
APPENDIX B

Brief Outline of Volume 2

This first volume contains only material on the basic tools of modern cryptography,
that is, one-way functions, pseudorandomness, and zero-knowledge proofs. These ba-
sic tools are used in the construction of the basic applications (to be covered in the
second volume). The latter will cover encryption, signatures, and general cryptographic
protocols. In this appendix we provide brief summaries of the treatments of these basic
applications.

B.1. Encryption: Brief Summary

Both private-key and public-key encryption schemes consist of three efficient algo-
rithms: key generation, encryption, and decryption. The difference between the two
types of schemes is reflected in the definition of security: The security of a public-key
encryption scheme should also hold when the adversary is given the encryption key,
whereas that is not required for private-key encryption schemes. Thus, public-key en-
cryption schemes allow each user to broadcast its encryption key, so that any other user
can send it encrypted messages (without needing to first agree on a private encryption
key with the receiver). Next we present definitions of security for private-key encryption
schemes. The public-key analogies can be easily derived by considering adversaries
that get the encryption key as additional input. (For private-key encryption schemes,
we can assume, without loss of generality, that the encryption key is identical to the
decryption key.)

B.1.1. Definitions

For simplicity, we consider only the encryption of a single message; however, this mes-
sage can be longer than the key (which rules out information-theoretic secrecy [200]).
We present two equivalent definitions of security. The first, called semantic security,
is a computational analogue of Shannon’s definition of perfect secrecy [200]. The se-
cond definition views secure encryption schemes as those for which it is infeasible to
distinguish encryptions of any (known) pair of messages (e.g., the all-zeros message

338

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

B.1. ENCRYPTION: BRIEF SUMMARY

and the all-ones message). The latter definition is technical in nature and is referred to
as indistinguishability of encryptions.

We stress that the definitions presented here go way beyond saying that it is infeasible
to recover the plaintext from the ciphertext. The latter statement is indeed a minimal
requirement for a secure encryption scheme, but we claim that it is far too weak a
requirement: An encryption scheme typically is used in applications where obtaining
specific partial information on the plaintext endangers the security of the application.
When designing an application-independent encryption scheme, we do not know which
partial information endangers the application and which does not. Furthermore, even if
one wants to design an encryption scheme tailored to one’s own specific applications,
it is rare (to say the least) that one has a precise characterization of all possible partial
information that can endanger these applications. Thus, we require that it be infeasible
to obtain any information about the plaintext from the ciphertext. Furthermore, in
most applications the plaintext may not be uniformly distributed, and some a priori
information regarding it is available to the adversary. We require that the secrecy of all
partial information also be preserved in such a case. That is, even in the presence of a
priori information on the plaintext, it is infeasible to obtain any (new) information
about the plaintext from the ciphertext (beyond what it is feasible to obtain from the a
priori information on the plaintext). The definition of semantic security postulates all
of this. The equivalent definition of indistinguishability of encryptions is useful in
demonstrating the security of candidate constructions, as well as for arguing about
their usage as parts of larger protocols.

The Actual Definitions. In both definitions, we consider (feasible) adversaries that
obtain, in addition to the ciphertext, auxiliary information that may depend on the po-
tential plaintext (but not on the key). By E(x) we denote the distribution of encryptions
of x , when the key is selected at random. To simplify the exposition, let us assume
that on security parameter n, the key-generation algorithm produces a key of length n,
whereas the scheme is used to encrypt messages of length n2.

Definition B.1.1 (Semantic Security (Following [123])): An encryption scheme
is semantically secure if for every feasible algorithm, A, there exists a feasible
algorithm B such that for every two functions f, h : {0, 1}∗→{0, 1}∗ and all
sequences of pairs (Xn, zn)n∈N, where Xn is a random variable ranging over
{0, 1}n2

and |zn| is of feasible (in n) length,

Pr[A(E(Xn)h(Xn), zn)= f (Xn)]<Pr[B(h(Xn), zn)= f (Xn)]+µ(n)

where µ is a negligible function. Furthermore, the complexity of B should be
related to that of A.

What Definition B.1.1 says is that a feasible adversary does not gain anything by
looking at the ciphertext. That is, whatever information (captured by the function f)
it tries to compute about the ciphertext when given a priori information (captured by
the function h) can essentially be computed as efficiently from the available a priori

339

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

BRIEF OUTLINE OF VOLUME 2

information alone. In particular, the ciphertext does not help in (feasibly) computing
the least significant bit of the plaintext or any other information regarding the plaintext.
This holds for any distribution of plaintexts (captured by the random variable Xn). We
now turn to an equivalent definition.

Definition B.1.2 (Indistinguishability of Encryptions (Following [123])): An
encryption scheme has indistinguishable encryptions if for every feasible algo-
rithm A and all sequences of triples (xn, yn, zn)n∈N, where |xn| = |yn| = n2 and
|zn| is of feasible (in n) length,

|Pr[A(E(xn), zn)= 1]−Pr[A(E(yn), zn)= 1]|<µ(n)

where µ is a negligible function.

