n) denote the first element of the
pair output by I (1n). A triple of algorithms, (I, D, F), is called a collection of
strong (resp., weak) trapdoor permutations if the following two conditions
hold:

1. The algorithms induce a collection of one-way permutations: The triple (I1, D, F)
constitutes a collection of strong (resp., weak) one-way permutations.

(Recall that, in particular, F(i, x) = fi (x).)
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2.4. ONE-WAY FUNCTIONS: VARIATIONS

2. Easy to invert with trapdoor: There exists a (deterministic) polynomial-time al-
gorithm, denoted F−1, such that for every (i, t) in the range of I and for every
x ∈ Di , it holds that F−1(t, fi (x)) = x.

A useful relaxation of these conditions is to require that they be satisfied with over-
whelmingly high probability. Namely, the index-generating algorithm I is allowed to
output, with negligible probability, pairs (i, t) for which either fi is not a permutation or
F−1(t, fi (x)) = x does not hold for all x ∈ Di . On the other hand, one typically requires
that the domain-sampling algorithm (i.e., D) produce an almost uniform distribution
on the corresponding domain. Putting all these modifications together, we obtain the
following version, which is incomparable to Definition 2.4.4. We take the opportunity
to present a slightly different formulation, as well as to introduce a non-uniformly
one-way version.

Definition 2.4.5 (Collection of Trapdoor Permutations, Revisited): Let Ī ⊆
{0, 1}∗ and Ī n

def= Ī ∩ {0, 1}n. A collection of permutations with indices in Ī is
a set { fi : Di → Di }i∈ Ī such that each fi is 1-1 on the corresponding Di . Such
a collection is called a trapdoor permutation if there exist four probabilistic
polynomial-time algorithms I, D, F, and F−1 such that the following five condi-
tions hold:

1. Index and trapdoor selection: For every n,

Pr[I (1n) ∈ Ī n × {0, 1}∗] > 1− 2−n

2. Selection in domain: For every n ∈ N and i ∈ Ī n ,
(a) Pr[D(i) ∈ Di ] > 1− 2−n.

(b) Conditioned on D(i) ∈ Di , the output is uniformly distributed in Di . That is,
for every x ∈ Di ,

Pr[D(i) = x | D(i) ∈ Di ] = 1

|Di |
Thus, Di ⊆ ∪m≤poly(|i |){0, 1}m. Without loss of generality, Di ⊆ {0, 1}poly(|i |).

3. Efficient evaluation: For every n ∈ N, i ∈ Ī n , and x ∈ Di ,

Pr[F(i, x) = fi (x)] > 1− 2−n

4. Hard to invert: Let In be a random variable describing the distribution of the first
element in the output of I (1n), and Xn

def= D(In). We consider two versions:
Standard/uniform-complexity version: For every probabilistic polynomial-time

algorithm A′, every positive polynomial p(·), and all sufficiently large n’s,

Pr[A′(In, f In (Xn)) = Xn] <
1

p(n)

Non-uniform-complexity version: For every family of polynomial-size circuits
{Cn}n∈N, every positive polynomial p(·), and all sufficiently large n’s,

Pr[Cn(In, f In (Xn)) = Xn] <
1

p(n)

59

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.003
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:23, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.003
https:/www.cambridge.org/core


COMPUTATIONAL DIFFICULTY

5. Inverting with trapdoor: For every n ∈ N, any pair (i, t) in the range of I (1n) such
that i ∈ Ī n , and every x ∈ Di ,

Pr[F−1(t, fi (x)) = x] > 1− 2−n

We comment that an exponentially vanishing measure of indices for which any of
Items 2, 3, and 5 does not hold can be omitted from Ī (and accounted for by the error
allowed in Item 1). Items 3 and 5 can be relaxed by taking the probabilities also over
all possible x ∈ Di with uniform distribution.

2.4.4.2. The RSA (and Factoring) Trapdoor

The RSA collection presented earlier can be easily modified to have the trapdoor
property. To this end, algorithm IRSA should be modified so that it outputs both the
index (N , e) and the trapdoor (N , d), where d is the multiplicative inverse of e mod-
ulo (P − 1) · (Q − 1) (note that e has such inverse because it has been chosen to be
relatively prime to (P − 1) · (Q − 1)). The inverting algorithm F−1

RSA is identical to
the algorithm FRSA (i.e., F−1

RSA((N , d), y) = yd mod N ). The reader can easily verify
that

F−1
RSA ((N , d), FRSA ((N , e), x)) = xed mod N

indeed equals x , for every x in the multiplicative group modulo N . In fact, one can
show that xed ≡ x (mod N ) for every x (even in case x is not relatively prime to N ).

The Rabin collection presented earlier can be easily modified in a similar manner,
enabling one to efficiently compute all four square roots of a given quadratic residue
(mod N ). The trapdoor in this case is the prime factorization of N . The square roots
mod N can be computed by extracting a square root modulo each of the prime factors
of N and combining the results using the Chinese Remainder Theorem. Efficient algo-
rithms for extracting square roots modulo a given prime are known (see Appendix A).
Furthermore, in case the prime P is congruent to 3 mod 4, the square roots of x mod
P can be computed by raising x to the power P+1

4 (while reducing the intermediate
results mod P). Furthermore, in case N is a Blum integer, the collection SQR, presented
earlier, forms a collection of trapdoor permutations (provided, of course, that factoring
is hard).

2.4.5.∗Claw-Free Functions

The formulation of collections of one-way functions is also a convenient starting point
for the definition of a collection of claw-free pairs of functions.

2.4.5.1. The Definition

Loosely speaking, a claw-free collection consists of a set of pairs of functions that are
easy to evaluate, that have the same range for both members of each pair, and yet for
which it is infeasible to find a range element together with a pre-image of it under each
of these functions.
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2.4. ONE-WAY FUNCTIONS: VARIATIONS

Definition 2.4.6 (Claw-Free Collection): A collection of pairs of functions
consists of an infinite set of indices, denoted Ī , two finite sets D0

i and D1
i for each

i ∈ Ī , and two functions f 0
i and f 1

i defined over D0
i and D1

i , respectively. Such
a collection is called claw-free if there exist three probabilistic polynomial-time
algorithms I , D, and F such that the following conditions hold:

1. Easy to sample and compute: The random variable I (1n) is assigned values in
the set Ī ∩ {0, 1}n. For each i ∈ Ī and σ ∈ {0, 1}, the random variable D(σ, i) is
distributed over Dσ

i , and F(σ, i, x) = f σi (x) for each x ∈ Dσ
i .

2. Identical range distribution: For every i in the index set Ī , the random variables
f 0
i (D(0, i)) and f 1

i (D(1, i)) are identically distributed.

3. Hard to form claws: A pair (x, y) satisfying f 0
i (x) = f 1

i (y) is called a claw for
index i . Let Ci denote the set of claws for index i . It is required that for every
probabilistic polynomial-time algorithm A′, every positive polynomial p(·), and
all sufficiently large n’s,

Pr[A′(In) ∈ CIn ] <
1

p(n)

where In is a random variable describing the output distribution of algorithm I
on input 1n.

The first requirement in Definition 2.4.6 is analogous to what appears in Definition 2.4.3.
The other two requirements in Definition 2.4.6 are conflicting in nature. On one hand, it
is required that claws do exist (to say the least), whereas on the other hand it is required
that claws cannot be efficiently found. Clearly, a claw-free collection of functions yields
a collection of strong one-way functions (see Exercise 22). A case of special interest

arises when the two domains are identical (i.e., Di
def= D0

i = D1
i ), the random variable

D(σ, i) is uniformly distributed over Di , and the functions f 0
i and f 1

i are permutations
over Di . Such a collection is called a collection of claw-free pairs of permutations.

Again, a useful relaxation of the conditions of Definition 2.4.6 is obtained by allow-
ing the algorithms (i.e., I , D, and F) to fail with negligible probability. An additional
property that a (claw-free) collection may (or may not) have is an efficiently recogniz-
able index set (i.e., a probabilistic polynomial-time algorithm for determining whether
or not a given string is in Ī ).

2.4.5.2. The DLP Claw-Free Collection

We now seek to show that claw-free collections do exist under specific reasonable in-
tractability assumptions. We start by presenting such a collection under the assumption
that the discrete-logarithm problem (DLP) for fields of prime cardinality is intractable.

Following is the description of a collection of claw-free pairs of permutations (based
on the foregoing assumption). The index set consists of triples, (P,G, Z ), where P is a
prime, G is a primitive element mod P , and Z is an element in the field (of residues mod
P). The index-sampling algorithm selects P and G as in the DLP collection presented
in Section 2.4.3, and Z is selected uniformly among the residues mod P . The domain
is the same for both functions with index (P,G, Z ) and equals the set {1, . . . , P − 1},
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COMPUTATIONAL DIFFICULTY

and the domain-sampling algorithm selects uniformly from this set. As for the functions
themselves, we set

f σP,G,Z (x) def= Zσ · Gx mod P (2.13)

The reader can easily verify that both functions are permutations over {1, . . . , P − 1}. In
fact, the function f 0

P,G,Z coincides with the function DLPP,G presented in Section 2.4.3.
Furthermore, the ability to form a claw for the index (P,G, Z ) yields the ability to
find the discrete logarithm of Z mod P to base G (since Gx ≡ Z · G y (mod P)
yields Gx−y ≡ Z (mod P)). Thus, the ability to form claws for a non-negligible
fraction of the index set translates to the ability to invert the DLP collection presented
in Section 2.4.3. Put in other words, if the DLP collection is one-way, then the collection
of pairs of permutations defined in Eq. (2.13) is claw-free.

The foregoing collection does not have the additional property of having an ef-
ficiently recognizable index set, because it is not known how to efficiently recognize
primitive elements modulo a prime. This can be remedied by making a slightly stronger
assumption concerning the intractability of DLP. Specifically, we assume that DLP is
intractable even if one is given the factorization of the size of the multiplicative group
(i.e., the factorization of P − 1) as additional input. Such an assumption allows one to
add the factorization of P − 1 into the description of the index. This makes the index
set efficiently recognizable (since one can test whether or not G is a primitive element
by raising it to powers of the form (P − 1)/Q, where Q is a prime factor of P − 1). If
DLP is hard also for primes of the form 2Q + 1, where Q is also a prime, life is even
easier: To test whether or not G is a primitive element mod P , one simply computes
G2 mod P and G(P−1)/2 mod P and checks whether or not both of them are different
from 1.

2.4.5.3. Claw-Free Collections Based on Factoring

We now show that a claw-free collection (of functions) does exist under the assumption
that integer factorization is infeasible. In the following description, we use the structural
properties of Blum integers (i.e., products of two primes both congruent to 3 mod 4),
which are further discussed in Appendix A. In particular, for a Blum integer N , it holds
that

• the Jacobi symbol of −1 mod N equals 1, and

• half of the square roots of each quadratic residue have Jacobi symbol 1.

Let J+1
N (resp., J−1

N ) denote the set of residues in the multiplicative group modulo N
with Jacobi symbol +1 (resp., −1).

The index set of the collection consists of all Blum integers that are composed of
two primes of the same length. The index-selecting algorithm, on input 1n , uniformly
selects such an integer by uniformly selecting two (n-bit) primes, each congruent to 3
mod 4, and outputting their product, denoted N . Both functions of index N , denoted f 0

N

and f 1
N , consist of squaring modulo N , but their corresponding domains are disjoint.

The domain of function f σN equals the set J (−1)σ

N . The domain-sampling algorithm,
denoted D, uniformly selects an element of the corresponding domain in the natural
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2.4. ONE-WAY FUNCTIONS: VARIATIONS

manner. Specifically, on input (σ, N ), algorithm D uniformly selects polynomially
many residues mod N and outputs the first residue with Jacobi symbol (−1)σ .

The reader can easily verify that both f 0
N (D(0, N )) and f 1

N (D(1, N )) are uniformly
distributed over the set of quadratic residues mod N . The difficulty of forming claws
follows from the fact that a claw yields two residues, x ∈ J+1

N and y ∈ J−1
N , such that

their squares modulo N are equal (i.e., x2 ≡ y2 (mod N )). Since −1 ∈ J+1
N (and

the latter is a multiplicative subgroup), it follows that y �≡ ±x (mod N ), and so the
greatest common divisor (g.c.d.) of y ± x and N yields a factorization of N .

The foregoing collection consists of pairs of functions that are 2-to-1 (and are defined
over disjoint domains). To obtain a collection of claw-free permutations, we slightly
modify the collection as follows. The index set consists of Blum integers that are the
products of two primes P and Q of the same length, so that P ≡ 3 (mod 8) and
Q ≡ 7 (mod 8). For such composites, neither 2 nor−2 is a quadratic residue modulo
N = P · Q (and in fact±2 ∈ J−1

N ). Consider the functions f 0
N and f 1

N defined over the
set, denoted QN , of quadratic residues modulo N :

f σN (x) def= 4σ · x2 mod N (2.14)

Clearly, both f 0
N and f 1

N are permutations over QN . The difficulty of forming claws
follows from the fact that a claw yields two quadratic residues, x and y, so that x2 ≡
4y2 (mod N ). Thus, (x/y)2 ≡ 4 (mod N ), and so (2− (x/y)) · (2+ (x/y)) ≡ 0
(mod N ). Since ±2 /∈ QN (and the latter is a multiplicative subgroup), it follows that
(x/y) �≡ ±2 (mod N ), and so the g.c.d. of (2± x · y−1 mod N ) and N yields the
factorization of N .

The foregoing collections are not known to possess the additional property of having
an efficiently recognizable index set. In particular, it is not even known how to efficiently
distinguish products of two primes from products of more than two primes.

2.4.6.∗On Proposing Candidates

Although we do believe that one-way functions exist, their mere existence does not
suffice for practical applications. Typically, an application that is based on one-way
functions requires the specification of a concrete (candidate one-way) function.9 Hence,
the problem of proposing reasonable candidates for one-way functions is of great
practical importance. Everyone understands that such a reasonable candidate (for a
one-way function) should have a very efficient algorithm for evaluating the function.
In case the “function” is presented as a collection of one-way functions, the domain
sampler and function-evaluation algorithm should be very efficient (whereas for index
sampling, “moderate efficiency” may suffice). However, people seem less careful about
seriously considering the difficulty of inverting the candidates that they propose. We
stress that the candidate has to be difficult to invert on “the average” and not only
in the worst case, and “the average” is taken with respect to the instance-distribution
determined by the candidate function. Furthermore, “hardness on the average” (unlike

9As explained in Section 2.4.1, the observation concerning the existence of a universal one-way function is of
little practical significance.
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worst-case analysis) is extremely sensitive to the instance-distribution. Hence, one
has to be extremely careful in deducing average-case complexity with respect to one
distribution from the average-case complexity with respect to another distribution. The
short history of the field contains several cases in which this point has been ignored,
and consequently bad suggestions have been made.

Consider, for example, the following (bad) suggestion to base one-way functions
on the conjectured difficulty of the Graph Isomorphism problem. Let FGI(G, π ) =
(G, πG), where G is an undirected graph, π is a permutation on its vertex set, and πG
denotes the graph resulting by renaming the vertices of G using π (i.e., (π (u), π (v))
is an edge in πG if and only if (u, v) is an edge in G). Although it is indeed believed
that Graph Isomorphism cannot be solved in polynomial time, it is easy to see that FGI

is easy to invert in most instances (e.g., use vertex-degree statistics to determine the
isomorphism). That is, the conjectured worst-case hardness does not imply an average-
case hardness for the uniform distribution. Furthermore, even if the problem is hard on
the average with respect to some distribution, one has to specify this distribution and
propose an efficient algorithm for sampling according to it.

