
APPENDIX A

Background in Computational
Number Theory

The material presented in this appendix is merely the minimum needed for the few
examples of specific constructions presented in this book. What we cover here are a few
structural and algorithmic facts concerning prime and composite numbers. For a more
comprehensive treatment, consult any standard textbook (e.g., [10]).

A.1. Prime Numbers

A prime is a natural number that is not divisible by any natural number other than itself
and 1. For simplicity, say that 1 is NOT a prime.

For a prime P , the additive group modulo P , denoted ZP , consists of the set
{0, . . . , P − 1} and the operation of addition mod P . All elements except the iden-
tity (i.e., 0) have order P(in this group). The multiplicative group modulo P , denoted
Z∗

P , consists of the set {1, . . . , P − 1} and the operation of multiplication mod P . This
group is cyclic too. In fact, at least 1/ log2 P of the elements of the group have order
P − 1 and are called primitive.1

A.1.1. Quadratic Residues Modulo a Prime

A quadratic residue modulo a prime P is an integer s such that there exists an r ∈ Z∗
P

satisfying s ≡ r 2 (mod P). Thus, in particular, s has to be relatively prime to P .
Clearly, if r is a square root of s modulo P , then so is −r (since (−r )2 ≡ r 2). Fur-
thermore, if x2 ≡ s (mod P) has a solution modulo P , then it has exactly two such
solutions (as otherwise r1 �≡ ±r2 (mod P) are both solutions, and 0 ≡ r 2

1 − r 2
2 ≡

(r1 − r2)(r1 + r2) (mod P) follows, in contradiction to the primality of P).
The quadratic residues modulo P form a subgroup of the multiplicative group

modulo P . The former subgroup contains exactly half of the members of the group.

1The exact number of primitive elements modulo P depends on the prime factorization of P − 1 =∏t
i=1 Pei

i
(see Section A.2): It equals

∏t
i=1((Pi − 1) · Pei−1

i ).
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BACKGROUND IN COMPUTATIONAL NUMBER THEORY

Furthermore, squaring modulo P is a 2-to-1 mapping of the group to the sub-
group. In case P ≡ 3 (mod 4), each image of this mapping has one pre-image in the
subgroup (i.e., a quadratic residue) and one pre-image that is not in the subgroup (i.e.,
a non-quadratic residue).2

A.1.2. Extracting Square Roots Modulo a Prime

In general, extracting square roots module a prime can be done by using Berlekamp’s
algorithm [28]. The latter is a randomized algorithm for factoring polynomials modulo
a prime. (Note that extracting a square root of s modulo a prime P amounts to solving
the equation x2 ≡ s (mod P), which can be cast as the problem of factoring the
polynomial x2 − s modulo P .)

A more direct approach is possible in the special case in which the prime is congruent
to 3 (mod 4), which is the case in most cryptographic applications. In this case we
observe that for a quadratic residue s ≡ x2 (mod P), we have

s(P+1)/4 ≡ x (P+1)/2 (mod P)

≡ x (P−1)/2 · x (mod P)

≡ ±x (mod P)

where in the last equality we use Fermat’s little theorem, by which x (P−1)/2 ≡ ±1
(mod P) for every integer x and prime P . Thus, in this special case, we obtain a square
root of s modulo P by raising s to the power P+1

4 modulo P . (Note that this square root
is a quadratic residue modulo P .)

A.1.3. Primality Testers

The common approach to testing whether or not an integer is a prime is to utilize
Rabin’s randomized primality tester [185], which is related to a deterministic algo-
rithm due to Miller [166].3 The alternative of using a somewhat different randomized
algorithm, discovered independently by Solovay and Strassen [202], seems less popular.
Here we present a third alternative, which seems less well known (and was discovered
independently by several researchers, one of them being Manuel Blum). The only
number-theoretic facts that we use are as follows:

1. For every prime P > 2, each quadratic residue mod P has exactly two square roots
mod P (and they sum up to P).

2. For every odd and non-integer-power composite number N , each quadratic residue
mod N has at least four square roots mod N .