In particular, zn may equal (xn, yn). Thus, it is infeasible to distinguish the encryptions
of any two fixed messages such as the all-zeros message and the all-ones message.

Theorem B.1.3: An encryption scheme is semantically secure if and only if it has
indistinguishable encryptions.

Probabilistic Encryption. It is easy to see that a secure public-key encryption scheme
must employ a probabilistic (i.e., randomized) encryption algorithm. Otherwise, given
the encryption key as (additional) input, it is easy to distinguish the encryption of the
all-zeros message from the encryption of the all-ones message. The same holds for
private-key encryption schemes when considering the security of encrypting several
messages (rather than a single message as done before).1 This explains the linkage
between the foregoing robust security definitions and the randomization paradigm
(discussed later).

B.1.2. Constructions

Private-key encryption schemes can be constructed based on the existence of one-way
functions. In contrast, the known constructions of public-key encryption schemes seem
to require stronger assumptions (such as the existence of trapdoor permutations).

B.1.2.1. Private-Key Schemes

It is common practice to use “pseudorandom generators” as a basis for private-key
stream ciphers. We stress that this is a very dangerous practice when the “pseudoran-
dom generator” is easy to predict (such as the linear congruential generator or some
modifications of it that output a constant fraction of the bits of each resulting num-
ber [38, 84]). However, this common practice can become sound provided one uses
pseudorandom generators as defined in Section 3.3. Thus, we obtain a private-key
stream cipher that allows us to encrypt a stream of plaintext bits. Note that such a

1Here, for example, using a deterministic encryption algorithm allows the adversary to distinguish two encryp-
tions of the same message from the encryptions of a pair of different messages.

340

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

B.1. ENCRYPTION: BRIEF SUMMARY

stream cipher does not conform with our formulation of an encryption scheme, since
for encrypting several messages we are required to maintain a counter. In other words,
we obtain an encryption scheme with a variable state that is modified after the en-
cryption of each message. To obtain a stateless encryption scheme, as in our earlier
definitions, we can use a pseudorandom function.

Private-Key Encryption Scheme Based on Pseudorandom Functions. The key-
generation algorithm consists of selecting a seed, denoted s, for such a function, denoted
fs . To encrypt a message x ∈ {0, 1}n (using key s), the encryption algorithm uniformly
selects a string r ∈ {0, 1}n and produces the ciphertext (r, x ⊕ fs(r)). To decrypt the
ciphertext (r, y) (using key s), the decryption algorithm just computes y ⊕ fs(r). The
proof of security of this encryption scheme consists of two steps (suggested as a general
methodology in Section 3.6):

1. Prove that an idealized version of the scheme, in which one uses a uniformly selected
function f : {0, 1}n→{0, 1}n , rather than the pseudorandom function fs , is secure.

2. Conclude that the real scheme (as presented earlier) is secure (since otherwise one could
distinguish a pseudorandom function from a truly random one).

Note that we could have gotten rid of the randomization if we had allowed the encryption
algorithm to be history-dependent (e.g., use a counter in the role of r). Furthermore,
if the encryption scheme is used for FIFO communication between the parties and both
can maintain the counter value, then there is no need for the message sender to transmit
the counter value.

B.1.2.2. Public-Key Schemes

Here we use a collection of trapdoor one-way permutations, {pα}α, and a hard-core
predicate, b, for it.

The Randomization Paradigm [123]. To demonstrate this paradigm, we first construct
a simple public-key encryption scheme.

Key generation: The key-generation algorithm consists of selecting at random
a permutation pα together with a trapdoor for it; the permutation (or rather its de-
scription) serves as the public key, whereas the trapdoor serves as the private key.

Encrypting: To encrypt a single bit σ (using public key pα), the encryption
algorithm uniformly selects an element r in the domain of pα and produces the
ciphertext (pα(r), σ ⊕ b(r)).

Decrypting: To decrypt the ciphertext (y, τ) using the private key, the decryption
algorithm simply computes τ ⊕ b(p−1

α (y)), where the inverse is computed using
the trapdoor (i.e., private key).

This scheme is quite wasteful of bandwidth. However, the paradigm underlying its
construction is valuable in practice. For example, it is certainly better to randomly pad
messages (say, using padding equal in length to the message) before encrypting them

341

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

BRIEF OUTLINE OF VOLUME 2

using RSA than to employ RSA on the plain message. Such a heuristic can be placed
on firm ground if the following conjecture is supported: Assume that the first n/2 least
significant bits of the argument constitute a hard-core function of RSA with n-bit-long
moduli. Then, encrypting n/2-bit messages by padding the message with n/2 random
bits and applying RSA (with an n-bit modulus) on the result will constitute a secure
public-key encryption system, hereafter referred to as Randomized RSA.

An alternative public-key encryption scheme is presented in [35]. That encryption
scheme augments Construction 3.4.4 (of a pseudorandom generator based on one-way
permutations) as follows:

Key generation: As before, the key-generation algorithm consists of selecting
at random a permutation pα together with a trapdoor.