2.5. Hard-Core Predicates

Loosely speaking, saying that a function f is one-way implies that given y, it is infea-
sible to find a pre-image of y under f . This does not mean that it is infeasible to find
some partial information about the pre-image of y under f . Specifically, it may be easy
to retrieve half of the bits of the pre-image (e.g., given a one-way function f , consider
the function g defined by g(x, r ) def= ( f (x), r ) for every |x | = |r |). The fact that one-
way functions do not necessarily hide partial information about their pre-images limits
their “direct applicability” to tasks such as secure encryption. Fortunately, assuming
the existence of one-way functions, it is possible to construct one-way functions that
hide specific partial information about their pre-images (which is easy to compute from
the pre-image itself). This partial information can be considered as a “hard-core” of the
difficulty of inverting f .

2.5.1. Definition

Loosely speaking, a polynomial-time predicate b is called a hard-core of a function f
if every efficient algorithm, given f (x), can guess b(x) with success probability that is
only negligibly better than one-half.

Definition 2.5.1 (Hard-Core Predicate): A polynomial-time-computable predi-
cate b : {0, 1}∗ → {0, 1} is called a hard-core of a function f if for every prob-
abilistic polynomial-time algorithm A′, every positive polynomial p(·), and all
sufficiently large n’s,

Pr[A′( f (Un)) = b(Un)] <
1

2
+ 1

p(n)
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2.5. HARD-CORE PREDICATES

Note that for every b : {0, 1}∗ → {0, 1} and f : {0, 1}∗ → {0, 1}∗ there exist obvious
algorithms that guess b(Un) from f (Un) with success probability at least one-half (e.g.,
the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, if b
is a hard-core predicate (for any function), then b(Un) must be almost unbiased (i.e.,
|Pr[b(Un) = 0]− Pr[b(Un) = 1]| must be a negligible function in n).

Since b itself is polynomial-time-computable, the failure of efficient algorithms to
approximate b(x) from f (x) (with success probability non-negligibly higher than one-
half) must be due either to an information loss of f (i.e., f not being one-to-one) or
to the difficulty of inverting f . For example, the predicate b(σα) = σ is a hard-core
of the function f (σα) def= 0α, where σ ∈ {0, 1} and α ∈ {0, 1}∗. Hence, in this case the
fact that b is a hard-core of the function f is due to the fact that f loses information
(specifically, the first bit σ ). On the other hand, in case f loses no information (i.e., f
is one-to-one), hard-cores for f exist only if f is one-way (see Exercise 25). We shall
be interested in the case where the hardness of approximating b(x) from f (x) is due to
computational reasons and not to information-theoretic ones (i.e., information loss).

Hard-core predicates for collections of one-way functions are defined in an analo-
gous way. Typically, the predicate may depend on the index of the function, and both
algorithms (i.e., the one for evaluating it, as well as the one for predicting it based
on the function value) are also given this index. That is, a polynomial-time algorithm
B : {0, 1}∗ × {0, 1}∗ → {0, 1} is called a hard-core of the one-way collection (I, D, F)
if for every probabilistic polynomial-time algorithm A′, every positive polynomial p(·),
and all sufficiently large n’s,

Pr[A′(In, f In (Xn)) = B(In, Xn)] <
1

2
+ 1

p(n)

where In
def= I (1n) and Xn

def= D(In).

Some Natural Candidates. Simple hard-core predicates are known for the RSA, Rabin,
and DLP collections (presented in Section 2.4.3), provided that the corresponding
collections are one-way. Specifically, the least significant bit is a hard-core for the RSA
collection, provided that the RSA collection is one-way. Namely, assuming that the RSA
collection is one-way, it is infeasible to guess (with success probability significantly
greater than 1

2 ) the least significant bit of x from RSAN ,e(x) = xe mod N . Similarly,
assuming the intractability of integer factorization, it is infeasible to guess the least
significant bit of x ∈ QN from RabinN (x) = x2 mod N , where N is a Blum integer
(and QN denotes the set of quadratic residues modulo N ). Finally, assuming that the
DLP collection is one-way, it is infeasible to guess whether or not x < P

2 when given
DLPP,G(x) = Gx mod P . In the next subsection we present a general result of this type.

2.5.2. Hard-Core Predicates for Any One-Way Function

Actually, the title is inaccurate: We are going to present hard-core predicates only for
(strong) one-way functions of a special form. However, every (strong) one-way function
can be easily transformed into a function of the required form, with no substantial loss
in either “security” or “efficiency.”
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Theorem 2.5.2: Let f be an arbitrary strong one-way function, and let g be de-

fined by g(x, r ) def= ( f (x), r ), where |x | = |r |. Let b(x, r ) denote the inner product
mod 2 of the binary vectors x and r. Then the predicate b is a hard-core of the
function g.

In other words, the theorem states that if f is strongly one-way, then it is infeasible
to guess the exclusive-OR (XOR) of a random subset of the bits of x when given f (x)
and the subset itself. We stress that the theorem requires that f be strongly one-way
and that the conclusion is false if f is only weakly one-way (see Exercise 25). Clearly,
g is also strongly one-way. We point out that g maintains other properties of f, such
as being length-preserving and being one-to-one. Furthermore, an analogous statement
holds for collections of one-way functions with/without trapdoor, etc.

The rest of this section is devoted to proving Theorem 2.5.2. Again we use a re-
ducibility argument: Here, inverting the function f is reduced to guessing b(x, r ) from
( f (x), r ). Hence, we assume (for contradiction) the existence of an efficient algorithm
guessing the inner product with an advantage that is non-negligible, and we derive
an algorithm that inverts f with related (i.e., non-negligible) success probability. This
contradicts the hypothesis that f is a one-way function.

We start with some preliminary observations and a motivating discussion and then
turn to the main part of the actual proof. We conclude with more efficient implementa-
tions of the reducibility argument that assert “higher levels of security.”

2.5.2.1. Preliminaries

Let G be a (probabilistic polynomial-time) algorithm that on input f (x) and r tries to
guess the inner product (mod 2) of x and r . Denote by εG(n) the (overall) advantage of
algorithm G in guessing b(x, r ) from f (x) and r , where x and r are uniformly chosen
in {0, 1}n . Namely,

εG(n) def= Pr[G( f (Xn), Rn) = b(Xn, Rn)]− 1

2
(2.15)

where here and in the sequel Xn and Rn denote two independent random variables, each
uniformly distributed over {0, 1}n . Assuming, to the contrary, that b is not a hard-core
of g means that there exists an efficient algorithm G, a polynomial p(·), and an infinite
set N such that for every n ∈ N , it holds that εG(n) > 1

p(n) . We restrict our attention to
this algorithm G and to n’s in this set N . In the sequel, we shorthand εG by ε.

Our first observation is that on at least an ε(n)
2 fraction of the x’s of length n, al-

gorithm G has at least an ε(n)
2 advantage in guessing b(x, Rn) from f (x) and Rn .

Namely:

Claim 2.5.2.1: There exists a set Sn ⊆ {0, 1}n of cardinality at least ε(n)
2 · 2n such

that for every x ∈ Sn , it holds that

s(x) def= Pr[G( f (x), Rn) = b(x, Rn)] ≥ 1

2
+ ε(n)

2
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2.5. HARD-CORE PREDICATES

Here the probability is taken over all possible values of Rn and all internal coin tosses
of algorithm G, whereas x is fixed.

Proof: The claim follows by an averaging argument. Namely, write E(s(Xn)) =
1
2 + ε(n), and apply Markov’s inequality. �

In the sequel, we restrict our attention to x’s in Sn . We shall show an efficient
algorithm that on every input y, with y = f (x) and x ∈ Sn , finds x with very high
probability. Contradiction to the (strong) one-wayness of f will follow by recalling
that Pr[Un ∈ Sn] ≥ ε(n)

2 .
We start with a motivating discussion. The inverting algorithm that uses algorithm

G as subroutine will be formally described and analyzed later.

2.5.2.2. A Motivating Discussion

Consider a fixed x ∈ Sn . By definition, s(x) ≥ 1
2 + ε(n)

2 > 1
2 + 1

2p(n) . Suppose, for a
moment, that s(x) > 3

4 + 1
2p(n) . Of course there is no reason to believe that such is

the case; we are just doing a mental experiment. Still, in this case (i.e., of s(x) >
3
4 + 1

poly(|x |) ), retrieving x from f (x) is quite easy. To retrieve the i th bit of x , denoted
xi , we randomly select r ∈ {0, 1}n and compute G( f (x), r ) and G( f (x), r ⊕ ei ), where
ei is an n-dimensional binary vector with 1 in the i th component, and 0 in all the others,
and v ⊕ u denotes the addition mod 2 of the binary vectors v and u. (The process is
actually repeated polynomially many times, using independent random choices of such
r ’s, and xi is determined by a majority vote.)

If both G( f (x), r ) = b(x, r ) and G( f (x), r ⊕ ei ) = b(x, r ⊕ ei ), then

G( f (x), r )⊕ G( f (x), r ⊕ ei ) = b(x, r )⊕ b(x, r ⊕ ei )

= b(x, ei )

= xi

where the second equality uses

b(x, r )⊕ b(x, s) ≡
n∑

i=1

xiri +
n∑

i=1

xi si ≡
n∑

i=1

xi (ri + si ) ≡ b(x, r ⊕ s) (mod 2)

The probability that both G( f (x), r ) = b(x, r ) and G( f (x), r ⊕ ei ) = b(x, r ⊕ ei )
hold, for a random r , is at least 1− 2 · ( 1

4 − 1
poly(|x |) ) >

1
2 + 1

poly(|x |) . Hence, repeat-
ing the foregoing procedure sufficiently many times and ruling by majority, we re-
trieve xi with very high probability. Similarly, we can retrieve all the bits of x and
hence invert f on f (x). However, the entire analysis was conducted under (the un-
justifiable) assumption that s(x) > 3

4 + 1
2p(|x |) , whereas we know only that s(x) >

1
2 + 1

2p(|x |) .
The problem with the foregoing procedure is that it doubles the original error prob-

ability of algorithm G on inputs of the form ( f (x), ·). Under the unrealistic assumption
that G’s average error on such inputs is non-negligibly smaller than 1

4 , the error-doubling
phenomenon raises no problems. However, in general (and even in the special case
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where G’s error is exactly 1
4 ), the foregoing procedure is unlikely to invert f . Note

that the average error probability of G (which is averaged over all possible inputs of
the form ( f (x), ·)) cannot be decreased by repeating G several times (e.g., G may
always answer correctly on 3

4 of the inputs and always err on the remaining 1
4 ). What

is required is an alternative way of using the algorithm G, a way that does not double
the original error probability of G. The key idea is to generate the r ’s in a way that
requires applying algorithm G only once per each r (and i), instead of twice. Specifi-
cally, we shall use algorithm G to obtain a “guess” for b(x, r ⊕ ei ) and obtain b(x, r )
in a different way. The good news is that the error probability is no longer doubled,
since we use G only to get a “guess” of b(x, r ⊕ ei ). The bad news is that we still
need to know b(x, r ), and it is not clear how we can know b(x, r ) without applying
G. The answer is that we can guess b(x, r ) by ourselves. This is fine if we need to
guess b(x, r ) for only one r (or logarithmically in |x | many r ’s), but the problem is
that we need to know (and hence guess) the values of b(x, r ) for polynomially many
r ’s. An obvious way of guessing these b(x, r )’s yields an exponentially vanishing
success probability. Instead, we generate these polynomially many r ’s such that, on
one hand, they are “sufficiently random,” whereas, on the other hand, we can guess
all the b(x, r )’s with noticeable success probability. Specifically, generating the r ’s
in a particular pairwise-independent manner will satisfy both (seemingly contradic-
tory) requirements. We stress that in case we are successful (in our guesses for all the
b(x, r )’s), we can retrieve x with high probability. Hence, we retrieve x with noticeable
probability.

A word about the way in which the pairwise-independent r ’s are generated (and
the corresponding b(x, r )’s are guessed) is indeed in order. To generate m = poly(n)
many r ’s, we uniformly (and independently) select l

def= log2(m + 1) strings in {0, 1}n .
Let us denote these strings by s1, . . . , sl . We then guess b(x, s1) through b(x, sl). Let
us denote these guesses, which are uniformly (and independently) chosen in {0, 1},
by σ 1 through σ l . Hence, the probability that all our guesses for the b(x, si )’s are
correct is 2−l = 1

poly(n) . The different r ’s correspond to the different non-empty subsets
of {1, 2, . . . , l}. Specifically, we let r J def= ⊕ j∈J s j . The reader can easily verify that the
r J ’s are pairwise independent, and each is uniformly distributed in {0, 1}n . The key
observation is that

b(x, r J ) = b(x,⊕ j∈J s j ) = ⊕ j∈J b(x, s j )

Hence, our guess for the b(x, r J )’s is ⊕ j∈Jσ
j , and with noticeable probability all our

guesses are correct.

2.5.2.3. Back to the Actual Proof

Following is a formal description of the inverting algorithm, denoted A. We assume, for
simplicity, that f is length-preserving (yet this assumption is not essential). On input y
(supposedly in the range of f ), algorithm A sets n

def= |y| and l
def= )log2(2n · p(n)2 +

1)*, where p(·) is the polynomial guaranteed earlier (i.e., ε(n) > 1
p(n) for the infinitely

many n’s in N ). Algorithm A proceeds as follows:
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1. It uniformly and independently selects s1, . . . , sl ∈ {0, 1}n and σ 1, . . . , σ l ∈ {0, 1}.
2. For every non-empty set J ⊆ {1, 2, . . . , l}, it computes a string r J ←⊕ j∈J s j and a bit
ρ J ←⊕ j∈Jσ

j .

3. For every i ∈ {1, . . . , n} and every non-empty J ⊆ {1, . . . , l}, it computes

z J
i ← ρ J ⊕ G(y, r J ⊕ ei ).

4. For every i ∈ {1, . . . , n}, it sets zi to be the majority of the z J
i values.

5. It outputs z = z1 · · · zn .

Remark: An Alternative Implementation. In an alternative implementation of these
ideas, the inverting algorithm tries all possible values for σ 1, . . . , σ l , computes a string
z for each of these 2l possibilities, and outputs only one of the resulting z’s, with an ob-
vious preference for a string z satisfying f (z) = y. For later reference, this alternative
algorithm is denoted A′. (See further discussion in the next subsection.)

Following is a detailed analysis of the success probability of algorithm A on inputs
of the form f (x), for x ∈ Sn , where n ∈ N . One key observation, which is extensively
used, is that for x, α, β ∈ {0, 1}n , it holds that

b(x, α ⊕ β) = b(x, α)⊕ b(x, β)

It follows that b(x, r J ) = b(x,⊕ j∈J s j ) = ⊕ j∈J b(x, s j ). The main part of the analysis is
showing that in case the σ j ’s are correct (i.e., σ j = b(x, s j ) for all j ∈ {1, . . . , l}), with
constant probability, zi = xi for all i ∈ {1, . . . , n}. This is proved by bounding from
below the probability that the majority of the z J

i ’s equal xi , where z J
i = b(x, r J )⊕

G( f (x), r J ⊕ ei ) (due to the hypothesis that σ j = b(x, s j ) for all j ∈ {1, . . . , l}).
Claim 2.5.2.2: For every x ∈ Sn and every 1 ≤ i ≤ n,

Pr

[∣∣{J : b(x, r J )⊕ G( f (x), r J ⊕ ei ) = xi

}∣∣ > 1

2
· (2l − 1)

]
> 1− 1

2n

where r J def= ⊕ j∈J s j and the s j ’s are independently and uniformly chosen in
{0, 1}n .