2 This follows from the fact that−1 is a non-quadratic residue modulo such primes. In contrast, in case P ≡ 1
(mod 4), it holds that −1 is a quadratic residue modulo P . Thus, in case P ≡ 1 (mod 4), for each quadratic
residue the two square roots either are both quadratic residues or are both non-quadratic residues.

3 Miller’s algorithm relies on the Extended Riemann Hypothesis (ERH).
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A.1. PRIME NUMBERS

Our algorithm uses as a black box an algorithm, denoted SQRT, that given a prime P and
a quadratic residue s mod P , returns a square root of s mod P . There is no guarantee
as to what the algorithm does in case the input is not of this form (and, in particular, in
case P is not a prime).

Algorithm. On input a natural number N > 2, do the following:

1. If N is either even or an integer-power, then reject.

2. Uniformly select r ∈ {1, . . . , N − 1} and set s ← r2 mod N .

3. Let r ′ ← SQRT(N , s). If r ′ ≡ ±r (mod N ), then accept, else reject.

Analysis. By Fact 1, on input a prime number N , the algorithm always accepts (since in
this case SQRT(N , r 2 mod N ) = ±r for any r ∈ {1, . . . , N − 1}). On the other hand,
suppose that N is an odd composite that is not an integer-power. Then, by Fact 2,
each quadratic residue s has at least four square roots, and each is equally likely
to be chosen at Step 2 (since s yields no information on the specific r ). Thus, for
every such s, the probability that ±SQRT(N , s) is chosen in Step 2 is at most 2

4 . It
follows that on input a composite number, the algorithm rejects with probability at
least 1

2 .

Comment. The analysis presupposes that the algorithm SQRT is always correct when
fed with a pair (P, s), where P is prime and s is a quadratic residue mod P . Such
an algorithm was described for the special case where P ≡ 3 (mod 4). Thus, when-
ever the candidate number is congruent to 3 (mod 4), which typically is the case
in our applications, this description suffices. For the case P ≡ 1 (mod 4), we em-
ploy the randomized modular square-root-extraction algorithm mentioned earlier and
observe that in case SQRT has error probability ε < 1

2 , our algorithm still distin-
guishes primes from composites (since on the former it accepts with probability at least
1− ε > 1

2 , whereas on the latter it accepts with probability at most 1
2 ). The statistical

difference between the two cases can be amplified by invoking the algorithm several
times.

We mention that error-free probabilistic polynomial-time algorithms for testing pri-
mality do exist [121, 1], but currently are much slower. (These algorithms output either
the correct answer or a special don’t know symbol, where the latter is output with
probability at most 1

2 .)

A.1.4. On Uniform Selection of Primes

A simple method for uniformly generating a prime number in some interval, say between
N and 2N , consists of repeatedly selecting at random an integer in this interval and
testing it for primality. The question, of course, is, How many times do we need to repeat
the procedure before a prime number is found? This question is intimately related to
the density of primes, which has been extensively studied in number theory [7]. For
our purposes it suffices to assert that in case the sampling interval is sufficiently large
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BACKGROUND IN COMPUTATIONAL NUMBER THEORY

(when compared with the size of the integers in it), then the density of primes in it
is noticeable (i.e., is a polynomial fraction). Specifically, the density of primes in the
interval [N , 2N ] is �(1/ log N ). Hence, on input N , we can expect to hit a prime
in the interval [N , 2N ] within �(log N ) trials. Furthermore, with probability at least
1− (1/N )2 we will hit a prime before conducting �((log N )2) trials. Hence, for all
practical purposes, we can confine ourselves to conducting a number of trials that is
polynomial (i.e., n2) in the length of the prime we want to generate (i.e., n = log2 N ).
(We comment that an analogous discussion applies for primes that are congruent to
3 mod 4.)