Encrypting: To encrypt the n-bit string x (using public key pα), the encryption
algorithm uniformly selects an element s in the domain of pα and produces the
ciphertext (pn

α(s), x ⊕ Gα(s)), where

Gα(s) = b(s) · b(pα(s)) · · · b(pn−1
α (s)

)
(We use the notation pi+1

α (x) = pα(pi
α(x)) and p−(i+1)

α (x) = p−1
α (p−i

α (x)).)

Decrypting: To decrypt the ciphertext (y, z) using the private key, the decryption
algorithm first recovers s = p−n

α (y) and then outputs z ⊕ Gα(s).

Assuming that factoring Blum integers (i.e., products of two primes each congruent
to 3 (mod 4)) is hard, one can use the modular squaring function in the role of the
trapdoor permutation and the least significant bit (denoted lsb) in the role of its hard-core
predicate [35, 5, 208, 82]. This yields a secure public-key encryption scheme (depicted
in Figure B.1) with efficiency comparable to that of RSA. Recall that RSA itself is
not secure (as it employs a deterministic encryption algorithm), whereas Randomized

Private key: Two n/2-bit-long primes, p and q, each congruent to 3 (mod 4).

Public key: Their product N
def= pq.

Encryption of message x ∈ {0, 1}n:

1. Uniformly select s0 ∈ {1, . . . , N }.
2. For i = 1, . . . , n + 1, compute si ← s2

i−1 mod N and σi = lsb(si).

The ciphertext is (sn+1, y), where y = x ⊕ σ1σ2 · · · σn .
Decryption of the ciphertext (r, y):

Precomputed: dp = ((p + 1)/4)n mod p − 1, dq = ((q + 1)/4)n mod q − 1,
cp = q · (q−1 mod p), and cq = p · (p−1 mod q).

1. Let s ′ ← rdp mod p and s ′′ ← rdq mod q.
2. Let s1 ← cp · s ′ + cq · s ′′ mod N .
3. For i = 1, . . . , n, compute σi = lsb(si) and si+1 ← s2

i mod N .

The plaintext is y ⊕ σ1σ2 · · · σn .

Figure B.1: The Blum-Goldwasser public-key encryption scheme [35].

342

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

B.1. ENCRYPTION: BRIEF SUMMARY

RSA (defined earlier) is not known to be secure under standard assumptions such as
the intractability of factoring (or of inverting the RSA function).2

B.1.3. Beyond Eavesdropping Security

The foregoing definitions refer only to a “passive” attack in which the adversary merely
eavesdrops on the communication line (over which ciphertexts are being sent). Stronger
types of attacks, culminating in the so-called chosen ciphertext attack, may be possible
in various applications. Furthermore, these definitions refer to an adversary that tries
to extract explicit information about the plaintext. A less explicit attempt, captured by
the so-called notion of malleability, is to generate an encryption of a related plaintext
(possibly without learning anything about the original plaintext). Thus, we have a
“matrix” of adversaries, with one dimension (parameter) being the type of attack and
the second being its purpose.

Types of Attacks. The following mini-taxonomy of attacks certainly is not exhaustive:

1. Passive attacks, as captured in the foregoing definitions. Among public-key schemes,
we distinguish two sub-cases:

(a) A key-oblivious passive attack, as captured in the foregoing definitions. By “key-
obliviousness” we refer to the fact that the choice of plaintext does not depend on
the public key.

(b) A key-dependent passive attack, in which the choice of plaintext may depend on the
public key.

(In Definition B.1.1 the choice of plaintext means the random variable Xn , whereas in
Definition B.1.2 it means the pair of strings (xn, yn). In both of these definitions, the
choice of the plaintext is non-adaptive.)

2. Chosen plaintext attacks. Here the attacker can obtain the encryption of any plaintext of
its choice (under the key being attacked). Such an attack does not add power in case of
public-key schemes.

3. Chosen ciphertext attacks. Here the attacker can obtain the decryption of any ciphertext
of its choice (under the key being attacked). That is, the attacker is given oracle access
to the decryption function corresponding to the decryption key in use. We distinguish
two types of such attacks:

(a) In an a-priori-chosen ciphertext attack, the attacker is given this oracle access prior
to being presented the ciphertext that it will attack (i.e., the ciphertext for which
it has to learn partial information or form a related ciphertext). That is, the attack
consists of two stages: In the first stage the attacker is given the oracle access, and
in the second stage the oracle is removed and the attacker is given a “test ciphertext”
(i.e., a target to be learned or modified in violation of non-malleability).

2Recall that Randomized RSA is secure assuming that the n/2 least significant bits constitute a hard-core
function for n-bit RSA moduli. We only know that the O(log n) least significant bits constitute a hard-core
function for n-bit moduli [5].

343

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

BRIEF OUTLINE OF VOLUME 2

(b) In an a-posteriori-chosen ciphertext attack the attacker is given the target ciphertext
first, but its access to the oracle is restricted in that it is not allowed to make a query
equal to the target ciphertext.