Proof: For every J , define a 0-1 random variable ζ J such that ζ J equals 1 if and
only if b(x, r J )⊕ G( f (x), r J ⊕ ei ) = xi . Since b(x, r J )⊕ b(x, r J ⊕ ei ) = xi , it
follows that ζ J = 1 if and only if G( f (x), r J ⊕ ei ) = b(x, r J ⊕ ei ).

The reader can easily verify that each r J is uniformly distributed in {0, 1}n , and
the same holds for each r J ⊕ ei . It follows that each ζ J equals 1 with probability
s(x), which by x ∈ Sn is at least 1

2 + 1
2p(n) . We show that the ζ J ’s are pairwise

independent by showing that the r J ’s are pairwise independent. For every J �= K ,
without loss of generality, there exist j ∈ J and k ∈ K − J . Hence, for every
α, β ∈ {0, 1}n , we have

Pr[r K = β | r J = α] = Pr[sk = β | s j = α]

= Pr[sk = β]

= Pr[r K = β]
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and pairwise independence of the r J ’s follows. Let m
def= 2l − 1, and let ζ represent

a generic ζ J (which are all identically distributed). Using Chebyshev’s inequality
(and m ≥ 2n · p(n)2), we get

Pr

[∑
J

ζ J ≤ 1

2
· m

]
≤ Pr

[∣∣∣∣∣∑
J

ζ J −
(

1

2
+ 1

2p(n)

)
· m

∣∣∣∣∣ ≥ 1

2p(n)
· m

]

≤ m · Var[ζ ](
1

2p(n) · m
)2

= Var[ζ ](
1

2p(n)

)2 · (2n · p(n)2)

<

1
4(

1
2p(n)

)2 · (2n · p(n)2)

= 1

2n

The claim follows. �

Recall that if σ j = b(x, s j ) for all j’s, then ρ J = ⊕ j∈Jσ
j = ⊕ j∈J b(x, s j ) =

b(x, r J ) for all non-empty J ’s. In this case, with probability at least 1
2 , the string

z output by algorithm A equals x . However, the first event (i.e., σ j = b(x, s j )
for all j’s) happens with probability 2−l = 1

2n·p(n)2+1 independently of the events
analyzed in Claim 2.5.2.2. Hence, in case x ∈ Sn , algorithm A inverts f on
f (x) with probability at least 1

2 · 2−l = 1
4n·p(|x |)2+2 (whereas the alternative algo-

rithm A′ succeeds with probability at least 1
2 ). Recalling that (by Claim 2.5.2.1)

|Sn| > 1
2p(n) · 2n , we conclude that for every n ∈ N , algorithm A inverts f on

f (Un) with probability at least 1
8n·p(n)3+4p(n) . Noting that A is polynomial-time

(i.e., it merely invokes G for 2n · p(n)2 = poly(n) times, in addition to making
a polynomial amount of other computations), a contradiction to our hypothesis
that f is strongly one-way follows. �

2.5.2.4.∗ More Efficient Reductions

The preceding proof actually establishes the following:

Proposition 2.5.3: Let G be a probabilistic algorithm with running time tG :
N→N and advantage εG : N → [0, 1] in guessing b (see Eq. (2.15)). Then there
exists an algorithm A that runs in time O(n2/εG(n)2) · tG(n) such that

Pr[A( f (Un)) = Un] ≥ εG(n)

2
· εG(n)2

4n

The alternative implementation, A′, mentioned earlier (i.e., trying all possible values
of the σ j ’s rather than guessing one of them), runs in time O(n3/εG(n)4) · tG(n) and
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2.5. HARD-CORE PREDICATES

satisfies

Pr[A′( f (Un)) = Un] ≥ εG(n)

2
· 1

2

Below, we provide a more efficient implementation of A′. Combining it with a more
refined averaging argument than the one used in Claim 2.5.2.1, we obtain the following:

Proposition 2.5.4: Let G, tG : N→N, and εG : N → [0, 1] be as before, and de-
fine �(n) def= log2(1/εG(n)). Then there exists an algorithm A′′ that runs in expected
time O(n2 · �(n)3) · tG(n) and satisfies

Pr[A′′( f (Un)) = Un] = �(εG(n)2)

Thus, the time-versus-success ratio of A′′ is poly(n)/εG(n)2, which (in some sense) is
optimal up to a poly(n) factor; see Exercise 30.

Proof Sketch: Let ε(n) def= εG(n), and � def= log2(1/ε(n)). Recall that E[s(Xn)] =
0.5+ ε(n), where s(x) def= Pr[G( f (x), Rn) = b(x, Rn)] (as in Claim 2.5.2.1). We
first replace Claim 2.5.2.1 by a more refined analysis.

Claim 2.5.4.1: There exists an i ∈ {1, . . . , �} and a set Sn ⊆ {0, 1}n of cardinality
at least (2i−1 · ε(n)) · 2n such that for every x ∈ Sn , it holds that

s(x) = Pr[G( f (x), Rn) = b(x, Rn)] ≥ 1

2
+ 1

2i+1 · �
Proof: Let Ai

def= {x : s(x) ≥ 1
2 + 1

2i+1�
}. For any non-empty set S ⊆ {0, 1}n , we

let a(S) def= maxx∈S{s(x)− 0.5}, and a(∅) def= 0. Assuming, to the contrary, that the
claim does not hold (i.e., |Ai | < (2i−1 · ε(n)) · 2n for i = 1, . . . , �), we get

E[s(Xn)− 0.5] ≤ Pr[Xn ∈ A1] · a(A1)

+
�∑

i=2

Pr[Xn ∈ (Ai \ Ai−1)] · a(Ai \ Ai−1)

+Pr[Xn ∈ ({0, 1}n \ A�)] · a({0, 1}n \ A�)

< ε(n) · 1

2
+

�∑
i=2

(2i−1 · ε(n)) · 1

2i�
+ 1 · 1

2�+1�

= ε(n)

2
+ (�− 1) · ε(n)

2�
+ 2−�

2�
= ε(n)

which contradicts E[s(Xn)− 0.5] = ε(n). �

Fixing any i that satisfies Claim 2.5.4.1, we let ε def= 2−i−1/� and consider the
corresponding set Sn

def= {x : s(x) ≥ 0.5+ ε}. By suitable setting of parameters,
we obtain that for every x ∈ Sn , algorithm A′ runs in time O(n3/ε4) · tG(n) and
retrieves x from f (x) with probability at least 1

2 . Our next goal is to provide a
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COMPUTATIONAL DIFFICULTY

more efficient implementation of A′, specifically, one running in time O(n2/ε2) ·
(tG(n)+ log(n/ε)).

The modified algorithm A′ is given input y = f (x) and a parameter ε and
sets l = log((n/ε2)+ 1). In the actual description (presented later), it will be
more convenient to use arithmetic of reals instead of Boolean. Hence, we denote
b′(x, r ) = (−1)b(x,r ) and G ′(y, r ) = (−1)G(y,r ). The verification of the following
facts is left as an exercise:

Fact 1: For every x , it holds that E[b′(x,Un) · G ′( f (x),Un + ei )] = s ′(x) · (−1)xi ,

where s ′(x) def= 2 · (s(x)− 1
2 ). (Note that for x ∈ Sn , we have s ′(x) ≥ 2ε.)

Fact 2: Let R be a uniformly chosen l-by-n Boolean matrix. Then for every
v �= u ∈ {0, 1}l \ {0}l , it holds that vR and u R are pairwise independent and
uniformly distributed in {0, 1}n .

Fact 3: For every x ∈ {0, 1}n and v ∈ {0, 1}l , it holds that b′(x, vR) = b′(x RT , v).

Using these facts, we obtain the following:

Claim 2.5.4.2: For any x ∈ Sn and a uniformly chosen l-by-n Boolean matrix R,
there exists σ ∈ {0, 1}l such that, with probability at least 1

2 , for every 1 ≤ i ≤ n,
the sign of

∑
v∈{0,1}l b′(σ, v) · G ′( f (x), vR + ei ) equals the sign of (−1)xi .

Proof: Let σ = x RT . Combining the foregoing facts, for every v ∈ {0, 1}l \ {0}l ,
we have E[b′(x RT , v) · G ′( f (x), vR + ei )] = s ′(x) · (−1)xi . Thus, for every such
v, it holds that Pr[b′(x RT , v) · G ′( f (x), vR + ei ) = (−1)xi ] = 1+s′(x)

2 = s(x).
Using Fact 2, l = log((2n/ε2)+ 1), and Chebyshev’s inequality, the claim
follows. �

A last piece of notation: Let B be a 2l -by-2l matrix, with the (σ, v) entry being b′(σ, v),
and let ḡi be a 2l -dimensional vector, with the vth entry equal to G ′( f (x), vR + ei ). Thus,
the σ th entry in the vector Bḡi equals

∑
v∈{0,1}l b′(σ, v) · G ′( f (x), vR + ei ).

Efficient implementation of algorithm A′: On input y = f (x) and a parameter ε,
the inverting algorithm A′ sets l = log((n/ε2)+ 1) and proceeds as follows:

1. For i = 1, . . . , n, it computes the 2l-dimensional vector ḡi (as defined earlier).

2. For i = 1, . . . , n, it computes z̄i ← Bḡi .

Let Z be a 2l-by-n real matrix in which the i th column equals z̄i .

Let Z ′ be a 2l-by-n Boolean matrix representing the signs of the elements in Z :
Specifically, the (i, j)th entry of Z ′ equals 1 if and only if the (i, j)th entry of
Z is negative.

3. Scanning all rows of Z ′, it outputs the first row z so that f (z) = y.

By Claim 2.5.4.2, for x ∈ Sn , with probability at least 1
2 , the foregoing algorithm

retrieves x from y = f (x). The running time of the algorithm is dominated by
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2.5. HARD-CORE PREDICATES

Steps 1 and 2, which can be implemented in time n · 2l · O(tG(n)) = O((n/ε)2 ·
tG(n)) and n · O(l · 2l) = O((n/ε)2 · log(n/ε)), respectively.10

Finally, we define algorithm A′′. On input y = f (x), the algorithm selects
j ∈ {1, . . . , �} with probability 2−2 j+1 (and halts with no output otherwise). It
invokes the preceding implementation of algorithm A′ on input y with para-
meter ε def= 2− j−1/� and returns whatever A′ does. The expected running time of
A′′ is

�∑
j=1

2−2 j+1 · O
(

n2

(2− j−1/�)2

)
· (tG(n)+ log(n · 2 j+1�)) = O(n2 · �3) · tG(n)

(assuming tG(n) = �(� log n)). Letting i ≤ � be an index satisfying Claim 2.5.4.1
(and letting Sn be the corresponding set), we consider the case in which j (selected
by A′′) is greater than or equal to i . By Claim 2.5.4.2, in such a case, and for
x ∈ Sn , algorithm A′ inverts f on f (x) with probability at least 1

2 . Using i ≤ �

(= log2(1/ε(n))), we get

Pr[A′′( f (Un)) = Un] ≥ Pr[Un ∈ Sn] · Pr[ j ≥ i] · 1

2

≥ 2i−1ε(n) · 2−2i+1 · 1

2

≥ ε(n) · 2−� · 1

2
= ε(n)2

2

The proposition follows. �

Comment. Using an additional trick,11 one can save a factor of �(n) in the running
time, resulting in an expected running time of O(n · log3(1/εG(n))) · tG(n).

10Using the special structure of matrix B, one can show that given a vector w̄, the product Bw̄ can be computed
in time O(l · 2l ). Hint: B (known as the Sylvester matrix) can be written recursively as

Sk =
(

Sk−1 Sk−1

Sk−1 Sk−1

)
where S0 = +1 and M̄ means flipping the +1 entries of M to −1 and vice versa. So(

Sk−1 Sk−1

Sk−1 Sk−1

)[
w′

w′′

]
=
[

Sk−1w
′ + Sk−1w

′′

Sk−1w
′ − Sk−1w

′′

]
Thus, letting T (k) denote the time used in multiplying Sk by a 2k -dimensional vector, we have T (k) = 2 ·
T (k − 1)+ O(2k ), which solves to T (k) = O(k2k ).

11We further modify algorithm A′ by setting 2l = O(1/ε2) (rather than 2l = O(n/ε2)). Under the new setting,
with constant probability, we recover correctly a constant fraction of the bits of x (rather than all of them).
If x were a codeword under an asymptotically good error-correcting code (cf. [138]), this would suffice. To
avoid this assumption, we modify algorithm A′ so that it tries to recover certain XORs of bits of x (rather than
individual bits of x). Specifically, we use an asymptotically good linear code (i.e., having constant rate, correcting
a constant fraction of errors, and having efficient decoding algorithm). Thus, the modified A′ recovers correctly
a constant fraction of the bits in the encoding of x under such a code, and using the decoding algorithm it
recovers x .
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COMPUTATIONAL DIFFICULTY

2.5.3.∗Hard-Core Functions

We have just seen that every one-way function can be easily modified to have a hard-
core predicate. In other words, the result establishes one bit of information about the
pre-image that is hard to approximate from the value of the function. A stronger result
may say that several bits of information about the pre-image are hard to approximate.
For example, we may want to say that a specific pair of bits is hard to approximate, in the
sense that it is infeasible to guess this pair with probability non-negligibly larger than
1
4 . Actually, in general, we take a slightly different approach and require that the true
value of these bits be hard to distinguish from a random value. That is, a polynomial-
time function h is called a hard-core of a function f if no efficient algorithm can
distinguish ( f (x), h(x)) from ( f (x), r ), where r is a random string of length |h(x)|. For
further discussion of the notion of efficient distinguishability, the reader is referred to
Section 3.2. We assume for simplicity that h is length-regular (see next).

Definition 2.5.5 (Hard-Core Function): Let h : {0, 1}∗ → {0, 1}∗ be a
polynomial-time-computable function satisfying |h(x)| = |h(y)| for all |x | = |y|,
and let l(n) def= |h(1n)|. The function h is called a hard-core of a function f if
for every probabilistic polynomial-time algorithm D′, every positive polynomial
p(·), and all sufficiently large n’s,∣∣Pr[D′( f (Xn), h(Xn)) = 1]− Pr

[
D′( f (Xn), Rl(n)

) = 1
]∣∣ < 1

p(n)

where Xn and Rl(n) are two independent random variables, the first uniformly
distributed over {0, 1}n and the second uniformly distributed over {0, 1}l(n).

For l ≡ 1, Definition 2.5.5 is equivalent to Definition 2.5.1; see the discussion following
Lemma 2.5.8. See also Exercise 31.

Simple hard-core functions with logarithmic lengths (i.e., l(n) = O(log n)) are
known for the RSA, Rabin, and DLP collections, provided that the corresponding col-
lections are one-way. For example, the function that outputs logarithmically many least
significant bits is a hard-core function for the RSA collection, provided that the RSA
collection is one-way. Namely, assuming that the RSA collection is one-way, it is in-
feasible to distinguish, given RSAN ,e(x) = xe mod N , the O(log |N |) least significant
bit of x from a uniformly distributed O(log |N |)-bit-long string. (Similar statements
hold for the Rabin and DLP collections.) A general result of this type follows.