We remark that there exists a probabilistic polynomial-time algorithm [9] that pro-
duces a uniformly selected prime P together with the factorization of P − 1. The prime
factorization of P − 1 can be used to verify that a given residue is a generator of the
multiplicative group modulo P: If gP−1 ≡ 1 (mod P) and gN �≡ 1 (mod P) for
every N that divides P − 1, then g is a generator of the multiplicative group modulo P .
(Note that it suffices to check that gP−1 ≡ 1 (mod P) and g(P−1)/Q �≡ 1 (mod P)
for every prime Q that divides P − 1.) We mention that a noticeable fraction of the
residues modulo P will be generators of the multiplicative group modulo P .

Finally, we comment that more randomness-efficient procedures for generating an
n-bit-long prime do exist and utilize only O(n) random bits.4

A.2. Composite Numbers

A natural number (other than 1) that is not a prime is called a composite. Such a number
N is uniquely represented as a product of prime powers; that is, N = ∏t

i=1 Pei
i , where

the Pi ’s are distinct primes, the ei ’s are natural numbers, and either t > 1 or e1 > 1.
These Pi ’s are called the prime factorization of N . It is widely believed that given
a composite number, it is infeasible to find its prime factorization. Specifically, it is
assumed that it is infeasible to find the factorization of a composite number that is the
product of two random primes. That is, it is assumed that any probabilistic polynomial-
time algorithm, given the product of two uniformly chosen n-bit-long primes, can
successfully recover these primes only with negligible probability. Rivest, Shamir,
and Adleman [191] have suggested the use of this assumption for the construction
of cryptographic schemes. Indeed, they have done so in proposing the RSA function,
and their suggestion has turned out to have a vast impact (i.e., being the most popular
intractability assumption in use in cryptography).

For a composite N , the additive group modulo N , denoted ZN , consists of the set
{0, . . . , N − 1} and the operation of addition mod N . All elements that are relatively
prime to N have order N (in this group). The multiplicative group modulo N , denoted
Z
∗
N , consists of the set of natural numbers that are smaller than Nand relatively prime

to it, and the operation is multiplication mod N .

4 For example, one can use a generic transformation of [177]. Loosely speaking, the latter transformation
takes any polynomial-time linear-space randomized algorithm and returns a similar algorithm that has linear
randomness complexity. Note that the selection process described in the preceding text satisfies the premise of the
transformation.

334

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.006
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:51, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.006
https:/www.cambridge.org/core


A.2. COMPOSITE NUMBERS

A.2.1. Quadratic Residues Modulo a Composite

For simplicity, we focus on odd composite numbers that are not divisible by any strict
prime power; that is, we consider numbers of the form

∏t
i=1 Pi , where the Pi ’s are

distinct odd primes and t > 1.
Let N = ∏t

i=1 Pi be such a composite number. A quadratic residue modulo N is
an integer s such that there exists an r ∈ Z

∗
N satisfying s ≡ r 2 (mod N ). Using the

Chinese Remainder Theorem, one can show that s is a quadratic residue modulo N
if and only if it is a quadratic residue modulo each of the Pi ’s. Suppose that s is a
quadratic residue modulo N . Then the equation x2 ≡ s (mod N ) has 2t distinct (inte-
ger) solutions modulo N. Again, this can be proved by invoking the Chinese Remainder
Theorem: First observe that the system

x2 ≡ s (mod Pi ) for i = 1, . . . , t (A.1)

has a solution. Next note that each single equation has two distinct solutions ±ri

(mod Pi ), and finally note that each of the 2t different combinations yields a distinct-
solution to Eq. (A.1) modulo N (i.e., a distinct square root of s modulo N ).

The quadratic residues modulo N form a subgroup of the multiplicative group mod-
ulo N . The subgroup contains exactly a 2−t fraction of the members of the group.
Furthermore, for N = ∏t

i=1 Pi (as before), squaring modulo N is a 2t -to-1 mapping of
the group to the subgroup. For further discussion of this mapping, in the special case
where t = 2 and P1 ≡ P2 ≡ 3 (mod 4), see Section A.2.4.