In both cases, the adversary can make queries that do not correspond to a legitimate
ciphertext, and the answers will be accordingly (i.e., a special “failure” symbol).

Purpose of Attacks. Again, the following is not claimed to be exhaustive:

1. Standard security: the infeasibility of obtaining information regarding the plaintext. As
defined earlier, such information must be a function (or a randomized process) applied
to the bare plaintext and cannot depend on the encryption (or decryption) key.

2. In contrast, the notion of non-malleability [64] refers to generating a string depending
on both the plaintext and the current encryption key. Specifically, one requires that it be
infeasible for an adversary, given a ciphertext, to produce a valid ciphertext for a related
plaintext. For example, given a ciphertext of a plaintext of the form 1x , it should be
infeasible to produce a ciphertext to the plaintext 0x .

With the exception of passive attacks on private-key schemes, non-malleability al-
ways implies security against attempts to obtain information on the plaintext. Secu-
rity and non-malleability are equivalent under a-posteriori-chosen ciphertext attack
(cf. [64, 16]). For a detailed discussion of the relationships among the various no-
tions of secure private-key and public-key encryptions, the reader is referred to [142]
and [16], respectively.

Some Known Constructions. As in the basic case, the (strongly secure) private-key
encryption schemes can be constructed based on the existence of one-way functions,
whereas the (strongly secure) public-key encryption schemes are based on the existence
of trapdoor permutations.

Private-key schemes: The private-key encryption scheme based on pseudoran-
dom functions (described earlier) is secure also against a-priori-chosen ciphertext
attacks.3

It is easy to turn any passively secure private-key encryption scheme into a
scheme secure under (a posteriori) chosen ciphertext attacks by using a message-
authentication scheme4 on top of the basic encryption.

Public-key schemes: Public-key encryption schemes secure against a-priori-
chosen ciphertext attacks can be constructed assuming the existence of trap-
door permutations and utilizing non-interactive zero-knowledge proofs see
[176]. (Recall that the latter proof systems can be constructed under the former
assumption.)

3Note that this scheme is not secure under an a-posteriori-chosen ciphertext attack: On input a ciphertext
(r, x ⊕ fs (r)), we obtain fs (r) by making the query (r, y′), where y′ �= x ⊕ fs (r). (This query is answered with
x ′ such that y′ = x ′ ⊕ fs (r).)

4See definition in Section B.2.

344

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

B.2. SIGNATURES: BRIEF SUMMARY

Public-key encryption schemes secure against a-posteriori-chosen ciphertext attacks
can also be constructed under the same assumption [64], but this construction is even
more complex.

In fact, both constructions of public-key encryption schemes secure against cho-
sen ciphertext attacks are to be considered as plausibility results (which also offer
some useful construction paradigms). Presenting “reasonably efficient” public-key
encryption schemes that are secure against (a posteriori) chosen ciphertext attacks,
under widely believed assumptions, is an important open problem.5

B.1.4. Some Suggestions

B.1.4.1. Suggestions for Further Reading

Fragments of a preliminary draft for the intended chapter on encryption schemes can
be obtained online [99].

In addition, there are the original papers: There is a good motivating discussion
in [123], but we prefer the definitional treatment of [92, 94], which can be substantially
simplified if one adopts non-uniform complexity measures (as done above).6 Further
details on the construction of public-key encryption schemes (sketched above) can be
found in [123, 92, 35, 5]. For discussion of non-malleable cryptography, which actually
transcends the domain of encryption, see [64].

B.1.4.2. Suggestions for Teaching

We suggest a focus on the basic notion of security (treated in Sections B.1.1 and B.1.2):
Present both definitions, prove their equivalence, and discuss the need to use random-
ness during the encryption process in order to meet these definitions. Next, present all
constructions described in Section B.1.2. We believe that the draft available online [99]
provides sufficient details for all of these.

B.2. Signatures: Brief Summary

Again, there are private-key and public-key versions, both consisting of three efficient
algorithms: key generation, signing, and verification. (Private-key signature schemes
are commonly referred to as message-authentication schemes or codes (MAC).) The
difference between the two types is again reflected in the definitions of security.
This difference yields different functionalities (even more than in the case of en-
cryption): Public-key signature schemes (hereafter referred to as signature schemes)
can be used to produce signatures that are universally verifiable (given access to the
public key of the signer). Private-key signature schemes (hereafter referred to as
message-authentication schemes) typically are used to authenticate messages sent

5The “reasonably efficient” scheme of [57] is based on a strong assumption regarding the Diffie-Hellman key
exchange. Specifically, it is assumed that for a prime P and primitive element g, given (P, g, (gx mod P), (gy mod
P), (gz mod P)), it is infeasible to decide whether or not z ≡ xy (mod P − 1).

6We comment that [92] follows [94] in providing a uniform-complexity treatment of the security of encryption
schemes.