Theorem 2.5.6: Let f be an arbitrary strong one-way function, and let g2 be
defined by g2(x, s) def= ( f (x), s), where |s| = 2|x |.12 Let bi (x, s) denote the in-
ner product mod 2 of the binary vectors x and (si+1, . . . , si+n), where s =
(s1, . . . , s2n). Then, for any constant c > 0, the function h(x, s) def= b1(x, s) · · ·
bl(|x |)(x, s) is a hard-core of the function g2, where l(n) def= min{n, )c log2 n*}.
12In fact, we can use |s| = |x | + l(|x |)− 1, where l(n) = O(log n). In the current description, s1 and

sn+l(n)+1, . . . , s2n are not used. However, the current formulation makes it unnecessary to specify l when
defining g2.
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2.5. HARD-CORE PREDICATES

The proof of the theorem follows by combining a proposition that capitalizes on the
structure of the specific function h and a general lemma concerning hard-core functions.
Loosely speaking, the proposition “reduces” the problem of approximating b(x, r )
given g(x, r ) to the problem of approximating the XOR of any non-empty set of the
bits of h(x, s) given g2(x, s), where b and g are the hard-core and the one-way function
presented in the preceding subsection. Since we know that the predicate b(x, r ) cannot
be approximated from g(x, r ), we conclude that no XOR of the bits of h(x, s) can be
approximated from g2(x, s). The general lemma implies that for every “logarithmically
shrinking” function h′ (i.e., h′ satisfying |h′(x)| = O(log |x |)), the function h′ is a hard-
core of a function f ′ if and only if the XOR of any non-empty subset of the bits of h′

cannot be approximated from the value of f ′. Following are the formal statements and
proofs of both claims.

Proposition 2.5.7: Let f , g2, l, and the bi ’s be as in Theorem 2.5.6. Let
{In ⊆ {1, 2, . . . , l(n)}}n∈N be an arbitrary sequence of non-empty sets, and let
bI|x |(x, s) def= ⊕i∈I|x |bi (x, s). Then for every probabilistic polynomial-time algo-
rithm A′, every positive polynomial p(·), and all sufficiently large n’s,

Pr[A′(In, g2(U3n)) = bIn (U3n)] <
1

2
+ 1

p(n)

where U3n is a random variable uniformly distributed over {0, 1}3n.

Proof: The proof is by a reducibility argument. Let Xn , Rn , and S2n be indepen-
dent random variables uniformly distributed over {0, 1}n , {0, 1}n , and {0, 1}2n , re-
spectively. We show that the problem of approximating b(Xn, Rn) given
( f (Xn), Rn) is reducible to the problem of approximating bIn (Xn, S2n) given
( f (Xn), S2n). The underlying observation is that for every |s| = 2 · |x | and every
I ⊆ {1, . . . , l(n)},

bI (x, s) = ⊕i∈I bi (x, s) = b(x,⊕i∈I subi (s))

where subi (s1, . . . , s2n) def= (si+1, . . . , si+n). Furthermore, the reader can verify that
for every non-empty I ⊆ {1, . . . , l(n)}, the random variable⊕i∈I subi (S2n) is uni-
formly distributed over {0, 1}n , and that given a string r ∈ {0, 1}n and such a set
I , one can efficiently select a string uniformly in the set {s : ⊕i∈I subi (s) = r}.
Verification of both claims is left as an exercise.13

Now assume, to the contrary, that there exists an efficient algorithm A′, a
polynomial p(·), and an infinite sequence of sets (i.e., In’s) and n’s such that

Pr[A′(In, g2(U3n)) = bIn (U3n)] ≥ 1

2
+ 1

p(n)

13Given any non-empty I and any r = r1 · · · rn ∈ {0, 1}n , consider the following procedure, where k is the
largest element in I . First, uniformly select s1, . . . , sk , sk+n+1, . . . , s2n ∈ {0, 1}. Next, going from i = 1 to i = n,
determine sk+i so that ⊕ j∈I si+ j = ri (i.e., sk+i ← ri ⊕ (⊕ j∈I\{k}s j+i ), where the relevant si+ j ’s are already
determined, since j < k). This process determines a string s1 · · · s2n uniformly among 2n strings s that satisfy
⊕i∈I subi (s) = r . Since there are 2n possible r ’s, both claims follow.
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We first observe that for n’s satisfying the foregoing inequality we can easily find
a set I satisfying

pI
def= Pr[A′(I, g2(U3n)) = bI (U3n)] ≥ 1

2
+ 1

2p(n)

Specifically, we can try all possible I ’s and estimate pI for each of them (via
random experiments), picking an I for which the estimate is highest. (Note
that using poly(n) many experiments, we can approximate each of the possi-
ble 2l(n) − 1 = poly(n) different pI ’s up to an additive deviation of 1/4p(n) and
error probability of 2−n .)

We now present an algorithm for approximating b(x, r ) from y
def= f (x) and

r . On input y and r , the algorithm first finds a set I as described earlier (this

stage depends only on n
def= |x |, which equals |r |). Once I is found, the algorithm

uniformly selects a string s such that ⊕i∈I subi (s) = r and returns A′(I, (y, s)).
Note that for uniformly distributed r ∈ {0, 1}n , the string s selected by our

algorithm is uniformly distributed in {0, 1}2n and b(x, r ) = bI (x, s). Evaluation
of the success probability of this algorithm is left as an exercise. �

The following lemma provides a generic transformation of algorithms distinguish-
ing between ( f (Xn), h(Xn)) and ( f (Xn), Rl(n)) to algorithms that, given f (Xn) and
a random non-empty subset I of {1, . . . , l(n)}, predict the XOR of the bits of Xn at
locations I .

Lemma 2.5.8 (Computational XOR Lemma): Let f and h be arbitrary length-
regular functions, and let l(n) def= |h(1n)|. Let D be any algorithm, and denote

p
def= Pr [D( f (Xn), h(Xn)) = 1] and q

def= Pr
[
D
(

f (Xn), Rl(n)

) = 1
]

where Xn and Rl(n) are independent random variables uniformly distributed
over {0, 1}n and {0, 1}l(n), respectively. We consider a specific algorithm, de-
noted G

def= G D, that uses D as a subroutine. Specifically, on input and y, and
S ⊆ {1, . . . , l(n)} (and l(n)), algorithm G selects r = r1 · · · rl(n) uniformly in
{0, 1}l(n) and outputs D(y, r )⊕ 1⊕ (⊕i∈Sri ). Then,

Pr[G( f (Xn), Il, l(n)) = ⊕i∈Il (hi (Xn))] = 1

2
+ p − q

2l(n) − 1

where Il is a randomly chosen non-empty subset of {1, . . . , l(n)}, and hi (x) denotes
the i th bit of h(x).

It follows that for logarithmically shrinking h’s, the existence of an efficient algo-
rithm that distinguishes (with a gap that is not negligible in n) the random variables
( f (Xn), h(Xn)) and ( f (Xn), Rl(n)) implies the existence of an efficient algorithm that
approximates the XOR of a random non-empty subset of the bits of h(Xn) from the
value of f (Xn) with an advantage that is not negligible. On the other hand, it is clear that
any efficient algorithm that approximates an XOR of a random non-empty subset of the
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bits of h from the value of f can be easily modified to distinguish ( f (Xn), h(Xn)) from
( f (Xn), Rl(n)). Hence, for logarithmically shrinking h’s, the function h is a hard-core
of a function f if and only if the XOR of any non-empty subset of the bits of h cannot
be approximated from the value of f .

Proof: All that is required is to evaluate the success probability of algorithm
G (as a function of p − q). We start by fixing an x ∈ {0, 1}n and evaluating
Pr[G( f (x), Il, l) = ⊕i∈Il (hi (x))], where Il is a uniformly chosen non-empty sub-
set of {1, . . . , l} and l

def= l(n). The rest is an easy averaging (over the x’s).
Let C denote the set (or class) of all non-empty subsets of {1, . . . , l}. Define,

for every S ∈ C, a relation ≡S such that y ≡S z if and only if ⊕i∈S yi = ⊕i∈Szi ,
where y = y1 · · · yl and z = z1 · · · zl . Note that for every S ∈ C and z ∈ {0, 1}l ,
the relation y ≡S z holds for exactly 2l−1 of the y’s. Recall that by definition of
G, on input ( f (x), S, l) and random choice r = r1 · · · rl ∈ {0, 1}l , algorithm G
outputs D( f (x), r )⊕ 1⊕ (⊕i∈Sri ). The latter equals ⊕i∈S(hi (x)) if and only if
one of the following two disjoint events occurs:

event 1: D( f (x), r ) = 1 and r ≡S h(x).

event 2: D( f (x), r ) = 0 and r �≡S h(x).

By the preceding discussion and elementary manipulations, we get

s(x) def= Pr[G( f (x), Il, l) = ⊕i∈Il (hi (x))]

= 1

|C| ·
∑
S∈C

Pr[G( f (x), S, l) = ⊕i∈S(hi (x)]

= 1

|C| ·
∑
S∈C

(Pr[event 1]+ Pr[event 2])

= 1

2 · |C| ·
∑
S∈C

(Pr[�(Rl) = 1 | Rl ≡S h(x)]+Pr[�(Rl) = 0 | Rl �≡S h(x)])

where Rl is uniformly distributed over {0, 1}l (representing the random choice of
algorithm G), and�(r ) is shorthand for the random variable D( f (x), r ). The rest
of the analysis is straightforward but tedious and can be skipped with little loss.

s(x) = 1

2
+ 1

2|C| ·
∑
S∈C

(Pr[�(Rl) = 1 | Rl ≡S h(x)]− Pr[�(Rl)

= 1 | Rl �≡S h(x)])

= 1

2
+ 1

2|C| ·
1

2l−1
·
∑

S∈C

∑
r≡S h(x)

Pr[�(r ) = 1]−
∑
S∈C

∑
r �≡S h(x)

Pr[�(r ) = 1]


= 1

2
+ 1

2l · |C| ·
(∑

r

∑
S∈EQ(r,h(x))

Pr[�(r ) = 1]

−
∑

r

∑
S∈NE(r,h(x))

Pr[�(r ) = 1]

)
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COMPUTATIONAL DIFFICULTY

where EQ(r, z) def= {S ∈ C : r ≡S z} and NE(r, z) def= {S ∈ C : r �≡S z}. Observe
that for every r �= z, it holds that |NE(r, z)| = 2l−1 (and |EQ(r, z)| = 2l−1 − 1).
On the other hand, EQ(z, z) = C (and NE(z, z) = ∅) holds for every z. Hence,
we get

s(x) = 1

2
+ 1

2l |C|
∑

r �=h(x)

((2l−1 − 1) · Pr[�(r ) = 1]− 2l−1 · Pr[�(r ) = 1])

+ 1

2l |C| · |C| · Pr[�(h(x)) = 1]

= 1

2
− 1

2l |C|
∑

r �=h(x)

Pr[�(r ) = 1]+
(

1

|C| −
1

2l |C|
)
· Pr[�(h(x)) = 1]

where the last equality uses |C| = 2l − 1 (i.e., 1
2l = 1

|C| − 1
2l |C| ). Rearranging the

terms and substituting for �, we get

s(x) = 1

2
+ 1

|C| · Pr[�(h(x)) = 1]− 1

2l |C|
∑

r

Pr[�(r ) = 1]

= 1

2
+ 1

|C| · (Pr[D( f (x), h(x)) = 1]− Pr[D( f (x), Rl) = 1])

Finally, taking the expectation over the x’s, we get

E[s(Xn)] = 1

2
+ 1

|C| · (Pr[D( f (Xn), h(Xn)) = 1]− Pr[D( f (Xn), Rl) = 1])

= 1

2
+ 1

2l − 1
· (p − q)

and the lemma follows. �

2.6.∗ Efficient Amplification of One-Way Functions

The amplification of weak one-way functions into strong ones, presented in
Theorem 2.3.2, has no practical value. Recall that this amplification transforms a func-
tion f that is hard to invert on a noticeable fraction (i.e., 1

p(n) ) of the strings of length
n into a function g that is hard to invert on all but a negligible fraction of the strings
of length n2 p(n). Specifically, it is shown that an algorithm running in time T (n) that
inverts g on a ε(n) fraction of the strings of length n2 p(n) yields an algorithm running
in time poly(p(n), n, 1

ε(n) ) · T (n) that inverts f on a 1− 1
p(n) fraction of the strings of

length n. Hence, if f is hard to invert in practice on 1% of the strings of length 1000,
then all we can say is that g is hard to invert in practice on almost all strings of length
100,000,000. In contrast, an efficient amplification of one-way functions, as given later,
should relate the difficulty of inverting the (weak one-way) function f on strings of
length n to the difficulty of inverting the (strong one-way) function g on the strings
of length O(n), rather than relating it to the difficulty of inverting the function g on
the strings of length poly(n). Consequently, we may get assertions such as this: If f is
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2.6.∗∗ EFFICIENT AMPLIFICATION OF ONE-WAY FUNCTIONS

hard to invert in practice on 1% of the strings of length 1000, then g is hard to invert
in practice on almost all strings of length 5000. The following definition is natural for
a general discussion of amplification of one-way functions.

Definition 2.6.1 (Quantitative One-Wayness): Let T : N → N and ε : N → R

be polynomial-time-computable functions. A polynomial-time-computable func-
tion f : {0, 1}∗ → {0, 1}∗ is called ε(·)-one-way with respect to time T (·) if for
every algorithm A′, with running time bounded by T (·) and all sufficiently large
n’s,

Pr[A′( f (Un)) �∈ f −1( f (Un))] > ε(n)

Using this terminology, we review what we already know about amplification of one-
way functions. A function f is weakly one-way if there exists a polynomial p(·) such
that f is 1

p(·) -one-way with respect to polynomial time.14 A function f is strongly
one-way if for every polynomial q(·), the function f is (1− 1

q(·) )-one-way with respect
to polynomial time. (The identity function is only 0-one-way with respect to linear
time, whereas no function is (1− exp(·))-one-way with respect to linear time.15) The
amplification result of Theorem 2.3.2 can be generalized and restated as follows: If there
exist a polynomial p and a (polynomial-time-computable) function f that is 1

p(·) -one-
way with respect to time T (·), then there exists a (polynomial-time-computable) function
g that is strongly one-way with respect to respect to time T ′(·), where T ′(n2 · p(n)) =
T (n), or, in other words, T ′(n) = T (nε) for some ε > 0 satisfying (n2 · p(n))ε ≤ n. In
contrast, an efficient amplification of one-way functions, as given later, should state
that the foregoing holds with respect to T ′(O(n)) = T (n) (in other words, T ′(n) =
T (ε · n) for some ε > 0). Such a result can be obtained for regular one-way functions.
A function f is called regular if there exists a polynomial-time-computable function
m : N → N and a polynomial p(·) such that for every y in the range of f , the number
of pre-images (of length n) of y under f is between m(n)

p(n) and m(n) · p(n). In this
book we review the result only for one-way permutations (i.e., length-preserving 1-1
functions).

Theorem 2.6.2 (Efficient Amplification of One-Way Permutations): Let p(·)
be a polynomial, and T : N → N. function. Suppose that f is a polynomial-
time-computable permutation that is 1

p(·) -one-way with respect to time T (·). Then
there exists a constant γ > 1, a polynomial q, and a polynomial-time-computable
permutation F such that for every polynomial-time-computable function ε : N →
[0, 1], the function F is (1− ε(·))-one-way with respect to time T ′

ε (·), where

T ′
ε (γ · n) def= ε(n)2

q(n) · T (n).