A.2.2. Extracting Square Roots Modulo a Composite

By the preceding discussion (and the effectiveness of the Chinese Remainder Theorem),5

it follows that given the prime factorization of N , one can efficiently extract square roots
modulo N . On the other hand, any algorithm that extracts square roots modulo a com-
posite can be transformed into a factoring algorithm [187]: It suffices to show how
an algorithm for extraction of square roots (modulo a composite N ) can be used to
produce non-trivial divisors of N . The argument is very similar to the one employed in
Section A.1.3, the difference being that there the root-extraction algorithm was assumed
to work only for extracting square roots modulo a prime (and such efficient algorithms
do exist), whereas here we assume that the algorithm works for extracting square roots
modulo composites (and such efficient algorithms are assumed not to exist).

Reduction of Factoring to Extracting Modular Square Roots. On input a composite
number N , do the following:

1. Uniformly select r ∈ {1, . . . , N − 1}.
2. Compute g ← GCD(N , r ). If g > 1, then output g and halt.6

5Specifically, the system x ≡ ai (mod Pi ) for i = 1, . . . , t is solved by
∑t

i=1 ci · ai mod
∏t

i=1 Pi , where

ci
def= Qi · (Q−1

i mod Pi ) and Qi
def=
∏

j �=i Pj .
6 This step takes place in order to allow us to invoke the root-extraction algorithm only on relatively prime

pairs (s, N ).
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BACKGROUND IN COMPUTATIONAL NUMBER THEORY

3. Set s ← r2 mod N and invoke the root-extraction algorithm to obtain r ′ such that
(r ′)2 ≡ s (mod N ).

4. Compute g ← GCD(N , r − r ′). If g > 1, then output g and halt.

In case the algorithm halts with some output, the output is a non-trivial divisors of N .
The prime factorization of N can be obtained by invoking the algorithm recursively on
each of the two non-trivial divisors of N .

Analysis. We can assume that r selected in Step 1 is relatively prime to N , or else the
GCD of r and N yields the desired divisor. Invoking the root-extraction algorithm, we
obtain r ′ such that (r ′)2 ≡ s ≡ r 2 (mod N ). Because the root-extraction algorithm
has no information on r (beyond r 2 (mod N ) with probability 2/2t , we have r ′ ≡ ±r
(mod N ). Otherwise, r ′ �≡ ±r (mod N ), and still 0 ≡ (r − r ′)(r + r ′) (mod N ).
Therefore, r − r ′ (resp., r + r ′) has a non-trivial GCD with N , which is found in
Step 4. Thus, with probability at least 1

2 , we obtain a non-trivial divisor of N .

A.2.3. The Legendre and Jacobi Symbols

The Legendre symbol of integer r modulo a prime P , denoted LSP (r ), is defined as 0
if P divides r , as +1 in case r is a quadratic residue modulo P , and as −1 otherwise.
Thus, for r that is relatively prime to P , the Legendre symbol of r modulo P indicates
whether or not r is a quadratic residue.

The Jacobi symbol of residues modulo a composite N is defined based on the prime
factorization of N . Let

∏t
i=1 Pei

i denote the prime factorization of N . Then the Jacobi
symbol of r modulo N , denoted JSN (r ), is defined as

∏t
i=1 LSPi (r )ei . Although the

Jacobi symbol (of r modulo N ) is defined in terms of the prime factorization of the
modulus, the Jacobi symbol can be computed efficiently without knowledge of the
factorization of the modulus. That is, there exists a polynomial-time algorithm that
given a pair (r, N ) computes JSN (r ). The algorithm proceeds in “GCD-like” manner7

and utilizes the following facts regarding the Jacobi symbol:

1. JSN (r ) = JSN (r mod N )

2. JSN (a · b) = JSN (a) · JSN (b), and JSN (1) = 1

3. JSN (2) = (−1)(N 2−1)/8 (i.e., JSN (2) = −1 iff N ≡ 4± 1 (mod 8))

4. JSN (r ) = (−1)(N−1)(r−1)/4 · JSr (N ) for odd integers N and r

Note that a quadratic residue modulo N must have Jacobi symbol 1, but not all
residues of Jacobi symbol 1 are quadratic residues modulo N . (In fact, for N = ∏t

i=1 Pi ,
as in Section A.2.1, half of the residues with non-zero Jacobi symbols have Jacobi
symbol 1, but only a 2−t fraction of these residues are squares modulo N .)8 The fact that

7 E.g., JS21(10) = JS21(2) · JS21(5) = (−1)55 · (−1)20 · JS5(21) = −JS5(1) = −1. In general, Fact 2 is used
only with a = 2 (i.e., JSN (2 · r ) = JSN (2) · JSN (r )). Also, at the very beginning, one can use JS2N (r ) =
JS2(r ) · JSN (r ) = (r mod 2) · JSN (r ).

8 The elements of Z
∗
N having Jacobi symbol 1 form a subgroup of Z

∗
N . This subgroup contains exactly half of

the members of the group.

336

Cambridge Books Online © Cambridge University Press, 2009, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511546891.006
Downloaded from https:/www.cambridge.org/core. ETH-Bibliothek, on 22 Mar 2017 at 13:28:51, subject to the Cambridge Core terms of use

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511546891.006
https:/www.cambridge.org/core


A.2. COMPOSITE NUMBERS

the Jacobi symbol can be computed efficiently (without knowledge of the factorization
of the modulus) does not seem to yield an efficient algorithm for determining whether or
not a given residue is a square modulo a given composite (of unknown factorization). In
fact, it is believed that determining whether or not a given integer is a quadratic residue
modulo a given composite (of unknown factorization) is infeasible. Goldwasser and
Micali [123] have suggested use of the conjectured intractability of this problem toward
the construction of cryptographic schemes, and that suggestion has been followed in
numerous works.

A.2.4. Blum Integers and Their Quadratic-Residue Structure

We call N = P · Q, where P and Q are primes, a Blum integer if P ≡ Q ≡ 3 (mod 4).
For such P (resp., Q), the integer −1 is not a quadratic residue mod P(resp., mod Q),
and it follows that −1 is not a quadratic residue modulo N and that −1 has Jacobi
symbol 1 mod N .

By earlier discussion, each quadratic residue s modulo N has four square roots,
denoted ±x and ±y, so that GCD(N , x ± y) ∈ {P, Q}. The important fact about Blum
Integers is that exactly one of these square roots is a quadratic residue itself.9 Conse-
quently, x �→ x2 mod N induces a permutation on the set of quadratic residues mod-
ulo N .

(We comment that some sources use a more general definition of Blum integers,
but the preceding special case suffices for our purposes. The term “Blum integers” is
commonly used in honor of Manuel Blum, who advocated the use of squaring modulo
such numbers as a one-way permutation.)

We mention that in case P �≡ Q (mod 8), the Jacobi symbol of 4 modulo N =
P · Q is−1. In this case, obtaining a square root of 4 mod N that is a quadratic residue
itself allows us to factor N (since such a residue r satisfies r �≡ ±2 (mod N ) and
(r − 2) · (r + 2) ≡ 0 (mod N )).

9 Let a and b be such that a2 ≡ s (mod P) and b2 ≡ s (mod Q). Then, either a or −a (but not both) is a
quadratic residue mod P , and similarly for b. Suppose, without loss of generality, that a (resp., b) is a quadratic
residue mod P (resp., mod Q). The x satisfying x ≡ a (mod P) and x ≡ b (mod Q) is a square root of s
modulo N that is a quadratic residue itself. The other square roots of s modulo N (i.e., −x and ±y, such that
y ≡ a (mod P) and y ≡ −b (mod Q) are not quadratic residues mod N .
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