345

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

BRIEF OUTLINE OF VOLUME 2

among a (small) set of mutually trusting parties (since the ability to verify signatures
may be linked to the ability to produce them). In other words, message-authentication
schemes are used to authenticate information sent between (typically two) parties,
and the purpose is to convince the receiver that the information has indeed been sent
by the legitimate sender. In particular, message-authentication schemes cannot con-
vince a third party that the sender has indeed sent the information (rather than the
receiver having generated it by itself). In contrast, public-key signatures can be used
to convince third parties: A signature to a document typically is sent to a second
party, so that in the future that party can (by merely presenting the signed document)
convince third parties that the document was indeed generated/sent/approved by the
signer.

B.2.1. Definitions

We consider very powerful attacks on the signature scheme as well as a very liberal
notion of breaking it. Specifically, the attacker is allowed to obtain signatures to any
message of its choice. One may argue that in many applications such a general attack
is not possible (since messages to be signed must have a specific format). Yet our view
is that it is impossible to define a general (i.e., application-independent) notion of ad-
missible messages, and thus it seems that a general/robust definition of an attack must
be formulated as suggested here. (Note that, at worst, our approach is overly cautious.)
Likewise, the adversary is said to be successful if it can produce a valid signature to ANY

message for which it has not asked for a signature during its attack. Again, this defines
the ability to form signatures to possibly “non-sensical” messages as a breaking of the
scheme. Yet, again, we see no way to have a general (i.e., application-independent)
notion of “meaningful” messages (so that only forging signatures to them would be
consider a breaking of the scheme).

Definition B.2.1 (Unforgeable Signatures [125]):

• A chosen message attack is a process that on input a verification key can obtain
signatures (relative to the corresponding signing key) to messages of its choice.

• Such an attack is said to succeed (in existential forgery) if it outputs a valid
signature to a message for which it has not requested a signature during the
attack.

• A signature scheme is secure (or unforgeable) if every feasible chosen message
attack succeeds with at most negligible probability.

We stress that plain RSA (like plain versions of Rabin’s scheme [187] and DSS [169])
is not secure under the foregoing definition. However, it may be secure if the message is
“randomized” before RSA (or another scheme) is applied [22]. Thus the randomization
paradigm seems pivotal here too.

The definition of security for message-authentication schemes is similar, except that
the attacker does not get the verification key as input.

346

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

B.2. SIGNATURES: BRIEF SUMMARY

B.2.2. Constructions

Both message-authentication and signature schemes can be constructed based on the
existence of one-way functions.

B.2.2.1. Message Authentication

Message-authentication schemes can be constructed using pseudorandom functions
[103]: To authenticate the message x with respect to key s, one generates the tag fs(x),
where fs is the pseudorandom function associated with s. Verification is done in the
same (analogous) way. However, as noted in [15], extensive use of pseudorandom
functions would seem to be overkill for achieving message authentication, and more
efficient schemes can be obtained based on other cryptographic primitives. We mention
two approaches:

1. fingerprinting the message using a scheme that is secure against forgery provided that
the adversary does not have access to the scheme’s outcome (e.g., using Universal
Hashing [49]), and “hiding” the result using a non-malleable scheme (e.g., a private-key
encryption or a pseudorandom function). (Non-malleability is not required in certain
cases [209].)

2. hashing the message using a collision-free scheme [58, 59] and authenticating the result
using a MAC that operates on (short) fixed-length strings [15].

B.2.2.2. Signature Schemes

Three central paradigms in the construction of signature schemes are the “refreshing”
of the “effective” signing key, the use of an “authentication tree,” and the “hashing
paradigm.”

The Refreshing Paradigm [125]. To demonstrate this paradigm, suppose we have a
signature scheme that is robust against a “random message attack” (i.e., an attack in
which the adversary obtains signatures only to randomly chosen messages). Further
suppose that we have a one-time signature scheme (i.e., a signature scheme that is secure
against an attack in which the adversary obtains a signature to a single message of its
choice). Then we can obtain a secure signature scheme as follows: When a new message
needs to be signed, we generate a new random signing key for the one-time signature
scheme, use it to sign the message, and sign the corresponding (one-time) verification
key using the fixed signing key of the main signature scheme7 (which is robust against
a “random message attack”) [71]. We note that one-time signature schemes (as utilized
here) are easy to construct (e.g., [161]).

The Authentication-Tree Paradigm [160, 125]. To demonstrate this paradigm, we
show how to construct a general signature scheme using only a one-time signature
scheme (alas, one where a 2n-bit string can be signed with respect to an n-bit-long

7Alternatively, one can generate the one-time key pair and the signature to its verification key ahead of time,
leading to an “off-line/on-line” signature scheme [71].

347

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

BRIEF OUTLINE OF VOLUME 2

verification key). The idea is to use the initial signing key (i.e., the one corresponding
to the public verification key) in order to sign/authenticate two new/random verifi-
cation keys. The two corresponding signing keys are used to sign/authenticate four
new/random verification keys (two per each signing key), and so on. Stopping after �
such steps, this process forms a binary tree with 2� leaves, where each leaf corresponds to
an instance of the one-time signature scheme. The signing keys at the leaves can be used
to sign the actual messages, and the corresponding verification keys can be authenticated
using the path from the root. That is, to sign a new message, we proceed as follows:

1. Allocate a new leaf in the tree. This requires either keeping a counter of the number
of messages signed thus far or selecting a leaf at random (assuming that the number of
leaves is much larger than the square of the number of messages to be signed).