The constant γ depends only on the polynomial p(·).
14 Here and later, with respect to polynomial time means with respect to time T , for every polynomial T .
15 The identity function can be “inverted” with failure probability zero in linear time. On the other hand, for

every function f , the algorithm that, given y, outputs 0|y| inverts f on f (Un) with failure probability of at most
1− 2−n < 1− exp(−n).
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COMPUTATIONAL DIFFICULTY

2.6.1. The Construction

The key to the amplification of a one-way permutation f is to apply f on many different
arguments. In the proof of Theorem 2.3.2, f is applied to unrelated arguments (which
are disjoint parts of the input). This makes the proof relatively easy, but also makes
the construction very inefficient. Instead, in the construction presented in the proof of
the current theorem, we apply the one-way permutation f to related arguments. The
first idea that comes to mind is to apply f iteratively many times, each time to the
value resulting from the previous application. This will not help if easy instances for
the inverting algorithm continue to be mapped, by f , to themselves. We cannot just
hope that this will not happen. So the second idea is to use randomization between
successive applications of f . It is important that we use only a small amount of random-
ization, since the “randomization” will be encoded into the argument of the constructed
function. The randomization between successive applications of f takes the form of a
random step on an expander graph. Hence a few words about these graphs and random
walks on them are in order.

A graph G = (V, E) is called an (n, d, c)-expander if it has n vertices (i.e., |V | =
n), every vertex in V has degree d (i.e., G is d-regular), and G has the following
expansion property (with expansion factor c > 0): For every subset S ⊂ V , if |S| ≤ n

2 ,
then |N (S)| ≥ (1+ c) · |S|, where N (S) denotes the set of neighbors of vertices in
S (i.e., N (S) def= {u ∈ V : ∃v ∈ S s.t. (u, v) ∈ E}).16 By explicitly constructed (d, c)-
expanders we mean a family of graphs {Gn}n∈N such that each Gn is a (2n, d, c)-expander
and such that there exists a polynomial-time algorithm that on input a description of
a vertex in an expander outputs the list of its neighbors, where vertices in Gn are
represented by binary strings of length n. We stress that the constants d ∈ N and c > 0,
as well as the algorithm, are fixed for all graphs in the family. Such expander families
do exist. By a random walk on a graph we mean the sequence of vertices visited by
starting at a uniformly chosen vertex and randomly selecting at each step one of the
neighboring vertices of the current vertex, with uniform probability distribution. The
expanding property implies (via a non-trivial proof) that the vertices along random
walks on an expander have surprisingly strong “random properties.” In particular, for
every subset of constant density within the vertex set and every l, the probability
that no vertex along an O(l)-step-long random walk will hit the subset is at most
2−l (i.e., as would have been the case if we had chosen O(l) vertices independently),
where the constant in the O-notation depends only on the expansion factor of the
graph.

We remind the reader that we are interested in successively applying the per-
mutation f , while interleaving randomization steps between successive applications.
Hence, before applying permutation f to the result of the previous application, we
take one random step on an expander. Namely, we associate the domain of the given

16 We use a somewhat non-standard definition. The standard definition of expansion with factor c > 0 is that for
every such S (i.e., S ⊂ V and |S| ≤ n

2 ), it holds that |N ′(S)| ≥ c · |S|, where N ′(S) denotes the vertices in V \ S that

have neighbors in S (i.e., N ′(S)
def= {u ∈ V \ S : ∃v ∈ S s.t. (u, v) ∈ E}). Every (n, d, c)-expander under the stan-

dard definition can be easily transformed into an (n, d + 1, c)-expander under our definition (e.g., by adding
self-loops).
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2.6.∗∗ EFFICIENT AMPLIFICATION OF ONE-WAY FUNCTIONS

x f g f g f g f g y

σ σ σ σ1 2 3 4

Figure 2.3: The essence of Construction 2.6.3.

one-way permutation with the vertex set of the expander. Our construction alter-
nately applies the given one-way permutation f and randomly moves from the ver-
tex just reached to one of its neighbors. A key observation is that the composi-
tion of an expander with any permutation on its vertices yields an expander (with
the same expansion properties). Combining the properties of random walks on ex-
panders and a “reducibility” argument, the following construction is used to am-
plify the one-wayness of the given permutation in an efficient manner. (We warn that
Theorem 2.6.2 is not proved by direct application of the following construction; see
Section 2.6.2.)

Construction 2.6.3: Let {Gn}n∈N be a family of d-regular graphs, so that Gn

has vertex set {0, 1}n and self-loops at every vertex. Consider a labeling of
the edges incident to each vertex (using the labels 1, 2, . . . , d). Define gl(x)
to be the vertex reachable from vertex x by following the edge labeled l. Let
f : {0, 1}∗→{0, 1}∗ be a 1-1 length-preserving function, and let λ denote the
empty sequence (over {1, 2, . . . , d}). Then for every k ≥ 0, x ∈ {0, 1}n and
σ1, σ2, . . . , σk ∈ {1, 2, . . . , d}, define F(x, λ) = x and

F(x, σ1σ2 · · · σk) = σ1, F(gσ1 ( f (x)), σ2, . . . , σk)

That is,

F(x, σ1σ2 · · · σk) = σ1, σ2, . . . , σk , y

where y = gσk ( f (· · · (gσ2 ( f (gσ1 ( f (x))))) · · ·))
For every k : N → N, define Fk(α) def= F(x, σ1, . . . , σt ), where α is parsed into

(x, σ1, . . . , σt ), so that t = k(|x |) and σi ∈ {1, 2, . . . , d}.

Clearly, Fk is 1-1 and length-preserving. The process in which y is obtained from x
is depicted in Figure 2.3 (for k = 4): A circle marked f denotes application of the
one-way permutation f , whereas a box marked g denotes taking a step on the expander
(in the direction specified by the auxiliary input σi ).

2.6.2. Analysis

The “hardness-amplification” property of Construction 2.6.3 is stated in the following
proposition.

Proposition 2.6.4: Let {Gn}, f : {0, 1}∗ → {0, 1}∗, k : N → N, and Fk be as in
Construction 2.6.3. Let d ∈ N, c > 0, and � be constants, and let α : N → R and
T : N → N be functions such that the following conditions hold:
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1. The family of graphs {Gn}n∈N is an explicitly constructed family of (d, c)-expanders.

2. The permutation f is polynomial-time-computable as well as α′(·)-one-way with
respect to time T : N → N, where α′(n) = α(n)+ 2−n.

3. The function α : N → R is polynomial-time-computable.

4. � ≥ 4+c2

c2 · d.

Then the permutation Fk is polynomial-time-computable, and for every poly-
nomial-time-computable ε : N → R, the permutation Fk is ((1− ε(·))β(·))-one-
way with respect to time T ′ : N → N, where

β(n + k(n) · log2 d) def= 1−
(

1− α(n)

2

)k(n)/�

T ′(n + k(n) · log2 d) def= (ε(n) · α(n))2

O(n + k(n))3
· T (n)

For k(n) = 3� · n and α(n) = 1/poly(n), we get β(O(n)) = 1− (1− 0.5 · α(n))3n and
T ′(O(n)) = poly(ε(n)/n) · T (n). In particular, for α(n) = o(1/n) we have β(O(n)) ≈
1.5n · α(n), for α(n) ≤ 1/2n we have β(O(n)) > 1.02n · α(n), and for constant α we
have β(O(n)) > 1− 2−�(n).

Proof of Theorem 2.6.2: Theorem 2.6.2 follows by applying Proposition 2.6.2
δ + 1 times, where δ is the degree of the polynomial p(·) (specified in the hy-
pothesis that f is 1

p(·) -one-way). In all applications of the proposition, we use

k(n) def= 3�n. In the first δ applications we use ε(n) = 0.01. For i ≤ δ, the func-
tion resulting from the i th application of the proposition is 1

2nδ−i -one-way. In
particular, after δ applications, the resulting function is 1

2 -one-way. (It seems that
the notion of 1

2 -one-wayness is worthy of special attention and deserves a name
such as mostly one-way.) In the last (i.e., δ + 1) application we use ε(n) = ε(n).
The function resulting from the last (i.e., δ + 1) application of the proposition
satisfies the statement of Theorem 2.6.2. �

Overview of the Proof of Proposition 2.6.4. The proposition itself is proved by
combining two different types of arguments, the main parts of which are stated in
Lemmata 2.6.5 and 2.6.6, below. Lemma 2.6.5 is a purely combinatorial lemma re-
garding the behavior of random walks on expander graphs. Lemma 2.6.6 presup-
poses such behavior (of random walks on the graphs {G f,n}, defined below) and
uses it in order to establish Proposition 2.6.4. The proof of Lemma 2.6.6 is by a re-
ducibility argument, which generalizes the proof of Theorem 2.3.2. We start with the
combinatorics.

The Combinatorics. First note that we are not interested in random walks on Gn ,
but rather in random walks on the graph G f,n

def= ({0, 1}n, E f,n) obtained from Gn =
({0, 1}n, En) by letting E f,n

def= {(u, v) : ( f (u), v) ∈ En}. The first observation is that
G f,n preserves the expansion property of Gn , since f is a permutation over {0, 1}n .
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2.6.∗∗ EFFICIENT AMPLIFICATION OF ONE-WAY FUNCTIONS

(In general, for any graph G = (V, E), if f : V → V is 1-1, then G f = (V, E f ),
defined analogously, preserves the expansion property of G.17) The next combina-
torial step consists of showing that, for c and d as in the proposition, the ratio of
the two largest eigenvalues (in absolute value) of the adjacency matrix of each Gn

is bounded away from 1. That is, for some ρ < 1 and all n, this eigenvalue ratio
for Gn is at most ρ. (This is shown using the known relation between the expansion
constant of a regular graph and the eigenvalue ratio of its adjacency matrix; specifi-
cally, ρ ≤ 1− c2

(4+c2)·d .) The next observation is that in the graph G�
f,n = ({0, 1}n, P�)

obtained from G f,n by letting P� equal the set of �-edge-long paths in G f,n , the
eigenvalue ratio is at most ρ�. By the hypothesis regarding � and the bound on ρ,
it follows that ρ� < 1

2 . The main combinatorial step is captured by the following
lemma.18

Lemma 2.6.5 (Random Walk Lemma): Let G be a regular graph having an
adjacency matrix for which the ratio of the absolute values of the first and second
eigenvalues is smaller than 1

2 . Let S be a subset of measure µ of the graph’s
vertices. Then a random walk of length t on G will hit S with probability at least
1− (1− 0.5 · µ)t .

Proof Idea: Because it is of little relevance to the topic of this book, we pro-
vide only a rough idea of what is involved in this proof. The proof refers to
the stochastic matrix obtained from the adjacency matrix of G by division with
G’s degree, and it views probability distributions over the graph’s vertex set as
linear combinations of the (orthogonal) eigenvectors of this matrix. The ratio of
eigenvalues in the new matrix is as in the adjacency matrix of G. Furthermore,
the largest eigenvalue is 1, and the eigenvector associated with it is the uniform
distribution.

Going step-by-step along the random walk, we bound from above the proba-
bility mass assigned to random walks that do not pass through the set S. At each
step, the component of the current distribution that is in the direction of the first
eigenvector loses a factor µ of its weight (where this loss is due to the fraction of
the paths that enter S in the current step). Using the bound on the second eigen-
value, it can be shown that in each step the L2-norm of the other components is
decreased by a factor of 2 (so that the residual distribution is “pushed” toward the
direction of the first eigenvector). Intuitively, the event passing through the set S
acts as a sieve on the residual distribution, but this sieve is effective only when
the residual distribution is close to uniform, which is being preserved by the next
random step on the expander.

17That is, we let E f
def= {(u, v) : ( f (u), v) ∈ E} and denote N (S)

def= {v ∈ V : ∃u ∈ S s.t. (u, v) ∈ E}
and N f (S)

def= {v ∈ V : ∃u ∈ S s.t. (u, v) ∈ E f }. Then N f (S) = {v ∈ V : ∃ f (u) ∈ f (S) s.t. ( f (u), v) ∈ E} =
N ( f (S)), where f (S)

def= { f (u) : u ∈ S}. Using the 1-1 property of f , we have | f (S)| = |S|, and the claim follows
(i.e., if G has expansion factor c, then so does G f ).

18Below, a random walk of length t means a sequence of t vertices generated as follows. First, a start vertex
is selected uniformly in the vertex set. For i = 2, . . . , t , the i th vertex is selected uniformly among the neighbors
of the i − 1 vertex. We stress that if a vertex has a self-loop, then it is considered a neighbor of itself.
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Next we provide a (sketch of a) formal analysis that closely follows the fore-
going intuition. Unfortunately, this simple analysis only establishes a weaker
bound than the one claimed. This weaker bound does not suffice for our purposes,
since it is meaningful only for µ ≥ 1

4 (whereas we also need to relate to much
smaller values of µ, specifically, 1/µ, being poly-logarithmic in the size of the
graph).

Proof sketch for a weaker bound: Let us denote by M the stochastic matrix
representing a random step on the graph G = (V, E), and let ρ denote a bound on
the absolute value of the second largest eigenvalue of M (where the largest eigenvalue
is 1). Let P be a 0-1 “sieving matrix” that has 1-entries only on its diagonal and further-
more only in entries (i, i) that correspond to i �∈ S. We represent (residual) probability
distributions, over V , by vectors. For such a vector ,v, the vector M,v represents the
distribution obtained from the distribution ,v by taking one random step on the graph G,
and P,v is the (residual) distribution obtained from ,v by setting to zero all entries that
correspond to vertices in S. We represent the uniform distribution over V by the vector
,π (in which each entry equals 1/|V |) and observe that M ,π = ,π (since the uniform
distribution is the eigenvector associated with the eigenvalue 1).

One key observation is that the probability that a random t-step walk does not pass
through S equals the sum of the elements of the (non-negative) vector (P M)t−1 P ,π =
(P M)t ,π . Since the vector (P M)t ,π is non-negative, we can evaluate its L1-norm in-
stead, which in turn is bounded from above by

√|V | · ‖(P M)t ,π‖, where ‖·‖ denotes
the Euclidean norm (i.e., L2-norm). Later, we shall prove that for every vector ,z it
holds that ‖P M,z‖ ≤ ((1− µ)+ ρ2)1/2 · ‖,z‖, and we obtain

‖(P M)t ,π‖ ≤ ((1− µ)+ ρ2
)t/2 · ‖,π‖ = (

(1− µ)+ ρ2
)t/2 ·

√
|V | · 1

|V |2

It follows that the probability that a random t-step walk does not pass through S is
at most

(
(1− µ)+ ρ2

)t/2
, which for µ ≥ 2ρ2 (e.g., µ ≥ 1/2 and ρ ≤ 1/2) yields an

upper bound of (1− 0.5 · µ)t/2.
In order to prove that ‖P M,z‖ ≤ ((1− µ)+ ρ2)1/2 · ‖,z‖, we write ,z = ,z1 + ,z2 such

that ,z1 is the component of ,z that is in the direction of the first eigenvector (i.e., ,π ), and
,z2 is the component that is orthogonal to it. Using M ,π = ,π , ‖P ,π‖ = √

1− µ · ‖,π‖,
‖M,z2‖ ≤ ρ · ‖,z2‖, and ‖P,v‖ ≤ ‖,v‖ (for every ,v), we have

‖P M(,z1 + ,z2)‖ ≤ ‖P M,z1‖ + ‖P M,z2‖
≤
√

1− µ · ‖,z1‖ + ρ · ‖,z2‖
≤
√

(1− µ)+ ρ2 ·
√
‖,z1‖2 + ‖,z2‖2

= ((1− µ)+ ρ2
)1/2 · ‖,z1 + ,z2‖

where the last inequality uses the Cauchy-Schwarz inequality (i.e.,
∑

i ai · bi ≤(∑
i a2

i

)1/2 · (∑i b2
i

)1/2
), and the last equality uses the fact that ,z1 and ,z2 are

orthogonal.

We comment that the lower bound claimed in the lemma can be generalized to
1− (1− µ+ µ · ρ)t , where ρ is an upper bound on the eigenvalue ratio. �
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2.6.∗∗ EFFICIENT AMPLIFICATION OF ONE-WAY FUNCTIONS

The Algorithmics. The second lemma (stated next) is analogous to the essence of the
proof of Theorem 2.3.2 (i.e., the simple amplification). However, there are two key
differences between the two proofs:

1. In the proof of Theorem 2.3.2, we used a trivial combinatorial statement regarding the
number of k-sequences over {0, 1}n that each has an element in some set S (i.e., the
probability that such a uniformly chosen k-sequence has no element in the set S is
(1− 2−n · |S|)k). Here we use a generic hypothesis regarding the relationship between
the density of S and the fraction of k-sequences of a certain type that pass through it. That
is, here we consider only k-sequences that result from a k-step walk on a fixed regular
graph.

2. More importantly, the proof of Theorem 2.3.2 refers to inverting the original function f
on a sequence of (independently distributed) instances, whereas here we refer to inverting
successive applications of f (interleaved with gσ -moves) on a single instance (and the
sequence in question is the one of intermediate results).

Thus the proof that follows is more complex than the proof of Theorem 2.3.2. The
following lemma will be used, with β(n + k(n) log2 d) = 1− (1− 0.5 · α(n))k(n)/�, as
provided by the earlier combinatorial argument.

Lemma 2.6.6 (Reducibility Lemma): Let d, {Gn = ({0, 1}n, En)}, f : {0, 1}∗
→ {0, 1}∗, k : N → N, and Fk be as in Construction 2.6.3.

� Let G f,n
def= ({0, 1}n, E f,n), where E f,n

def= {(u, v) : ( f (u), v) ∈ En}.
� Let α, α′, β : N → [0, 1], and k : N→N be such that β(n + k(n) log2 d) > α(n)

and α′(n) ≥ α(n)+ 2−n.

Suppose that G f,n satisfies the following random-path property:

� For every measure-α(n) subset S of G f,n’s nodes, at least a fraction β(n + k(n) ·
log2 d) of the paths of length k(n) will pass through a node in S.

Suppose that f is α′(·)-one-way with respect to time T (·). Then for every
polynomial-time-computable ε : N → R, the function Fk is (1− ε(·))β(·)-
one-way with respect to time T ′ : N → N, where T ′(n + k(n) log2 d) def=
ε(n)2α(n)2

O(n+k(n))3 · T (n).

Note that the lemma is of no interest in case β(n + k(n) log2 d) ≤ α(n).

Proof Sketch: The proof, as suggested by the name of the lemma, is by a reducibil-
ity argument. This argument is similar in flavor to the one used in the proof of
Theorem 2.3.2. Assume, to the contradiction, that for m

def= n + k(n) log2 d, the
permutation Fk can be inverted on Fk(Um) in time T ′(·) with success probability
at least

1− (1− ε(m)) · β(m) = 1− β(m)+ ε(m)β(m)
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COMPUTATIONAL DIFFICULTY

Modify the inverting algorithm so that it inverts Fk with overwhelming proba-
bility on a 1− β(m)+ ε′(m) fraction of the inputs of length m, where ε′(m) =
ε(m)β(m)/2. (This can be done by first observing that the inverting algorithm must
invert at least a 1− β(m)+ ε′(m) fraction of the inputs with probability at least
ε′(m) and then increasing its success on such inputs by m/ε′(m) independent tries.)
Denote the resulting algorithm, which has running time (2m · T ′(m))/(ε(m)β(m)),
by A. Note that inputs to A correspond to k(n)-long paths on the graph Gn .
Consider the set, denoted In , of paths (x, p) such that A inverts Fk(x, p) with
overwhelming probability (e.g., probability at least 1− 2−n).

In the sequel, we use the shorthand k
def= k(n), m

def= n + k log2 d, ε def= ε(m),
ε′ def= ε′(m),β def= β(m),α def= α(n), and I

def= In . Recall that |I | ≥ (1− β + ε′) · 2m .
Let Pv be the set of all k-long paths that pass through v, and let Iv be the subset
of I containing paths that pass through v (i.e., Iv = I ∩ Pv). Define v as good
if |Iv|/|Pv| ≥ ε′/k (and bad otherwise). Intuitively, a vertex v is called good
if at least a ε′/k fraction of the paths going through it can be inverted by A.
Let I ′ = I \ ∪v bad Iv; namely, I ′ contains all “invertible” paths that pass solely
through good nodes. Clearly, we have the following:

Claim 2.6.6.1: The density of I ′ in the set of all paths is greater than 1− β.

Proof: Denote by µ(S) = |S|/|P| the density of the set S in the set of all paths.
Then

µ(I ′) = µ(I )− µ(∪v bad Iv)

≥ (1− β + ε′)−
∑
v bad

µ(Iv)

> 1− β + ε′ −
∑
v

ε′

k
· µ(Pv)

≥ 1− β

where the last inequality is due to the fact that each path in P contributes to at
most k of the Pv’s. �

Using the random-path property, we have the following:

Claim 2.6.6.2: The density of good nodes is greater than 1− α.

Proof: Otherwise, let S be the set of bad nodes, and suppose that |S| ≥ α · 2n .
By the random-path property, since S has measure (at least) α, the fraction of
paths that pass through vertices of S is at least β. That is, the fraction of paths
that pass through a bad vertex is at least β. But I ′ does not contain paths that pass
through bad vertices, and so I ′ can contain at most a 1− β fraction of all paths,
in contradiction to Claim 2.6.6.1. �

The following algorithm for inverting f is quite natural. The algorithm uses as
subroutine an algorithm, denoted A, for inverting Fk . Inverting f on y is done by
placing y on a random point along a randomly selected path p̄, taking a walk from
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2.6.∗∗ EFFICIENT AMPLIFICATION OF ONE-WAY FUNCTIONS

y according to the suffix of p̄, and asking A for the pre-image of the resulting
pair under Fk .

Algorithm for inverting f : On input y, repeat 2nk
εβ

times:

1. Select randomly i ∈ {1, 2, . . . , k} and σ1, σ2, . . . , σk ∈ {1, 2, . . . , d}.
2. Compute y′ = F(gσi (y), σi+1 . . . σk).

3. Invoke A to obtain x ′ ← A(σ1σ2, . . . , σk, y′).

4. Compute x = F(x ′, σ1 . . . σi−1).

5. If f (x) = y, then halt and output x .

Analysis of the inverting algorithm (for a good x ): Since x is good, a random path
going through it (selected as before) corresponds to an “invertible path” with probability
at least ε′/k = εβ/2k. If such a good path is selected, then we obtain the inverse of
f (x) with overwhelming probability. The algorithm for inverting f repeats the process
sufficiently many times to guarantee overwhelming probability of selecting an “invertible
path.”

By Claim 2.6.6.2, the good x’s constitute at least a 1− α fraction of all n-bit strings.
Thus, the success probability of our inverting algorithm on input f (Un) is at least

(1− α(n)) · (1− 2−n) > 1− α(n)− 2−n ≥ 1− α′(n)

The running time of our inverting algorithm is

2nk(n)

ε(m)β(m)
· 2m · T ′(m)

ε(m)β(m)
= 4nmk(n)

ε(m)2β(m)2
· T ′(m) ≤ T (n)

where the last inequality uses β(m) ≥ α(n). Hence, the existence of an algorithm
inverting Fk in time T ′(·) with probability at least 1− (1− ε(·))β(·) implies the
existence of an algorithm inverting f in time T (·) with probability at least 1−
α′(·). The latter constitutes a contradiction to the hypothesis of the lemma, and
hence the lemma follows. �

Finishing the Proof of Proposition 2.6.4. When Lemma 2.6.5 is applied to the graph
G�

f,n , it follows that, for every set S ⊆ V of measure α(n), a random walk of length t
on G�

f,n hits S with probability at least 1− (1− 0.5 · α(n))t . Recall that edges in G�
f,n

represent �-edge paths in G f,n , and so the vertices visited in a k-step walk on G f,n are a
subset of those visited in a corresponding (k/�)-step walk on G�

f,n . It follows that a ran-
dom walk of length k(n) on G f,n hits S with probability at least 1− (1− 0.5 · α(n))k(n)/�.
Applying Lemma 2.6.6, with α′(n) = α(n)+ 2−n and β(n + k(n) · log2 d) = 1− (1−
0.5 · α(n))k(n)/�, we conclude that if f is α′(n)-one-way with respect to time T (·), then
Fk is ((1− ε(·))β(·))-one-way with respect to time T ′(·), where β and T ′ are as in
Proposition 2.6.4. This completes the proof.

An Alternative Analysis. Our analysis of Construction 2.6.3 is conducted using the
eigenvalue ratio of expander graphs, rather than their natural combinatorial definition (in
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terms of expansion properties). Because the transformation between the two formulation
is not tight, we lose by stating our results in terms of expansion properties. Hence, for
a tighter analysis, we replace Condition 1 of Proposition 2.6.4 by the requirement
that for some ρ < 1, each graph in the explicitly constructible family {Gn} has an
eigenvalue ratio of at most ρ, and we replace Condition 4 by � ≥ max(1, )logρ(1/2)*).
The modified proposition is proved as the original one, except that here we observe that
the eigenvalue ratio of {G f,n} is smaller than or equal to the eigenvalue ratio of {Gn}.19

The modified proposition allows to use an explicitly constructible family {Gn} having
degree 18 and eigenvalue ratio below 1

2 , which in turn allows us to set � = 1. Thus, for
k(n) = 3n and every polynomial-time-computable ε : N → R, the permutation Fk is
((1− ε(·))β(·))-one-way with respect to time T ′ : N → N, where

β(15n) ≈ 1−
(

1− α(n)

2

)3n

T ′(15n) ≈ (ε(n) · α(n))2

O(n)3
· T (n) .

In particular, for α(n) ≤ 1/2n we have β(15n) > 1.02n · α(n), whereas for constant α
we have β(15n) > 1− 2−�(n). Regarding the example mentioned at the beginning of
this section, using n = 1000 and k ≈ 960 it follows that if f is hard to invert in practice
on 1% of the strings of length 1000, then Fk is hard to invert in practice on 99% of the
strings of length 5000.

2.7. Miscellaneous

We stress that the aforementioned relationships among the various forms of one-way
functions are the only ones that are known to hold. Specifically:

• Weak one-way functions (resp., permutations (resp., with trapdoor)) can be transformed
into strong one-way functions (resp., permutations (resp., with trapdoor)). The other
direction is trivial.

• Non-uniform hardness implies uniform hardness, but not the other way around.

• Trapdoor permutations are special cases of one-way permutations, which in turn are
special cases of one-way functions. We do not know if it is possible to transform arbitrary
one-way functions into one-way permutations or the latter into trapdoor permutations.20

19 Letting M be as in the proof of Lemma 2.6.5, and letting R be a matrix representing the mapping v �→ f (v),
observe that the first eigenvalue and eigenvector of M R are exactly as those of M (i.e., 1 and a uniform vector,
respectively).Furthermore, the subspace orthogonal to the uniform vector is preserved by R, and so this subspace
must contain all the other eigenvectors of M R (whereas each vector in this subspace is a linear combination of the
other eigenvectors of M). Let ,e be some orthogonal-to-uniform eigenvector of M R, and let ρ ′ be the eigenvalue
corresponding to it. Then ρ′ · ‖,e‖ = ‖M R,e‖ ≤ ρ · ‖R,e‖ ≤ ρ · ‖,e‖, where ‖S,v‖ ≤ ‖,v‖ holds for every stochastic
matrix S (and in particular for the matrix R).

20 We mention that trapdoor functions (in which given the trapdoor, one can retrieve some pre-image) can
be constructed from arbitrary one-way functions (cf. [18]), but the number of pre-images of each image of the
constructed function is exponential.
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2.7. MISCELLANEOUS

Evidence to the contrary has been presented ([140] and [133], respectively, where it is
shown that “black-box” reductions are unlikely to provide such transformations).

• Collections of claw-free function (resp., permutation) pairs yield collections of one-way
functions (resp., permutations), but the other direction is not known.

2.7.1. Historical Notes

The notions of a one-way function and a trapdoor permutation originate from the semi-
nal paper of Diffie and Hellman [63]. Weak one-way functions were introduced by
Yao [210]. The RSA function was introduced by Rivest, Shamir, and Adleman [191],
whereas squaring modulo a composite was suggested and studied by Rabin [187].
Other authors have suggested basing one-way functions on the believed intractability
of decoding random linear codes [29, 108] and on the subset-sum problem [132].

The equivalence of the existence of weak and strong one-way functions (i.e.,
Theorem 2.3.2) is implicit in Yao’s work [210], with the first proof appearing in [91].
The efficient amplification of one-way functions presented in Section 2.6 is taken
from Goldreich et al. [104], which in turn uses a technical tool originating in [4]
(see also [55, 135]). The existence of universal one-way functions is stated in Levin’s
work [150].

The concept of hard-core predicates originates from the work of Blum and
Micali [36]. They also proved that a particular predicate constitutes a hard-core for
the “DLP function” (i.e., exponentiation in a finite field), provided that the latter func-
tion is one-way. Consequently, Yao showed how to transform any one-way function
into a hard-core predicate (i.e., the result is not stated in [210], but is rather due to oral
presentations of that work). A proof first appeared in Levin’s work [150] (see details
in [114]). However, Yao’s construction, which is analogous to the construction used in
the proof of Theorem 2.3.2, is of little practical value.

The fact that the inner product mod 2 is a hard-core for any one-way function (of the
form g(x, r ) = ( f (x), r )) was proved by Goldreich and Levin [110]. The proof pre-
sented in this book, which follows ideas originating in [5], was discovered independently
by Leonid Levin and Charles Rackoff. The improvement captured by Proposition 2.5.4
is due to Levin [151].

Theorem 2.5.6 (hard-core functions of logarithmically many bits based on any one-
way function) is also due to [110]. The Computational XOR Lemma (Lemma 2.5.8)
is due to [208], but the proof presented here is due to Leonid Levin. (An alternative
construction of hard-core functions is presented in [117].)

Hard-core predicates (and functions) for specific collections of permutations have
been suggested [36, 141, 5, 208]. Specifically, Alexi et al. [5] proved that the intractabil-
ity of factoring yields hard-core predicates for permutations induced by squaring mod-
ulo a composite number. A simpler and tighter proof has subsequently been found [82].

2.7.2. Suggestions for Further Reading

Our exposition of the RSA and Rabin functions is quite sparse in details. In particular,
the computational problems of generating uniformly distributed “certified primes” and
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of “primality checking” deserve much more attention. A probabilistic polynomial-time
algorithm for generating uniformly distributed primes together with corresponding
certificates of primality has been presented by Bach [9]. The certificate produced by
this algorithm for a prime P consists of the prime factorization of P − 1, together with
certificates for primality of these factors. This recursive form of certificates for primality
originates in Pratt’s proof [184] that the set of primes is inNP . However, the foregoing
procedure is not very practical. Instead, when using the RSA (or Rabin) function in
practice, one is likely to prefer an algorithm that generates integers at random and checks
them for primality using fast primality checkers, such as the algorithms presented in
[203, 185]. One should note, however, that these algorithms do not produce certificates
for primality and that with some (small) parameterized probability they may assert
that a composite number is a prime. Probabilistic polynomial-time algorithms (yet
not practical ones) that, given a prime, produce a certificate for primality have been
presented [121, 1].