2. Generate or retrieve from storage the pairs of signing/verification keys corresponding
to each vertex on the path from the root to the selected leaf, along with the key pairs
of the siblings of the vertices on the path. That is, let v0, v1, . . . , v� denote the vertices
along the path from the root v0 to the selected leaf v�, and let ui be the sibling of vi

(for i = 1, . . . , �). Then we generate/retrieve the key pairs of each vi and each ui , for
i = 1, . . . , �.

It is important to use the same key pair when encountering the same vertex in the
process of signing two different messages.

3. Sign the message using the signing key associated with the selected leaf v�. Sign each
pair of verification keys associated with the children of each internal vertex, along the
foregoing path, using the signing key associated with the parent vertex. That is, for
i = 1, . . . , �, sign the verification keys of vi and ui (placed in some canonical order)
using the signing key associated with vertex vi−1.

The signature is obtained by concatenating all these signatures (along with the cor-
responding verification keys). Recall that the key pair associated with the root is the
actual key pair of the signature scheme; that is, the verification component is placed in
the public file, and the signature of the verification keys of the root’s children (relative
to the root’s signing key) is part of all signatures.

Pseudorandom functions can be used to eliminate the need to store the values of vertices
used in previous signatures [89].

Employing this paradigm, and assuming that the RSA function is infeasible to in-
vert, one obtains a secure signature scheme [125, 89] (with a counter of the number
of messages signed) in which the i th message is signed/verified in time 2 log2 i slower
than plain RSA. Using a tree of large fan-in (and assuming again that RSA is infea-
sible to invert), one can obtain a secure signature scheme [67, 56] that for reasonable
parameters is only five times slower than plain RSA.8 We stress that plain RSA is
not a secure signature scheme, whereas the security of its randomized version (men-
tioned earlier) is not known to be reducible to the assumption that RSA is hard to
invert.

8 This figure refers to signing up to 1,000,000,000 messages. The scheme in [67] requires a universal set
of system parameters consisting of 1000–2000 integers of the size of the moduli. In the scheme of [56], that
requirement is removed.

348

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

B.2. SIGNATURES: BRIEF SUMMARY

The Hashing Paradigm. A common practice is to sign real documents via a two-
stage process: First the document is hashed into a (relatively) short bit string, and
then the basic signature scheme is applied to the resulting string. We note that this
heuristic becomes sound provided the hashing function is collision-free (as defined
in [58]). Collision-free hashing functions can be constructed, assuming the existence of
claw-free collections (as in Definition 2.4.6) [58]. One can indeed postulate that certain
off-the-shelf products (e.g., MD5 or SHA) are collision-free, but such assumptions need
to be tested (and indeed may turn out false). We stress that using a hashing scheme
in the foregoing two-stage process without carefully evaluating whether or not it is
collision-free is a very dangerous practice.

One useful variant on the foregoing paradigm is the use of universal one-way hashing
functions (as defined in [175]), rather than the collision-free hashing used earlier. In
such a case, a new hashing function is selected for each application of the scheme, and
the basic signature scheme is applied both to the (succinct) description of the hashing
function and to the resulting (hashed) string. (In contrast, when using a collision-free
hashing function, the same function, the description of which is part of the signer’s
public key, is used in all applications of the signature scheme.) The advantage of using
universal one-way hashing functions is that their security requirement seems weaker
than that for the collision-free condition (e.g., the former can be constructed using any
one-way function [192], whereas this is NOT known for the latter).

Theorem B.2.2 (Plausibility Result [175, 192]): Signature schemes exist if and
only if one-way functions exist.

Unlike the paradigms (and some of the constructions) described earlier, the known
construction of signature schemes from arbitrary one-way functions has no practical
significance. It is indeed an important open problem to provide an alternative construc-
tion that can be practical and still utilize an arbitrary one-way function.

B.2.3. Some Suggestions

B.2.3.1. Suggestions for Further Reading

Fragments of a preliminary draft for the intended chapter on signature schemes can be
obtained on line [100].

In addition, there are the original papers: For a definitional treatment of signature
schemes, the reader is referred to [125] and [183]. Easy-to-understand constructions
appear in [20, 71, 67]. The proof of Theorem B.2.2 can be extracted from [175, 192]:
The first paper presents the basic approach and implements it using any one-way per-
mutation, whereas the second paper shows how to implement this approach using any
one-way function. Variants on the basic model are discussed in [183] and in [50, 137].
For discussion of message-authentication schemes (MACs) the reader is referred to [15].

B.2.3.2. Suggestions for Teaching

We suggest a focus on signature schemes, presenting the main definition and some
construction. One may use [125] for the definitional treatment, but should not use

349

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

BRIEF OUTLINE OF VOLUME 2

it for the construction, the underlying ideas of which are more transparent in papers
such as [20] and [175]. Actually, we suggest presenting a variant on the signature
scheme of [175], using collision-free hashing (cf. [58]) instead of universal one-way
hashing (cf. [175]). This allows one to present, within a few lectures, many impor-
tant paradigms and techniques (e.g., the refreshing paradigm, authentication trees, the
hashing paradigm, and one-time signature schemes). We believe that the draft available
online [100] provides sufficient details for such a presentation.

A basic treatment of message authentication (i.e., motivation, definition, and con-
struction based on pseudorandom functions) can be presented within one lecture,
and [100] can be used for this purpose too. (This, however, will not cover alternative
approaches employed toward the construction of more efficient message-authentication
schemes.)

B.3. Cryptographic Protocols: Brief Summary

A general framework for casting cryptographic (protocol) problems consists of speci-
fying a random process that maps n inputs to n outputs. The inputs to the process are to
be thought of as local inputs of n parties, and the n outputs are their corresponding local
outputs. The random process describes the desired functionality. That is, if the n parties
were to trust each other (or trust some outside party), then each could send its local input
to the trusted party, who would compute the outcome of the process and send each party
the corresponding output. The question addressed in this section is the extent to which
this trusted party can be “emulated” by the mutually distrustful parties themselves.

B.3.1. Definitions

For simplicity, we consider the special case where the specified process is deterministic
and the n outputs are identical. That is, we consider an arbitrary n-ary function and n
parties that wish to obtain the value of the function on their n corresponding inputs.
Each party wishes to obtain the correct value of the function and prevent any other
party from gaining anything else (i.e., anything beyond the value of the function and
what is implied by it).

We first observe that (one thing that is unavoidable is that) each party can change
its local input before entering the protocol. However, this is also unavoidable when the
parties utilize a trusted party. In general, the basic paradigm underlying the definitions
of secure multi-party computations9 amounts to saying that situations that may occur
in the real protocol can be simulated in an ideal model (where the parties can employ
a trusted party). Thus, the “effective malfunctioning” of parties in secure protocols is
restricted to what is postulated in the corresponding ideal model. The specific definitions

9 Our current understanding of the definitional issues is most indebted to the high-level discussions in the
unfinished manuscript of [165]. A similar definitional approach is presented in [11, 12]. The approach of [122] is
more general: It avoids the definition of security (w.r.t a given functionality) and defines instead a related notion
of protocol robustness. One minimalistic instantiation of the definitional approach of [165, 11, 12] is presented
in [45] and is shown to satisfy the main conceptual concerns.

350

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

B.3. CRYPTOGRAPHIC PROTOCOLS: BRIEF SUMMARY

differ in the specific restrictions and/or requirements placed on the parties in the real
computation. This typically is reflected in the definition of the corresponding ideal
model; see the examples that follow.

B.3.1.1. An Example: Computations with Honest Majority

Here we consider an ideal model in which any minority group (of the parties) can
collude as follows. First, this minority shares its original inputs and decides together
on replacement inputs10 to be sent to the trusted party. (The other parties send their re-
spective original inputs to the trusted party.) When the trusted party returns the output,
each majority player outputs it locally, whereas the colluding minority can compute
an output based on all they know (i.e., the output and all the local inputs of these
parties). A secure multi-party computation with honest majority is required to sim-
ulate this ideal model. That is, the effect of any feasible adversary that controls a
minority of the players in the actual protocol can essentially be simulated by a (dif-
ferent) feasible adversary that controls the corresponding players in the ideal model.
This means that in a secure protocol the effect of each minority group is “essentially
restricted” to replacing its own local inputs (independently of the local inputs of the
majority players) before the protocol starts and replacing its own local outputs (depend-
ing only on its local inputs and outputs) after the protocol terminates. (We stress that
in the real execution the minority players do obtain additional pieces of information;
yet in a secure protocol they gain essentially nothing from these additional pieces of
information.)

Secure protocols according to this definition can even tolerate a situation where a
minority of the parties choose to abort the execution. An aborted party (in the real
protocol) is simulated by a party (in the ideal model) that aborts the execution either
before supplying its input to the trusted party (in which case a default input is used)
or after supplying its input. In either case, the majority players (in the real protocol)
are able to compute the output even though a minority aborted the execution. This
cannot be expected to happen when there is no honest majority (e.g., in a two-party
computation) [53].

B.3.1.2. Another Example: Two-Party Computations Allowing Abort

In light of the foregoing, we consider an ideal model where each of the two parties can
“shut down” the trusted (third) party at any point in time. In particular, this can happen
after the trusted party has supplied the outcome of the computation to one party but
before it has supplied it to the second. A secure two-party computation allowing abort is
required to simulate this ideal model. That is, each party’s “effective malfunctioning”
in such a secure protocol is restricted to supplying an initial input of its choice and
aborting the computation at any point in time. We stress that, as before, the choice of
the initial input of each party cannot depend on the input of the other party.

10Such replacement can be avoided if the local inputs of parties are verifiable by the other parties. In such a
case, a party (in the ideal model) has the choice of either joining the execution of the protocol with its correct local
input or not joining the execution at all (but it cannot join with a replaced local input). Secure protocols simulating
this ideal model can be constructed as well.