The common belief that the RSA, Rabin, and DLP functions are one-way is based on
the failure of researchers to come up with probabilistic polynomial-time algorithms for
factoring and discrete logarithms. (It is debatable whether this record of failure should
be traced back a couple of centuries or “only” a few decades.) For a survey of the
best algorithms known for the factoring and discrete-logarithm problems, the reader is
directed to Odlyzko’s surveys ([178] and [179], respectively).

The subset-sum problem is known to be easy in two special cases. One case is
that in which the input sequence is constructed based on a simple “hidden sequence.”
For example, Merkle and Hellman [163] suggested the construction of an instance of
the subset-sum problem based on a “hidden super-increasing sequence” as follows.
Let s1, . . . , sn, sn+1

def= M be a sequence satisfying si >
∑i−1

j=1 s j , for i = 2, . . . , n + 1.
Such a sequence is called super-increasing. For w relatively prime to M , consider the
instance of the subset-sum problem consisting of (x1, . . . , xn) and

∑
i∈I xi , where xi

def=
w · si mod M and I ⊆ {1, . . . , n}. Clearly, knowledge of both w and M allows one to
easily solve the subset-sum problem for the foregoing instance (e.g., simply retrieve the
super-increasing sequence and iteratively determine if i ∈ I for i = n, n − 1, . . . , 1).
The hope was that when w and M were not given, solving the subset-sum problem
would be hard (even for instances generated based on a super-increasing sequence).
(That would have led to a trapdoor one-way function.) Unfortunately, that hope was not
realized. Shamir presented an efficient algorithm for solving the subset-sum problem
for instances with a hidden super-increasing sequence [197]. Another case for which the
subset-sum problem is known to be easy is the case of low-density instances. In these
instances, the lengths of the elements in binary representations are considerably larger
than the numbers of elements (i.e., |x1| = · · · = |xn| = (1+ ε)n for some constant
ε > 0). For further details, consult the work of Lagarias and Odlyzko [145] and the
later survey of Brickell and Odlyzko [43].

Two computational problems that are seemingly related to the subset-sum problem
are the decoding of random linear codes and the finding of closest vectors in integer
lattices. In all three cases the problem is to find a linear combination of given ele-
ments such that the sum equals or is close to a target value. However, the similarity
is superficial, because the arithmetic is different in the three cases. In the case of the
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subset sum, we refer to addition over integers; in the case of linear codes, we have
addition in vector spaces over a finite field (typically of two elements); and in the case
of integer lattices, the addition is of real vectors (or of rational or integer vectors).
We mention that the decoding of random linear codes is a long-standing open prob-
lem in coding theory [207]. Regarding the complexity of lattice problems, there seems
to be a huge gap between the theoretical upper bounds [148] and the performance in
practice [195].

We refer the reader to a fascinating result by Ajtai [3] (cf. [101]): If certain com-
putational problems regarding integer lattices are hard in the worst case, then one-way
functions exist. This result is unique in translating possible worst-case hardness into
average-case hardness.

In view of the general efficient transformation of one-way functions to hard-core
predicates presented in Section 2.5, we did not present proofs that certain natural
predicates are hard-cores for specific popular candidates for one-way functions. Details
on hard-core predicates for the RSA and Rabin functions are available [82; cf. 5], as
are details on hard-core predicates for various “DLP functions” [141; cf. 36].

Tradition attributes to Yao a proof of the existence of hard-core predicates based on
any one-way function. The alleged proof proceeds in two steps. First, one proves the
existence of a mild form of a hard-core predicate; specifically, given a one-way function
f , one construct a one-way function f ′ and a polynomial-time-computable predicate b′

such that any probabilistic polynomial-time predictor given f ′(Un) fails to guess b′(Un)
with probability at least 1/2n (e.g., let f ′(x, i) = ( f (x), i) and b′(x, i) be the i th bit of
x). The second step, which is the main one and is called Yao’s XOR Lemma, is to prove
that taking many independent copies of such a “mild hard-core predicate” and XORing
them together will yield a hard-core predicate. That is, for t = |w1|2 = · · · = |wt |2,
we let b′′(w1, . . . , wt ) = ⊕t

i=1b′(wi ) and f ′′(w1, . . . , wt ) = ( f ′(w1), . . . , f ′(wt )) and
prove that b′′ is a hard-core of f ′′. Yao’s XOR Lemma has found other applications in
complexity theory [114, 134].

The theory of average-case complexity, initiated by Levin [149], is somewhat related
to the notion of one-way functions. Surveys of this theory are available [24, 96]. Loosely
speaking, the difference is that in our context hard (on the average) instances can easily
be solved by the (efficient) “generator” of those instances, whereas in Levin’s work
the instances are hard (on the average) to solve even for the “generator.” However,
the notion of average-case reducibility introduced by Levin is also relevant in our
context.

Further details about expander graphs and random walks on them are available
from [6, 167]. In particular, Lemma 2.6.5 is a special case of Kahale’s Corollary 6.1
[139]. Explicit constructions of expander graphs have been published [85, 154], as has
the specific construction mentioned at the end of Section 2.6 [154].

2.7.3. Open Problems

As discussed in Section 2.1,NP \ BPP �= ∅ is a necessary condition for the existence
of one-way functions. However,NP \ BPP �= ∅ is not known to imply any practical
consequences (i.e., it may be that hard instances exist but occur very rarely with respect
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to any simple distribution). Any progress in showing that NP \ BPP �= ∅ implies
some form of average-case hardness, and that the latter implies the existence of one-
way functions would be of great interest.

Turning to relatively less ambitious goals, we mention two open problems that pertain
to extending the results of the type presented in this chapter. We believe that a resolution
for either of these problems will require the discovery of new important paradigms.
Firstly, in a continuation of the efficient amplification of one-way permutations (pre-
sented in Section 2.6), we seek an analogous transformation that can be applied to
arbitrary (weak) one-way functions. Currently, we know of such transformations only
for special types of functions (e.g., regular ones [104]). We believe that providing an ef-
ficient amplification of arbitrary one-way functions is a very important open problem. It
may also be instrumental for more efficient constructions of pseudorandom generators
based on arbitrary one-way functions (see Section 3.5).

An open problem of more acute practical importance is to try to present hard-core
functions of larger range for the RSA and Rabin functions. Specifically, assuming that
squaring mod N is one-way, is the function that returns the first half of x a hard-core
of squaring mod N? Some support for an affirmative answer has been provided [130].
An affirmative answer would allow us to construct extremely efficient pseudorandom
generators and public-key encryption schemes based on the conjectured intractability
of the factoring problem.

2.7.4. Exercises

Exercise 1: Closing the gap between the motivating discussion and the definition of
one-way functions: We say that a function h : {0, 1}∗ → {0, 1}∗ is hard on the average
but easy with auxiliary input if there exists a probabilistic polynomial-time algorithm G
such that
1. there exists a polynomial-time algorithm A such that A(x, y) = h(x) for every (x, y) in the

range of G (i.e., for every (x, y) such that (x, y) is a possible output of G(1n) for some
input 1n), and

2. for every probabilistic polynomial-time algorithm A′ every positive polynomial p(·), and
all sufficiently large n’s,

Pr[A′ (Xn) = h(Xn)] <
1

p(n)

where (Xn, Yn)
def
= G(1n) is a random variable assigned the output of G.

Prove that if there exist functions that are “hard on the average but easy with auxiliary
input,” then one-way functions exist.

Guideline: Define a function mapping the coins used by G to its first output.

Exercise 2: One-way functions and the P-versus-NP question (Part 1): Prove that
the existence of one-way functions implies P �= NP .

Guideline: For any polynomial-time-computable function f , define a set L f ∈ NP such
that if L f ∈ P, then there exists a polynomial-time algorithm for inverting f .
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2.7. MISCELLANEOUS

Exercise 3: One-way functions and the P-versus-NP question (Part 2): Assuming
that P �= NP , construct a function f such that the following three claims hold:
1. Function f is polynomial-time-computable.
2. There is no polynomial-time algorithm that always inverts f (i.e., successfully inverts f

on every y in the range of f ).
3. Function f is not one-way. Furthermore, there exists a polynomial-time algorithm that

inverts f with exponentially small failure probability, where the probability space is (as
usual) uniform over all possible choices of input (i.e., f (x)) and the internal coin tosses
for the algorithm.
Guideline: Consider the function fsat defined so that fsat(φ, τ ) = (φ, 1) if τ is a satisfying
assignment to propositional formulae φ, and fsat(φ, τ ) = (φ, 0) otherwise. Modify this
function so that it is easy to invert in most instances, yet inverting fsat is reducible to
inverting its modification. (Hint: The modified function f ′ coincides with fsat on a negligible
fraction of the domain of f ′ and is easy to invert on the rest of the domain.)

Exercise 4: Suppose that f is a one-way function and that for some function � : N → N

the following conditions hold:
1. | f (x)| = �(|x |) for all x’s;
2. �(n) = �(m) only if n = m (i.e., � is 1-1);
3. �(n) ≥ n for all n’s.
Show that given f (x), one can generate 1|x |, in time polynomial in |x |.

Guideline: The foregoing conditions guarantee that |x | ≤ | f (x)| and that |x | is uniquely
determined by | f (x)| = | f (1|x |)|.

Exercise 5: Let f be a strongly one-way function. Prove that for every probabilistic
polynomial-time algorithm A and for every positive polynomial p(·), the set

BA, p
def
=

{
x : Pr

[
A(f (x)) ∈ f −1(f (x))

]
≥ 1

p(|x |)
}

has negligible density in the set of all strings (i.e., for every polynomial q(·) and all
sufficiently large n, it holds that |BA, p ∩{0,1}n|

2n < 1
q(n) .

Exercise 6: Another definition of non-uniformly one-way functions: Consider the defi-
nition resulting from Definition 2.2.6 by allowing the circuits to be probabilistic (i.e., have
an auxiliary input that is uniformly selected). Prove that the resulting new definition is
equivalent to the original one.

Exercise 7: Addition is easily reversible: We associate bit strings with positive integers
in some natural manner (e.g., the n-bit-long string σn−1 · · · σ0 is associated with the
integer 2n +

∑n−1
i=0 σi · 2i ):

1. Define fadd : {0, 1}∗ → {0, 1}∗ such that fadd(xy) = x + y, where |x | = |y |. Prove that
fadd is not a one-way function (not even in the weak sense).

2. Redefine fadd : {0, 1}∗ → {0, 1}∗ such that fadd(xy) = prime(x ) + prime(y), where |x | =
|y | and prime(z) is the smallest prime that is larger than z. Prove that fadd is not a one-way
function.
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COMPUTATIONAL DIFFICULTY

As a warm-up, prove that fXOR(xy) = x ⊕ y, where |x | = |y |, is not one-way.
Guideline (Part 2): Do not try to capitalize on the possibility that prime(N) is too
large (e.g., larger than N + poly(log N )). It is unlikely that such a (number-theoretic)
result can be proved. Furthermore, it is generally believed that there exists a constant c
such that for all integer N ≥ 2, it holds that prime(N) < N + (log2 N)c. Hence, it is likely
that fadd is polynomial-time-computable. The point is that it can be shown to be easily
invertible.

Exercise 8: One-way functions based on hardness of factoring: Throughout this
exercise, assume that it is infeasible to factor composite numbers that are the products
of two primes of polynomially related lengths. That is, for every probabilistic polynomial-
time algorithm A, for every positive polynomial p, for all sufficiently large n’s, and for
every

√
n < m< n2,

Pr[A(Pm · Qn) = Pm] <
1

p(n)

where Pm and Qn are uniformly and independently distributed primes of length m and
n, respectively. (Recall the density-of-primes theorem, which guarantees that at least a
1/n fraction of the n-bit integers are primes [7].)
1. Let fmult(x, y) = x · y, where |x | = |y |.

(a) (Easy) Prove that fmult is weakly one-way.
(b) (Hard) Prove that fmult is strongly one-way.

Guideline: Use the fact that, with overwhelmingly high probability, when uniformly se-
lecting an n-bit-long integer and considering the product of all its prime factors that
are smaller than 2

√
n, this product is smaller than 2n/3. Next, argue that if fmult can be

inverted with non-negligible probability, then with non-negligible probability this hap-
pens when each of the two parts of the pre-image has a prime factor of size at least
2
√

n. At this point, a reducibility argument can be applied. (The number-theoretic fact
used earlier can be proved by relying on known results regarding the distribution of
smooth numbers; see [47] for the latter.)

2. Let fmmult(x1, . . . , xn2 ) =
∏n2

i=1, where |xi | = n for all i ’s. Prove that fmmult is strongly one-
way.
Guideline: Show how to use an algorithm that inverts fmmult with non-negligible probability
in order to factor the products of two n-bit primes. Remember the need to feed the former
algorithm with a distribution as in the hypothesis (or sufficiently close to it).

Exercise 9 (suggested by Bao Feng): Refute the following conjecture:

For every (length-preserving) one-way function f , the function f ′ (x)
def
= f (x)⊕ x

is also one-way.

Guideline: Let g be a (length-preserving) one-way function, and consider f defined on

pairs of strings of the same length, so that f (y, z)
def
= (g(y)⊕ z, z).

Exercise 10: Prove that one-way functions cannot have polynomial-size ranges.
Namely, prove that if f is (even weakly) one-way, then for every polynomial p(·) and all
sufficiently large n’s, it holds that |{f (x) : x ∈ {0, 1}n}| > p(n).
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Guideline: Suppose that |{f (x) : x ∈ {0, 1}n}| ≤ p(n). To invert f on y = f (Un), with
success probability 1/p(n), it suffices to select uniformly r ∈ {0, 1}n and hope that f (r ) =
y. To invert f on y = f (Un) with success probability 1− ε(n), we select uniformly many
such ri ’s, with the hope that y is “heavy” and that all “heavy” f -images are hit by some
f (ri ). (Extra hint: y ′ is heavy if Pr[ f (Un) = y ′ ] ≥ ε(n)

2p(n) .)

Exercise 11: Prove that length-preserving one-way functions cannot have polynomi-
ally bounded cycles. Namely, for every function f , define cyc f (x) to be the smallest
positive integer i such that f i (x) = x, where f j+1(x) = f ( f j (x)) and f 0(x) = x. Prove
that if f is (even weakly) one-way, then for every polynomial p(·) and all sufficiently
large n’s, the expected value of cyc f (Un) is greater than p(n), where Un is a random
variable uniformly distributed over {0, 1}n.

Guideline: Note that if Ecyc f (Un)] > p(n), then for every polynomial q, it holds that
Pr[cyc f (Un) > q(n) · p(n)] < 1/q(n). Why is the length-preserving condition needed?

Exercise 12: Assuming the existence of one-way functions (resp., permutations), con-
struct one-way functions (resp., permutations) in which there are no sub-exponential
cycles. That is, let cyc f (x) be defined as in Exercise 11; then the constructed f should
satisfy cyc f (x) ≥ 2|x|/2 for all x’s.

Guideline: Given a one-way function (resp., permutation) f ′ , construct f (x′ , x′′ )
def
=

( f ′ (x′ ), h(x′′ )) for some suitable h and |x′ | = |x′′ |. What is a suitable h?

Exercise 13: One-way function with a “fixed point”: Prove that if one-way functions
exist, then there exists a one-way function f such that f (0n) = 0n for every n. Do the
same for one-way permutations.