351

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

BRIEF OUTLINE OF VOLUME 2

Generalizing the preceding, we can consider secure multi-party computation allow-
ing abort. Here, in the ideal model, each of the parties can “shut down” the trusted party
at any point in time; in particular, this can happen after the trusted party has supplied
the outcome of the computation to some but not all of the parties.

B.3.2. Constructions

Theorem B.3.1 (General Plausibility Results, Loosely Stated): Suppose that
trapdoor permutations exist. Then

• any multi-party functionality can be securely computed in a model allowing abort
(cf. [211] for the two-party case and [113] for the case of more than two parties).

• any multi-party functionality can be securely computed provided that a strict ma-
jority of the parties are honest [112, 113].

The proof of each item proceeds in two steps [98]:

1. Presenting secure protocols for a “semi-honest” model in which the bad parties follow
the protocol, except that they also keep a record of all intermediate results.11

One key idea is to consider the propagation of values along the wires of a circuit
(which computes the desired function), going from the input wires to the output wires.
The execution of these protocols starts by each party sharing its inputs with all other
parties, using a secret sharing scheme, so that any strict subset of the shares yields no
information about the secret (e.g., each party is given a uniformly chosen share, and the
dealer’s share is set to the XOR of all other shares). A typical step consists of the secure
computation of shares of the output wire of a gate from the shares of the input wires of this
gate. That is, the m parties employ a secure protocol for computing the randomized m-
party functionality ((a1, b1), . . . , (am, bm)) �→ (c1, . . . , cm), where the ci ’s are uniformly
distributed subject to ⊕m

i=1ci = gate(⊕m
i=1ai ,⊕m

i=1bi). Repeating this step for each gate
of the circuit (in a suitable order), the parties securely propagate shares along the wires of
the circuit, going from the input wires of the circuit to its output wires. At the end of this
propagation process, each party announces its shares in the output wires of the circuit,
and the actual output is formed. Thus, securely computing an arbitrary functionality
(which may be quite complex) is reduced to securely computing a few specific simple
functionalities (i.e., given shares for the inputs of a Boolean gate, securely compute
random shares for the output of this gate). Indeed, secure protocols for computing these
simple functionalities are also provided.

2. Transforming protocols secure in the “semi-honest” model into full-fledged secure pro-
tocols. Here zero-knowledge proofs and protocols for fair coin-tossing are used in order
to “force” parties to behave properly (i.e., as in the “semi-honest” model).

Fair coin-tossing protocols are constructed using non-oblivious commitment schemes
(see Section 4.9.2), which in turn rely on zero-knowledge proofs of knowledge (see
Section 4.7).

11In other words, we need to simulate the local views of the dishonest players when given only the local inputs
and outputs of the honest players. Indeed, this model corresponds to the honest-verifier model of zero-knowledge
(see Section 4.3.1.7).

352

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

B.3. CRYPTOGRAPHIC PROTOCOLS: BRIEF SUMMARY

We stress the general nature of these constructions and view them as plausibility results
asserting that a host of cryptographic problems are solvable, assuming the existence of
trapdoor permutations. As discussed in the case of zero-knowledge proofs, the value
of these general results is in allowing one to easily infer that the problem he/she faces
is solvable in principle (as typically it is easy to cast problems within this framework).
However, we do not recommend using (in practice) the solutions derived by these
general results; one should rather focus on the specifics of the problem at hand and
solve it using techniques and/or insights available from these general results.12

Analogous plausibility results have been obtained in a variety of models. In particular,
we mention secure computations in the private-channels model [27, 51] and in the
presence of mobile adversaries [182].

B.3.3. Some Suggestions

B.3.3.1. Suggestions for Further Reading

A draft of a manuscript that is intended to cover this surveyed material is available
online from [98]. The draft provides an exposition of the basic definitions and results,
as well as detailed proofs for the latter. More refined discussions of definitional issues
can be found in [11, 12, 44, 45, 122, 165]; our advice is to start with [45].

B.3.3.2. Suggestions for Teaching

This area is very complex, and so we suggest that one merely present sketches of some
definitions and constructions. Specifically, we suggest picking one of the two settings
(i.e., computation with honest majority or two-party computation) and sketching the
definition and the construction. Our own choice would be the two-party case; alas, the
definition (allowing abort) is more complicated (but this is more than compensated for
by simpler notation and a simpler construction that relies on relatively fewer ideas). We
suggest emphasizing the definitional approach (i.e., “emulating a trusted party” as simu-
lation of any adversary operating in the real model by an ideal-model adversary) and pre-
senting the main ideas underlying the construction (while possibly skipping a few). We
believe that the draft available online from [98] provides sufficient details for all of these.

12For example, although Threshold Cryptography (cf., [62, 87]) is merely a special case of multi-party com-
putation, it is indeed beneficial to focus on its specifics.

353

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.007
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:57, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.007
https:/www.cambridge.org/core