Guideline: The first part is trivial. For the second part, using any one-way permutation f ′ ,
let f (x, y) = ( f ′ (x ), y) if y ∈ {0, 1}|x | \ {0}|x |, and f (x, 0|x |) = (x, 0|x |) otherwise.

Exercise 14: Let {(an, bn) : n ∈ N} be recognizable in (deterministic) polynomial time,
where an, bn ∈ {0, 1}n. Prove that if one-way functions exist, then there exists a one-way
function f such that f (an) = bn for every n. Do the same for one-way permutations.

Guideline: The first part is trivial. For the second part, consider any one-way permu-
tation f ′ , and suppose f ′ (an) �= bn. Construct a one-way permutation f as required by
switching two values of f ′ .

Exercise 15: On the improbability of strengthening Theorem 2.3.2 (Part 1): Suppose
that the definition of a weak one-way function is further weakened so that it is required
that every probabilistic polynomial-time algorithm fails to invert the function with notice-
able probability. That is, the order of quantifiers in Definition 2.2.2 is reversed (we now
have “for every algorithm there exists a polynomial” rather than “there exists a polyno-
mial such that for every algorithm”). Demonstrate the difficulty of extending the proof of
Theorem 2.3.2 to this case.

Guideline: Suppose that there exists a family of algorithms, one per each polynomial
p(·), such that an algorithm with time bound p(n) fails to invert the function with probability
1/p(n). Demonstrate the plausibility of such a family.
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Exercise 16: On the improbability of strengthening Theorem 2.3.2 (Part 2) (due to
Steven Rudich): Suppose that the definition of a strong one-way function is further
strengthened such that it is required that every probabilistic polynomial-time algorithm
fails to invert the function with some specified negligible probability (e.g., 2−

√
n). Demon-

strate the difficulty of extending the proof of Theorem 2.3.2 to this case.
Guideline: Suppose that we construct the strong one-way function g as in the original
proof. Further suppose that there exists an inverting algorithm A that inverts the function
g on g(Un) with probability ε(n). Show that any inverting algorithm for the weakly one-way
function f that uses algorithm A as a black box must invoke it at least 1

poly(n)·ε(n) times.

Exercise 17: Advanced topic: distributionally one-way functions [131]: We say that a
polynomial-time-computable function f :{0, 1}∗ → {0, 1}∗ is distributionally one-way
if there exists a positive polynomial p such that for every probabilistic polynomial-time
algorithm A and all sufficiently large n’s, the statistical difference between (Un, f (Un))
and (A(1n, f (Un)), f (Un)) is greater than 1/p(n). (That is, the inverting task is to provide
a uniformly distributed pre-image rather than an arbitrary one, and failure is measured
in terms of the deviation of A’s output from this distribution.)
1. Prove that if f is weakly one-way (as in Definition 2.2.2), then it is distributionally one-way.
2. Prove that if there exist distributionally one-way functions, then there exist one-way func-

tions.
Guideline (Part 2): Use hashing ideas as in Section 3.5. Specifically, given a distribu-
tionally one-way function f , consider the function F(x, i , h) = ( f (x), hi (x), i , h), where
x ∈ {0, 1}n, i ∈ {1, . . . , n}, h : {0, 1}n → {0, 1}n is a hashing function, and hi (x) de-
notes the i -bit-long prefix of h(x). Prove that F is weakly one-way.
Guideline (Part 2, extra help): Suppose, to the contrary, that F can be inverted on at
least a 1− ε(n) > 1− (2n)−1 fraction of the inputs (x, i , h), where |x| = n. Then for any
� : N→ N, the function F can be inverted on at least a 1− nε(n) fraction of the inputs
(x, � log2 | f −1( f (x))|� + �(n), h). Given y = f (x), we generate a random pre-image of y
under f as follows. First, for �(n) = O(log n), we find an i such that i = � log2 | f −1( f (x))|�+
�(n)± O(1). (This is done by trying to invert F on (y, i , r, h), where h and r ∈ {0, 1} i are
uniformly chosen, and choosing i if a pre-image is found with probability approximately
2−�(n).) Next, using this i , we output a pre-image of (y, i , r, h) under F, where (again) h
and r ∈ {0, 1} i are uniformly chosen. (In case inversion fails, we try again.) Show that
the output distribution of this algorithm deviates from the desired distribution by at most
O(2�(n) + 22�(n)+2 log2 n) · ε(n)), and so the claim follows.

Exercise 18: One-way functions and collections of one-way functions:
1. Given any collection of one-way functions (I , D, F ), represent it as a single one-way

function.
2. Given any one-way function f , represent it as a collection of one-way functions. (Remark:

This direction is quite trivial.)

Exercise 19: A convention for collections of one-way functions: Show that without loss
of generality, algorithms I and D of a collection (of one-way functions) can be modified
so that each of them uses a number of coins that exactly equals the input length.

Guideline: Apply padding.
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Exercise 20: Justification for a convention concerning one-way collections: Show that
giving the index of the function to the inverting algorithm is essential for a meaningful
definition of a collection of one-way functions.

Guideline: Consider a collection { fi : {0, 1}|i | → {0, 1}|i |}, where fi (x) = x ⊕ i .

Exercise 21: Rabin’s collection and factoring: Show that the Rabin collection is one-
way if and only if the factoring of integers that are the products of two primes of equal
binary expansions is intractable in a strong sense (i.e., every efficient algorithm suc-
ceeds with negligible probability).

Guideline: See Appendix A.

Exercise 22: Claw-free collections imply one-way functions: Let (I , D, F) be a claw-
free collection of functions (see Section 2.4.5). Prove that for every σ ∈ {0, 1}, the
triplet (I , D, Fσ ), where Fσ (i , x)

def
= F(σ, i , x), is a collection of strong one-way functions.

Repeat the exercise, replacing the word “functions” with “permutations.”

Exercise 23: More on the inadequacy of graph isomorphism as a basis for one-way
functions: In continuation of the discussion in Section 2.4.6, consider another sug-
gestion to base one-way functions on the conjectured difficulty of the Graph Isomor-
phism problem. This time we present a collection of functions defined by the algorith-
mic triplet (IGI, DGI, FGI). On input 1n, algorithm IGI selects uniformly a d(n)-regular
graph on n vertices (i.e., each of the n vertices in the graph has degree d(n)). On
input a graph on n vertices, algorithm DGI randomly selects a permutation in the
symmetric group of n elements (i.e., the set of permutations of n elements). On in-
put an (n-vertex) graph G and an (n-element) permutation π , algorithm FGI returns

fG(π )
def
= πG.

1. Present a polynomial-time implementation of IGI.
2. In light of the known algorithms for the Graph Isomorphism problem, which values of d(n)

should definitely be avoided?
3. Using a known algorithm, prove that the foregoing collection does not have a one-way

property, no matter which function d(·) one uses.
Guideline: A search of the relevant literature is indeed required for Items 2 and 3. Specif-
ically, for certain values of d(n), there exists a polynomial-time algorithm for deciding
isomorphism. Furthermore, for proving 3, it suffices to have an algorithm that runs fast
on randomly selected pairs of d-regular graphs.

Exercise 24: Assuming the existence of one-way functions, prove that there exists
a one-way function f such that no single bit of the pre-image constitutes a hard-core
predicate.

Guideline: Given a one-way function f , construct a function g such that g(x, I )
def
=

( f (xI ), xĪ , I ), where I ⊆ {1, 2, . . . |x|}, and xS denotes the string resulting by taking only
the bits of x with positions in the set S (i.e., x{ i1,...,is}

def
= xi1 · · · xis, where x = x1 · · · x|x |).

How well can you predict each bit? To obtain more “dramatic” predictability, consider
g (x, I1, . . . , It )

def
= ( f (x∩ t

j=1 I j ), x∪ t
j=1 Ī j , I1, . . . , It ). What value of t (as a function of |x |)

should be used?
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Exercise 25: A hard-core predicate for a 1-1 function implies that the function is one-
way: Let f be a 1-1 function (you may assume for simplicity that it is length-preserving),
and suppose that b is a hard-core for f .
1. Prove that if f is polynomial-time-computable, then it is strongly one-way.
2. Prove that (regardless of whether or not f is polynomial-time-computable) the func-

tion f must be at least “weakly hard to invert”; that is, for some positive polynomial p,
every probabilistic polynomial-time algorithm A must satisfy Pr[A( f (Un)) �= Un] > 1/p(n)
for all sufficiently large n’s. Furthermore, prove that for every positive polynomial p, every
probabilistic polynomial-time algorithm A must satisfy Pr[A( f (Un)) = Un] < 1

2 + 1
p(n) for

all sufficiently large n’s.
Guideline: Use the inverting algorithm for predicting the hard-core. Distinguish the case
in which you can check that the inverting algorithm is correct (i.e., in Item 1) from the case
in which you cannot do so (i.e., in Item 2).

Exercise 26: An unbiased hard-core predicate (suggested by Erez Petrank):
Assuming the existence of one-way functions, prove the existence of hard-core
predicates (for such functions) that are unbiased (i.e., the predicate b satisfies
Pr[b(Un) = 1] = 1

2 ).
Guideline: Slightly modify the predicate defined in Theorem 2.5.2 (i.e., you need to modify
it only on all-zero x). Alternatively, convert any hard-core b for a function f into b ′ (x, σ ) =
σ ⊕ b(x) for f ′ (x, σ ) = (f (x), σ ).

Exercise 27: Universal hard-core predicate: A polynomial-time-computable predicate
b : {0, 1}∗ → {0, 1} is called a universal hard-core predicate if for every one-way
function f , the predicate b is a hard-core of f . Note that the predicate presented in
Theorem 2.5.2 is “almost universal” (i.e., for every one-way function f , that predicate is
a hard-core of f ′ (x, r ) = (f (x), r ), where |x | = |r |). Prove that there exists no universal
hard-core predicate.

Guideline: Let b be a candidate universal hard-core predicate, and let f be an arbitrary
one-way function. Then define the (one-way) function f ′ (x) = ( f (x), b(x)).

Exercise 28: Theorem 2.5.2, an alternative perspective (suggested by Russell
Impagliazzo, Madhu Sudan, and Luca Trevisan): The hard-core predicate of
Theorem 2.5.2 can be viewed as b(x, i ) equaling the i th bit in the Hadamard code
of x, where the Hadamard code is the most redundant (non-repeating) linear code
(i.e., a string x ∈ {0, 1}n is mapped to the values obtained from all possible 2n lin-
ear combinations of its bits). Let H(x) denote the codeword associated with x by the
Hadamard code. The argument presented in the proof of Theorem 2.5.2 actually pro-
vides a “list-decoding” algorithm for the Hadamard code. Specifically, given oracle ac-
cess to the bits of a string y ∈ {0, 1}2n

and a parameter ε > 0, we recover, within
poly(n/ε) time, all strings x ∈ {0, 1}n such that H(x) and y differ on at most ( 1

2 − ε) · 2n

locations.
1. Verify the foregoing claim, that is, that a “list-decoding” algorithm (for the Hadamard code)

with the stated features is implicit in the proof of Theorem 2.5.2.
2. Let C be an error-correcting code mapping n-bit strings to �(n)-bit strings. What require-

ments should C satisfy so that b(x, i ), defined as the i th bit in C(x), would constitute a
hard-core predicate of f ′ (x, i ) = ( f (x), i ) for every one-way function f .
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Guideline: Note that we should support any ε of the form 1/poly(n), and remember
that b has to be polynomial-time-computable. Also note that |i | = poly(|x|). Why?

3. Using a list-decoding algorithm for Reed-Solomon codes [203], present such a hard-
core predicate. Specifically, you should be able to have |i | = �(|x|) for any “nice” super-
logarithmic function � : N→ N (e.g., �(n) = (log2 n)2 will do).

Exercise 29: In contrast to the last item of Exercise 28, prove that if b(x, y) is a
hard-core for every one-way function of the form f ′ (x, y) = ( f (x), y), then |y | must be
greater than the logarithm of |x|.

Guideline: Extend the argument of Exercise 27 using the fact that if |y | = O(log |x |),
then y = 0|y | occurs with probability 1/poly(|x |).

Exercise 30: Abstracting the proof of Theorem 2.5.2: Suppose you are given oracle
access to an arbitrary predicate Px : {0, 1}|x| → {0, 1} satisfying

Pr[Px(U|x|) = b(x, U|x|)] ≥
1
2

+ ε

1. Present a probabilistic oracle machine that runs for poly(|x|)/ε2 steps and, given oracle
access to any such Px, outputs a list of strings that with probability at least 1

2 contains x.
2. Let M be an oracle machine that for any oracle Px, as before, outputs a list of strings that

with probability at least 1
2 contains x. Prove that M must make min(2�(n),�(n/ε2)) steps.

Guideline (Part 1): Let n = |x|, and assume that ε ≥ 2−n. Implicit in the proof of Theo-
rem 2.5.2 is a machine that runs for poly(n)/ε2 steps and outputs a single string that with
probability at least ε2/poly(n) equals x. This yields a machine running in time poly(n)/ε4

and outputting a list as desired. A machine running in time poly(n)/ε2 and outputting a
list as desired is implicit in the proof of Proposition 2.5.4.
Guideline (Part 2): Consider a probabilistic oracle (or process) defined as follows. First,
x is selected uniformly in {0, 1}n and fixed for the rest of the process. Next, each time
a query q is made (regardless of whether it is made for the first time or not), the oracle
answers b(x, q) with probability 1

2 + ε, and answers 1− b(x, q) otherwise. Show that the
amount of information about x obtained by each query is O(ε2). On the other hand, a
list of � strings containing x has at least n− log2 � bits of information about x. Use the
obvious fact that the length of the list output by M and the number of queries that M
makes are both bounded above by the running time of M.

Exercise 31: An alternative definition of hard-core functions: Let h : {0, 1}∗ → {0, 1}∗
and l : N→ N satisfy |h(x)| = l (|x|) for all x ∈ {0, 1}∗ . We say that h is hard to ap-
proximate from f if for every probabilistic polynomial-time algorithm A, every positive
polynomial p, and all sufficiently large n’s, it holds that

Pr[A( f (Xn)) = h(Xn)] < 2− l (n) +
1

p(n)
(2.16)

where Xn is uniformly distributed over {0, 1}n.
1. Prove that for l : N→ N satisfying l (n) = O(log n) and a polynomial-time-computable h :
{0, 1}∗ → {0, 1}∗ , the function h is a hard-core of f if and only if h is hard to approximate
from f .
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COMPUTATIONAL DIFFICULTY

2. Show that one direction in Part 1 does not hold in general (i.e., for super-logarithmically
growing l ).
Comment: This exercise is related to Section 3.3.5.
Guideline (mainly for Part 1): Assuming that there exists an algorithm A that violates
Eq. (2.16), construct an algorithm D′ as in Definition 2.5.5 such that D′ (y, α) = 1 if
and only if A(y) = α. Show that the distinguishing gap of D′ is at least s(n)− 2− l (n),
where s(·) represents the success probability of A. On the other hand, assuming that
there exists an algorithm D′ violating the condition in Definition 2.5.5, construct an al-
gorithm A that violates Eq. (2.16). Specifically, suppose, without loss of generality, that
Pr[D′ ( f (Xn), h(Xn)) = 1] = Pr[D′ ( f (Xn), Rl (n)) = 1] + ε(n), where ε(n) > 1

p(n) . Then, on

input y, algorithm A uniformly selects r ∈ {0, 1} l (n) and r ′ ∈ ({0, 1} l (n) \ {r }), invokes
D′ , and outputs r if D′ (y, r ) = 1, and r ′ otherwise. Show that the success probability of
D′ is at least ε(n)

2l (n)−1
.
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